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1 An Old GenCS Favourite ;-)
4pt

Problem 1.1 (Function Definition) 3min
Let A and B be sets. State the definition of the concept of a partial function with domain A
and codomain B. Also state the definition of a total function with domain A and codomain

B

Solution: Let A and B be sets, then a relation R C AB is called a partial/total function,
iff for each a € A, there is at most/exactly one b € B, such that (a,b) € R.




2 Graphs

Problem 2.1 (Alternative Definition of a Tree)

Prof. Simplovsky approaches Prof. Kohlhase at a conference in Saskatchewan and suggests
a different definition of trees which he claims is simpler than Prof. Kohlhase’s (in the slides)
and yet it fully captures the notion of trees too:

“A tree 1s a directed, connected acyclic graph with exactly one node with indegree zero,
which we call the root node.”

Is Prof. Simplovsky right? Explain your answer by proving the equivalence of the
respective definitions or giving an example that differentiates them.

Note: We call a directed graph connected, iff for any two nodes n; and ns there is a path in
the underlying undirected graph (that we get by disregarding all directions of the edges) starting
at n1 and ending at ng. (If this property holds for the directed graph itself, it is called strongly
connected instead.)

Solution: Prof. Simplovsky is wrong; counter-example:
a—b
a—c
b—d
c—d
That is, we need the additional condition that every node except the root has an in-degree of

(Thanks to Darko Pesikan for suggesting this problem.)

4pt
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Problem 2.2 (Another Alternative Definition of a Tree)
Prof. Trivialczyk approaches Prof. Kohlhase at a conference on Hawaii and notes that a
fully balanced binary tree can be defined without introducing balanced trees before, but
simply as “a binary tree with the numbers of nodes at each depth equal to powers of two,
and with a total number of nodes equal to 2"~ * for somen >1.”

Is Prof. Trivialczyk right? Explain your answer by proving the equivalence of the
respective definitions or giving an example that differentiates them.

Solution: Prof. Trivialczyk is wrong; counter-example: a binary tree with 7 nodes, depth 3
and 2 nodes at each level.

(Thanks to Darko Pesikan for suggesting this problem.)

8ntin



3 Combinatorial Circuits and Memory

Problem 3.1 (A Vending Machine Circuit)
Given is a vending machine for candies that accepts coins of 5 and 10 cents only and stores
the current credit ¢. One candy costs 15 cents. If the credit reaches 15 cents or more
(¢ > 15), the machine dispenses one candy (you don’t need to implement this! ;-) and
reduces the credit by 15 cents, i.e. the new credit ¢ is ¢ — 15.

Assume that no two coins can be thrown into the machine at the same time, and that
a clock signal is only generated when a coin is thrown into the machine, i.e. there are no
transitions like ¢ = ¢ + 0.

Note: Take the clock signal as a “magic” input from outside. You do not need to generate
or manipulate it yourself.

We shall model this machine as a black box that accepts an input for the coins (appro-
priately encoded) and gives two output bits that represent the current credit.

1. Devise an appropriate encoding for storing the credit and representing coins as input
bits.

2. Draw a state diagram, i.e. a graph whose nodes are the possible states of the machine
(here, a state is the value of ¢) and whose edges are possible transitions between the
states that are taken on a certain input.

3. Now draw the sequential logic circuit. You may use D-flipflops and any combinational
circuits or gates that have been introduced in this course. Make sure you remove any
ambiguity in your drawing by properly labeling wires and/or circuit elements and
sufficiently explaining the layout.

Solution:

1. One possible encoding is: the state “0 cents credit” represented as 00, “5 cents” represented
as 01, and “10 cents” represented as 10. An input of 5 cents is represented as 01, 10 cents
are represented as 10. The state 11 is not possible, neither are the inputs 00 and 11.

2. ...

Note regarding the input of coins: If you take the clock as “magic”, one bit is sufficient to
distinguish 5 from 10 cents. If a student generates or manipulates the clock signal (as he might
know more about clocks than we learned in GenCS), a two-bit encoding is needed and should
also be accepted as a solution.

(Thanks to Snezana Jovanoska and Darko Pesikan for suggesting this problem.)
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Problem 3.2 (Conditional Sum Adder) $Dinin
Draw the circuit of a Conditional Sum Adder (CSA) that adds two four-bit numbers. Go
down to the level of elementary gates.
Hint: To spend less time on drawing gates, you can draw a complex circuit that is needed
for the CSA (e.g. a half adder) once from elementary gates and then re-use it as a building block
with appropriate inputs and outputs. Be sure to explain the layout of the whole circuit.




4 Virtual Machines

Problem 4.1 (While Loop in £(VM))
Write a program in the Simple While language that takes two numbers A and B, given at
the memory addresses 1 and 2, and returns (A + B)*2. Show how the compiled version of
it looks like in the Virtual Machine Language £(VM) (concrete, not abstract syntax).

