
Name: Matriculation Number:

Final Exam

General CS II (320102)

May 25., 2014

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 0 minutes, leaving you 120 minutes for
revising your exam.

You can reach 0 points if you solve all problems. You will only need 100 points for a
perfect score, i.e. -100 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Please consider the following rules; otherwise you may lose points:

• “Prove or refute” means: If you think that the statement is correct, give a formal
proof. If not, give a counter-example that makes it fail.

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!

1

1 Graphs & Trees

Conjecture 1.1 Given a tree G = 〈V,E〉 with root node vr. For any node v ∈ V except
the root vr, there is exactly one path p ∈ Π(G) with start(p) = vr and end(p) = v.

Problem 1.1 (Unique Paths in Trees)
Prove the conjecture above by induction on the number of nodes or refute it by a coun- 10pt

10minterexample.
Solution:

Proof : by induction over n = #(V)

P.1.1 n = 1 (base case): V \{vr} = ∅, i.e. there is no node except the root node, and thus we
have nothing to prove.

P.1.2 n → n + 1 (induction step): Let v ∈ V be a non-root node. From the definition of a
tree, it follows that indeg(v) = 1, and thus there is exactly one u ∈ V with 〈u, v〉 ∈ E. As
#(V \{v}) = n we can infer from the inductive hypothesis that there is exactly one path
p ∈ Π(G) with start(p) = vr and end(p) = u. If we append the edge 〈u, v〉 to that path, we
obtain a unique path q = 〈vr, . . ., u, v〉 with start(q) = vr and end(q) = v

2 Circuits and Positional Number Systems

Problem 2.1 (Gray Code)
A Gray code is a number encoding in which every two consecutive numbers differ by a 15pt

15minsingle bit only. Below there is an example of a 2-bit Gray code:

Gray encoding binary equivalent decimal equivalent
00 00 0
01 01 1
11 10 2
10 11 3

• Design a 4-bit Gray code. You can provide your answer in a form similar to the table
above. Keep in mind that every two consecutive numbers must differ by the value of
only one of the four bits.

• Create a combinatorial circuit that takes a 4-bit number in Gray code as input, and
outputs its 4-bit binary equivalent.

Solution:

• There are various solutions for a 4-bit Gray code. One of them is the following:

2

Gray encoding binary equivalent decimal equivalent

0000 0000 0
0001 0001 1
0011 0010 2
0010 0011 3
0110 0100 4
0111 0101 5
0101 0110 6
0010 0111 7
1100 1000 8
1101 1001 9
1111 1010 10
1110 1011 11
1010 1100 12
1011 1101 13
1001 1110 14
1000 1111 15

• Let us name the input bits i1, i2, i3 and i4, with i1 being the least significant bit. Similarly,
the output bits would be o1, o2, o3 and o4.

By comparing the first two columns of the table above, we note the following:

– o4 = i4

– o3 = i3 if i4 = 0 and o3 = i3 if i4 = 1. Thus o3 = XOR(i3, i4)

– o2 = i2 if i3 = i4, i.e. if o3 = 0, and o2 = i2 if i3 = i4, i.e. if o3 = 1. Thus
o2 = XOR(i2, o3)

– o1 = i1 if there is an odd number of 0’s among i2, i3 and i4, and o1 = i1 otherwise.
Thus o1 = XOR(o2, i1)

So the corresponding circuit is:

Problem 2.2 (Number System Conversion)
Convert the following base-3 numbers into octal and decimal numbers: 5pt

5min
3

1. 11

2. 121220

3. 1010

Then convert the following binary numbers to base-5:

1. 10101

2. 111

3 Machine Languages

Problem 3.1 (Count the Contestants)
You have just entered a new contest and got a decent score. However, you are afraid that 12pt

12minyou might not qualify to the next stage, so you quickly write an ASM program to help you
figure how many contestants will advance.

You are given all the N scores, in a decreasing order and the cutoff score k. All
participants with a score lower than the cutoff will not advance. You may assume that all
scores are positive.

You are given k in D(1) and N > 3 values representing the scores of the participants
in D(2), . . . , D(N + 1) (N is not given, but you may rest assured that N > k). You must
output the requested value in D(0).

Example: N = 8, k = 5 and the scores (10, 9, 8, 7, 7, 7, 5, 5). Your program should stop
with D(0) = 6.

Hint: You are allowed to overwrite any position in memory, if needed!

Note: Write down your idea first! It will be more valuable than the code itself.

Solution: The following C snippet might clear up the solution:

int nr = 0; /∗ the number of contestants that advance, in D(0) ∗/
int dk = D[k+1]; /∗ store this value in D(1) since we do not really

need k ∗/
while (D[nr+2] >= dk && D[nr+2] > 0) /∗ we iterate using nr ∗/

nr ++;
return nr;

Since there is no logical AND operation in ASM, we will use nested if constructs (plus com-
parisons with 0), such as:

if (D[nr+2] − dk >= 0)
if (D[nr+2] > 0)
/∗ ... ∗/

The ASM code follows:

4

LOAD 1
MOVE ACC IN2
LOADI 0
STORE 0
LOAD 0
MOVE ACC IN1
LOADIN 2 1
STORE 1
LOADIN 1 2
SUB 1
JUMP(<) 7
LOADIN 1 2
JUMP(<=) 5
LOAD 0
ADDI 1
STORE 0
JUMP −12
STOP 0

Problem 3.2 (Perfect Squares in L(VMP))
15pt

15minWrite an L(VMP) procedure that, given a number n as the only parameter, returns 1 if
n is a perfect square and 0 otherwise.

