
General Computer Science II (320201) Spring 2012

Michael Kohlhase
Jacobs University Bremen

For Course Purposes Only

April 8, 2013

Contents

Assignment 1: Graph Theory 2

Assignment 2: Number Systems and Combinatorial Circuits 6

Assignment 3: TCN and Combinatorial Circuits 12

Assignment 4: Machine Languages 18

Assignment 5: Machine Languages 25

Assignment 6: Machine Languages 34

Assignment 7: Internet Introduction 40

Assignment 8: Internet and Mail Services 44

Assignment 9: Web technologies 47

Assignment 10: Web technologies 51

Assignment 11: A* Search and Prolog (bonus assignment) 59

1



Assignment 1: Graph Theory(Given Feb. 10., Due Feb.

16.)
20pt

Problem 1.1 (Parse trees and isomorphism)
Let Pe be the parse-tree of e := (x1 ∗ x2 + x2 ∗ x3) ∗ x4

1. Design a combinational circuit that represents Pe.

2. Write the mathematical representation of a graph G that is different but equivalent
to Pe.

Solution:

1.

2. G := 〈{A,B,C,D,E, F,G, 1, 2, 3, 4}, {〈A,B〉, 〈A, 4〉, 〈B,C〉, 〈B,E〉, 〈C,D〉, 〈D,F 〉, 〈D, 2〉, 〈E, 2〉, 〈E,G〉, 〈F, 1〉, 〈G, 3〉}〉

2



30ptProblem 1.2 (Tree Equivalences)
Let G be a graph with v vertices. Prove or refute that the following statements are
equivalent:

• G is connected and it does not contain cycles.

• G contains no cycles, but adding one edge e will create exactly one cycle.

• Any two vertices of G are connected by strictly one path.

Solution:

• We can first prove the equivalence of the first and third statement. To prove: An acyclic
connected graph has a unique path between any two of its vertices u and v, with u, v ∈ V .
If G is connected then each pair of vertices can be connected by at least one path. If some
pair is connected by more than one path, we choose the shortest pair 〈P,Q〉 of distinct
paths with the same endpoints. Due to this choice, no internal vertex of P or Q will belong
to the other path. Hence P ∪Q is a cycle and contradicts the hypothesis.

Conversely, if there exists one path between any u and v, then G is connected. If G has a
cycle C, G would have at least two different paths between points in C, thus contradicting
the initial assumption.

• Now we can prove the second claim using the others. As proven, a tree has a unique path
linking each pair of vertices. This means that joining any two vertices u and v by edge e
will create another path P between them, second to the initial one. So one can just consider
P ∪ e and we have a cycle. More than one cycle could be formed only if there were at least
two paths between u and v. But this would mean that there would already be a cycle in
G, which is excluded.

From the other direction, the argument is similar. If adding one edge to G creates a unique
cycle, then we need to prove that initially G is acyclic and connected. If by adding any
edge e to a graph we obtain a cycle C, then ∃ path P from any u to any v. Otherwise
we could simply connect the isolated vertex to G via e. Also, the uniqueness of the cycles
translates to G having not more than one path from any u to any v, so we have shown that
G is connected and acyclic.

3



25ptProblem 1.3 (In-degrees in acyclic digraphs)
Prove by induction or refute that any acyclic digraph with non-empty set of nodes has at
least one node with in-degree 0.

Solution:
Proof : Proof by induction on the size of (number of nodes in) the graph:

P.1.1 n=1: trivial

P.1.2 Step case: n =⇒ n + 1:

P.1.2.1 Note that for any acyclic digraph, every subgraph is also acyclic (otherwise a cycle in
the subgraph would make the entire graph cyclic). This is what makes induction possible.

P.1.2.2 So assume an acyclic digraph with n nodes and at least a node with in-degree 0 such
that the graph is still acyclic. Call this node v0. Now add an extra vertex, vn, to the graph
and any number of edges that connects it with the rest of the vertices.

P.1.2.3.1 This new node has no incoming edge.: This is the new 0 in-degree node.

P.1.2.3.2 v0 still has no incoming edge.: v0 remains the 0 in-degree node.

P.1.2.3.3 v0 has an incoming edge from vn and indeg(vn) > 0: Then there exists an edge
from vi to vn. If vi has in-degree 0, then this is a 0 in-degree node. Otherwise, since the
graph is acyclic, vi has no incoming edge from v0 or vn, so there is an edge from another
node in the graph. Continuing this process either leads to identifying a 0 in-degree node
or to the situation where a last untouched node is reached but the graph is acyclic, so this
node has to have in-degree 0.

4



30ptProblem 1.4 (Graphs and SML)
A common way to describe directed graphs is to list the direct neighbors of each node in
a structure called “adjacency list”. In this problem, we will use a list of pairs (v, l), where
l is the adjacency list of vertex v. For example, if we had node 1 connected to node 2 and
3, and 2 connected to 3 and 1, the list would look like:

var adjList = [(1, [2, 3]), (2, [3, 1])];

In this example, 3 is not connected to any other vertex, so it does not appear in the
adjacency list.

Your tasks are:

1. Write an SML function getNeighbors which, given an graph represented with an adja-
cency list and a vertex v, returns the list of direct neighbors l corresponding to the
vertex, or nil if the vertex has no neighbors.

2. Write an SML function isTree which, given a graph represented with an adjacency
list, checks whether it is a tree. Remember that trees are directed acyclic graphs
with a single node with in-degree 0 and all nodes but the root node has in-degree 1.

3. Write the SML functions size and depth which return the size and the depth of a tree
represented with an adjacency list.

Function signatures and example:

val getNeighbors = fn : (int ∗ int list) list ∗ int −> int list;
val isTree = fn : (int ∗ int list) list −> bool;
val size = fn : (int ∗ int list) list −> int;
val depth = fn : (int ∗ int list) list −> int;

− val adjList = [ (1, [2,3]), (2, [4, 5, 6, 7]), (5, [15, 12]) ];
− getNeighbors(adjList, 2);
val it = [4, 5, 6, 7] : int list;
− getNeighbors(adjList, 4);
val it = [] : int list;
− isTree(adjList);
val it = true;
− size(adjList);
val it = 9: int;
− depth(adjList);
val it = 4;

Solution:

fun size (leaf) = 0 | size (parent(x,y)) = 1+ size(x) + size(y)
fun depth (leaf) = 0 | depth (parent(x,y)) = 1+ max(depth(x),size(y))

5



Assignment 2: Number Systems and Combinatorial Cir-

cuits(Given Feb. 17., Due Feb. 23.)
25pt

Problem 2.1 (Gray Code)
A Gray code is a number encoding in which every two consecutive numbers differ by a
single bit only. Below there is an example of a 2-bit Gray code:

Gray encodng binary equivalent decimal equivalent
00 00 0
01 01 1
11 10 2
10 11 3

• Design a 4-bit Gray code. You can provide your answer in a form similar to the table
above. Keep in mind that every two consecutive numbers must differ by the value of
only one of the four bits.

• Create a combinatorial circuit that takes a 4-bit number in Gray code as input, and
outputs its 4-bit binary equivalent. You are only allowed to use XOR gates for this
task.

Solution:

• There are various solutions for a 4-bit Gray code. One of them is the following:

Gray encodng binary equivalent decimal equivalent

0000 0000 0
0001 0001 1
0011 0010 2
0010 0011 3
0110 0100 4
0111 0101 5
0101 0110 6
0010 0111 7
1100 1000 8
1101 1001 9
1111 1010 10
1110 1011 11
1010 1100 12
1011 1101 13
1001 1110 14
1000 1111 15

• Let us name the input bits i1, i2, i3 and i4, with i1 being the least significant bit. Similarly,
the output bits would be o1, o2, o3 and o4.
By comparing the first two columns of the table above, we note the following:

6



– o4 = i4

– o3 = i3 if i4 = 0 and o3 = i3 if i4 = 1. Thus o3 = XOR(i3, i4)

– o2 = i2 if i3 = i4, i.e. if o3 = 0, and o2 = i2 if i3 = i4, i.e. if o3 = 1. Thus
o2 = XOR(i2, o3)

– o1 = i1 if there is an odd number of 0’s among i2, i3 and i4, and o1 = i1 otherwise.
Thus o1 = XOR(o2, i1)

So the corresponding circuit is:

7



30ptProblem 2.2 (Converting to decimal in SML)
Write an SML functions:

change base n = fn : int −> string list

that takes a natural number and converts it into binary, octal or hexadecimal notations.
Output all results as a list of strings: first decimal, next octal, last hexadecimal.

In your implementation, follow these steps:

1. First convert the number to base two by creating a function base2 n = fn : int −> string

2. Then, using this result, create 2 functions base2to16 n = fn : string −> string list and
base2to8 n = fn : string −> string list that take the number in binary and convert it to
octal and hexadecimal.

Please note that these steps are mandatory!
As an example consider

change base 10 −> [”1010”,”12”,”A”]

Solution:

exception InvalidInput;
exception SomeError;

fun tobase2 0 = []
| tobase2 n = (n mod 2)::(tobase2 (n div 2));

fun reverse [] = []
| reverse ( h :: t ) = reverse ( t )@[ h ] ;

fun make char list [] = []
|make char list(c::l) = if c=0 then (#”0”)::make char list(l)

else (#”1”)::make char list(l);

fun base2 n = implode(make char list(reverse (tobase2 n)));

fun find int [] = []
|find int (c::lc) = if 0 <= ord(c)−48 andalso ord(c)−48<=9 then (ord(c) − 48)::find int(lc)

else raise InvalidInput;

fun resize8 l = if length(l) mod 3 = 1 then 0::(0::l)
else if length(l) mod 3 = 2 then 0::l

else l;

fun tobase8 [] = []
|tobase8 (a::b::c::l)= (a∗4+b∗2+c)::tobase8(l)
|tobase8 l = raise SomeError;

fun base2to8 l = tobase8(resize8(find int (explode l)));

fun resize16 l = if length(l) mod 4 = 1 then 0::0::0::l

8



else if length(l) mod 4 = 2 then 0::0::l
else if length(l) mod 4 = 3 then 0::l

else l;

fun make special char 10 = ”A”
| make special char 11 = ”B”
| make special char 12 = ”C”
| make special char 13 = ”D”
| make special char 14 = ”E”
| make special char 15 = ”F”
| make special char n = raise SomeError;

fun make char(x:int) = if x div 10 = 0 then Int.toString x
else make special char x;

fun tobase16 [] = []
|tobase16 (a::b::c::d::l)= make char(a∗8+b∗4+c∗2+d)::tobase16(l)
|tobase16 l = raise SomeError;

fun base2to16 l = tobase16(resize16(find int (explode l)));

9



20ptProblem 2.3 (DNF Circuit with Quine McClusky)
Use the technique shown in class to design a combinational circuit for the following Boolean
function:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 1 1 1

Solution: After using Quine-McCluskey and checking the prime implicants for their essen-
tialness we conclude that the given functions are

f1(X) = ¬X1 ∨X2

f2(X) = ¬X1 ∧X3 ∨X1 ∧X2

f3(X) = ¬X1

Hence the circuit for these functions can be designed as the following:
x1

x2
x3

f1 f2

f3

10



25ptProblem 2.4 (Digit Display)
Suppose that you are given a set of 4 binary inputs that represent a digit (0-9) in binary
(from ’0000’ for 0 to ’1001’ for 9). Design a circuit that will turn on (set output value to
1) the outputs that correspond to the digit.

