
General Computer Science II (320201) Spring 2009

Michael Kohlhase
Jacobs University Bremen

For Course Purposes Only

April 8, 2013

Contents

1

Assignment 1: Recap and graph basics
(Given Feb.4., Due Feb. 11.)

10pt
Problem 1.1: Prove in the resolution calculus using derived rules:

|=A ∧ (B ∨ C)⇒ A ∧B ∨ A ∧ C

Solution: Clause Normal Form transformation

A ∧ (B ∨ C)⇒ A ∧B ∨A ∧ CF

A ∧ (B ∨ C)T;A ∧B ∨A ∧ CF

AT;BT ∨ CT;A ∧BF;A ∧ CF

AT;BT ∨ CT;AF ∨BF;AF ∨ CF

Resolution Proof
1 AT initial
2 BT ∨ CT initial
3 AF ∨BF initial
4 AF ∨ CF initial
5 BF with 1 and 3
6 CF with 1 and 4
7 CT with 2 and 5
8 � with 6 and 7

2

20ptProblem 1.2 (Graph basics)
For each of the five directed graphs below do the following:

• State whether the graph is also a tree and explain why.

• Determine the depth of the graph.

• Write out in math notation a path from A to E if one exists and determine the path’s
length.

1. G1 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈A,D〉, 〈D,E〉}〉

2. G2 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈C,A〉, 〈C,D〉, 〈C,E〉}〉

3. G3 := 〈{A,B,C,D,E}, {〈A,B〉, 〈B,C〉, 〈B,D〉, 〈C,E〉}〉

4. G4 := 〈{A,B,C,D,E}, {〈A,B〉, 〈A,C〉, 〈B,D〉, 〈D,C〉, 〈C,B〉, 〈A,D〉}〉

5. G5 := 〈{A,B,C,D,E}, {〈D,A〉, 〈D,B〉, 〈D,E〉, 〈D,C〉}〉

Solution:

1. • Yes, because it has no cycles and the graph is connected.

• 2

• 〈A,D,E〉 - length 2

2. • No, because it has a cycle - 〈A,B,C,A〉.
• infinite

• 〈A,B,C,E〉 - length 3

3. • Yes, because it has no cycles and the graph is connected.

• 3

• 〈A,B,C,E〉 - length 3

4. • No, because it has a cycle - 〈B,D,C,B〉.
• infinite

• E is not reachable from A, since indeg(E) = 0 i.e. E is a source.

5. • Yes, because it has no cycles and the graph is connected.

• 1

• E is not reachable from A, since outdeg(A) = 0 i.e. A is a sink.

3

25ptProblem 1.3 (In-degrees in acyclic digraphs)
Prove by induction or refute that any acyclic digraph with non-empty set of nodes has at
least one node with in-degree 0.

Solution:
Proof : Proof by induction on the size of (number of nodes in) the graph:

P.1.1 n=1: trivial

P.1.2 Step case: n =⇒ n + 1:

P.1.2.1 Note that for any acyclic digraph, every subgraph is also acyclic (otherwise a cycle in
the subgraph would make the entire graph cyclic). This is what makes induction possible.

P.1.2.2 So assume an acyclic digraph with n nodes and at least a node with in-degree 0 such
that the graph is still acyclic. Call this node v0. Now add an extra vertex, vn, to the graph
and any number of edges that connects it with the rest of the vertices.

P.1.2.3.1 This new node has no incoming edge.: This is the new 0 in-degree node.

P.1.2.3.2 v0 still has no incoming edge.: v0 remains the 0 in-degree node.

P.1.2.3.3 v0 has an incoming edge from vn and indeg(vn) > 0: Then there exists an edge
from vi to vn. If vi has in-degree 0, then this is a 0 in-degree node. Otherwise, since the
graph is acyclic, vi has no incoming edge from v0 or vn, so there is an edge from another
node in the graph. Continuing this process either leads to identifying a 0 in-degree node
or to the situation where a last untouched node is reached but the graph is acyclic, so this
node has to have in-degree 0.

4

Assignment 2: Combinatorial Circuits
(Given Feb. 11., Due Feb. 18.)

20pt
Problem 2.4 (Trees)
The branching factor of a tree is the number of children every node has (except for the
leaves). For example, binary trees have branching factor 2. We call a tree with branching
factor b a b-tree. A fully balanced b-tree is a tree in which all leaves have the same depth.
For all of the questions below, a full proof is expected:

1. How many leaves are there in a fully balanced b-tree with depth d? What about
nodes?

2. What is the minimum depth a b-tree with 3n+ 1 nodes can have?

3. What about the maximum depth?

Solution:

1. Proof : Proof using the geometric progression formula

P.1 Every node has b children, so there is 1 node on the root level, b on the next, b2 on
the next, and so on. On the last level there are bd nodes, which are the leaves. Thus

the overall number is 1 + b + ... + bd =
bd+1 − 1

b− 1
.

P.2 It is the depth of the balanced tree (not necessairly fully balanced). Solve 3n + 1 =
bd+1 − 1

b− 1
for d and round up to the nearest integer: we get dlogb(((3n + 1)(b− 1) + 1))e−

1.

P.3 A ”chain” tree with every left-most node expanded into 3 children. Thus depth n.

5

20ptProblem 2.5 (DNF circuits and KV map optimization)

Design a combinational circuit for the following Boolean function by using KV map
optimization:

X1 X2 X3 f1(X) f2(X) f3(X)
0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1

Solution: The KV maps look like this:

f1

X1X2 X1X2 X1X2 X1X2

X3 F T T F

X3 T F F T

f2

X1X2 X1X2 X1X2 X1X2

X3 F F F F

X3 T T T F

f3

X1X2 X1X2 X1X2 X1X2

X3 T T F F

X3 T T T F

The minimal polynomials are: f1 = X2X3 + X2X3 f2 = X1X3 + X2X3 f3 =
X1 + X2X3

There are many possible ways to draw a circuit that implements these functions. Here is one
option:

6

25ptProblem 2.6 (Cyclic permutation detector)

Design a combinational circuit that detects whether a 4-bit number a is a cyclic per-
mutation of another 4-bit number b. The circuit takes as input the two 4-bit numbers and
has a single output X that should be 1 if the condition is met and 0 otherwise. You can
use AND, OR, NOT , and XOR gates in your design. In addition state what is the depth
of your circuit.

For instance, 1011 is a cyclic permutation of both 0111 and 1101 but not of 0101.

Note: n-bit binary number is a sequence of 1 or 0 with n elements (n{0,1}).

Solution:

If we consider XOR to be a single gate then the depth is 6. If the depth of XOR is considered
to be 3 then the total depth of the circuit is 8. In both cases the NOR gate is considered to be

of depth 2.

7

20ptProblem 2.7 (Is implication universal?)
Imagine a logical gate IMPL that computes the logical implication a⇒ b. Prove or refute
whether the set S = {IMPL} is universal, considering the following two cases:

1. combinational circuits without constants

2. combinational circuits with constants

If the set turns out to be not universal in either of the cases, add one appropriate non-
universal gate G ∈ {AND,OR,NOT} to S, and prove that the set S ′ = {IMPL, G} is
universal.

Note: A set of boolean function is called universal (also called “functionally complete”), if
any boolean function can be expressed in terms of the functions from that set. {NAND} is an
example from the lecture.

Solution:
Proof :

P.1.1 combinational circuits without constants:

P.1.1.1 S = {IMPL} is not universal, as the NOT gate cannot be constructed from IMPL gates
only, because:

• a⇒ a = 1

• 1⇒ a = a

• a⇒ 1 = 1

• . . . and all other combinations reduce to the above.

P.1.1.2 If we choose G = NOT, we can construct NOR from the elements S because of a ↓ b =
¬(¬a⇒ b). As we know that {NOR} is universal, {IMPL, G} is universal, too.

P.1.2 combinational circuits with constants:

P.1.2.1 The NOT gate can be constructed using IMPL and a constant input of 0, because
a⇒ 0 = ¬a.

P.1.2.2 Now we can argue as in the first case.

8

15ptProblem 2.8 (Converting to decimal in SML)
Write an SML function

to int = fn : string −> int
that takes a string in binary, octal or hexadecimal notation and converts it to a decimal

integer. If the string represents a binary number, it begins with ’b’ (e.g. ”b1011”), if it is
an octal number - with ’0’ (e.g. ”075”) and if it is a hexadecimal number it begins with
’0x’ (e.g. ”0x3A”).

If the input does not represent an integer in one of these three forms raise the InvalidInput
exception.

For example we have

to int(”b101010”) −> 42

Solution:

exception InvalidInput;

fun reverse nil = nil
| reverse (h::t) = reverse(t)@[h];

fun find int(#”A”) = 10
|find int(#”B”) = 11

|find int(#”C”) = 12
|find int(#”D”) = 13
|find int(#”E”) = 14
|find int(#”F”) = 15
|find int(c) = if 0<= ord(c)− 48 andalso ord(c)−48 <=9 then ord(c)−48 else raise InvalidInput;

fun from binary (nil) = 0
| from binary (h::l) = if 0<= ord(h)− 48 andalso ord(h)−48 <=1
then ord(h) − 48 + 2 ∗ from binary(l) else raise InvalidInput;

fun from octal (nil) = 0
|from octal (h::l) = if 0<= ord(h)− 48 andalso ord(h)−48 <=8

then ord(h) − 48 + 8 ∗ from octal(l) else raise InvalidInput;

fun from hexa (nil) = 0
|from hexa (h::l) = find int(h) + 16 ∗ from hexa(l);

fun selector (#”0”::(#”x”::l)) = from hexa(reverse(l))
| selector (#”0”::l) = from octal(reverse(l))

| selector (#”b”::l) = from binary(reverse(l))
| selector = raise InvalidInput;

fun to int number = selector(explode(number));

(∗TEST CASES∗)
val test1 = to int(”b101010”)=42;
val test2 = to int(”052”)=42;
val test3 = to int(”0x2A”)=42;
val test4 = to int(”0x11A”)=282;

9

val test5 = to int(”b101101”)=45;
val test6 = to int(”12”) = 0 handle InvalidInput => true| other => false;
val test7 = to int(”b12”) = 0 handle InvalidInput => true| other => false;
val test8 = to int(”0x12H”) = 0 handle InvalidInput => true| other => false;
val test9 = to int(”0129”) = 0 handle InvalidInput => true| other => false;
val test10 = to int(”0−”) = 0 handle InvalidInput => true| other => false;

10

Assignment 3: Adders, TCN
(Given Feb. 18., Due Feb. 25.)

