
Name: Matriculation Number:

General CS II (320201) Final Exam

May 23. 2006

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 23 minutes, leaving you 97 minutes for
revising your exam.

You can reach 16 points if you solve all problems. You will only need 70 points for a
perfect score, i.e. -54 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 Sum grade
total 4 12 16
reached

Good luck to all students who take this test

1

1 Computational Logic
4pt
8minProblem 1.1 (Basics of Resolution)

What are the principal steps when you try to prove the validity of a propositional formula
by means of resolution calculus? In case you succeed deriving the empty clause, why does
this mean you have found a proof for the validity of the initial formula?

2

1.1 Virtual Machines
12pt
15minProblem 1.2 (Binary Conversion in L(VM))

Write a L(VM) program that converts a binary natural number into a decimal natural
number. Suppose that n, the number of digits, is stored in stack[2] and n numbers 0 or 1
above it follow, where the top of stack is the least significant bit. stack[0] and stack[1]

are available for your use. Your program should leave only the converted number on the
stack (in stack[0]). You are allowed to use labels for (conditional) jumps.

For instance an initial stack

1
0
1
3
?
?

should give the result stack 5 .

Solution: con (0)
poke (0) ; init. result to 0
con (1)
poke (1) ; init. 2i to 1
peek (1)
mul ; multiply with 2i

peek (0)
add ; add to result
poke (0)
peek (1) ; update multiplier
con (2)
mul

poke (1) con (1) 1 ; update digit counter
peek (2)
sub

poke (2)
peek (2) ; if counter = 0 go out
cjp 4 jp − 26 ; else again
poke (1) 1 ; clean stack and stop
add

halt

3

1.2 Combinational Circuits
8pt
10minProblem 1.3 (Shift and Duplication on PNS)

Consider for this problem the signed bit number system and the two’s complement number
system. Given a binary string b = an. . .a0. We define

1. the duplication function dupl that duplicates the leading bit; i.e. it maps the n+1-bit
number an. . .a0 to the n + 2-bit number anan. . .a0 and

2. the shift function shift that maps the n + 1-bit number an. . .a0 to the n + 2-bit
number an. . .a00

Prove or refute the following two statements

• The shift function has the same effect in both number systems; i.e. for any integer
z:

(〈〈shift(B(z))〉〉−) = 〈〈shift(B2s
n (z))〉〉2sn+1

• The dupl function has the same effect in both number systems; i.e. for any integer z:

(〈〈dupl(B(z))〉〉−) = 〈〈dupl(B2s
n (z))〉〉2sn+1

Solution:

• (〈〈dupl(B(z))〉〉−) = z − 2n+1 if z < 0 else z.

• (〈〈shift(B(z))〉〉−) = 2 ∗ z

• 〈〈dupl(B2s
n (z))〉〉2sn+1 = z

• 〈〈shift(B2s
n (z))〉〉2sn+1 = 2 ∗ z

Proof for the last equality:

shift(−an ∗ 2n +
n−1∑
k=0

ak ∗ 2k) = −an ∗ 2n+1 +
n−1∑
k=0

ak ∗ 2k+1 = 2 ∗ (−an ∗ 2n +
n−1∑
k=0

ak ∗ 2k)

4

10pt15minProblem 1.4 (Carry Chain and Conditional Sum Adder)
Determine depth and cost of a 4-bit Carry Chain Adder, a 4-bit Conditional Sum Adder,
and a combination of both where two 2-bit Carry Chain Adders are connected with by one
Mux.

Which adder has lowest cost and depth respectively?
Hint: You don’t need to draw the adders. On the other hand don’t supply just the result

numbers of your cost calculations, since the revisor can differentiate between fundamental and
oversights only if he or she can reconstruct the calculation to some extent. Without any comments
the wrong result leads to zero points though just a minor mistake was the actual reason.

5

1.3 Turing Machines
11pt
20minProblem 1.5 (Boolean Equivalence)

Consider a tape arbitrarily filled with ones and zeros and the head initially positioned over
some cell “X” as depicted below

X Y

initial head position

Define a transition table for an always terminating Turing machine TM that computes
the boolean equivalence of “X” and “Y”: Upon halting, your TM should return the value
1 in cell “X” if the values of the cells “X” and “Y” were initially equal and otherwise 0.

Try to use as few states as possible. The number of points you can obtain for this
exercise is max(0, 14− x), where x is the number of states of your working TM.

Hint: You only need to consider the two cells “X” and “Y”. It does not matter where the
head stays when the TM terminates.