Consider the segments in the order described in the image below:

For example, one could, for the digit 1, turn on segments S3 and S4, so only the outputs
corresponding to these segments will be 1 if the input is ’0001’.

Note: Write down in your solution the segments that should be on for each digit. Also, give
a reasoning why your circuit is correct.

Solution: For each digit, one has to determine what segment wil be on. For example, the
digit 2 should turn on segments S0, S5, S1, S4 and S2. The final implementation is dependant
on the choice of digit-display, but for example one can use segment S1 in digits 2 (0010), 3 (0011),
4 (0100), 5 (0101), 6 (0110), 8 (1000), 9 (1001). Thus we can create the following truth table:

i1 i2 i3 i4 S1

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1

The next steps would be applying QMC to obtain the minimum polynomial and then implement
it in a circuit:

i1 i2 i3 + i1 i2 i3 + i1 i2 i3 + i1 i3 i4

The same procedure should be done for every segment.

11



Assignment 3: TCN and Combinatorial Circuits(Given

Feb. 24., Due Mar. 1.)
30pt

Problem 3.1 (TCN in SML)
Given the datatype: type tcn = int list write the following SML functions

• extend = fn : tcn −> int −> tcn which takes a number in Two’s complement represen-
tation and an integer n and makes the tcn number n bits wide. Here n should always
be bigger or equal to the current width of the number.

• int2tcn = fn : int −> int −> tcn which converts an integer number to a tcn number
given the width.

• tcn2int = fn : tcn −> int which converts a tcn number to an integer number.

If in any of the functions a number can’t fit into the requested number of bits raise the
NumberDoesNotFit exception.

Note: A number’s width is simply the number of bits that are used to represent that number.

As an example conisder

int2tcn 10 8 −> [0,0,0,0,1,0,1,0]

Solution:

type tcn = int list;
exception NumberDoesNotFit;

fun int2bin 0 = [0]
| int2bin n = (int2bin (n div 2) ) @ [n mod 2];

fun negate bin = foldr (fn(c,p)=> (1−c)::p ) nil bin;

fun extend (num:tcn) (bits:int) :tcn =
if bits < (length num)

then raise NumberDoesNotFit
else List.tabulate(bits−(length num), (fn => hd(num))) @ num;

fun int2tcn n (bits) : tcn =
if n >= 0
then extend ( int2bin n ) bits
else extend ( negate( int2bin ((˜n)−1) ) ) bits;

fun bin2int num = foldl (fn (c,p) => p∗2+c ) 0 num;
fun tcn2int (num:tcn) =

if hd(num) = 0
then bin2int num
else ˜(bin2int (negate num) ) − 1;

(∗TEST CASES∗)
val test1 = (int2tcn 0 4) = [0,0,0,0];

12



val test2 = (int2tcn 1 4) = [0,0,0,1];
val test3 = (int2tcn 2 4) = [0,0,1,0];
val test4 = (int2tcn 3 4) = [0,0,1,1];
val test5 = (int2tcn 4 4) = [0,1,0,0];
val test6 = (int2tcn 5 4) = [0,1,0,1];
val test7 = (int2tcn 6 4) = [0,1,1,0];
val test8 = (int2tcn 7 4) = [0,1,1,1];
val test9 = (int2tcn ˜1 4) = [1,1,1,1];
val test10 = (int2tcn ˜2 4) = [1,1,1,0];
val test11 = (int2tcn ˜3 4) = [1,1,0,1];
val test12 = (int2tcn ˜4 4) = [1,1,0,0];
val test13 = (int2tcn ˜5 4) = [1,0,1,1];
val test14 = (int2tcn ˜6 4) = [1,0,1,0];
val test15 = (int2tcn ˜7 4) = [1,0,0,1];
val test16 = (int2tcn ˜8 4) = [1,0,0,0];
val test17 = (int2tcn ˜10 4) = [1,0,1,0] handle NumberDoesNotFit => true| other => false;
val test18 = (int2tcn 16 4) = [1,0,1,0] handle NumberDoesNotFit => true| other => false;

val test19 = (extend [0] 3) = [0,0,0];
val test20 = (extend [1,0] 3) = [1,1,0];
val test21 = (extend [0,1,0] 3) = [0,1,0];
val test22 = (extend [1] 3) = [1,1,1];
val test23 = (extend [1,0,0] 3) = [1,0,0];
val test24 = (extend [1,0,1,0] 3) = [0] handle NumberDoesNotFit => true| other => false;

val test25 = tcn2int [0] = 0;
val test26 = tcn2int [0,0,0] = 0;
val test27 = tcn2int [0,0,1] = 1;
val test28 = tcn2int [1] = ˜1;
val test29 = tcn2int [1,1,1,1] = ˜1;
val test30 = tcn2int [1,1,1,1,1,1,1,1,0] = ˜2;
val test31 = tcn2int [0,0,0,0,1,1,0,0] = 12;
val test32 = tcn2int [1,0,1,0] = ˜6;

13



30ptProblem 3.2 (3-Counter)
A digital counter is a device which, given a logical input, will output the binary represen-
tation of the number of times the input was turned on.

Your task is to design such a counter, which counts 3 times for every time when the input
is on (i.e. it produces the sequence 0, 3, 6, 9, . . . in binary). In order to keep the complexity
of the circuit low, use only 3 outputs (i.e. produce the sequence 0, 3, 6, 1, 4, 7, 2, 5, 0...,
which is the previous sequence modulo 8).

Also include a short description of how your circuit works and why does it accomplish
its task.

Solution: Below is my implementation in KTechLab:

The operational principle there is that we store in the D-latches the current number, which
we feed as one of the terms of a 3-bit adder (built as a CCA); the other term is the number
3, which is represented as 011 in binary (note that the upper bit is the most significant in the
outputs/inputs). The sequence 011 is fixed (should not be changed by the user), i.e. the only
input required is the logical input on the left. There is alo a logical input on the lower side of the
diagram, which is used as a universal “reset button”.

14



15ptProblem 3.3 (Cost and depth of adders)
What is the cost and depth of an n-bit CCA? What about the n-bit CSA (for cost, big-O
is enough)? Now what if we construct a new adder, that computes the two cases for the
first half of the input just like CSAs do (and of course uses a multiplexer), but only does
this once, and the n

2
-bit adders are not also CSAs, but CCAs (so only one multiplexer is

used overall) - what would the cost and depth of this adder be?

Solution: The CCA has depth 3n and cost 5n, as shown in the slides. The CSA has depth
3 log(n) + 3 and cost of complexity order nlog3. For the new adder, the depth is the one of the
n
2 -bit CCA, plus the n

2 -bit multiplexer, which is 3. Thus the depth is 3n
2 + 3. The cost is that of

three CCAs and one multiplexer, so 5n
2 · 3 + 3n

2 + 1.

15



30ptProblem 3.4 (Detecting overflow in TCN addition)

1. Convert the following pairs of decimal numbers into (4-bit) two’s complement nota-
tion and add them (to obtain a 4-bit result). Convert the sum back to decimal and
check whether the answer you obtained is correct. Thus state whether the addition
was proper or an overflow/underflow occured.

• −1 and 7

• −5 and −4

2. According to the TCN Main Theorem, when adding two n-bit TCN numbers, a
proper sum is obtained when the last two carry bits are equal. Otherwise an overflow
or an underflow occurred. There are a number of other ways to detect that, however.
Consider the full adder used for the addition of the most significant bits of the two
numbers. Look at the inputs and outputs of this full adder, and determine when an
overflow occurs depending on the carry-in and carry-out bit values. Write down the
logic equation for this and draw its corresponding combinatorial circuit.

Solution:

1. 4-bit TCN additions:

• −110 = 1111TCN , 710 = 0111TCN , 1111TCN + 0111TCN = 0110TCN = 610, thus the
addition was proper

• −510 = 1011TCN , −410 = 1100TCN , 1011TCN + 1100TCN = 0111TCN = 710 6= −910,
thus an overflow occured

2. We write down all the possibilities for what is happening at the last full adder for two n-bit
TCN numbers:

an−1 bn−1 cin cout sn−1 overflow?

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

From the table we see that an overwflow occurs when cout 6= cin.
Thus the corresponding expression is cin · cout + cin · cout.

16



And the corresponding circuit is below:

17



Assignment 4: Machine Languages(Given Mar. 2., Due

Mar. 8.)
35pt

Problem 4.1 (Accumulator Circuit)
To finish off your work on designing circuits, here is an all-encompassing assignment. You
have to design an accumulator.
It should be implemented as a circuit which takes an 8-bit input value, together with a
2-bit control input. When this control input is “off” (i.e. its value is 00), the accumulator
should store the 8-bit input value. When the control input is 10, the accumulator should
add the 8-bit input value to the value previously stored in it, and save the new result.
Similarly, when the control input is 11, the accumulator should subtract the 8-bit value
from its old value.

Note: Since this is a problem that is supposed to summarize all your knowledge on circuits
from GenCS, please create your circuit out of gates. You will need building blocks like flip-flops
and adders, but please draw their detailed circuits (you can copy from the slides), and then use
some short notation for them.

Solution: The required building blocks are a 3 : 1 (4 : 1) 8-bit multiplexer that uses the
control bits to choose between the value previously stored in the accumulator, and the new sum
or difference that has to be stored.
Next, a D-flip-flop is needed. Then a register consisting of 8 flip-flops will be used to store the
ACC value.
In addition, a full-adder and an 8-bit adder are needed. The 8-bit adder will be used to compute
the sum of the old ACC value plus the new input. It will also be used to execute the subtraction:
the input bits will be inverted, and this number will be added to 1 plus the old ACC value.