35pt
Problem 3.9 (Conditional Sum Adder)
Draw the circuit of a Conditional Sum Adder (CSA) that adds two four-bit numbers. Go
down to the level of elementary gates.

11

30ptProblem 3.10 (Cost and depth of adders)
What is the cost and depth of an n-bit CCA? What about the n-bit CSA (for cost, big-O
is enough)? Now what if we construct a new adder, that computes the two cases for the
first half of the input just like CSAs do (and of course uses a multiplexer), but only does
this once, and the n

2
-bit adders are not also CSAs, but CCAs (so only one multiplexer is

used overall) - what would the cost and depth of this adder be?

Solution: The CCA has depth 3n and cost 5n, as shown in the slides. The CSA has depth
3 log(n) + 3 and cost of complexity order nlog3. For the new adder, the depth is the one of the
n
2 -bit CCA, plus the n

2 -bit multiplexer, which is 3. Thus the depth is 3n
2 + 3. The cost is that of

three CCAs and one multiplexer, so 5n
2 · 3 + 3n

2 + 1.

12

35ptProblem 3.11 (TCN in SML)
Given the datatype: type tcn = int list write the following SML functions

• extend = fn : tcn −> int −> tcn which takes a number in Two’s complement repre-
sentation and an integer n and makes the tcn number n bits wide. Here n should
always be bigger or equal to the current width of the number.

• int2tcn = fn : int −> int −> tcn which converts an integer number to a tcn number
given the width.

• tcn2int = fn : tcn −> int which converts a tcn number to an integer number.

If in any of the functions a number can’t fit into the requested number of bits raise the
NumberDoesNotFit exception.

Note: A number’s width is simply the number of bits that are used to represent that number.

As an example conisder

int2tcn 10 8 −> [0,0,0,0,1,0,1,0]

Solution:

type tcn = int list;
exception NumberDoesNotFit;

fun int2bin 0 = [0]
| int2bin n = (int2bin (n div 2)) @ [n mod 2];

fun negate bin = foldr (fn(c,p)=> (1−c)::p) nil bin;

fun extend (num:tcn) (bits:int) :tcn =
if bits < (length num)

then raise NumberDoesNotFit
else List.tabulate(bits−(length num), (fn => hd(num))) @ num;

fun int2tcn n (bits) : tcn =
if n >= 0
then extend (int2bin n) bits
else extend (negate(int2bin ((˜n)−1))) bits;

fun bin2int num = foldl (fn (c,p) => p∗2+c) 0 num;
fun tcn2int (num:tcn) =

if hd(num) = 0
then bin2int num
else ˜(bin2int (negate num)) − 1;

(∗TEST CASES∗)
val test1 = (int2tcn 0 4) = [0,0,0,0];
val test2 = (int2tcn 1 4) = [0,0,0,1];
val test3 = (int2tcn 2 4) = [0,0,1,0];
val test4 = (int2tcn 3 4) = [0,0,1,1];
val test5 = (int2tcn 4 4) = [0,1,0,0];

13

val test6 = (int2tcn 5 4) = [0,1,0,1];
val test7 = (int2tcn 6 4) = [0,1,1,0];
val test8 = (int2tcn 7 4) = [0,1,1,1];
val test9 = (int2tcn ˜1 4) = [1,1,1,1];
val test10 = (int2tcn ˜2 4) = [1,1,1,0];
val test11 = (int2tcn ˜3 4) = [1,1,0,1];
val test12 = (int2tcn ˜4 4) = [1,1,0,0];
val test13 = (int2tcn ˜5 4) = [1,0,1,1];
val test14 = (int2tcn ˜6 4) = [1,0,1,0];
val test15 = (int2tcn ˜7 4) = [1,0,0,1];
val test16 = (int2tcn ˜8 4) = [1,0,0,0];
val test17 = (int2tcn ˜10 4) = [1,0,1,0] handle NumberDoesNotFit => true| other => false;
val test18 = (int2tcn 16 4) = [1,0,1,0] handle NumberDoesNotFit => true| other => false;

val test19 = (extend [0] 3) = [0,0,0];
val test20 = (extend [1,0] 3) = [1,1,0];
val test21 = (extend [0,1,0] 3) = [0,1,0];
val test22 = (extend [1] 3) = [1,1,1];
val test23 = (extend [1,0,0] 3) = [1,0,0];
val test24 = (extend [1,0,1,0] 3) = [0] handle NumberDoesNotFit => true| other => false;

val test25 = tcn2int [0] = 0;
val test26 = tcn2int [0,0,0] = 0;
val test27 = tcn2int [0,0,1] = 1;
val test28 = tcn2int [1] = ˜1;
val test29 = tcn2int [1,1,1,1] = ˜1;
val test30 = tcn2int [1,1,1,1,1,1,1,1,0] = ˜2;
val test31 = tcn2int [0,0,0,0,1,1,0,0] = 12;
val test32 = tcn2int [1,0,1,0] = ˜6;

14

Assignment 4: Two’s complement numbers,

Sequential Logic Circuits, Memory
(Given Feb. 25., Due Mar. 4.)

30pt
Problem 4.12 (Average number of TCN bits)
Write an SML program to find out the average number of bits needed for the TCN repre-
sentation of an 8-digits integer. The method you use is entirely up to you, but you need
to return the result with 10−2 accuracy. Write a report explaining the method, attach you
SML code and give the result together with a function call that reproduces it.

Solution:

type tcn = int list;
exception NumberDoesNotFit;
fun int2bin 0 = [0]
| int2bin n = (int2bin (n div 2)) @ [n mod 2];
fun negate bin = foldr (fn(c,p)=> (1−c)::p) nil bin;

fun size n = if n> 0 then length (int2bin n) else length (negate (int2bin (0−n)));

(∗monte carlo simulation : pick n 8−digit numbers and average out the number of bits∗)
val n = 1000000;
val randState =

let
val m = Date.minute(Date.fromTimeLocal(Time.now()))
val s = Date.second(Date.fromTimeLocal(Time.now()))

in
Random.rand (m,s)

end;

(∗ random(l,h) returns a random integer, r, l<=r<=h
Input must fullfill: l<=h ∗)

fun random (l,h) = if Random.randRange(0,1)randState = 0 then Random.randRange (l,h) randState
else (0−(Random.randRange (l,h) randState));

fun ms 0 = 0
| ms m = size(random(10000000,99999999)) + ms (m−1);

ms n;
(∗27.02 is the answer∗)

(∗Important note: One needs to set the sample size high enough such that
the 2nd decimal does not flactuate with multiple runs − in this case 1000000∗)

15

25ptProblem 4.13 (Binary counters)

In the slides there is an implementation of a D-flipflop with an enable input. In practice
a different version is more commonly used - the edge-trigerred D-flipflop. Here instead of
an enable input there is a clock input (clk). The difference in operation is that the edge-
trigerred D-flipflop only remembers the value of the D input at the one instant when the
clk input switches from 0 to 1. If clk is constantly 0 or constantly 1 the flipflop will not
change its state.

Using only such flipflops implement a 3-bit binary counter circuit. The circuit should
have only one input ’tick’ that will periodically change between 1 and 0. It should have
three outputs that count the number of pulses on the input. After the counter counts to
111 it should continue from 000. You can assume the initial state of all flipflops is 0.

Note: For those of you who are curious here is how an edge-trigerred D-flipflop is built from
NAND gates: http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip-flop.png. If
you’re trying to understand this it will help to note that a real physical gate has a certain delay.
When the input changes it takes some time (nanoseconds) for the output to react.

Solution:

16

15ptProblem 4.14 (Frequency multiplier)
Unlike the theoretical models we have discussed in the lecture real physical gates have
a delayed reaction. As an example imagine that both inputs of an AND gate are 1 and
correspondingly the output is also 1. Now if one of the inputs changes to 0 it will take a
little time until the output also changes to 0.

Using this knowledge make a very simple circuit that has only one input (clk) and one
output (clk2). The input is an alternating sequence of ones and zeroes, where each 1 or 0
lasts for 2 seconds. The output should also be an alternating sequence of ones and zeros
but they should each last only for 1 second. You do not need to use any flipflops or memory
elements, simple gates are enough. Assume that the propagation time between input and
output for each type of gate (NOT, AND, OR, XOR NAND, NOR) is 1 second.

Solution: We pass the input signal through an inverter so that we get a new sequence that
has a 1 second offset compared to the original. After that if we just use a XOR gate we will get
the desired output.

17

30ptProblem 4.15 (Combinational Circuit for Shift)
Suppose we had a device that takes as input 3 different signals of some electrical nature
and, outputs processed combination of them on five channels. If the machine were turned
off, then the output will be 0 on all channels.

Consider the following mixer function bellow as a simplified representation of this device
(in the case it is turned on). Design a combinational circuit (using only NOT, AND and
OR gates) that implements this mixer function. You can use an additional input variable
that checks if the mixer is on. fmix : B3 × B× B→ B5 with

fmix(〈a, b, c〉, sw1, sw2)

〈a, c, b, c, a〉 if s1 = 0, s2 = 0
, 〈c, a, 0, a, c〉 if s1 = 0, s2 = 1
, 〈b, 0, a, 0, b〉 if s1 = 1, s2 = 1
, 〈a, 0, c, b, c〉 if s1 = 1, s2 = 0

Solution:

18

Assignment 5: Register Machine, Virtual Machine
(Given March 4., Due March 11.)

25pt
Problem 5.16 (sorting-by-selection)
Let n ≥ 1 be stored in P (0) and n numbers stored in P (2) . . . P (n+ 1). Write an assembler
program that performs a sorting by selection and outputs the result in P (n+ 2) . . . P (2n+ 1).
Write comments to each line of your code (like in the example codes from the slides). Un-
commented code will not be considered.

Solution:

19

P instruction comment

0 LOAD 0 ACC : = P (0) = n
1 ADD 0 ACC : = ACC +n
2 MOVE ACC IN2 The recursion index. Initializing IN2 = 2n (will

come in handy when printing the results)
3 LOAD 0 ACC : = n
4 MOVE ACC IN1 IN1: = n Initialising the sequence index.