10pt
15min

Solution:

var n := 1; var a

var ¢ := atb;

while n >= 42 do (
p := ¢ * p;
n:=n + 1;

)

return p;

:= A; var b :

B;

con 1 peek 1 peek 2

add con 1

peek 0 con 43 leq cjp halt
peek 1 peek 2 mul poke 2
peek 0 con 1 add poke 0
jp back

halt




5 Turing Machines

Problem 5.1 (Boolean Equivalence)
Consider a tape arbitrarily filled with ones and zeros and the head initially positioned over
some cell “X” as depicted below

initial head position

XY

Define a transition table for an always terminating Turing machine TM that computes
the boolean equivalence of “X” and “Y”: Upon halting, your TM should return the value
1 in cell “X” if the values of the cells “X” and “Y” were initially equal and otherwise 0.

Try to use as few states as possible. The number of points you can obtain for this
exercise is max(0, 14 — z), where z is the number of states of your working TM.

Hint: You only need to consider the two cells “X” and “Y”. It does not matter where the
head stays when the TM terminates.

Note:

1. Admissible moves are left, right, and none with the obvious meaning.

2. You are free to overwrite the initial value of “Y” and to introduce additional symbols in
the alphabet, if you need it for your solution.

Solution: There are lots of possible solutions.
The following four-state solution (including the final state) by Dmakreshanski Pesikan does
not use any additional alphabet symbols:

Old | Read | Write | New | Move
S1 0 0 S92 right
S1 1 1 S9 right
S9 0 0 S3 left
S3 1 0 S4 left
S3 0 1 S4 none

Tanmay Pradhan presented a solution that uses additional symbols and only needs two states.
This is supposed to be optimal.

Old | Read | Write | New | Move
S1 0 %Y S92 right
s1 1 Y S92 right
S9 0 L s1 left
S9 1 L S9 left
s1 W 1 s1 right
s1 Y 0 S1 right
S2 W% 0 S1 right
S9 Y 1 S1 right

10pt
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If we require that the head must stop on “X” — but we don’t , as Darko pointed out! — , it
gets more complicated. The following solution by Christoph Lange is quite straight-forward, but
not optimal:

Old | Read | Write | New | Move
a 0 0 b right
a 1 1 b right
b 0 0 co left

b 1 1 c left
Co 0 1 1 none
co 1 0 1 none
c1 0 0 1 none
c1 1 1 1 none

Andrei Aiordachioaie supposed this four-state solution:

Old | Read | Write New | Move
S0 1 X right | s,
S0 0 Y right | s,
Su 1 1 left Sz
Sy X 1 none | L
sz |0 (anything) | left | s,
Sy Y 0 none | L
sy |0 0 L Sy
Sy Y 1 none | L
sy |1 (anything) | left | s,
Sy X 0 none | L




Problem 5.2 (Halting Problem) $Dinin
Define the Halting Problem:

e What does it state about the computational power of Turing machines?
e Outline (informally) how one would prove this statement.

e Why is the halting problem interesting; what is its practical relevance?

10



6 Problem Solving and Search

Problem 6.1 (Interpreting Search Results)

The state of Ingushetia has only four cities (A, B, C, and D) and a few two-way roads
between them, so that it can be modeled as an undirected graph with four nodes. The
task is to go from city A to city D. The UCS algorithm finds a solution to this task that
is 10km shorter than the one BFS finds. The solution of BFS in turn is 10km shorter than
the one of the DFS algorithm.

Draw a map of Ingushetia with roads and their distances that satisfies both conditions.
What paths between A and D in your map will be found as solutions by each of those
algorithms?

Note: All algorithms had repetition checking implemented, so that when a node is expanded,
all its children that belong to a list of previously expanded nodes during the execution of that
algorihtm are ignored. In addition, when no order of choosing a node for expansion is specified
by an algorithm, expansion in alphabetical order takes place.

Solution: One possible solution:

10
The paths found are:

UCS ACBD (30km)
BFS ABD (40km)
DFS ABCD (50km)

A second solution: All possible edges should be present in the graph, except AD. The weigths
are given as : AB = 10, AC = 10, AD is not in the graph, BC = 20, BD = 20, CD = 10. The
solutions are then: DFS: ABCD , with cost = 40; BFS: ABD, with cost = 30; UCS: ACD, with
cost = 20.

(Thanks to Darko Pesikan for suggesting this problem.)

11
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7 Prolog

Problem 7.1 (Paths in a Graph) ?gﬁnin
Given a directed graph, represented by edge (from, to) facts, write a predicate trip(A, B, L)
that succeeds if the node B is accessible from A via the intermediate nodes L (an ordered
list of nodes).

Note: It is not required to avoid cyclic trips.

Solution:

trip(A, B, []1) :- edge(A, B).
trip(A, B, [H | T]) :- edge(A, H), trip(H, B, T).
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