18



30ptProblem 4.2 (Greatest Common Divisor)
Euclid’s method to determine the GCD of two numbers can easily be expressed in pseu-
docode in the following way:

function gcd(a,b):
if ( a<b )

swap(a, b);
while ( b!=0 ) do

r = a mod b;
a = b;
b = r;

end while
return a;

end function

Of course, there is no such thing as mod or div in ASM, but you can simulate it. You
are asked to output the GCD of N numbers in position P (1). You are given N in P (0) and
the N numbers on positions P (11..N + 10). You can use P (1..10) freely (pay attention, of
course, that the result should appear in P (1)).

Note: Be sure to thoroughly explain your code, and briefly explain it in plain English.

Solution: My solution is based on the following steps written in a C-like language. Moreover,
I am using the hint for emulating function calls; this might produce inefficient code, but this is
not a matter of concern right now. I have mentioned in a comment where I am placing the
temporary variables or arguments of each function:

main() { /∗ i=D(1) ∗/
i = N;
do {

a[i+9] = gcd(a[i+9], a[i+8]);
i−−;

} while (i>1);
}

gcd(a, b) { /∗ a=D(2), b=D(3), r=D(4) ∗/
if ( a<b )

swap(a, b);
do {

r = mod(a, b);
a = b;
b = r;

} while ( b>0 )
return a;

}

swap(a, b) { /∗ a=D(4), b=D(5), r=D(6) ∗/
r = a;
a = b;
b = r;

}

19



mod(a, b) { /∗ a=D(4), b=D(5) ∗/
while ( a>=b ) {

a −= b;
}
return a;

}

div(a, b) { /∗ a=D(5), b=D(6), x=D(7) ∗/
x = 0;
while ( a>=b ) {

x++;
a −= b;

}
return x;

}

Now, translated to ASM, this would look like:

LOAD 0 ; prepare jump to gcd
MOVE ACC IN1
LOADIN1 9
STORE 2
LOADIN1 8
STORE 3 ; ready for jump to gcd
LOAD 2
SUB 3
JUMP(>) 7 ; no need for swap
LOAD 2 ; swap
STORE 4
LOAD 3
STORE 2
LOAD 4
STORE 3
LOAD 2 ; prepare jump to mod
STORE 4
LOAD 3
STORE 5
LOAD 4 ; jump to mod
SUB 5
STORE 4
LOAD 4
JUMP(>=) −4
LOAD 4
ADD 5
STORE 4 ; return from mod to main
LOAD 2 ; prepare jump to div
STORE 5
LOAD 3
STORE 6
LOAD 5 ; jump to div
STORE 7
LOAD 7 ; I had an error in my algorithm. div is just bypassed now.
STORE 2 ; return from div to main
LOAD 4

20



STORE 3
LOAD 3
JUMP(>) −41 ; while in the gcd
LOAD 1
MOVE ACC IN1
LOAD 2
STOREIN1 8
LOAD 1
SUBI 1
STORE 1
LOAD 1
SUBI 1
JUMP(>) −57
LOAD 11
STORE 1
STOP 0

21



20ptProblem 4.3 (Prime numbers)
You are given a number X in S(0). Write a L(VM) program that will output 0 in S(1) if
X is prime or 1 otherwise.

Solution: A theorem states that a number X is prime if it does not have any divisor between
2 and

√
X. It is less efficient, but easier to test for divisor using each integer between 2 and X−1.

Therefore, we could develop the following C-like program:

main() { /∗ i=D(1); ∗/
i = 2;
while (i<=N−1) {

if ( mod(N, i) == 0 )
return 1;

++ i;
}
return 0;

}

mod(a, b) { /∗ a=D(2); b=D(3) ∗/
while ( a>=b ) {

a −= b;
}
return a;

}

The L(VM) implementation is:

con 2
poke 1
peek 0 ; prepare mod
poke 2
peek 1
poke 3
peek 3 ; jumped in mod
peek 2
sub
poke 2 ; a −= b
peek 3
peek 2
leq ; b<=a
con 1
sub ; this part is equivalent to !(b<=a), or (a>b)
cjp −9 ; while loop in mod
peek 2 ; back in main
con 1
sub ; !mod(a,b)
cjp 15 ; we have a non prime number
peek 1
con 1 ; increase iterator
add
poke 1
peek 0
peek 1
sub ; i−N

22



cjp 2 ; if i==N exit while
jp −27 ; while loop in main
con 0 ; we exit the main loop, we have prime number
poke 1
halt
con 1 ; we were interrupted, we have non−prime number
poke 1
halt

23



20ptProblem 4.4 (SW TCN Converter)
Write a Simple While program that converts TCN to decimal. You will be given the TCN
number t (consider it a variable set at the beginning of your program). You can consider
that the number t is an integer formed only from 1s and 0s and the most significant bit is
represented by the first digit; remember that the first bit also tells you whether the number
is negative or positive.

Your program should start, for example, with:

var t=11001;

That is, t = 11001, which corresponds to −7.
Solution: The student is expected to loop while t is larger than 1 and use the current last

digit for binary to decimal conversion. Then, based on the test above, to add −2nrbits to the
number or not.

24



Assignment 5: Machine Languages(Given Mar. 2., Due

Mar. 8.)
35pt

Problem 5.1 (Simulating REMA in SML)

Given the following declarations:

datatype register = acc | in1 | in2;
datatype instr = load of int | loadi of int | loadin1 of int | loadin2 of int |

store of int | storein1 of int | storein2 of int |
add of int | addi of int | sub of int | subi of int |
move of register∗register| nop of int | stop of int |
jump of int | jumpe of int | jumpne of int |
jumpl of int | jumple of int | jumpg of int | jumpge of int;

type program = instr list;
type memory = int list;

(∗ This is the state of the machine. From left to right the values mean:
PC register; ACC register; IN1 register; IN2 resigter; Memory cells∗)

type state = int∗int∗int∗int∗(int list);

Write two SML functions:

• execute instr : instr −> state −> state

• run : program −> memory −> memory

The first function takes an ASM instruction and the current state of the REMA as arguments
and returns the new state after the instruction is executed. The second function takes a
program and the initial configuration of the memory. It then simulates the program until
a STOP 0 instruction is reached and returns the memory at that point. In both functions
’memory’ is just a list of integers that represent the current state of the memory of the
REMA. Once the initial list is supplied, during simulation its length shoudn’t change.

Note: For this problem and the next it will be very helpful to use built-in SML functions.
Make sure to check the forums for more info.

Solution:

(∗ Needed in order not to truncate output. ∗)
Control.Print.printDepth := 100;
Control.Print.printLength := 100;
Control.Print.stringDepth := 100;

datatype register = acc | in1 | in2;
datatype instr = load of int | loadi of int | loadin1 of int | loadin2 of int |

store of int | storein1 of int | storein2 of int |
add of int | addi of int | sub of int | subi of int |
move of register∗register| nop of int | stop of int |
jump of int | jumpe of int | jumpne of int |
jumpl of int | jumple of int | jumpg of int | jumpge of int;

type program = instr list;

25



type memory = int list;

(∗ This is the state of the machine. From left to right the values mean:
PC register; ACC register; IN1 register; IN2 resigter; Memory cells∗)

type state = int∗int∗int∗int∗(int list);

(∗ returns a list identical to mem, where the element index is replaced with new val ∗)
fun modify mem index new val = List.take(mem,index) @ [new val] @ List.drop(mem,index+1);

(∗ Data LOAD and STORE instructions ∗)
fun execute instr (load(i)) ((pc r,acc r,in1 r,in2 r,mem):state) :state = (pc r+1,List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (loadi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,i,in1 r,in2 r,mem)
| execute instr (loadin1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in1 r),in1 r,in2 r,mem)
| execute instr (loadin2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in2 r),in1 r,in2 r,mem)

| execute instr (store(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem i acc r)
| execute instr (storein1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in1 r) acc r)
| execute instr (storein2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in2 r) acc r)

(∗ Arithmetic instructions ∗)
| execute instr (add(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (addi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+i,in1 r,in2 r,mem)
| execute instr (sub(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (subi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−i,in1 r,in2 r,mem)

(∗ The MOVE instruction ∗)
| execute instr (move(acc,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,acc r,in2 r,mem)
| execute instr (move(acc,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,acc r,mem)
| execute instr (move(in1,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in1 r,in1 r,in2 r,mem)
| execute instr (move(in1,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in1 r,mem)
| execute instr (move(in2,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in2 r,in1 r,in2 r,mem)
| execute instr (move(in2,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in2 r,in2 r,mem)
(∗ Just for match completeness. ∗)
| execute instr (move(acc,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in1,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in2,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

(∗ The STOP and NOP instructions. ∗)
| execute instr (stop( )) (pc r,acc r,in1 r,in2 r,mem) = (pc r,acc r,in1 r,in2 r,mem)
| execute instr (nop( )) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

Solution:
(∗ The JUMP instructions. ∗)

| execute instr (jump(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+i,acc r,in1 r,in2 r,mem)
| execute instr (jumpe(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r = 0

then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpne(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <> 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpl(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r < 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

26



| execute instr (jumple(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <= 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpg(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r > 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpge(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r >= 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem);

fun run helper (p:program) (s:state) =
let
val ins = List.nth(p, #1 s);

in
if ins = stop 0 then s else run helper p (execute instr ins s)

end;

fun run (nil:program) (mem:memory) :memory = mem
| run p mem = #5 (run helper p (0,0,0,0,mem));

(∗ Test Cases − From slides ∗)
val p1 = [load 0, store 2, load 1, store 0, load 2, store 1, stop 0] : program;
val mem1 = [4, ˜10, 0] : memory;
val res1 = [˜10, 4, 4] : memory;

val p2 = [load 1, add 2, add 3, store 4, stop 0] : program ;
val mem2 = [0,4,6,˜2,10] : memory;
val res2 = [0,4,6,˜2,8] : memory;

val p3 = [load 0, move (acc,in1) , load 1, storein1 0, stop 0] : program;
val mem3 = [5,10,0,0,0,0] : memory;
val res3 = [5,10,0,0,0,10] : memory;

val p4 = [load 1, move (acc,in1), load 2, move (acc,in2), load 0, jumpe 13,
loadin1 0, storein2 0, move (in1,acc), addi 1, move (acc,in1), move (in2,acc),
addi 1, move (acc,in2), load 0, subi 1, store 0, jump ˜12, stop 0] : program;

val mem4 = [5,3,10,˜1,˜2,˜3,˜4,˜5,˜6,0,0,0,0,0,0] : memory;
val res4 = [0,3,10,˜1,˜2,˜3,˜4,˜5,˜6,0,˜1,˜2,˜3,˜4,˜5] : memory;

val test1 = res1 = run p1 mem1;
val test2 = res2 = run p2 mem2;
val test3 = res3 = run p3 mem3;
val test4 = res4 = run p4 mem4;

27



25ptProblem 5.2 (SW simulator in SML)
Using the definitions that appear on slide 314, write an SML function run : program −> int

that, given a program, will return the output value that results after running the simulated
SW program.