Outer loop starts.
5 LOADIN 1 1
6 STORE 1 Initialize MAX = P (1) = P (n + 1)
7 MOVE IN1 ACC ACC : = IN1 = n Starting inner loop
8 SUBI 1
9 MOVE ACC IN1 IN1−−
10 JUMP= = 7 if IN1 becomes 0 we have a MAX
11 LOADIN 1 1 ACC : = P (IN1 +1)
12 SUB 1 ACC : = ACC −MAX
13 JUMP= < 2 if P (IN1 +1) < MAX jump
14 LOADIN 1 1 else MAX = P (IN1 +1)
15 STORE 1
16 JUMP − 9 End inner loop (for one max)
17 LOAD 1 ACC = MAX
18 STOREIN 2 1 P (IN2 +1): = ACC = MAX
19 LOAD 0 now we have to make the max we chose to be

equal to 0, so we wouldn’t find it again
20 MOVE ACC IN1 we test if the current number equals P (1)
21 LOADIN 1 1
22 SUB 1
23 JUMP= = 5 if we find the number we make it 0
24 MOVE IN1 ACC
25 SUBI 1
26 MOVE ACC IN1
27 JUMP − 6
28 LOADI 0
29 STOREIN 1 1
30 MOVE IN2 ACC
31 SUBI 1
32 MOVE ACC IN2 IN2−−
33 SUB 0 IN2: = IN2−n
34 JUMP= > −20 if IN2−n > 0 go back again. End big loop.
35 STOP 0

20

15ptProblem 5.17 (Fibonacci Numbers)
Assume the data stack initialized with con n for some natural number n. Write a L(VM)
program that computes the nth Fibonacci number and returns it on the top of the stack.

Solution:

con n The requested fibonacci number
con 0 con 1 The 0th and the 1st fibonacci number
con 0 peek 0 leq cjp 5 If $\RMdatastore{0}$ <= 0
peek 1 halt return the current fibonacci number
peek 2 else save the next fibonacci number ...
peek 1 peek 2 add poke 2 ... compute the number after next and save at $\RMdatastore{2}$
poke 1 ... make the next number current ...
con 1 peek 0 sub poke 0 ... decrease n by 1 ...
jp −28 ... and jump back the the beginning

21

20ptProblem 5.18 (Simulating REMA in SML)

Given the following declarations:

datatype register = acc | in1 | in2;
datatype instr = load of int | loadi of int | loadin1 of int | loadin2 of int |

store of int | storein1 of int | storein2 of int |
add of int | addi of int | sub of int | subi of int |
move of register∗register| nop of int | stop of int |
jump of int | jumpe of int | jumpne of int |
jumpl of int | jumple of int | jumpg of int | jumpge of int;

type program = instr list;
type memory = int list;

(∗ This is the state of the machine. From left to right the values mean:
PC register; ACC register; IN1 register; IN2 resigter; Memory cells∗)

type state = int∗int∗int∗int∗(int list);

Write two SML functions:

• execute instr : instr −> state −> state

• run : program −> memory −> memory

The first function takes an ASM instruction and the current state of the REMA as arguments
and returns the new state after the instruction is executed. The second function takes a
program and the initial configuration of the memory. It then simulates the program until
a STOP 0 instruction is reached and returns the memory at that point. In both functions
’memory’ is just a list of integers that represent the current state of the memory of the
REMA. Once the initial list is supplied, during simulation its length shoudn’t change.

Note: For this problem and the next it will be very helpful to use built-in SML functions.
Make sure to check the forums for more info.

Solution:

(∗ Needed in order not to truncate output. ∗)
Control.Print.printDepth := 100;
Control.Print.printLength := 100;
Control.Print.stringDepth := 100;

datatype register = acc | in1 | in2;
datatype instr = load of int | loadi of int | loadin1 of int | loadin2 of int |

store of int | storein1 of int | storein2 of int |
add of int | addi of int | sub of int | subi of int |
move of register∗register| nop of int | stop of int |
jump of int | jumpe of int | jumpne of int |
jumpl of int | jumple of int | jumpg of int | jumpge of int;

type program = instr list;
type memory = int list;

(∗ This is the state of the machine. From left to right the values mean:

22

PC register; ACC register; IN1 register; IN2 resigter; Memory cells∗)
type state = int∗int∗int∗int∗(int list);

(∗ returns a list identical to mem, where the element index is replaced with new val ∗)
fun modify mem index new val = List.take(mem,index) @ [new val] @ List.drop(mem,index+1);

(∗ Data LOAD and STORE instructions ∗)
fun execute instr (load(i)) ((pc r,acc r,in1 r,in2 r,mem):state) :state = (pc r+1,List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (loadi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,i,in1 r,in2 r,mem)
| execute instr (loadin1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in1 r),in1 r,in2 r,mem)
| execute instr (loadin2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in2 r),in1 r,in2 r,mem)

| execute instr (store(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem i acc r)
| execute instr (storein1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in1 r) acc r)
| execute instr (storein2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in2 r) acc r)

(∗ Arithmetic instructions ∗)
| execute instr (add(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (addi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+i,in1 r,in2 r,mem)
| execute instr (sub(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (subi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−i,in1 r,in2 r,mem)

(∗ The MOVE instruction ∗)
| execute instr (move(acc,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,acc r,in2 r,mem)
| execute instr (move(acc,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,acc r,mem)
| execute instr (move(in1,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in1 r,in1 r,in2 r,mem)
| execute instr (move(in1,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in1 r,mem)
| execute instr (move(in2,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in2 r,in1 r,in2 r,mem)
| execute instr (move(in2,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in2 r,in2 r,mem)
(∗ Just for match completeness. ∗)
| execute instr (move(acc,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in1,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in2,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

(∗ The STOP and NOP instructions. ∗)
| execute instr (stop()) (pc r,acc r,in1 r,in2 r,mem) = (pc r,acc r,in1 r,in2 r,mem)
| execute instr (nop()) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

Solution:

(∗ The JUMP instructions. ∗)
| execute instr (jump(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+i,acc r,in1 r,in2 r,mem)
| execute instr (jumpe(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r = 0

then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpne(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <> 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpl(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r < 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumple(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <= 0
then (pc r+i,acc r,in1 r,in2 r,mem)

23

else (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (jumpg(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r > 0

then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpge(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r >= 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem);

fun run helper (p:program) (s:state) =
let
val ins = List.nth(p, #1 s);

in
if ins = stop 0 then s else run helper p (execute instr ins s)

end;

fun run (nil:program) (mem:memory) :memory = mem
| run p mem = #5 (run helper p (0,0,0,0,mem));

(∗ Test Cases − From slides ∗)
val p1 = [load 0, store 2, load 1, store 0, load 2, store 1, stop 0] : program;
val mem1 = [4, ˜10, 0] : memory;
val res1 = [˜10, 4, 4] : memory;

val p2 = [load 1, add 2, add 3, store 4, stop 0] : program ;
val mem2 = [0,4,6,˜2,10] : memory;
val res2 = [0,4,6,˜2,8] : memory;

val p3 = [load 0, move (acc,in1) , load 1, storein1 0, stop 0] : program;
val mem3 = [5,10,0,0,0,0] : memory;
val res3 = [5,10,0,0,0,10] : memory;

val p4 = [load 1, move (acc,in1), load 2, move (acc,in2), load 0, jumpe 13,
loadin1 0, storein2 0, move (in1,acc), addi 1, move (acc,in1), move (in2,acc),
addi 1, move (acc,in2), load 0, subi 1, store 0, jump ˜12, stop 0] : program;

val mem4 = [5,3,10,˜1,˜2,˜3,˜4,˜5,˜6,0,0,0,0,0,0] : memory;
val res4 = [0,3,10,˜1,˜2,˜3,˜4,˜5,˜6,0,˜1,˜2,˜3,˜4,˜5] : memory;

val test1 = res1 = run p1 mem1;
val test2 = res2 = run p2 mem2;
val test3 = res3 = run p3 mem3;
val test4 = res4 = run p4 mem4;

24

40ptProblem 5.19 (Simulating ASM files)

Building on the previous exercise write an SML function: simulate asm file : string −> string −> memory.
The first argument is the name of an input file that contains an ASM program and its initial
memory. The second string is the name of an output file. The simulate asm file should do
the following:

1. It reads in the ASM file. This file contains one instruction per line. Empty lines
are allowed. In addition comments can appear on any line (including lines with
instructions). A comment begins with the semicolon symbol ’;’ and continues until
the end of the line. The first line of the file is simply a list of integers separated by
either tabs or spaces. This represents the initial memory of the machine.

2. After the input is read it is converted to the program datatype. Note that during
this conversion you must take care of labels. As on the slides labels are of the form
’< sometext >’. To simplify things a bit labels and instructions can not be on the
same line. When a jump instruction indicates a label you should convert this to the
proper numerical value.

3. Finally it simulates the provided ASM code and returns the final memory state. In
addition before the execution of each instruction the current state of the REMA should
be written on one line in the output file.