Note:

1. Admissible moves are left, right, and none with the obvious meaning.

2. You are free to overwrite the initial value of “Y” and to introduce additional symbols in
the alphabet, if you need it for your solution.

Solution: There are lots of possible solutions.
The following four-state solution (including the final state) by Dmakreshanski Pesikan does

not use any additional alphabet symbols:

Old Read Write New Move

s1 0 0 s2 right
s1 1 1 s2 right
s2 0 0 s3 left
s3 1 0 s4 left
s3 0 1 s4 none

Tanmay Pradhan presented a solution that uses additional symbols and only needs two states.
This is supposed to be optimal.

Old Read Write New Move

s1 0 W s2 right
s1 1 Y s2 right
s2 0 L s1 left
s2 1 L s2 left
s1 W 1 s1 right
s1 Y 0 s1 right
s2 W 0 s1 right
s2 Y 1 s1 right

6

If we require that the head must stop on “X” – but we don’t , as Darko pointed out! – , it
gets more complicated. The following solution by Christoph Lange is quite straight-forward, but
not optimal:

Old Read Write New Move

a 0 0 b right
a 1 1 b right
b 0 0 c0 left
b 1 1 c1 left
c0 0 1 ⊥ none
c0 1 0 ⊥ none
c1 0 0 ⊥ none
c1 1 1 ⊥ none

Andrei Aiordachioaie supposed this four-state solution:

Old Read Write New Move

s0 1 X right sx
s0 0 Y right sy
sx 1 1 left sx
sx X 1 none ⊥
sx 0 (anything) left sy
sx Y 0 none ⊥
sy 0 0 L sy
sy Y 1 none ⊥
sy 1 (anything) left sx
sy X 0 none ⊥

7

1.4 Problem Solving and Search
12pt
15minProblem 1.6 (Monotone heuristics)

Let c(n, a, n′) be the cost for a step from node n to a successor node n′ for an action a.
A heuristic h is called monotone if h(n) ≤ h(n′) + c(n, a, n′). Prove or refute that if a
heuristic is monotone, it must be admissible. Construct a search problem and a heuristic
that is admissible but not monotone. Note: For the goal node g it holds h(g) = 0. Moreover
we require that the goal must be reachable and that h(n) ≥ 0.

Solution: For the heuristic h to be admissible we have to show that h(x) is less or equal
the minimum coast to a goal state.

Let n1 any node different from the goal node g. Suppose < n1, n2, . . . , np, g > is the minimum
cost path from n1 to g. Its cost is C = c(n1, a1, n2) + c(n2, a2, n3) . . . + c(np, ap, g). Using
h(n)− h(n′) ≤ c(n, a, n′) we get C ≥ h(n1) − h(n2) + h(n2) − h(n1) + . . . + h(np) − h(g) =
h(n1)− h(g) = h(n1). Hence we have proven that h(n1) is admissible.

We consider the minimum distance search problem with three cities A,B,G where G is the
goal city and the distances are dist(A,B) = 2 and dist(B,G) = 100. The heuristic h(A) =
6, h(B) = 3, h(G) = 0 is admissble since h(A) < dist(A,B) + dist(B,G). But is is not monotone
since h(A) > h(B) + dist(A,B).

8

Problem 1.7 (Search Strategy Comparison on Tree Search)
Consider the tree shown below. The numbers on the arcs are the arc lengths.

Assume that the nodes are expanded in alphabetical order when no other order is
specified by the search, and that the goal is state G. No visited or expanded lists are used.
What order would the states be expanded by each type of search? Stop when you expand
G. Write only the sequence of states expanded by each search.

Search Type Sequence of States
Breadth First

Depth First

Iterative Deepening (step size 1)

Uniform Cost

9

1.5 Prolog
10pt
15minProblem 1.8 (Greatest Common Divisor)

Write a ProLog program with a ternary predicate gcd, such that gcd(A,B,D) returns ”Yes”
if D is the greatest common divisor of A and B. Otherwise it should either return ”No” or
it should never terminate.

You can make use of any of the following built-in predicates: <, >, =<,>=, and =, as well
as the basic arithmetic operations. But you have to define mod on your own if you need it.

Note: The Euclidean algorithm for the look like:

fun gcd(x, y) = if y = 0 then x else gcd(y, x mod y);

Solution:

mod(A,B,A):-A<B.
mod(A,B,C):-A>=B,D is A-B,mod(D,B,C).
gcd(A,0,A).
gcd(A,B,D):-B>0,mod(A,B,C),gcd(B,C,D).

10