For example, the following is a valid run:

run(([(‘‘n’’, Con 12), (‘‘m’’, Con 15)],
While( Leq(Con 1, Var ‘‘n’’), Seq([

Assign(‘‘m’’, Add(Var ‘‘m’’, Con 2)),
Assign(‘‘n’’, Sub(Var ‘‘n’’, Con 1))
])),

Var ‘‘m’’);
val it = 39;

You may consider the input program to be sintactically correct.
Solution: The following clean solution was written by Alexandra Zayets in 2011:

type id = string;
datatype exp = Con of int

| Var of id
| Add of exp∗exp
| Sub of exp∗exp
| Mul of exp∗exp
| Leq of exp∗exp;

datatype sta = Assign of id∗exp
| If of exp∗sta∗sta
| While of exp∗sta
| Seq of sta list ;

type declaration = id ∗ exp;

type program = declaration list ∗ sta ∗ exp;

(∗finds the value of a variable, if variable not declared initializes to 0∗)
fun find value (x :id, []: declaration list) = 0
| find value (x, (y,m)::(l:declaration list)) = if x = y then evaluate(m, (y,m)::l) else find value (x,l)

(∗evaluates an expression∗)
and evaluate (Con (a), l:declaration list) = a
| evaluate (Var (x), l) = find value (x,l)
| evaluate (Add (x, y),l) = evaluate(x,l) + evaluate(y,l)
| evaluate (Sub (x, y),l) = evaluate(x,l) − evaluate(y,l)
| evaluate (Mul (x, y),l) = evaluate(x,l) ∗ evaluate(y,l)
| evaluate (Leq (x, y),l) = if evaluate(x,l) <= evaluate(y,l)then 1 else 0;

(∗ assignes a new value to a variable if the variable is not declared no change is made∗)
fun assign ( x: id, y:exp, []:declaration list) = ([]:declaration list)
| assign ( x: id, y:exp, (z,m)::l) = if x = z then (z, y)::l else (z,m)::assign(x, y, l);

(∗given a declaration list, executes a statement∗)
fun execute (Assign (x, e), l) = assign (x, Con (evaluate(e, l)), l)

28



| execute (If(x:exp, s:sta , p:sta),l) = if( evaluate (x, l) = 1) then execute(s, l) else execute (p, l)
| execute (While(x:exp, s:sta), l) = if evaluate(x,l) = 0 then l else execute (While(x,s), execute (s, l))
| execute (Seq([]), l) = l
| execute (Seq(a::b), l) = execute (Seq(b), execute(a,l));

fun run ((a,b,c):program) = evaluate (c, execute(b, a));

29



20ptProblem 5.3 (Exponential function in L(VMP))
The exponential function has the following power series representation:

ex =
∞∑
n=0

xn

(n)!
= 1 + x+

x2

(2)!
+

x3

(3)!
+ . . .

You are required to write an L(VMP) procedure that computes this sum up to rank k:

s(x, k) =
k∑

n=0

xn

(n)!
= 1 + x+

x2

(2)!
+ . . .+

xk

(k)!

Both arguments of the procedure are integers. Also, consider all the divisions to be
integer divisions (that is, the result of the division is an integer).

Solution: Here is the solution:
<pow> proc 2 (length)

arg 2 con 1 leq cjp 5
arg 1 return
con 1 arg 2 sub arg 1 call <pow>
arg 1 mul return

<fact> proc 1 (length)
arg 1 con 1 leq cjp 5
con 1 return
con 1 arg 1 sub call <fact>

<div> proc 2 (length)
arg 1 arg 2 leq cjp 5
con 0 return
arg 2 con 1 arg 1 sub call <div>
con 1 add return

<exp> proc 2 (length)
arg 1 con 0 leq cjp 5
con 1 return
arg 2 call <fact>
arg 2 arg 1 call <power>
call <div>
con 1 arg 2 sub call <exp>
add return

30



25ptProblem 5.4 (µML Mystery)
You are given the following piece of µML code:

(
[
(”helper1”, [”x”, ”y”],
If(Leq(Id”y”, Con 0), Con 0,
If(Leq(Id”x”, Id”y”), App(”helper1”, [Id”x”, Sub(Id”y”, Id”x”)]), Con 1))),

(”helper2”, [”x”, ”n”],
If(Leq(Id”n”, Con 2), App(”helper1”, [Con 2, Id”x”]),
If(App(”helper1”, [Id”n”, Id”x”]),

If(App(”helper2”, [Id”x”, Sub(Id”n”, Con 1)]), Con 1, Con 0),
Con 0)

)
),

(”myproc”, [”x”],
App(”helper2”, [Id”x”, Sub(Id”x”, Con 1)])

)
],

App(”myproc”, [Con 6])
);

1. State what the program myproc(x) is doing. (Assume x > 1.)

2. Write another µML program that does the same thing in a different way. Remember
that a µML program should be a pair of a well defined list of function declarations,
and a single App call to the main function. Of course, that function will be calling
the helping function(s) in its body, and the helping functions may call themselves.

Solution:

1. The program checks whether the number x is prime. It starts by checking whether x
is divisible by x − 1 with a call to helper2, and then recursively continues checking the
divisibikity by x− 2, x− 3, etc., until it finds a number by which x is divisible, and returns
0, or if it reaches helper2(x, 1), stops and returns 1.

2. Here is a long, standard solution

(
[

(”Equal”, [”a”,”b”],
If(Leq(Id”a”,Id”b”),

If(Leq(Id”b”,Id”a”), Con 1, Con 0),
Con 0

)
),

31



(”Less”, [”a”,”b”],
If(Leq(Id”a”,Id”b”),

If(Leq(Id”b”,Id”a”), Con 0, Con 1),
Con 0

)
),

(”Mod”, [”a”,”b”],
If(App(”Less”,[Id”a”,Id”b”]),

Id”a”,
App(”Mod”, [Sub(Id”a”, Id”b”), Id”b”])

)
),

(”Div”, [”a”,”b”],
If(App(”Less”,[Id”a”,Id”b”]),

Con 0,
Add(Con 1, App(”Div”, [Sub(Id”a”,Id”b”), Id”b”]))

)
),

(”FindRoot”, [”n”,”i”],
If(Leq(Mul(Id”i”, Id”i”), Id”n”),

App(”FindRoot”, [Id ”n”, Add(Id ”i”,Con 1)]),
Sub(Id ”i”,Con 1)

)
),

(”FindDv”, [”n”,”i”,”b”],
If(Leq(Id”i”, Id”b”),

If(App(”Equal”, [App(”Mod”, [Id”n”,Id”i”]),Con 0]),
Con 0,
App(”FindDv”, [Id”n”, Add(Id”i”, Con 2), Id”b”])
),

Con 1
)

),

(”IsPrime”, [”n”],
If(App(”Equal”, [Id”n”,Con 2]),

Con 1,
If(App(”Equal”, [App(”Mod”, [Id”n”,Con 2]),Con 0]),

Con 0,
App(”FindDv”, [Id”n”, Con 3, App(”FindRoot”, [Id”n”, Con 1]) ])

)
)

)

],

App(”IsPrime”, [Con 6]) );

32



33



Assignment 6: Machine Languages(Given Mar. 16.,

Due Mar. 29.)
20pt

Problem 6.1 (TM for logarithm)
The logarithm of a number n ≥ 1, denoted by log2(n), is the maximum natural number
p such that 2p ≤ n. You are required to describe a Turing Machine that receives a string
of n characters ’1’ surrounded by a hash at each end, and halts after outputting a string
of log2(n) + 1 characters ’1’ after the last hash. The tape is right-infinite and filled with
special characters (blanks).

Example run:

initial #111111111111111111#
final #111111111111111111#11111

You are allowed to use any alphabet. You are not required to write the transition
table for each state, but shortly describe what is the purpose of each state you use.

Note: Your explanation should be clear enough and cover all the cases that might arise. In
some situations, writing the transition table might be more clear than using plain English.

Solution: The general idea is to follow the following steps:

1. append a 1 after the last hash

2. proceed to divide the 1’s between hashes in two by marking one 1 from the beginning with
0 and a matching 1 from the end with 2

3. revert all 0’s back to 1’s, go to the beginning of the tape and start again

The clearest solution is a table with explanations:

34



1 # 1 # >
1 1 2 1 >
2 1 2 1 >
2 # 3 # >
3 4 1 <
4 1 4 1 <
4 # 5 # <
5 2 5 2 <
5 1 6 2 <
6 1 6 1 <
6 # 7 # >
6 0 7 0 >
7 1 8 0 >
8 1 8 1 >
8 2 5 2 <
5 0 5 1 <
5 # 1 # >
2 2 2 2 >
3 1 3 1 >
7 2 5 2 <

35



20ptProblem 6.2 (Turing Machine for Binary to Octal)
You have to design a Turing Machine that converts a binary number to octal for this
problem. You are given an infinite tape with a sequence of binary digits (0s and 1s)
surrounded by # (see example). You are requested to output, after the second #, the
equivalent number written in base 8. The tape has an infinite number of spaces (blank
cells) after the second #.

Note: Both the binary number and the resulting octal representation have the least signifi-
cant digit first!

Note: You are granted that the number of binary digits is divisible by 3.

Example:

initial #010110111011#
possible result #010110111011#2376#

Solution: Roughly, the student can design 8 states to identify the octal digit that is repre-
sented by the sequence of bits (and also mark these bits as ”seen”). Then, the machine should
navigate right until the first blank cell and fill there the corresponding digit. Another state would
navigate back to the first unmarked bit.