Solution:

(∗ Needed in order not to truncate output. ∗)
Control.Print.printDepth := 100;
Control.Print.printLength := 100;
Control.Print.stringDepth := 100;

datatype register = acc | in1 | in2;
datatype instr = load of int | loadi of int | loadin1 of int | loadin2 of int |

store of int | storein1 of int | storein2 of int |
add of int | addi of int | sub of int | subi of int |
move of register∗register| nop of int | stop of int |
jump of int | jumpe of int | jumpne of int |
jumpl of int | jumple of int | jumpg of int | jumpge of int;

type program = instr list;
type memory = int list;

(∗ This is the state of the machine. From left to right the values mean:
PC register; ACC register; IN1 register; IN2 resigter; Memory cells∗)

type state = int∗int∗int∗int∗(int list);

exception InvalidLabel;
exception DuplicatingLabel;
exception InvalidInstruction of string;
exception NotAnInteger of string;
exception UndefinedLabel of string;

25

(∗ returns a list identical to mem, where the element index is replaced with new val ∗)
fun modify mem index new val = List.take(mem,index) @ [new val] @ List.drop(mem,index+1);

(∗ Data LOAD and STORE instructions ∗)
fun execute instr (load(i)) ((pc r,acc r,in1 r,in2 r,mem):state) :state = (pc r+1,List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (loadi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,i,in1 r,in2 r,mem)
| execute instr (loadin1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in1 r),in1 r,in2 r,mem)
| execute instr (loadin2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,List.nth(mem,i+in2 r),in1 r,in2 r,mem)

| execute instr (store(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem i acc r)
| execute instr (storein1(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in1 r) acc r)
| execute instr (storein2(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,modify mem (i+in2 r) acc r)

(∗ Arithmetic instructions ∗)
| execute instr (add(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (addi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r+i,in1 r,in2 r,mem)
| execute instr (sub(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−List.nth(mem,i),in1 r,in2 r,mem)
| execute instr (subi(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r−i,in1 r,in2 r,mem)

(∗ The MOVE instruction ∗)
| execute instr (move(acc,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,acc r,in2 r,mem)
| execute instr (move(acc,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,acc r,mem)
| execute instr (move(in1,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in1 r,in1 r,in2 r,mem)
| execute instr (move(in1,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in1 r,mem)
| execute instr (move(in2,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,in2 r,in1 r,in2 r,mem)
| execute instr (move(in2,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in2 r,in2 r,mem)
(∗ Just for match completeness. ∗)
| execute instr (move(acc,acc)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in1,in1)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)
| execute instr (move(in2,in2)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

(∗ The STOP and NOP instructions. ∗)
| execute instr (stop()) (pc r,acc r,in1 r,in2 r,mem) = (pc r,acc r,in1 r,in2 r,mem)
| execute instr (nop()) (pc r,acc r,in1 r,in2 r,mem) = (pc r+1,acc r,in1 r,in2 r,mem)

Solution:

(∗ The JUMP instructions. ∗)
| execute instr (jump(i)) (pc r,acc r,in1 r,in2 r,mem) = (pc r+i,acc r,in1 r,in2 r,mem)
| execute instr (jumpe(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r = 0

then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpne(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <> 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpl(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r < 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumple(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r <= 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpg(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r > 0

26

then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem)

| execute instr (jumpge(i)) (pc r,acc r,in1 r,in2 r,mem) = if acc r >= 0
then (pc r+i,acc r,in1 r,in2 r,mem)
else (pc r+1,acc r,in1 r,in2 r,mem);

(∗ Returns a list of all lines in a file (stream). ∗)
fun get lines istream =
let
val line = TextIO.inputLine (istream);

in
case line of

NONE => nil
| SOME(l) =>
let
val cl = explode l;
val cl = List.take(cl, length cl − 1);
val l = implode cl;

in
l :: (get lines istream)

end
end;

(∗ Makes all characters lowercase ∗)
fun lowercase lines lines = map (String.map Char.toLower) lines;

(∗ Tokenizes each line ∗)
fun tokenize lines lines =

map (String.tokens (fn ch => (ch = #” ” orelse ch = #”\t”))) lines;

(∗ Removes the comments from a tokenized line. ∗)
fun remove comments nil = nil
| remove comments (a::l) = if hd (explode a) = #”;” then nil else a::(remove comments l);

(∗ Removes empty lines and comments ∗)
fun filter lines nil = nil
| filter lines (nil::l) = filter lines l
| filter lines (a::l) =

let
val nocomm = remove comments a;

in
if nocomm = nil then (filter lines l) else (nocomm::(filter lines l))

end;

Solution:
(∗ Converts a string to an integer raising an exception if the operation fails. ∗)
fun to int str =
let
val num = Int.fromString str;

in
case num of

NONE => raise NotAnInteger(str)
| SOME(n) => n

27

end;

(∗ Interprets the first line of a file as the memory configuration of the REMA. ∗)
fun get memory lines = (map to int (hd lines) , tl lines);

(∗ Creates a table of labels and removes them from the lines. ∗)
fun create label table num table code nil = (code,table)
| create label table num table code (l::lines) =
let
val s = String.concatWith ” ” l;

in
if hd (explode s) <> #”<”
then (create label table (num+1) table (code @ [l]) lines)
else
if List.last (explode s) <> #”>”
then raise InvalidLabel
else
if List.exists (fn (ls,) => ls=s) table
then raise DuplicatingLabel
else create label table num ((s,num)::table) code lines

end;

(∗ Converts an argument of a jump function to relative offset. ∗)
fun get offset str labels linenum =
let
val num = Int.fromString str;

in
case num of

SOME(n) => n |
NONE =>
let
val addr = List.find (fn (l,p) => l=str) labels;

in
case addr of

NONE => raise UndefinedLabel (str) |
SOME((l,p)) => p − linenum

end
end;

Solution:

(∗ Translate LOAD and STORE instructions ∗)
fun translate instr [”load”,n] = load(to int(n))
| translate instr [”loadi”,n] = loadi(to int(n))
| translate instr [”loadin1”,n] = loadin1(to int(n))
| translate instr [”loadin2”,n] = loadin2(to int(n))
| translate instr [”store”,n] = store(to int(n))
| translate instr [”storein1”,n] = storein1(to int(n))
| translate instr [”storein2”,n] = storein2(to int(n))

(∗ Arithmetic instructions ∗)
| translate instr [”add”,n] = add(to int(n))
| translate instr [”addi”,n] = addi(to int(n))

28

| translate instr [”sub”,n] = sub(to int(n))
| translate instr [”subi”,n] = subi(to int(n))

(∗ NOP and STOP ∗)
| translate instr [”nop”,n] = nop(to int(n))
| translate instr [”stop”,n] = stop(to int(n))

(∗ translate the MOVE instruction ∗)
| translate instr [”move”,”acc”,”in1”] = move (acc,in1)
| translate instr [”move”,”acc”,”in2”] = move (acc,in2)
| translate instr [”move”,”in1”,”acc”] = move (in1,acc)
| translate instr [”move”,”in1”,”in2”] = move (in1,in2)
| translate instr [”move”,”in2”,”acc”] = move (in2,acc)
| translate instr [”move”,”in2”,”in1”] = move (in2,in1)

(∗ JUMP instructions ∗)
| translate instr [”jump”,n] labels line num = jump (get offset n labels line num)
| translate instr [”jumpe”,n] labels line num = jumpe (get offset n labels line num)
| translate instr [”jump=”,n] labels line num = jumpe (get offset n labels line num)
| translate instr [”jumpne”,n] labels line num = jumpne (get offset n labels line num)
| translate instr [”jump<>”,n] labels line num = jumpne (get offset n labels line num)
| translate instr [”jumpl”,n] labels line num = jumpl (get offset n labels line num)
| translate instr [”jump<”,n] labels line num = jumpl (get offset n labels line num)
| translate instr [”jumple”,n] labels line num = jumple (get offset n labels line num)
| translate instr [”jump<=”,n] labels line num = jumple (get offset n labels line num)
| translate instr [”jumpg”,n] labels line num = jumpg (get offset n labels line num)
| translate instr [”jump>”,n] labels line num = jumpg (get offset n labels line num)
| translate instr [”jumpge”,n] labels line num = jumpge (get offset n labels line num)
| translate instr [”jump>=”,n] labels line num = jumpge (get offset n labels line num)

(∗ Raise an exception if this is an unknown instruction. ∗)
| translate instr line = raise InvalidInstruction (String.concatWith ” ” line);

fun translate program nil = nil
| translate program line num (ins::code) (labels) =

(translate instr ins labels line num):: translate program (line num+1) code labels ;

fun state to string (pc r,acc r,in1 r,in2 r,mem) =
Int.toString(pc r) ˆ”\\t”ˆInt.toString(acc r)ˆ”\\t”ˆInt.toString(in1 r)ˆ”\\t”ˆInt.toString(in2 r)ˆ”|\\t”
ˆ foldl (fn (c,p) => p ˆ ” ” ˆ Int.toString(c)) ”” mem;

Solution:

fun run helper outfile (p:program) (s:state) ostream =
let
val = TextIO.output (ostream, (state to string s) ˆ ”\\n”);
val ins = List.nth(p, #1 s);

in
if ins = stop 0 then s else run helper outfile p (execute instr ins s) ostream

end;

fun run outfile (nil:program) (mem:memory) () :memory = mem
| run outfile p mem ostream = #5 (run helper outfile p (0,0,0,0,mem) ostream);

29

fun simulate asm file in filename out filename =
let
val input = TextIO.openIn in filename;
val output = TextIO.openOut out filename;
val lines = get lines input;
val = TextIO.closeIn input;
val lines = lowercase lines lines;
val lines = tokenize lines lines;
val lines = filter lines lines;
val (mem,lines) = get memory lines;
val (code,labels) = create label table 0 nil nil lines;
val compiled = translate program 0 code labels;
val mem = run outfile compiled mem output;
val = TextIO.closeOut output;

in
mem

end;

Solution:
(∗ TEST CASES ∗)
(∗ below please find the content of 4 input files that should be provided to the function ∗)

(∗
(∗ in1.txt ∗)
4 −10 0
load 0
store 2
load 1
store 0
load 2
store 1
stop 0

(∗ in2.txt ∗)
0 4 6 −2 10
load 1
add 2
add 3
store 4
stop 0

(∗ in3.txt ∗)
5 10 0 0 0 0
load 0
move acc in1
load 1
storein1 0
stop 0

(∗ in4.txt ∗)
5 3 10 −1 −2 −3 −4 −5 −6 0 0 0 0 0 0
load 1
move acc in1

30

load 2
move acc In2
load 0

<loop>
jumpe <end>
loadin1 0
storein2 0
move in1 acc
addi 1
move acc in1
move in2 acc
addi 1
move acc in2
load 0
subi 1
store 0
jump <loop>

<end>
stop 0
∗)

(∗ Now the actual simulation. ∗)
val test1 = simulate asm file ”in1.txt” ”out1.txt” = [˜10, 4, 4];
val test2 = simulate asm file ”in2.txt” ”out2.txt” = [0,4,6,˜2,8];
val test3 = simulate asm file ”in3.txt” ”out3.txt” = [5,10,0,0,0,10];
val test4 = simulate asm file ”in4.txt” ”out4.txt” = [0,3,10,˜1,˜2,˜3,˜4,˜5,˜6,0,˜1,˜2,˜3,˜4,˜5];

31

Assignment 6: SW and static procedures
(Given March 11., Due March 18.)