(Recall: an integer n is a perfect square if there exists another integer x such that
n = x · x.)

Additionally, please provide the same procedures in µML as well.

Hint: You may want to define additional procedures.

Solution:

proc 2 32, // check(a, b) for checking (a == b ∗ b)→ call by ’call 0’
arg 1, arg 2, arg 2, add, leq, cjp 15, // if(2b > a) jump to RETURN0
arg 2, arg 2, mul, arg 1, sub, cjp 15, // if(b ∗ b == a) jump to RETURN1

con 1, arg 2, add, arg 1, call 0, return, // otherwise we go on incrementing b
// we call check(a, b + 1)

con 0, return, // RETURN0 → a is not a perfect square
con 1, return, // RETURN1 → a is a perfect square

proc 1 33, // isSquare(a)→ to be called by call ’call 32’
arg 1, cjp 25, // if(a == 0) jumps to RETURN 1;
con 1, arg 1, sub, cjp 18, // if(a == 1) jumps to RETURN 1;
arg 1, con 0, leq, cjp 8, // if(0 > a) jumps to RETURN 0;
con 2, arg 1, call 0 // here a ≥ 2; calling check(a, 2)

con 0, return, // RETURN 0 → a is not a perfect square
con 1, return, // RETURN 1 → a is a perfect square

con 9, call 32, halt // calling it on 9

5

4 Turing Machines

Problem 4.1: Design a Turing machine that checks whether a number written in base 15pt

15min4 is a power of 2 or not. You can assume that the input will be valid and in between #
signs. Your Turing machine needs to halt in the state “yes” if the input is a power of 2
and in the state “no” if not. There is no need to define the states. Also, you can overwrite
the input if you find it necessary.

Hint: Think of other bases for numbers, transforming the input may help.

Note: If you have a number of states that are similar in execution you are allowed to omit
them from the action table under the condition that you provide a sufficient explanation for how
they work.

5 Internet/WWW/XML

Problem 5.1 (Internet Alphabet Soup)
Name/expand and explain in one sentence the significance of following concepts: 5pt

5min1. URL/ URI/URN

2. WWW

3. HTTP

4. HTML

5. CSS

Solution:
1. URL/ URI/URN: Uniform Resource Locator/Identifier/Name. A URI identifies a data

resource on the Internet, a URL also locates it, and a URN is a URI that is not a URL.
2. WWW: World Wide Web. The WWW is the hypertext/multimedia part of the Internet.
3. HTTP: Hypertext Transfer Protocol. The HTTP protocol specifies the way computers

exchange
4. HTML: Hypertext Markup Language. HTML is the markup format for web pages on the

WWW.
5. CSS: Cascading Style Sheets. CSS is the language for marking up the appearance of web

pages that have been marked up functionally.

Problem 5.2 (Packets and Protocols)
When you click on a link in your web browser, packets of data are transmitted to the web- 8pt

8minserver. The server handles those data packets accordingly and sends back another stream
of data packets that are in turn received by your browser and interpreted accordingly.
Explain this process in detail, highlighting the role of each layer in the protocol stack plays
in data transmission.

Solution: The packet goes down from the application layer on A via the transport- and
internet layers to the link layer. Then on each routing hop it goes up to the Internet layer, where

6

– based on the destination IP address – it is decided where to route it. At the destination B it
goes up from the link layer through internet and transport layers to the application layer. The
graph can be seen in the course notes.

6 Problem Solving and Search

Problem 6.1 (Greedy Search vs. A* Search)
10pt

10min1. Compare and contrast Greedy Search and A* search (i.e. highlight the differences
and the common concepts). What is the role of the heuristic in these two strategies?

2. Apply Greedy and A* on the tree below, where the edge labels are step costs. The
heuristic is given in the table on the left. The result should be a list of nodes in the
order traversed.

A 40 N 125
B 35 O 126
C 34 P 25
D 20 Q 0
E 30 R 122
F 34 S 55
G 115 T 19
H 14 U 51
I 25 V 78
J 30 W 67
K 70 X 56
L 33 Y 34
M 32 Z 12

A

B

D

H

P

14
Q

23

1

I

2

13

E

J

R

89

S

23

3

K

4

3

5

C

F

L

5

M

6

34

G

N

7

O

8

12

7

Solution: Greedy: ACFLMBDHQ Astar: ACBDHQ

7 Programming in Prolog

Problem 7.1 (Sortin ProLog Lists)
Write a ProLog program that sorts a list of integers; i.e. a predicate sort(L1,L2) that 12pt

12minevaluates to true iff the list L2 is the sorted permutation of L1. For instance, the query

?− sort([5,2,6,1],X)

should succeed with the answer substitution X=[1,2,5,6].
Hint: Insertion sort is the easiest to implement. First write a function that inserts an

element in an already sorted list and then write the actual sort function. You might need another
helper function for the sort.

7