36



25ptProblem 6.3 (Halting Reductions)
The fact that a TM cannot decide if another TM halts on a given input is not the only limit
of computation. There are a lot of other things TM’s cannot do, and the halting problem
can be used to prove this. This process is called ”reduction to the halting problem”: for
proving that a TM cannot decide a certain a property P , assume that it could and then
use it to construct another TM that can decide the halting problem (i.e. to decide if some
TM halts on some given input).

For the following statements, provide a proof by reduction to the halting problem or a
counterexample:

• No TM can decide in general whether another TM halts on all inputs.

• TM can decide in general whether another TM uses all its states in the computation
on a given input x.

Solution:

• Construct K such that it halts on every input but x, and on x it simulates N . Then use
M on K, and if the output is yes, then it means N halted on x, otherwise no.

• Construct K such that it simulates N on x and if it halts, then it goes through all the
states of N . This means that N halting on x is equivalent to K uses all its states on x
(since if N doesn’t halt, then the halting state will not be used). Then run M on K.

37



35ptProblem 6.4 (SML Implementation of a Turing Machine Simulator)
Let us try to simulate a Turing Machine in SML. The states and the move directions shall
be given as

datatype State = q of int
datatype Direction = L | R

Introduce the type Alphabet according to the problem you wish to test. Write an SML
function TM: TransTrable −> Tape −> Tape that simulates a Turing Machine, where

type Tape = Int −> Alphabet
type TransTable = ((State ∗ Alphabet) ∗ (State ∗ Alphabet ∗ Direction)) list

You can use the other tasks from this homework, problems for the slides or come up
with simple own examples to test your implementation.

Solution:

datatype State = q of int
datatype Alphabet = zero | one
datatype Direction = L | R

type Tape = int −> Alphabet
type TransTable = ((State ∗ Alphabet) ∗ (State ∗ Alphabet ∗ Direction)) list

(∗ takes table, current state and symbol read and returns the appropriate row from transition table ∗)
fun find row(nil, st, sym) = (0,zero,˜1,zero, L) |

find row(hd::tl, st, sym) = let
val (ost,rdsym, , , ) = hd

in
if (ost = st) andalso (rdsym = sym) then hd

else find row(tl, st, sym)
end

(∗ the main guy ∗)
fun myTM(table, tape, head pos, state) = let

val ( , ,new state,new symbol,dir) = find row(table, state, tape(head pos))
val new head pos = if dir = R then head pos+1 else head pos−1
fun new tape(n) = if n = head pos then new symbol else tape(n)

in
if new state = ˜1 then tape (∗if there is no appropriate row in the table, it halts∗)
else myTM(table, new tape, new head pos, new state)

end

(∗ assumed: initial head position = 1, initial state of the head = 1, states non−negative numbers∗)

fun TM table tp = myTM(table, tp, 1, 1);

(∗ Test 1: half bit adder ∗)

val MYTAPE 11 = fn 1 => one | 2 => one | n => zero;
val MYTAPE 10 = fn 1 => one | 2 => zero | n => zero;
val MYTAPE 01 = fn 1 => zero | 2 => one | n => zero;
val MYTAPE 00 = fn 1 => zero | 2 => zero | n => zero;

38



val MYTABLE = [(1, zero, 2, zero, R), (1, one, 3, one, R),
(2, zero, 4, zero, R), (2, one, 5, one, R),

(3, zero, 5, zero, R), (3, one, 6, one, R),
(4, zero, 7, zero, R), (4, one, 7, zero, R),
(7, zero, 9, zero, L), (7, one, 9, zero, L),
(5, zero, 8, zero, R), (5, one, 8, zero, R),
(8, zero, 9, one, L), (8, one, 9, one, L),
(6, zero, 7, one, R), (6, one, 7, one, R)];

val result 11 = TM MYTABLE MYTAPE 11; (∗ Inspect result 11 3 to see carry, result 11 4 to see sum ∗)
val result 10 = TM MYTABLE MYTAPE 10;
val result 01 = TM MYTABLE MYTAPE 01;
val result 00 = TM MYTABLE MYTAPE 00;

(∗ Test 2: one’s duplicator ∗)

val MYTAPE2 = fn n => if n<=6 andalso n>=1 then one else zero; (∗...000111111000...∗)

val MYTABLE2 = [(1, one, 2, zero, R),
(2, one, 2, one, R),

(2, zero, 3, zero, R),
(3, one, 3, one, R),
(3, zero, 4, one, L),
(4, one, 4, one, L),
(4, zero, 5, zero, L),
(5, one, 5, one, L),
(5, zero, 1, one, R)];

val result2 = TM MYTABLE2 MYTAPE2;

(∗ another ∗)

val TAPE = fn 1 => zero |
2 => zero |
3 => zero |

=> one;

val TABLE = [(1,zero,1,one,R),(1,one,2, one, R)];
val RESULT = TM TABLE TAPE;

(∗ another2 :) ∗)

val TAPE2 = fn 1 => one |
2 => one |

3 => one |
=> zero;

val TABLE2 = [(1,one,2,zero,R), (2,one,2,one,R), (2, zero, 3, zero, L), (3, one, 4, zero, L),
(4, one, 4, one, L), (4, zero, 1, zero, R), (3, zero, 5, one, R)];

val RESULT2 = TM TABLE2 TAPE2;

39



Assignment 7: Internet Introduction(Given Mar. 30.,

Due Apr. 12.)
20pt

Problem 7.1 (HTML basics)
Answer the following questions about HTML:

1. What does HTML stand for?

2. Who is making the Web standards?

3. What is HTML tag for the largest heading?

4. What is the correct HTML tag for inserting a line break?

5. What is the correct HTML for adding a background color?

6. What is the correct HTML tag to make a text bold?

7. What is the correct HTML tag to make a text italic?

8. What is the correct HTML for creating a hyperlink?

9. How can you create an e-mail link?

10. How can you open a link in a new browser window?

11. Which of these tags are all <table> tags?

• <thead><body><tr>

• <table><head><tfoot>

• <table><tr><tt>

• <table><tr><td>

12. What is the correct HTML to left-align the content inside a tablecell?

13. How can you make a list that lists the items with numbers?

14. How can you make a list that lists the items with bullets?

15. What is the correct HTML for making a checkbox?

16. What is the correct HTML for making a text input field?

17. What is the correct HTML for making a drop-down list?

18. What is the correct HTML for making a text area?

19. What is the correct HTML for inserting an image?

40



20. What is the correct HTML for inserting a background image?

Solution:

1. Hyper Text Markup Language

2. The World Wide Web Consortium

3. <h1>

4. <br />

5. <body style=”background−color:yellow”>

6. <b>

7. <i>

8. <a href=”http://www.link.com”>WordToBeLinked</a>

9. <a href=”mailto:xxx@yyy”>

10. <a href=”url” target=” blank”>

11. <table><tr><td>

12. <td align=”left”>

13. <ol>

14. <ul>

15. <input type=”checkbox” />

16. <input type=”text” />

17. <select>

18. <textarea>

19. <img src=”image.gif” />

20. <body background=”background.gif”>

41



20ptProblem 7.2 (Web browsers)

• What is the difference between a web page and a web site?

• What is a web browser? Name at least 5 practical web browser tools.

Solution:

• A web page is a document on the Web that can include multimedia data. A web site is
a collection of related Web pages usually designed or controlled by the same individual or
company.

• A web Browser is a software application for retrieving, presenting, and traversing informa-
tion resources on the World Wide Web, enabling users to view Web pages and to jump
from one page to another.

Practical web browser tools: Status Bar, Bookmarks, View Source, history, temporary
Internet files, home page, auto complete, security settings, programs, etc.

42



45ptProblem 7.3 (Quiz for the TAs)

Your last assignment this semester is to give your TAs a quiz. We hope you will enjoy
this :)

You need to create a form in HTML that contains the following:

1. Include at least 5 multiple choice questions.

2. All following concepts: button, radio button, check box, drop down box, text input.

3. At least one image and one working link.

4. Tables, lists.

5. Make it look nice overall (styles, colors ...)

You can provide a fictive action attribute.

43



Assignment 8: Internet and Mail Services(Given Apr.

13., Due Apr. 19.)
35pt

Problem 8.1 (SMTP Mail Writer)
You have recently learned in the lecture about how you can connect to a SMTP server via
Telnet and send a simple email message. Your first task is now to automate the pocess by
creating an SML function sendMail that will:

1. open a connection (socket) to the server

2. issue a ’HELO’ command for self-identification

3. start a mail message using ’MAIL FROM’

4. set the recipient (’RCPT’) and mail contents (’DATA’)

5. close the connection using ’QUIT’

Remember that the server will understand a single point on a line as a mark of mail
ending!

Your function should have the following signature:

val sendMail = fn : string ∗ int ∗ string list ∗ string −> bool

The parameters, in order, are: the hostname, the port number (usually 25), a list of
mail recipients, and the message body. The function should return true if everything was
OK or false if there were problems. You are not required to treat any exceptions raised by
SML library functions in your implementation.

Solution:

44



35ptProblem 8.2 (POP Mail Reader)
Now that you managed to send your first email, you have to write the following SML
functions:

1. countMails, which returns the number of emails available on the server. Consider that
you have to first login using your username and password, so you will first to send
the username and password. The function must have the following signature:

val countMails = fn : string ∗ int ∗ string ∗ string −> int

The arguments are, in order: the string identifying the host, the port number (usually
110), the user name and the password. The return value is the number of emails
available on the server.

2. readMail, which returns the contents of one of the emails available on the server. The
function must have the following signature:

val readMail = fn : string ∗ int ∗ string ∗ string ∗ int −> string

The arguments are, in order: the string identifying the host, the port number, the
user name and password and the number of the email that you are going to request.
The return value is the content of the email you requested.

The email contains a set of meta-data containing, for example, the sender, the subject,
and date. You can simply leave them in the output string for now.

Solution: The protocol for POP asks for the following order of events:

> USER [username]
> PASS [password]
> STAT
< +OK [nr of mails] [total size (?)]
> RETR [number of mail]
< [email contents ending in one single ”.” per line]

Therefore, in SML, our strategy would be:

1. establish working connection

2. send “user X” as string

3. read and check for “+OK” at beginning

4. send “pass Y” as string

5. read and check again for “+OK”

6. and so on...

45



35ptProblem 8.3 (Email relay server)
Now that you have implemented mail sending and retrieving, consider writing an email
relay server. Theoretically, it should be contacted by an email client in order to implement
routing of the messages between the sending client to the destination server.