20pt
Problem 6.20 (Stack drawing)
Write down a static procedure in L(VM) that computes the factorial of a natural number
((0)! = (1)!). Make sure you comment what you are doing. Draw the stack evolution for
calling your procedure on the argument 2.

Solution:

proc 1 21

;if n = 0
arg 1 cjp 13

;f(n−1)
con 1 arg 1 sub
call 0

;f(n−1)∗n
arg 1 mul
return

;if n=0 case
con 1 return

2
10

32

20ptProblem 6.21 (Static Procedure for Binomial Coefficients)
Write a L(VM) static procedure that computes the value of the binomial C(n, k). Use the
recursion formula:

C(n+ 1, k + 1) = C(n, k + 1) + C(n, k)

C(n, 0) = C(0, 0) = 1

C(0, n) = 0

Solution:

; C(n,k)
proc 2 46

; if k == 0 return 1
con 0 arg 2 leq cjp 5
con 1 return

; if n == 1 return 0
con 0 arg 1 leq cjp 5
con 0 return

; C(n−1,k)
arg 2
con 1 arg 1 sub
call 0

; C(n−1,k−1)
con 1 arg 2 sub
con 1 arg 1 sub
call 0

; return C(n−1,k) + C(n−1,k−1)
add return

33

15ptProblem 6.22 (Simple While program on Fibonacci)

Write a Simple While Program that takes a number N and computes the N th Fibonacci
number. Then provide the Abstract Syntax for your code.

Show how the L(VM) version of it looks like by compiling it.
Solution:

var n := N; var a := 0;
var b := 1; var c=b; ([(”n”, Con N), (”a”, Con 0), (”b”, Con 1), (”a”, Con 1)],
while 2<= n do While(Leq(Con 2, Var”n”),

c=b+a; Seq [Assign(”c”, Add(Var”b”, Var”a”)),
a=b; Assign(”a”, ”b”),
b=c; Assign(”b”, ”c”),
n:=n−1; Assign(”n”, Sub(Var”n”, Con 1))]

end),
return b; Var”c”)

VM code:

con N con 0 con 1; con 1
peek 0 con 2 leq cjp 22
peek 1 peek 2 add poke 3
peek 2 poke 1
peek 3 poke 2
con 1 peek 0 sub poke 0
jp − 27
peek 3 halt

34

20ptProblem 6.23 (Local variables in static procedures)
Show the assembler implementation of two new VM instructions that can be used to imple-
ment local variables:

• lpeek i - pushes on the stack the i+ 2nd data cell after the current frame pointer

• lpoke i - pops the value on the stack and stores it in the i + 2nd data cell after the
current frame pointer

Solution: lpeek is exactly like arg except that the fifth and sixth lines from the slides
become:

label instruction effect comment
...
ADDI 2
ADD 0 ACC : = FP + 2 + i load local var position
...

lpoke is also quite similar (changes to arg are marked with *):

label instruction effect comment
〈lpoke〉 LOADIN 1 1 ACC : = P (VPC + 1) load i

STORE 0 P (0) : = ACC cache i
MOVE IN3 ACC
STORE 1 P (1) : = FP cache FP

〈∗〉 ADDI 2
〈∗〉 ADD 0 ACC : = FP + 2 + i load local var position

MOVE ACC IN3 FP: = ACC move it to FP
〈∗〉 LOADIN 2 0 ACC : = P (SP) load the top of the stack
〈∗〉 STOREIN 3 0 P (FP): = ACC store the value in the local variable i
〈∗〉 dec IN2 SP: = SP− 1 pop the stack

LOAD 1 ACC : = P (1) load FP
MOVE ACC IN3 FP: = ACC recover FP
MOVE IN1 ACC
ADDI 2
MOVE ACC IN1 VPC: = VPC + 2 next instruction
JUMP 〈jt〉 jump back

35

25ptProblem 6.24 (Static procedure for logarithm)
Write down a static procedure in L(VM) that computes f(x) = blog2(x)c. This procedure
should not be recursive. Use the new lpeek and lpoke instructions from the previous
exercise. Is there something you do at the end of your procedure that is not part of your
algorithm. If yes, then describe a more elegant way of doing that by modifying the behavior
of an existing VM instruction.

Solution:

proc 1 34 f(x)
con 0 con 2 local variables n, y
arg 1 lpeek 1 leq cjp 16 if y ≤ x
con 1 lpeek 0 add lpoke 0 n := n + 1
con 2 lpeek 1 mul lpoke 1 y := y ∗ 2
con 0 lpoke 0 add else: eliminate all excess elements on the stack
return return n

At the end we have two variables left on the stack n and y. We need to eliminate y. Therefore
we make it 0 and then add this to n. In this way only the final result is left on the stack.

A better way of implementing this for example is to make the return instruction take one
argument which represents the number of excess variables on the stack. The implementation of
this instruction can then take care of adjusting the stack pointer to the right position.

36

Assignment 7: Turing Machines and Problem Solving
(Given March 25, Due April 1)

15pt
Problem 7.25 (AND the Tape)
Design a TM that implements the n-ary AND operator on its tape: Started with a sequence
of 0s and 1s on the tape, it writes the results at the end of this input and halts. For example,
a tape with 111 on it will be transformed in 1111. Your TM needs to have at most 3 states,
halting state included.

Note: For exercises about TM construction, please format the transition table according to
the TM simulator at http://ironphoenix.org/tril/tm/ (here you will also find some example
programs). This way you will be able to check your “code” and your TAs will have an easier time
grading.

Solution:

1, H,1,>
1,0 2,0,>
1,1 1,1,>
2, H,0,>
2,1 2,1,>
2,0 2,0,>

37

30ptProblem 7.26: Design a Turing Machine that decides whether its input is of the type
0n12n . The string is initially on the tape and the head of the TM is on the first, leftmost
element of the string. If the input is of the correct type the machine should halt and
the current tape position should contain a 1. Otherwise the machine should halt and the
current tape position should contain a 0.

Solution: The ideea of the following solution is that the input string will be deleted until we
will come to an empty string if the initial input is accepted. The deletion is done by halfing the
1s each time a 0 is deleted. Also, between the 0s and 1s the number of blank symbols shouldn’t
be let to be arbitrary. The following set of productions provide the solution of the problem by
following the above outline (q2 is the final accepting state and B is the blank symbol):

state read write move new state

q0 B B R q1
q0 0 0 S q3
q1 B B L q2
q3 0 0 R q3
q3 1 B R q4
q4 1 1 R q5
q5 1 B R q4
q5 B B L q6
q6 1 B L q7
q7 1 1 L q7
q7 B 1 R q8
q7 0 1 L q9
q8 1 1 R q8
q8 B B S q5
q9 B B R q10
q9 0 0 L q11
q10 1 B R q0
q11 0 0 L q11
q11 B B R q0

38

30ptProblem 7.27 (Halting Reductions)
The fact that a TM cannot decide if another TM halts on a given input is not the only limit
of computation. There are a lot of other things TM’s cannot do, and the halting problem
can be used to prove this. This process is called ”reduction to the halting problem”: for
proving that a TM cannot decide a certain a property P , assume that it could and then
use it to construct another TM that can decide the halting problem (i.e. to decide if some
TM halts on some given input).

For the following statements, provide a proof by reduction to the halting problem or a
counterexample:

• No TM can decide in general whether another TM halts on all inputs.

• TM can decide in general whether another TM uses all its states in the computation
on a given input x.

Solution:

• Construct K such that it halts on every input but x, and on x it simulates N . Then use
M on K, and if the output is yes, then it means N halted on x, otherwise no.

• Construct K such that it simulates N on x and if it halts, then it goes through all the
states of N . This means that N halting on x is equivalent to K uses all its states on x
(since if N doesn’t halt, then the halting state will not be used). Then run M on K.

39

25ptProblem 7.28 (Problem formulation)
You and your roommate just bought an 8 liter jug full of beer. In addition you have two
smaller empty jugs that can hold 5 and 3 liters respectively. Being good friends you want
to share the beer equally. For this you need to split the amount in two separate jugs and
each should contain exactly 4 liters. Write a formal description of this problem. What is
one possible solution? What is the cost of your solution?

Solution:
We encode the states as three digits where the first digit is the amount of beer in the 8 liter

jug, the second digit is the amount in the 5 liter jug and the last digit is the amount in the 3 liter
jug.

• Initial state: 800

• Actions:

1. pour8in5

2. pour8in3

3. pour5in3

4. pour5in8

5. pour3in5

6. pour3in8

Each of these actions pours beer from one jug to anonther until either the first jug is empty
or the second jug is full. The corresponding successor function S can be derived from these
actions.

• Goal test: x = 440

• Path cost: The amount of actions we perform to reach the solution.

A sample solution is:

[pour8in5, pour5in3, pour3in8, pour5in3, pour8in5, pour5in3, pour3in8]

800→ 350→ 323→ 620→ 602→ 152→ 143→ 440

It has a cost of 7.

40

Assignment 8: Problems and Searching
(Given April 01, Due April 15)

30pt
Problem 8.29 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The corresponding
functions dfs and bfs take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that
reach them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a
state is a goal state and false else.

The result of the functions should be a pair of two elements:

• a list of actions that reaches the goal state from the initial state

• the goal state

The signatures of the two functions should be:

dfs : ’a −> (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’b list ∗ ’a
bfs : ’a −> (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’b list ∗ ’a

where ’a is the type of states and ’b is the type of actions.
In case of an error or no solution found raise an InvalidSearch exception.
Solution:

exception InvalidSearch;
val tick = false; (∗ used for debugging ∗)

local

fun add actions x nil = nil
| add actions x ((a,s)::l) = (x @ [a],s)::(add actions x l);

fun depthFirst strategy nil next = raise InvalidSearch
| depthFirst strategy ((a,s)::l) next = (add actions a (next s)) @ l;

fun breadthFirst strategy nil next = raise InvalidSearch
| breadthFirst strategy ((a,s)::l) next = l @ (add actions a (next s));

fun sl strategy nil next goal = raise InvalidSearch
| sl strategy ((a,s)::l) next goal =
let
val = if tick then print ”#” else print ””;

41

in
if goal(s)

then (a,s)
else

let
val new fringe = strategy ((a,s)::l) next;

in
sl strategy new fringe next goal

end
end;

fun search strategy i next goal =
if goal(i)
then (nil,i)

else sl strategy (add actions nil (next i)) next goal;
in

fun dfs i next goal = search depthFirst strategy i next goal;
fun bfs i next goal = search breadthFirst strategy i next goal;

end;

Solution:
(∗ TEST CASES ∗)

datatype action = a1to2 | a1to4 | a1to5 | a2to3 | a4to5 | a4to6 | a5to1 | a5to7 | a3to6;
datatype state = one | two | three | four | five | six | seven;

fun next1(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next1(two) = [(a2to3,three)]
| next1(three) = [(a3to6,six)]
| next1(four) = [(a4to5,five),(a4to6,six)]
| next1(five) = [(a5to1,one),(a5to7,seven)]
| next1(six) = []
| next1(seven) = [];

fun next2(one) = [(a1to2,two),(a1to4,four),(a1to5,five)]
| next2(two) = [(a2to3,three)]
| next2(three) = [(a3to6,six)]
| next2(four) = [(a4to5,five),(a4to6,six)]
| next2(five) = [(a5to7,seven),(a5to1,one)]
| next2(six) = []
| next2(seven) = [];

fun goal1(six) = true
| goal1() = false;

fun goal2(four) = true
| goal2(three) = true
| goal2() = false;

fun goal3(seven) = true
| goal3() = false;

42

val test4 = bfs one next1 goal1 = ([a1to4,a4to6],six);
val test5 = dfs one next1 goal1 = ([a1to2,a2to3,a3to6],six);
val test6 = bfs one next1 goal2 = ([a1to4],four);
val test7 = dfs one next1 goal2 = ([a1to2,a2to3],three);
val test8 = bfs one next2 goal3 = ([a1to5,a5to7],seven);
val test9 = dfs one next2 goal3 = ([a1to4,a4to5,a5to7],seven);
val test10 = bfs one next1 goal3 = ([a1to5,a5to7],seven);
val test11 = dfs one next1 goal3; (∗should run endlessly∗)

43

20ptProblem 8.30: Describe a state space in which iterative deepening search performs
much worse than depth-first search (for example O(n2) vs. O(n)).

Solution: Depth-First search strategy performs great if the solutions are dense. Consider
an abstract situation where we have many possible solutions and they are roughly at the same
depth. Furthermore let the solution with minimal depth be at a high depth level.

To make the situation more concrete consider a search problem with the following parameters:

• b = 100

• d = 33

• m = 36

Assume furthermore that the solutions are very dense (most leaves represent a possible solution).
Here depth-first will find a solution extremely fast while iterative-deepening will take much more
time to reach the optimal solution at depth 33.

44

20ptProblem 8.31 (Moving a Knight)
Consider the problem of moving a knight on a 3x4 board, with start and goal states labeled
as S and G in the figure below. The search space can be translated into the following graph.
The letter in each node is its name and you do not need to worry about its subscript for
now.

Make the following assumptions:

• The algorithms do not go into infinite loops (i.e. once a node appears on a path, it
will not be considered again on this path)

• Nodes are selected in alphabetical order when the algorithm finds a tie.

Write the sequence of nodes in the order visited by the specified methods (until the
goal is reached). Note: You may find it useful to draw the search tree corresponding to
the graph above.

• DFS

• BFS

Solution:

• DFS : S A C H E B D F J K G

• BFS : S A B C D E H F I G

45

30ptProblem 8.32 (Sudoku)

This question will give you an excuse to play Sudoku (see www.websudoku.com for
explanation) while doing homework. Consider using search to solve Sudoku puzzles: You
are given a partially filled grid to start, and already know there is an answer.

• Define a state representation for Sudoku answer search. A state is a partially filled,
valid grid in which no rows, column, or 3x3 square contains duplicated digits. Also
specify what transitions would be.

• If the puzzle begins with 28 digits filled, what is L, the length of the shortest path
to goal using your representation?

• On a typical PC, which search algorithm would you choose: BFS, DFS or IDS? Why?

Solution:

• A 9x9 matrix whose elements are 1 to 9 or 0 as empty. Transitions are any valid filling of
an empty cell. Only valid matrices (no duplication in rows, column, or 3x3 squares) are
allowed.

• L = 81− 28 = 53

• DFS is the most suitable, and actually almost all Sudoku search program use DFS. B, the
branching factor, can be in the range of 9× 53 so B >> L. Hence BFS and IDS will have
serious memory problems on a typical PC. Since L is fixed so L = Lmax = Lmin, DFS is
the only choice here.

46

Assignment 9: Informed Search
(Given April 15, Due April 22)

35pt
Problem 9.33 (A∗ search on Jacobs campus)
Implement the A∗ search algorithm in SML and test it on the problem of walking from the
main gate to the entrance of Research 3 with linear distance as heuristic. The length of
line segments are annotated in the map below.

No function signature is provided, instead at the end of your program call your function
so that it prints the actions needed to reach the entrance and the associated cost.

16

1642 42

50

32

18

10

25 25

25 25

4242

50

50

25

25 25

25

25 25

17
8 8 17

17 8 8 17

35 35

35 35

25

10

10

10

Solution:
val it = ([”E”,”E”,”S”,”E”,”SE”,”E”,”S”,”W”],202) (∗ The states here are directions e.g. SE means Southeast. ∗)

fun coor 1 = (0,0) | coor 2 = (25,0) | coor 3 = (67,0) | coor 4 = (83,0) | coor 5 = (125,0) |
coor 6 = (25,18) | coor 7 = (35,18) | coor 8 = (115,18) | coor 9 = (125,18) | coor 10 = (50,25) |

coor 11 = (67,25) | coor 12 = (75,25) | coor 13 = (83,25) | coor 14 = (100,25) | coor 15 = (25,50) |
coor 16 = (50,50) | coor 17 = (100,50) | coor 18 = (125,50) | coor 19 = (50,75) | coor 20 = (67,75) |
coor 21 = (75,75) | coor 22 = (83,75) | coor 23 = (100,75) | coor 24 = (25,82) | coor 25 = (35,82) |
coor 26 = (115,82) | coor 27 = (125,82) | coor 28 = (25,100) | coor 29 = (67,100) | coor 30 = (83,100) |
coor 31 = (125,100);

val edges = [(1,2), (2,3), (3,4), (4,5), (6,7), (8,9), (10,11), (11,12), (12,13), (13,14), (15,16), (17,18),

47

(19,20), (20,21), (21,22), (22,23), (24,25), (26,27), (28,29), (29,30), (30,31),
(2,6), (6,15), (15,24), (24,28), (10,16), (16,19), (3,11), (20, 29), (4,13), (22,30),
(14,17), (17,23),
(5,9), (9,18), (18,27), (27,31),
(12,16), (16,21), (21,17), (17,12)];

fun heuristic(n,m) = let
val (x1,y1) = coor(n);
val (x2,y2) = coor(m);

in Real.round(Math.sqrt(Real.fromInt((x1−x2)∗(x1−x2)+(y1−y2)∗(y1−y2))))
end;

fun next(n) = let
fun successors(,nil) = nil |

successors(n,(a,b)::tl) = if n=a then b::successors(n,tl)
else if n=b then a::successors(n,tl)

else successors(n,tl);
fun hlist(, nil) = nil |

hlist(n, hd::tl) = heuristic(n, hd) :: hlist(n, tl);
fun tie(nil,nil) = nil |

tie(h1::t1, h2::t2) = (h1,h2) :: tie(t1,t2);
val succ = successors(n,edges)
val cost = hlist(n, succ)

in
tie(succ,cost)

end;

exception NoSolution;

(∗ASearch takes and initial node, next function and goal node and returns
the optimal path between initial and goal node ∗)

fun AStarSearch(initial, next, goal) = let
fun putCheapestInFront(hd::tl, nil) = putCheapestInFront(tl,[hd]) |

putCheapestInFront(nil, x) = x |
putCheapestInFront((a,b,c,d)::tl1, (xa,xb,xc,xd)::tl2) =

if c < xc then putCheapestInFront(tl1, (a,b,c,d)::((xa,xb,xc,xd)::tl2))
else putCheapestInFront(tl1, ((xa,xb,xc,xd)::tl2)@[(a,b,c,d)]);

fun addActionsCosts(, ,nil) = nil |
addActionsCosts(pcost, pactions, (node, cost)::tl) =

(node, pcost + cost, pcost + cost + heuristic(node, goal), pactions@[node]) ::
addActionsCosts(pcost, pactions, tl);

fun asearch(nil) = raise NoSolution |
asearch((node, pathcost, totalcost, actions)::rfringe) =

if node = goal then actions
else let

val expansion = next(node); (∗ next(20) = [(19,17), (21,8), (29,25)] ∗)
val newFringeEl = addActionsCosts(pathcost, actions, expansion);

in
asearch(putCheapestInFront(newFringeEl@rfringe, nil))

end
in

asearch([(initial, 0, heuristic(initial, goal), [])])
end

(∗ The nodes are labeled starting from the upper−left corner of the map to right/down direction ∗)
val result = AStarSearch(1, next, 26);

48

25ptProblem 9.34 (Monotone heuristics)
Let c(n, a, n′) be the cost for a step from node n to a successor node n′ for an action a.
A heuristic h is called monotone if h(n) ≤ h(n′) + c(n, a, n′). Prove or refute that if a
heuristic is monotone, it must be admissible. Construct a search problem and a heuristic
that is admissible but not monotone. Note: For the goal node g it holds h(g) = 0. Moreover
we require that the goal must be reachable and that h(n) ≥ 0.

Solution: For the heuristic h to be admissible we have to show that h(x) is less or equal
the minimum coast to a goal state.

Let n1 any node different from the goal node g. Suppose < n1, n2, . . . , np, g > is the minimum
cost path from n1 to g. Its cost is C = c(n1, a1, n2) + c(n2, a2, n3) . . . + c(np, ap, g). Using
h(n)− h(n′) ≤ c(n, a, n′) we get C ≥ h(n1) − h(n2) + h(n2) − h(n1) + . . . + h(np) − h(g) =
h(n1)− h(g) = h(n1). Hence we have proven that h(n1) is admissible.