In your case, you have to write an SML function routeMails that will accept incoming
connections and requests of email sending. Your function will emulate an SMTP server
for a limited set of commands (the ones that you implemented in the SMTP client are
enough). After getting the contents of the email, it will simply re-transmit it further to
the destination email address (that you have to read from the message you receive).

The function will have the following signature:

val routeMails = fn : int ∗ string −> bool;

The int represents the port number the server will open to, while the string represents
the address of the server the email is going to be forwarded to. The function return value
should be true in case everything went OK, and false in case of error. Alternatively, you
can leave thrown exceptions uncaught to signal an error. Here is an example run:

(∗ you run this function first ∗)
routeMails(2525, ‘‘exchange.jacobs−university.de’’);

(∗ then, in another terminal, you run this ∗)
sendMail(‘‘localhost’’, 2525, [‘‘youraddress@jacobs−university.de’’],
‘‘Test’’);

You should wait for a short period of time and then check your Jacobs mail. You should
see the email there!

Note: The server should wait in a loop for the next message to come - that means you
should not finish execution after the first email has been forwarded.

Solution:

46



Assignment 9: Web technologies(Given Apr. 22., Due

May. 3.)
75pt

Problem 9.1 (SML Web Crawler)
A web crawler is a program that will store a copy (mirror) of a web site. Generally, crawlers
access a given web page and, after retrieving the HTML source, they extract the links and
also download those pages (or images or scripts). This will provide the user the possibility
to access these pages even when they are not connected to the internet or to perform
different measurements on the pages.

Your task is to write your own SML Web Crawler, following these steps:

1. Make sure that you downloaded and understood the SML sockets example file used
in the last assignment. Use the following updated socketReceive function:

(∗ Receives maxbytes bytes from the socket. Returns the string message. ∗)
fun socketReceive(sock, maxbytes) =

Byte.bytesToString(
Socket.recvVecNB(sock, maxbytes)

);

The problem with this function is that, if the server sends a message longer than
maxbytes, all the remaining bytes will be queued on the socket, but not processed.
Write your own fullMessage function that overcomes this problem by reading the whole
reply from the server (you can use socketReceive, it will return a string of length 0
if the message from the server is finished). Your function should have the following
type:

val fullMessage= fn : (’a,Socket.active Socket.stream) Socket.sock −> string

2. Now, write a method that, given a host and page, will make a HTTP GET request
to the server for the given page on that host, and will return the HTTP response.
Your function should have the following signature:

val getPage = fn : string ∗ string −> string

For example, you should be able to run getPage(”en.wikipedia.org”,”/wiki/Main Page”)

and retrieve the home page of Wikipedia.

3. Now that you have the HTTP response, check it closely and you will discover that it
contains the HTML web page, but also some headers. In order to be sure that you
will only store the HTML page, write a function extractHTML that scans the string
and discards everything that is not between <html> and </html>. Of course, your
function will have the signature:

val extractHTML : string −> string
− extractHTML(”Discard me! <html><head><title>Hello!</title></head></html>”);
val it = ”<html><head><title>Hello!</title></head></html>” : string;

47



4. Write a function extractLinks that will go through your HTML source code and will
return all the links that it contains. Feel free to look into the HTML or RegExp library
of SML, but making your function only going through the string and extracting
sequences like the following will suffice:

<a href=”extract me!”>...
<img src=”extract me!”> ...

You are not required to handle links other than the ones found in anchors and images.
Your function will have the following signature (get a string and return a list of strings
which are the links found):

val extractLinks = fn : string −> string list;

5. Mind the fact that these links might contain the protocol (”http://”), might be
relative to the root of the host (”/img/happy.png”), or might be relative to the
current page (”next/index.html”). Your getPage function requires a host and a page
as arguments, and the page should be relative to the host root (i.e. absolute path).
Write an SML function normalizeLinks that, given a host, page and list of strings, will
return a list of pairs (host, page) that can be used by the getPage:

val normalizeLinks : string ∗ string ∗ string list −> (string ∗ string) list;
normalizeLinks(”www.example.com”, ”/en/test.html”,

[”http://www.google.com/something/x”, ”/img/happy.png”, ”next/index.html”]
);
val it = [

(”www.google.com”, ”/something/x”),
(”www.example.com”, ”/img/happy.png”),
(”www.example.com”, ”/en/next/index.html”)

] : (string ∗ string) list;

6. This sub-task will be to write the wrapping crawler function.

Have a look at the following SML function that writes a string to a file:

fun writeToFile(file, content) =
let

val os = TextIO.openOut(file)
val vc = String.toString(content) (∗ we need an SML vector ∗)
val = TextIO.output(os, vc)
val = TextIO.flushOut(os)

in
TextIO.closeOut(os)

end;

This function will be used in storing the HTML page to disk. Your crawler will have
the following signature:

val crawler : string ∗ string ∗ int −> unit;

48



The first two parameters are the host and the starting page (i.e. ”www.example.
com” and ”/test/index.html”). The third parameter is an integer representing the
maximum depth you should go into. You will follow the following steps:

(a) use getPage to retrieve the HTTP response

(b) use extractHTML to extract only the HTML part of the response

(c) write the HTML part to a file (see the note below!)

(d) use extractLinks and normalizeLinks to get the list of links to follow further

(e) recursively call the crawler method; remember to decrease the depth and not
proceed with a negative depth!

Note: There might be problems with storing images. We will not grade this problem based
on the output, but rather on how well you managed to follow the instructions and on your
intermediary results. Please think about what the problem with images is and write a short
comment at the end of your sml file!

Solution:

49



25ptProblem 9.2 (Ranking pages)
In this task you will gain some practical experience with a real-world web crawler and you
will come up with your own page ranking procedure!

Look into the man pages of wget (available on linux, use the tlab machines if you don’t
have linux already on your laptop; you might also find Windows ports of the program).
wget has the ability to follow links while saving the pages to disk, and also to keep the
directory structure consistent with the server.

Choose a web page of your preference (we recommend using a wikipedia page) and run
wget with a depth limit of your choice. Now inspect the output directory and observe items
that might help you in ranking your web pages (for example, number of links pointing to a
web page, number of images, length of the content or its age might be starting points!). Do
not reinvent the wheel, or reverse-engineer the Google PageRank algorithm! Be creative
and make a good use of the features that your starting page has (wikipedia has, for example,
the links between related topics). Also, do not take into consideration whether the features
are (easily) computable.

You will have to supply a PDF document reporting your actions. Describe how you
used wget to mirror the site (do include the commands used!). Describe your ranking
function (what items you consider, how they influence the page score). Compile a table
which contain these items, the score of each item for each page and the final score of the
page.

Finally, write down your observations and comments about the method that you em-
ployed.

Solution:

50



Assignment 10: Web technologies(Given May. 4., Due

May. 10.)
20pt

Problem 10.1 (Color Island)
On Color Island there are 13 blue chameleons, 15 yellow chameleons and 17 red chameleons.
When two chameleons of different colors meet, they change color into the third color. So
for example, a blue and yellow chameleon meeting will result in two red chameleons. Is
it possible that at some point all chameleons on the island have the same color? Write
a formal description of this problem, as explained on the slides. What is one possible
solution?

Solution:
Denote by a, b and c the number of blue, yellow and red chameleons respectively. Also, use

the tuple 〈a, b, c〉 for a state S in our problem, This means that our initial state, G is given by
〈13, 15, 17〉. Operators O between states can be described as transitions from a state 〈a, b, c〉 to
either 〈a− 1, b− 1, c + 2〉, 〈a− 1, b + 2, c− 1〉 or 〈a + 2, b− 1, c− 1〉.

The difference between the number of chameleons either does not change or changes by 3.
Which means that the modulo-division by 3 produces an invariant result. Initially a − b = −2,
but for all chameleons to have the same color, we need to have either a− b = 0 or a− b = ±45 in
the G states, as we should have either 0 or 45 chameleons of each color (two of them are of course
0 and the remaining type has 45). Numbers 0 and −2 have different remainders when dividing
by 3, hence the problem has no solution.

51



30ptProblem 10.2 (Missionaries and cannibals)
Three missionaries and three cannibals are on one side of a river, along with a boat that
can hold one or two people. The final goal is to get everyone to the other side, without
ever leaving a group of missionaries in one place outnumbered by the cannibals in that
place.

1. Formulate the problem precisely. When defining the operators, it is not necessary
that you write every possible state → state combination, but you should make it
clear how one would derive the next state from the current one.

2. Suppose the next-function for depth first search (DFS) and breadth first search (BFS)
expands a state to its successor states using the operators you have defined in 1. in the
order you have defined them. Operators that leave more cannibals than missionaries
on one side will not be considered. Likewise, operators that lead to the immediate
previous state will not be considered (e.g., after moving a cannibal from left to right,
the next-function for this state will not include a state where a cannibal moves from
right to left). Draw the search tree till depth 3. What are the first 5 nodes explored
by DFS? What are the first 5 nodes explored by BFS?

3. If you would implement this problem, would you rather use BFS or DFS to find the
solution? Briefly explain why?

Solution:

1. Here is one possible representation:

The State Space is a six-tuple of integers listing the number of missionaries, cannibals, and
boats on the first side, and then the second side of the river. The goal is a state with 3
missionaries and 3 cannibals on the second side. The cost function is one per action, and
the successors of a state are all the states that move 1 or 2 people and 1 boat from one side
to another.

The Initial State is (3, 3, 1, 0, 0, 0)

The Final State is (0,0,0,3,3,1)

Operators: Unless the next state leaves more cannibals then missionaries on one side, and
unless the transition is impossible (eg: a movement always occurs from the side where the
boat is to the other) rules are as follows:

(a) Move a missionary to the other side.

(b) Move a cannibal to the other side.

(c) Move 2 missionaries to the other side.

(d) Move 2 cannibals to the other side.

(e) Move a missionary and a cannibal to the other side.

2. Depends in which order the operators are defined. In the case above, it will look as follows:

52



3. BFS, since the branching factor is not big (we won’t have memory problems), and DFS
may get stuck in loops.

53



30ptProblem 10.3 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The corresponding
functions dfs and bfs take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that
reach them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a
state is a goal state and false else.