We consider the minimum distance search problem with three cities A,B,G where G is the
goal city and the distances are dist(A,B) = 2 and dist(B,G) = 100. The heuristic h(A) =
6, h(B) = 3, h(G) = 0 is admissble since h(A) < dist(A,B) + dist(B,G). But is is not monotone
since h(A) > h(B) + dist(A,B).

49

10ptProblem 9.35 (A∗ vs BFS)
Does A∗ search always expands fewer nodes than BFS?

Solution: No. With a bad heuristic, A∗ can be forced to explore the whole space, just like
BFS.

50

30ptProblem 9.36 (A Good Old Friend, the Maze)

Given a maze like the one above, consider using search to find the way from start to
goal. The shaded areas are walls. You start from S and can only go left, right, up or
down (unless there is a wall). All movements cost the same. The heuristic function is the
Manhattan distance, h = |x1 − x2| + |y1 − y2|. For the following questions, explanations
are required (simple answer is not enough).

1. Is this an admissible heuristic for A∗ for the maze problem?

2. Is it an admissible heuristic if you can move in 8 directions instead of 4 (so also
diagonally), if any movement still costs the same?

3. Which performs better with this heuristic, A∗ or simple Greedy?

4. For the case of moving in all 8 directions, is the Euclidean distance, he =
√

(x1 − x2)2 + (y1 − y2)2,
admissible?

5. For the case of moving in all 8 directions, provide an admissible heuristic that is
different from h and he, call it h1, such that h1 is non-trivial (non-constant and not
the hardcoded actual cost).

6. Getting back to the 4 direction movement, is he more efficient for A∗ than h?

Solution:

1. Yes, the Manhattan distance always underestimates the cost - in the case of walls constrict-
ing the path it will be strictly smaller than the actual cost.

51

2. No, it overestimates. In the example above, S has Manhattan distance 5 but can reach the
goal in 4 steps.

3. A∗ doesn’t get stuck like Greedy.

4. No, because the position diagonally next to the goal has a cost of 1 and a Euclidean distance
of
√

2 > 1

5. Divide the Euclidean distance by
√

2 to fix the problem.

6. In 4 moves, Manhattan is a closer estimate of the real cost and will thus perform better.

52

Assignment 10: Local Search
(Given April 22, Due April 29)

30pt
Problem 10.37 (Implementing simulated annealing)
Write an SML function that implements the simulated annealing algorithm to find the
x value where a function f(x) has a maximum. Your function should take the following
arguments:

• f : real−>real the SML implementation of f(x)

• (a,b) : real∗real an interval [a; b] in which to search for the maximum

• schedule : int−>real a function that maps time steps to temperature values

For example the maximum of f(x) = −(x − 2)2 in [0.0; 5.0] is at x = 2.0. Given a
good temperature schedule your implementation should be able to compute the maximum
of sin(x) with an accuracy of 0.0001. Show this at the end of your program by computing
the maximum of sin(x) in the interval [0.0; 5.0].

The complete signature of the function should look like this:
find max : (real −> real) −> real ∗ real −> (int −> real) −> real

Solution:

val min temp = 0.000001;

(∗ First set random seed. ∗
val rand state =

let
val now = Time.toMicroseconds (Time.now ());

val x = IntInf.div(now,1000);
val y = IntInf.toInt (IntInf.mod(x,10000));
in

Random.rand (y,y)
end;

(∗ picks a random point in the interval [current−eps;current+eps] with a lower limit of a and
an upper limit of b∗)

fun get random successor current a b eps =
let

val random num = Random.randReal rand state;
val upper = if (current + eps) > b then b else current + eps;
val lower = if (current − eps) < a then a else current − eps;

in
lower + (random num ∗ (upper−lower))

end;

(∗ Choses the next state based on the current state the temperature and the energy difference. ∗)
fun pick with probability current next deltaE temp =

53

if deltaE > 0.0
then next
else

if (Random.randReal rand state) < Math.exp(deltaE/temp)
then next
else current;

(∗ Uses the simulated annealing algorithm to find the maximum of f in the interval [a,b] given
the specified schedule. Furthermore this function must know the current solution, time and an
epsilon value. The epsilon value is used to limit the neighborhood in which successor states
can be chosen.∗)

fun sim ann f a b schedule time current eps =
let

val temp = schedule time;
val next = get random successor current a b eps;
val deltaE = (f next) − (f current);

in
if temp < min temp

then current
else sim ann f a b schedule (time+1) (pick with probability current next deltaE temp) eps

end;

(∗ Uses the simulated annealing algorithm to find the maximum of f in the interval [a,b] given
the specified schedule. ∗)

fun find max f (a,b) schedule = sim ann f a b schedule 0 ((a+b)/2.0) ((b−a)/10.0);

(∗ TESTING ∗)
fun schedule lin time = 2.0 − 0.0002 ∗ real(time);
fun schedule exp time = Math.pow(0.95, real(time)) ∗ 50.0;

fun compute num steps schedule time =
if schedule time < min temp then time else compute num steps schedule (time+1);

val test lin = Math.sin (find max Math.sin (0.0,5.0) schedule lin);
val test lin ok = (1.0 − test lin) < 0.0001;
val test lin steps = compute num steps schedule lin 0;

val test exp = Math.sin (find max Math.sin (0.0,5.0) schedule exp);
val test exp ok = (1.0 − test exp) < 0.0001;
val test exp steps = compute num steps schedule exp 0;

54

15ptProblem 10.38 (Simulated annealing schedules)
In the simulated annealing algorithm one has to choose a temperature schedule. Two
possible schedules are:

• The linear cooling scheme: Tk+1 = Tk − α = T0 − (k + 1) ∗ α

• The exponential cooling scheme: Tk+1 = αTk = αk+1T0 where α < 1.0 (the
typical value is 0.95, but this really depends on the problem - and the smaller this
is, the less iterations you will have).

The exponential cooling scheme typically performs better. Explain why this might be
the case. To help you with this you should do an experiment where you try to achieve
the desired accuracy in the pevious question by using both a linear and an exponential
schedule.

Solution: It is important that near the end of our search we focus on only good solutions.
By this time ideally we should be in the region of the global maximum and we should use the last
iterations in order to find an optimal solution within the current ”hill”. The exponential cooling
schedule allows just that. In the beginning it is still possible to make big jumps therefore escaping
local maxima but at the end it leaves quite a lot of time where the algorithm tries to fine tune
the current solution (because with low temperatures, the probability of accepting a worse state is
very small, which means the state improves or stays the same at each iteration, thus allowing for
a (randomized) hill-climbing like search for the top of the hill). The exponential schedule allows
for more time at smaller temperatures.

To achive similar performance with the linear schedule we typically need a lot more iterations.

55

30ptProblem 10.39 (Easter Bunnies in Boxes)
Imagine there are n Easter bunnies and n different coloured boxes, and each bunny has
specific color preferences and will like their box on a scale of 1 to 10. We want to makes as
many bunnies as happy as we can, so the overall fitness of an assignment of bunnies in boxes
will be the sum of how much each bunny likes its box. An assignment is admissible if each
bunny has exactly 1 box. Think about applying Genetic Algorithms for this problem: your
task is to come up with an encoding that allows only admissible states and with crossover
and mutation operators that preserve admissibility. Don’t take the term crossover too
literally though - it is not a must that you split the chromosomes and cross over their
parts, you can think about the concept of reproduction in general. Similarly for mutation.

Solution: Encoding: An n-permutation (e.g. for 8, 12376548) Crossover: There are many
ways to do this, one of them is to compose the 2 permutations - permutations are functions and
they can be composed (apply the first one and then the second one), yielding a permutation. E.g.
composing 132 with 213 yields 312 (or 231 depending on the order, this is up to convention).
Mutation: Compose with any 2-cycle permutation (i.e. one that switches 2 of the entries). E.g
12376548 can become 21376548.

56

25ptProblem 10.40 (Similarities among algorithms)
The lecture on Local Search has introduced you to Hill Climbing, Local Beam Search,
Simulated Annealing and Genetic Algorithms. There is also an important variation of Hill
Climbing you should know about - Randomized Hill Climbing is when you choose a random
neighbor rather than the best one, and you select it only if its fitness is better.

1. For what temperature schedule is Simulated Annealing the same algorithm as Ran-
domized Hill Climbing? Why?

2. For what population size is Genetic Algorithm the same algorithm as Randomized
Hill Climbing? Why? Consider GAs that always keep one or more of the fittest
chromosomes in the new population - this is called elitism). See slide 268 for the
pseudocode of GA.

Solution:

1. When the temperature is always very very small (0 for all practical purposes), SA will create
a random neighbor and only accept it if it is better, since the probability of accepting a
worse state will be practically 0. This is then the same as RHC.

2. When the population size is 1, GA will not crossover and will just mutate (which is the
same as selecting a random neighbor). Then, due to elitism (always keeping the fittest
individual), it will only preserve it in the population (of 1 chromosome) if it is better -
exactly like RHC.

57

Assignment 11: ProLog
(Given April 29, Due May 6)

30pt
Problem 11.41 (Family relations)

Using the following ProLog predicates:

• woman(X)

• man(X)

• mother of(X,Y) X is the mother of Y

• father of(X,Y) X is the father of Y

write a sample knowledge base that contains facts about the family relations of sev-
eral people. Afterwards define rules for the following predicates and test them on your
knowledge base:

• sister of(X,Y) X is the sister of Y

• brother of(X,Y) X is the brother of Y

• sibling of(X,Y) X is the sibling of Y

• grandma of(X,Y) X is the grandmother of Y

• grandpa of(X,Y) X is the grandfather of Y

• uncle of(X,Y) X is the uncle of Y

• aunt of(X,Y) X is the aunt of Y

Solution:

woman(alice).
woman(sally).
woman(kate).
woman(jessica).
woman(marry).
man(john).
man(vincent).
man(patrick).
man(kevin).

mother of(sally, kate).
mother of(sally, vincent).
mother of(susan,jessica).

58

mother of(marry,patrick).
mother of(alice,marry).
mother of(sally,kevin).
father of(john, kate).
father of(john, vincent).
father of(vincent,jessica).
father of(vincent,patrick).
father of(john,kevin).

% −−
% Here are the relation predicates

parent of(X,Y) :− mother of(X,Y).
parent of(X,Y) :− father of(X,Y).
sister of(X,Y) :− woman(X), parent of(Z,X), parent of(Z,Y).
brother of(X,Y) :− man(X), parent of(Z,X), parent of(Z,Y).
sibling of(X,Y) :− sister of(X,Y).
sibling of(X,Y) :− brother of(X,Y).
grandma of(X,Y) :− mother of(X,Z), parent of(Z,Y).
grandpa of(X,Y) :− father of(X,Z), parent of(Z,Y).
uncle of(X,Y) :− brother of(X,Z), parent of(Z,Y).
aunt of(X,Y) :− sister of(X,Z), parent of(Z,Y).

% −−
% Test queries

% The following should result in a YES
?− grandma of(sally, jessica).
?− grandpa of(john, jessica).
?− sibling of(jessica, patrick).
?− sibling of(patrick, jessica).
?− brother of(patrick, jessica).
?− sister of(jessica, patrick).
?− aunt of(kate, jessica).
?− uncle of(kevin,jessica).
?− brother of(vincent,kate).
?− brother of(vincent,kevin).
?− brother of(kevin,vincent).
?− sister of(kate,kevin).
?− sister of(kate,vincent).
?− sibling of(kate,vincent).
?− sibling of(kate,kevin).
?− sibling of(vincent,kevin).
?− sibling of(vincent,kate).
?− sibling of(kevin,kate).
?− sibling of(kevin,vincent).
?− grandma of(alice,patrick).
?− aunt of(kate,patrick).
?− uncle of(kevin,patrick).
?− grandma of(sally,patrick).
?− grandpa of(john,patrick).

59

% The following should FAIL
?− grandma of(alice,jessica).
?− sibling of(susan,marry).
?− sibling of(susan,vincent).
?− sibling of(kevin,john).
?− brother of(jessica,patrick).

60

30ptProblem 11.42 (Fraction representation in ProLog)
Propose one way of representing fractions of the type x

y
where x, y ∈ Zy 6= 0 in ProLog.

Write an infinite knowledge base that is able to represent any such fraction and give an
example of how 1

2
,−5

3
and 0 can be realized with your representation.

Solution:

pos(one).
pos(s(X)) :− pos(X).
neg(n(X)) :− pos(X).
not zero(X) :− pos(X).
not zero(X) :− neg(X).
int(zero).
int(X) :− not zero(X).
frac(X,Y) :− int(X), not zero(Y).

% 1/2 would be:
?− frac(one,s(one)).

% −5/3 would be:
?− frac(n(s(s(s(s(one))))),s(s(one))).
% or:
?− frac(s(s(s(s(one)))),n(s(s(one)))).

% There are a lot of options for 0:
?− frac(zero, one).
?− frac(zero, n(s(s(s(s(s(one))))))).

61

30ptProblem 11.43 (Paths in a Graph)
Given a directed graph, represented by edge(from, to) facts, write a predicate trip(A, B, L)
that succeeds if the node B is accessible from A via the intermediate nodes L (an ordered
list of nodes).

Note: It is not required to avoid cyclic trips.

Solution:

trip(A, B, []) :− edge(A, B).
trip(A, B, [H | T]) :− edge(A, H), trip(H, B, T).

62

10ptProblem 11.44 (Who is jealous?)

Given the following simple knowledge base:

loves(vincent,mia).
loves(mary,joe).
loves(joe,mary).
loves(anthony,mia).
loves(donny,mia).
loves(mia,joe).
knows(vincent,donny).
knows(joe,anthony).
knows(mia,vincent).
knows(vincent,joe).
knows(mary,mia).
knows(donny,joe).

jealous(X,Y) :− loves(X,Z),loves(Y,Z),knows(X,Y).
jealous(X,Y) :− loves(X,Z),loves(Z,Y),knows(X,Y).

Suppose we pose the query: ?−jealous(vincent,X). What would ProLog return? What
about: ?−jealous(Y,W). What do you have to type to get all the jealous pairs and how do
you know if there are any more left? Show how ProLog would answer the first question
using Backtracking search (see slide 261 for example). Test your intuition.

Solution:
The query works around these lines:

?− jealous(vincent,X).
?− loves(vincent,Z),loves(X,Z),knows(vincent,X)
Z = mia
?− loves(X,mia).
X = anthony
?− knows(vincent,anthony).
FAIL
X = donny
?− knows(vincent,donny).
X = donny
Yes

In order to get all the jealous pairs you first type ?−jealous(Y,W). This returns you the first
pair found. Then type ?− ; that stands for “are there any more of that?”. ProLog either will
give you a new solution to the query or answer “No” if there are no solutions left. The jealous
pairs are: (vincent,donny), (vincent,joe), (mary,mia) and (donny, joe).

63

Assignment 12: Practice tasks
(Given May 6, Due May 13)

20pt
Problem 12.45 (Adding numbers)
Write a ProLog predicate add(A,B,S) where A+B=S. A,B and S are positive integers rep-
resented as lists.

For instance we have

add([1,2,4],[3,9],X).
X = [1,6,3] .

Solution:

append([], L, L).
append([X|R], L, [X|S]) :− append(R, L, S).

reverse([], []).
reverse([X|R], L) :− reverse(R, S) , append(S, [X], L).

add rev([],[],[],0).
add rev([],[],[C],C).
add rev([A|AA],[],[S|SS],C) :− S is (A + C) mod 10, X is (A+C)//10, add rev(AA,[],SS,X).
add rev([],[B|BB],[S|SS],C) :− S is (B + C) mod 10, X is (B+C)//10, add rev([],BB,SS,X).
add rev([A|AA],[B|BB],[S|SS],C) :− S is (A + B + C) mod 10, X is (A+B+C)//10, add rev(AA,BB,SS,X).

add(A,B,S) :− reverse(A,AA), reverse(B,BB), reverse(S,SS), add rev(AA, BB, SS, 0).

% Testing

% True queries
?− add([1,2,3],[6,2,2],[7, 4, 5]).
?− add([5,7,8],[8,4,2],[1, 4, 2, 0]).

% False queries
?− add([1,2,3],[6,2,2],[7, 4, 6]).
?− add([5,7,8],[8,4,2],[1, 4, 2, 1]).

64

25ptProblem 12.46 (Number representation)
Write the two predicates rep(X,L) and rep all(X,L) in ProLog. X is a positive integer and L
is a list of positive integers. rep should generate all possible ways to represent X as a sum
of the positive integers 1, 2 and 3. rep all should generate all possible ways to represent X
as a sum of any positive integer.

For instance, we have

rep(3,X).
X = [1, 1, 1] ;
X = [1, 2] ;
X = [2, 1] ;
X = [3] ;

Solution:

%a
rep(0,[]).
rep(X,[1|L]) :− K is X − 1, K>=0, rep(K,L).
rep(X,[2|L]) :− K is X − 2, K>=0, rep(K,L).
rep(X,[3|L]) :− K is X − 3, K>=0, rep(K,L).

%b
rep all helper(0,[],).
rep all helper(X,[A|L],D) :− member(A,D), K is X − A, K>=0, rep all helper(K,L,D).

smaller(1,[1]).
smaller(X,[X|L]) :− X>=2, K is X − 1, smaller(K,L).

rep all(X,L) :− smaller(X,XX), rep all helper(X,L,XX).

65

20ptProblem 12.47 (Permutations in ProLog)

1. Construct a predicate eliminate(X, Y, Z) that eliminates the element X from the list
Y (the result being list Z). If the element is not in the list, the predicate should yield
no solution (false).

2. Use the predicate above to define another predicate, permute(X, Y), that computes
all the permutations of list X. permute(X, Y) is true if Y is a permutation of X.

Solution:

eliminate(X,[X|T],T).
eliminate(X,[H|T],[H|R]):−eliminate(X,T,R).
permute([X|Y],Z) :− permute(Y,W), eliminate(X,Z,W).
permute([],[]).

66

35ptProblem 12.48 (TSP-decision in ProLog)
Remember the Traveling Salesmen Problem from Genetic Algorithms: given a bidirectional
graph, find a minimum-weight tour that includes each node once and returns to the last
node. In this task, you will focus on a small part of this problem: given the graph below,
define a predicate tsp(L,C) that is true when L is a solution to the TSP with cost less
than C (instead of minimum cost, it is enough if the tour has a sufficiently small cost).
Your program

• should return a solution S immediately when calling tsp(S, 8).

• must only say yes when S is a valid tour.

• need not say no immediately when there is no solution, e.g.tsp(S, 7).

The graph below has vertices given by the predicate vertices and bidirectional edges given
by bi− edge that also specify the cost of the edge.

edge(a,e,1).
edge(a,g,1).
edge(a,f,3).
edge(b,d,1).
edge(b,e,1).
edge(b,g,2).
edge(c,e,1).
edge(c,f,1).
edge(c,g,2).
edge(d,f,1).

vertices([a,b,c,d,e,f,g]).

bi edge(X,Y,C) :− edge(X,Y,C).
bi edge(X,Y,C) :− edge(Y,X,C).

Solution:

edge(a,e,1).
edge(a,g,1).
edge(a,f,3).
edge(b,d,1).
edge(b,e,1).
edge(b,g,2).
edge(c,e,1).
edge(c,f,1).
edge(c,g,2).
edge(d,f,1).

vertices([a,b,c,d,e,f,g]).

bi edge(X,Y,C) :− edge(X,Y,C).
bi edge(X,Y,C) :− edge(Y,X,C).

67

eliminate(X,[X|T],T).
eliminate(X,[H|T],[H|R]):−eliminate(X,T,R).
permute([X|Y],Z) :− permute(Y,W), eliminate(X,Z,W).
permute([],[]).

cost([X,Y],C) :− bi edge(X,Y,C).
cost([X|[Y|Z]],C) :− bi edge(X,Y,T), cost([Y|Z],R), C is R+T.

last([X],X).
last([X|Y],Z) :− last(Y,Z).

equal(X,X).

tsp([X|Y],C) :− vertices(V), last(Y,T), equal(X,T), cost([X|Y],Z), Z=<C,

permute(Y,V).

\% testcases
?−tsp(S,8).
S = [a, e, b, d, f, c, g, a] ;
S = [a, e, c, f, d, b, g, a] ;
...

68