The result of the functions should be a pair of two elements:

• a list of actions that reaches the goal state from the initial state

• the goal state

The signatures of the two functions should be:

dfs : ’a −> (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’b list ∗ ’a
bfs : ’a −> (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’b list ∗ ’a

where ’a is the type of states and ’b is the type of actions.
In case of an error or no solution found raise an InvalidSearch exception.
Solution:

exception InvalidSearch;
val tick = false; (∗ used for debugging ∗)

local

fun add actions x nil = nil
| add actions x ((a,s)::l) = (x @ [a],s)::(add actions x l);

fun depthFirst strategy nil next = raise InvalidSearch
| depthFirst strategy ((a,s)::l) next = ( add actions a (next s) ) @ l;

fun breadthFirst strategy nil next = raise InvalidSearch
| breadthFirst strategy ((a,s)::l) next = l @ ( add actions a (next s) );

fun sl strategy nil next goal = raise InvalidSearch
| sl strategy ((a,s)::l) next goal =
let
val = if tick then print ”#” else print ””;

in
if goal(s)

then (a,s)
else

let
val new fringe = strategy ((a,s)::l) next;

54



in
sl strategy new fringe next goal

end
end;

fun search strategy i next goal =
if goal(i)
then (nil,i)

else sl strategy (add actions nil (next i)) next goal;
in

fun dfs i next goal = search depthFirst strategy i next goal;
fun bfs i next goal = search breadthFirst strategy i next goal;

end;

Solution:

(∗ TEST CASES ∗)

datatype action = a1to2 | a1to4 | a1to5 | a2to3 | a4to5 | a4to6 | a5to1 | a5to7 | a3to6;
datatype state = one | two | three | four | five | six | seven;

fun next1(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next1(two) = [(a2to3,three)]
| next1(three) = [(a3to6,six)]
| next1(four) = [(a4to5,five),(a4to6,six)]
| next1(five) = [(a5to1,one),(a5to7,seven)]
| next1(six) = []
| next1(seven) = [];

fun next2(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next2(two) = [(a2to3,three)]
| next2(three) = [(a3to6,six)]
| next2(four) = [(a4to5,five),(a4to6,six)]
| next2(five) = [(a5to7,seven),(a5to1,one)]
| next2(six) = []
| next2(seven) = [];

fun goal1(six) = true
| goal1( ) = false;

fun goal2(four) = true
| goal2(three) = true
| goal2( ) = false;

fun goal3(seven) = true
| goal3( ) = false;

val test4 = bfs one next1 goal1 = ([a1to4,a4to6],six);
val test5 = dfs one next1 goal1 = ([a1to2,a2to3,a3to6],six);
val test6 = bfs one next1 goal2 = ([a1to4],four);
val test7 = dfs one next1 goal2 = ([a1to2,a2to3],three);
val test8 = bfs one next2 goal3 = ([a1to5,a5to7],seven);

55



val test9 = dfs one next2 goal3 = ([a1to4,a4to5,a5to7],seven);
val test10 = bfs one next1 goal3 = ([a1to5,a5to7],seven);
val test11 = dfs one next1 goal3; (∗should run endlessly∗)

56



30ptProblem 10.4: Write the next function, goal predicate and initial state variable for the
8-puzzle presented on the slides (please check the slides for the description). Then use these
to test your breadth-first and depth-first search algorithms from the previous problem.

Use the following :

datatype action = left|right|up|down;
type state = int list;(∗9 elements, in order, 0 for the empty cell∗)

Refer to the slides for the initial state variable. Make sure that if an action is illegal for a
certain state, it does not appear in the output of next.

Sample testcase:

test call : next(initial state);

output: [(left,[7,2,4,0,5,6,8,3,1]),(right,[7,2,4,5,6,0,8,3,1]),
(up,[7,0,4,5,2,6,8,3,1]),(down,[7,2,4,5,3,6,8,0,1])];

Solution:

datatype action = left|right|up|down;
type state = int list;(∗9 elements, in order, 0 for the empty cell∗)

val initial state=[7,2,4,5,0,6,8,3,1];

fun goal(state)=if state=[1,2,3,4,5,6,7,8,0]
then true
else false;

(∗invert a list∗)
fun invert(a::l)=invert(l)@[a]
|invert(nil)=nil;

(∗compute for left action∗)
fun next left(0::l)=nil
|next left(a::b::c::0::e::f::g::h::i::nil)=nil
|next left(a::b::c::d::e::f::0::h::i::nil)=nil
|next left(a::0::l)=0::a::l
|next left(hd::l)=hd::next left(l);

(∗to compute for right, just invert the list and call left∗)
fun next right(state)=invert(next left(invert(state)));

(∗this rearranges the list so that left can be used also for up and down∗)
fun rearrange(a::b::c::d::e::f::g::h::i::nil)=[a,d,g,b,e,h,c,f,i]
|rearrange(nil)=nil;

(∗to compute the up, rearrange the list and then call left∗)
fun next up(state)=rearrange(next left(rearrange(state)));

57



(∗to compuet down, invert and rearrange the list and then call left∗)
fun next down(state)=invert(rearrange(next left(rearrange(invert(state)))));

(∗gets rid of the nil ones, for which the action cannot be performed∗)
fun make list((act,l)::tl)=if (l=nil)then make list(tl)

else (act,l)::make list(tl)
|make list(nil)=nil;

fun next(state)=let val x=next left(state);
val y=next right(state);
val z=next up(state);
val t=next down(state);

in
make list([(left,x),(right,y),(up,z),(down,t)])

end;

(∗Testcases∗)

next(initial state)= [(left,[7,2,4,0,5,6,8,3,1]),(right,[7,2,4,5,6,0,8,3,1]),
(up,[7,0,4,5,2,6,8,3,1]),(down,[7,2,4,5,3,6,8,0,1])];

next([7,2,4,0,3,6,8,5,1])=[(right,[7,2,4,3,0,6,8,5,1]),(up,[0,2,4,7,3,6,8,5,1]),
(down,[7,2,4,8,3,6,0,5,1])];(∗cannot do left∗)

next([7,2,4,8,3,6,0,5,1])=[(right,[7,2,4,8,3,6,5,0,1]),(up,[7,2,4,0,3,6,8,5,1])];(∗connot do left or down∗)

next([7,2,0,8,3,6,4,5,1])=[(left,[7,0,2,8,3,6,4,5,1]),(down,[7,2,6,8,3,0,4,5,1])]; (∗cannot do right or up∗)

58



Assignment 11: A* Search and Prolog (bonus assign-

ment)(Given May. 14., Due May. 21.)
35pt

Problem 11.1 (A∗ search on Jacobs campus)
Implement the A∗ search algorithm in SML and test it on the problem of walking from the
main gate to the entrance of Research 3 with linear distance as heuristic. The length of
line segments are annotated in the map below.

No function signature is provided, instead at the end of your program call your function
so that it prints the actions needed to reach the entrance and the associated cost.

16

1642 42

50

32

18

10

25 25

25 25

4242

50

50

25

25 25

25

25 25

17
8 8 17

17 8 8 17

35 35

35 35

25

10

10

10

Solution:
val it = ([”E”,”E”,”S”,”E”,”SE”,”E”,”S”,”W”],202) (∗ The states here are directions e.g. SE means Southeast. ∗)

fun coor 1 = (0,0) | coor 2 = (25,0) | coor 3 = (67,0) | coor 4 = (83,0) | coor 5 = (125,0) |
coor 6 = (25,18) | coor 7 = (35,18) | coor 8 = (115,18) | coor 9 = (125,18) | coor 10 = (50,25) |

coor 11 = (67,25) | coor 12 = (75,25) | coor 13 = (83,25) | coor 14 = (100,25) | coor 15 = (25,50) |
coor 16 = (50,50) | coor 17 = (100,50) | coor 18 = (125,50) | coor 19 = (50,75) | coor 20 = (67,75) |
coor 21 = (75,75) | coor 22 = (83,75) | coor 23 = (100,75) | coor 24 = (25,82) | coor 25 = (35,82) |
coor 26 = (115,82) | coor 27 = (125,82) | coor 28 = (25,100) | coor 29 = (67,100) | coor 30 = (83,100) |
coor 31 = (125,100);

val edges = [(1,2), (2,3), (3,4), (4,5), (6,7), (8,9), (10,11), (11,12), (12,13), (13,14), (15,16), (17,18),
(19,20), (20,21), (21,22), (22,23), (24,25), (26,27), (28,29), (29,30), (30,31),
(2,6), (6,15), (15,24), (24,28), (10,16), (16,19), (3,11), (20, 29), (4,13), (22,30),

59



(14,17), (17,23),
(5,9), (9,18), (18,27), (27,31),
(12,16), (16,21), (21,17), (17,12) ];

fun heuristic(n,m) = let
val (x1,y1) = coor(n);
val (x2,y2) = coor(m);

in Real.round(Math.sqrt(Real.fromInt((x1−x2)∗(x1−x2)+(y1−y2)∗(y1−y2))))
end;

fun next(n) = let
fun successors( ,nil) = nil |

successors(n,(a,b)::tl) = if n=a then b::successors(n,tl)
else if n=b then a::successors(n,tl)

else successors(n,tl);
fun hlist( , nil) = nil |

hlist(n, hd::tl) = heuristic(n, hd) :: hlist(n, tl);
fun tie(nil,nil) = nil |

tie(h1::t1, h2::t2) = (h1,h2) :: tie(t1,t2);
val succ = successors(n,edges)
val cost = hlist(n, succ)

in
tie(succ,cost)

end;

exception NoSolution;

(∗ASearch takes and initial node, next function and goal node and returns
the optimal path between initial and goal node ∗)

fun AStarSearch(initial, next, goal) = let
fun putCheapestInFront(hd::tl, nil) = putCheapestInFront(tl,[hd]) |

putCheapestInFront(nil, x) = x |
putCheapestInFront((a,b,c,d)::tl1, (xa,xb,xc,xd)::tl2 ) =

if c < xc then putCheapestInFront(tl1, (a,b,c,d)::((xa,xb,xc,xd)::tl2))
else putCheapestInFront(tl1, ((xa,xb,xc,xd)::tl2)@[(a,b,c,d)]);

fun addActionsCosts( , ,nil) = nil |
addActionsCosts(pcost, pactions, (node, cost)::tl) =

( node, pcost + cost, pcost + cost + heuristic(node, goal), pactions@[node] ) ::
addActionsCosts(pcost, pactions, tl);

fun asearch(nil) = raise NoSolution |
asearch((node, pathcost, totalcost, actions)::rfringe) =

if node = goal then actions
else let

val expansion = next(node); (∗ next(20) = [(19,17), (21,8), (29,25)] ∗)
val newFringeEl = addActionsCosts(pathcost, actions, expansion);

in
asearch(putCheapestInFront(newFringeEl@rfringe, nil))

end
in

asearch([(initial, 0, heuristic(initial, goal), [])])
end

(∗ The nodes are labeled starting from the upper−left corner of the map to right/down direction ∗)
val result = AStarSearch(1, next, 26);

60



10ptProblem 11.2 (Girls are witches)
Consider the following logic argument (after Monty Python):

• A witch is a female who burns.

• Things burn - because they’re made of wood.

• Wood floats.

• What else floats on water? A duck.

• if something has the same weight as a duck it must float.

• A duck and scales are fetched. A girl and the duck balance perfectly.

Write the given statements as ProLog predicates. Check wether a girl is a witch.

Solution:

#!/usr/bin/swipl −s

witch(X):−burns(X),female(X).
burns(X):−wooden(X).
wooden(X):−floats(X).
floats(duck).
floats(X):−sameweight(duck,X).
female(girl).
sameweight(duck,girl).

?− witch(girl).
true.

61



10ptProblem 11.3 (Basic ProLog Functions)
Your task is to implement the functions listed below in ProLog. Note that many of them
are built-in, but we ask you create your own functions.

• a fucntion removing multiple occurrances of elements in a list

?− removeDuplicates([1,1,1,1,2,2,3,4,1,2,7],A).
A = [1, 2, 3, 4, 7].

• a function reversing a list

?− myReverse([1,2,3,4,2,5],R).
R = [5, 2, 4, 3, 2, 1].

• a function outputting all the permutations of the elements in a list

?− myPermutations([1,2,3],Z).
Z = [1, 2, 3] ;
Z = [2, 1, 3] ;
Z = [2, 3, 1] ;
Z = [1, 3, 2] ;
Z = [3, 1, 2] ;
Z = [3, 2, 1].

Feel free to implement any helper functions.
Solution:

% remove duplicates function
delete( ,[],[]).
delete(X,[X|T],R) :− delete(X,T,R).
delete(X,[H|T],[H|R]) :− not(X=H), delete(X,T,R).
removeDuplicates([],[]).
removeDuplicates([H|T],[H|R]) :− delete(H,T,S), removeDuplicates(S,R).

% reverse function
preReverse([],X,X).
preReverse([X|Y],Z,W) :− preReverse(Y,[X|Z],W).
myReverse(A,R) :− preReverse(A,[],R).

% permute function
takeout(X,[X|T],T).
takeout(X,[H|T1],[H|T2]) :− takeout(X,T1,T2).
myPermutations([],[]).
myPermutations([X|Y],Z) :− myPermutations(Y,W), takeout(X,Z,W).

62



20ptProblem 11.4 (Prolog ”MU” Puzzle)
In one of the first chapters of ”Godel, Escher and Bach: An Eternal Golden Braid” the
following puzzle is given: In lack of a better name we’ll call it the ”MU” puzzle. In
simplified terms, you start with a string of words, in this case, we get to start with, ”MIU”
and with four different rules and we want to try to change the string, ”MIU”, to ”MU”.
Here are the rules:

1. If any string ends in I, you can append U

2. If any string begins with M, you can duplicate the string after M

3. If any string contains III, you can replace the III with U

4. If any string contains UU, you can delete the UU

Beginning with, ”MUI”, we can use any of these rules, in any order, for as many times as
we like to transform ”MUI” into ”MU”. Well, can it be done? Implement it in ProLog.

Solution:

/∗ first rule ∗/

/∗ appends an element to a list ∗/
append([], E, [E]).
append([X|L], E, [X|Y]) :− append(L,E,Y).

/∗ concatenates two lists ∗/
con2([], E, E).
con2([X|L], E, [X|Y]) :− con2(L,E,Y).

/∗ concatenates three lists ∗/
con3([], E, L, Q) :− con2(E, L, Q).
con3([X|T], E, L, [X|Q]) :− con3(T,E,L,Q).

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,X,L).

doesItEndWithI(L) :− reverse(L,[’I’| ]).

ruleX( T, W) :− doesItEndWithI(T), append(T, ’U’, W).

/∗ second rule ∗/

ruleX( T, W) :− con2(T,T,W).

/∗ third rule ∗/

ruleX( L, O) :−
con3(FH, [’I’,’I’,’I’], SH, L),
con3(FH, [’U’], SH, O).

/∗ fourth rule ∗/

63



ruleX( L, O) :−
con3(FH, [’U’,’U’], SH, L),
con2(FH, SH, O).

/∗ The Rule ∗/

rule(X,M) :− nm(N,M), ruleL([’I’], X, N).

ruleL([’I’],[’I’],0).
ruleL([’I’],X,N) :− N>0, N1 is N−1, ruleL([’I’],J,N1), ruleX(J,X).

nm(0, M) :− M>=0.
nm(N, M) :− M>=0, M1 is M−1, nm(N1, M1), N is N1+1.

64



25ptProblem 11.5 (Unicorn fun)

You have a rectangular map of N rows and M columns. Some of the cells contain lakes.
Knowing N , M and the positions of the lakes, you want to place X unicorns around the
lakes. Each unicorn has to be around at least one lake, and no two unicorns can be placed
next to each other. When talking about 2 items being next to each other, the (potentially)
eight neighbors of a cell should be considered.

Write a ProLog rule that determines whether a list of unicorn placements is a correct
one.

Use the setof(Things,GoalExpression,Bag) predicate which computes all Things
which satisfy the GoalExpresssion and collect them in the list Bag. The list will not
contain duplicates and it will be sorted. For the input, consider that facts about the rows,
columns and lake placements are written down before your program.

Example:

rows(3).
cols(3).

lake(1,1).
lake(2,3).
lake(3,2).

?− solution(3,Sol).
Sol = [[unicorn(3, 3), unicorn(2, 1), unicorn(1, 3)],[unicorn(3, 3), unicorn(3, 1), unicorn(1, 2)],[unicorn(3, 3), unicorn(3, 1), unicorn(1, 3)]].

Solution:

/∗test1

rows(3).
cols(3).

lake(1,1).
lake(2,3).
lake(3,2).

Sol = [[unicorn(3, 3), unicorn(2, 1), unicorn(1, 3)],
[unicorn(3, 3), unicorn(3, 1), unicorn(1, 2)],
[unicorn(3, 3), unicorn(3, 1), unicorn(1, 3)]].

∗/

/∗test2

rows(3).
cols(3).

lake(3,3).

?− solution(1,Sol).
Sol = [[unicorn(2, 2)], [unicorn(2, 3)], [unicorn(3, 2)]].

65



∗/

/∗test3
rows(5).
cols(4).

lake(1,1).
lake(1,3).
lake(1,4).
lake(3,3).
lake(4,2).
lake(5,1).
lake(5,4).

?− solution(5,S).
S = [[unicorn(5, 2), unicorn(4, 4), unicorn(3, 1), unicorn(2, 4), unicorn(1, 2)],

[unicorn(5, 2), unicorn(4, 4), unicorn(3, 2), unicorn(2, 4), unicorn(1, 2)]].
∗/

solution(N,Sol):−setof(X, place unicorns(N,X), Sol).

% Returns one posible arrangement of given number of unicorns.
place unicorns(0,[]).
place unicorns(N,[unicorn(X,Y)|T]):−N>0, M is N−1,

place unicorns(M,T),
valid unicorn position(X,Y,T).

% Returns a valid unicorn position, given a list of already place unicorns.
% Also, the returned position is on the lower, right side w.r.t. the
% previously placed unicorn.
valid unicorn position(X,Y,[]):−valid row(X), valid col(Y), not(lake(X,Y)),

has lake around(X,Y),
not(has unicorn around(X,Y,[])).

valid unicorn position(X,Y,[unicorn(A,B)|T]):−valid row(X),
X=A,valid col(Y),Y>B,
not(lake(X,Y)),
has lake around(X,Y),
not(has unicorn around(X,Y,[unicorn(A,B)|T])).

valid unicorn position(X,Y,[unicorn(A,B)|T]):−valid row(X),
X>A,valid col(Y),
not(lake(X,Y)),
has lake around(X,Y),
not(has unicorn around(X,Y,[unicorn(A,B)|T])).

%checks if x is a member of the given list.
member(X,[X| ]).
member(X,[ |R]):−member(X,R).

% Checks if X,Y has a unicorn around it.

66



has unicorn around(X,Y,L):−member(unicorn(X,Y),L).
has unicorn around(X,Y,L):− W is X−1, valid row(W),

member(unicorn(W,Y),L).
has unicorn around(X,Y,L):− Z is Y−1, valid col(Z),

member(unicorn(X,Z),L).
has unicorn around(X,Y,L):− W is X+1, valid row(W),

member(unicorn(W,Y),L).
has unicorn around(X,Y,L):− Z is Y+1, valid col(Z),

member(unicorn(X,Z),L).
has unicorn around(X,Y,L):− W is X−1, valid row(W),

Z is Y−1, valid col(Z),
member(unicorn(W,Z),L).

has unicorn around(X,Y,L):− W is X−1, valid row(W),
Z is Y+1, valid col(Z),
member(unicorn(W,Z),L).

has unicorn around(X,Y,L):− W is X+1, valid row(W),
Z is Y−1, valid col(Z),
member(unicorn(W,Z),L).

has unicorn around(X,Y,L):− W is X+1, valid row(W),
Z is Y+1, valid col(Z),
member(unicorn(W,Z),L).

% Checks if X,Y has a lake around it.
has lake around(X,Y):− W is X−1, valid row(W), lake(W,Y).
has lake around(X,Y):− Z is Y−1, valid col(Z), lake(X,Z).
has lake around(X,Y):− W is X+1, valid row(W), lake(W,Y).
has lake around(X,Y):− Z is Y+1, valid col(Z), lake(X,Z).
has lake around(X,Y):− W is X−1, valid row(W), Z is Y−1, valid col(Z), lake(W,Z).
has lake around(X,Y):− W is X−1, valid row(W), Z is Y+1, valid col(Z), lake(W,Z).
has lake around(X,Y):− W is X+1, valid row(W), Z is Y−1, valid col(Z), lake(W,Z).
has lake around(X,Y):− W is X+1, valid row(W), Z is Y+1, valid col(Z), lake(W,Z).

% Check if a row or column is in the valid range.
valid row(X):−rows(A), between(1, A, X).
valid col(X):−cols(A), between(1, A, X).

67


