
General Computer Science II (320201) Spring 2007

Michael Kohlhase
Jacobs University Bremen

For Course Purposes Only

April 8, 2013

Contents

1

Assignment 1: Graphs and Trees
(Given Feb. 7., Due Feb. 14.)

Conjecture 1 1. Let G = 〈V,E〉 be a directed graph. Then,

#(V)∑
i=1

indeg(vi) =

#(V)∑
i=1

outdeg(vi) = #(E)

2. If G is undirected, we have

#(V)∑
i=1

deg(vi) = 2 ·#(E)

25pt
Problem 1.1 (Degrees in an Undirected Graph)
Prove or refute the conjecture above

Note: For undirected graphs, we introduce the notation deg with deg(v) = indeg(v) =
outdeg(v) for each node.

Solution:
Proof : by induction over m = #(E)

P.1.1 m = 0 (base case): For graphs that only consist of isolated nodes, both assertions hold
trivially.

P.1.2 m→ m + 1 (induction step):

P.1.2.1 If we remove an arbitrary edge e ∈ E from G, we obtain G\{e}

P.1.2.2 G\{e} is a directed (or undirected, resp.) graph with m edges.

P.1.2.3.1 directed graph: By removing one edge, we have decreased the sum of in-degrees as
well as the sum of out-degrees by one.

P.1.2.3.2 undirected graph: By removing one edge e = 〈u, v〉, we have decreased the degree
of u as well as the degree of v by one and thus the sum of degrees by two.

2

15ptProblem 1.2 (Node Connectivity Relation is an Equivalence Relation)
Let G = 〈V,E〉 be an undirected graph and the relation C be defined as

C := {〈u, v〉 | there is a path from u to v}

Prove or refute that C is an equivalence relation.
Solution:

Proof :

P.1.1 reflexivity: From every node, there is a zero-length path to itself.

P.1.2 symmetry: If there is a path from a node u to a node v, just reverse it.

P.1.3 transitivity: If there is a path from u to v and a path from v to w, we can reach w from
u via v.

3

30ptProblem 1.3 (Parse Tree)
Given the data type prop for formulae

datatype prop = tru | fals (∗ true and false ∗)
| por of prop ∗ prop (∗ disjunction ∗)
| pand of prop ∗ prop (∗ conjunction ∗)
| pimpl of prop ∗ prop (∗ implication ∗)
| piff of prop ∗ prop (∗ biconditional ∗)
| pnot of prop (∗ negation ∗)
| var of int (∗ variables ∗)

Write an SML function that computes the parse tree for a formula. The output format
should be

• a list of integers for the set of vertices,

• a list of pairs of integers for the set of edges,

• and for the labeling function a list of pairs where the first component is an integer
and the second a string (the label).

Solution:

datatype prop = tru | fals (∗ true and false ∗)
| por of prop ∗ prop (∗ disjunction ∗)
| pand of prop ∗ prop (∗ conjunction ∗)
| pimpl of prop ∗ prop (∗ implication ∗)
| piff of prop ∗ prop (∗ biconditional ∗)
| pnot of prop (∗ negation ∗)
| var of int (∗ variables ∗)

The output is a triple (vertices, edges, labeling list) where

• vertices is simply an integer (so the vertices are represented as integers from 1 to that
number)

• edges is a list of pairs of integers that are the vertices between which there are edges

• labeling list: a list of (vertex:integer, label:string) pairs that will be used to make a labeling
function which takes the index of a vertex and returns its label, e.g. a string ”impl” Input:
A pair (root, p)

• root is a name for the root node (an integer), see the function maketree

• p a variable of datatype prop in which a boolean expression is stored

fun totree(mroot, pnot(be)) = let val (verout, edges, lblpairs) = totree(mroot+1, be)
in (verout, [mroot, mroot+1] :: edges, (mroot, ”−”) :: lblpairs)
end |

totree(mroot, tru) = (mroot, nil, [(mroot, ”T”)])|
totree(mroot, fals) = (mroot, nil, [(mroot, ”F”)])|

4

totree(mroot, var v) = (mroot, nil, [(mroot, Int.toString(v))])|
totree(mroot, two var) = let val ax = fn (por(be1, be2)) => (”OR”, be1, be2) |

(pand(be1, be2)) => (”AND”, be1, be2) |
(pimpl(be1, be2)) => (”=>”, be1, be2) |
(piff(be1, be2)) => (”<=>”, be1, be2)

val (lbl, be1, be2) = ax two var
val (verout1, edges1, lblpairs1) = totree(mroot+1, be1)
val (verout2, edges2, lblpairs2) = totree(verout1+1, be2)

in (verout2, [[mroot, mroot+1],[mroot, verout1+1]] @ edges1 @ edges2, (mroot, lbl) :: (lblpairs1 @ lblpairs2))
end

Now we have an optional wrapper function that

• eliminates the need for the index of the root (default value is 1)

• converts the labeling list into labeling function that takes a vertex and returns its label

local
fun findString(num, hd::tl) = let

val (a,b) = hd
in

if a = num then b
else findString(num, tl)

end

in
fun maketree(t) = let

val (lastnode, edges, lblpairs) = totree(1, t)
in (lastnode, edges, fn num => findString(num, lblpairs))
end

end

Finallly: an example of how the program can be tested:

totree(1, por(por(piff(pnot(var 4), fals), pimpl(tru, pand(var 2, var 3))), var 9));
val it =
(12,[[1,2],[1,12],[2,3],[2,7],[3,4],[3,6],[4,5],[7,8],[7,9],[9,10],[9,11]],
[(1,”OR”),(2,”OR”),(3,”<=>”),(4,”−”),(5,”4”),(6,”F”),(7,”=>”),(8,”T”),
(9,”AND”),(10,”2”),(11,”3”),(12,”9”)])
: int ∗ int list list ∗ (int ∗ string) list ∗)

5

Assignment 2: Combinatorial Circuits
(Given Feb. 14., Due Feb. 21.)

15pt
Problem 2.4 (Number of Paths in Balanced Binary Tree)
Let p(n) be the number of different paths in a fully balanced binary tree of depth n. Find
a recursive equation for p(n).

Solution: Base case: p(0) = 0 and p(1) = 2. Recursive rest for n > 1:

p(n) := n ∗ 2n + p(n− 1)

6

15ptProblem 2.5 (Combinational Circuit for Logical Equivalence)
Logical equivalence can be expressed by the Boolean function

f : {0, 1}2 → {0, 1}; 〈i1, i2〉 7→ (i1 + i2) ∗ (i1 + i2)

Draw the corresponding combinational circuit and write down its labeled graph G =
〈V,E, fg〉 in explicit math notation.

7

15ptProblem 2.6 (Binary Comparator)
Design a combinational circuit from AND, OR, and NOT gates that takes two n-bit binary
numbers and returns 1 if they are equal and zero otherwise. What is the depth of your
circuit? Modify the first circuit to a circuit that returns 1 if one n-bit binary number is
greater than the other.

8

30ptProblem 2.7 (Is implication universal?)
Imagine a logical gate IMPL that computes the logical implication a⇒ b. Prove or refute
whether the set S = {IMPL} is universal, considering the following two cases:

1. combinational circuits without constants

2. combinational circuits with constants

If the set turns out to be not universal in either of the cases, add one appropriate non-
universal gate G ∈ {AND,OR,NOT} to S, and prove that the set S ′ = {IMPL, G} is
universal.

Note: A set of boolean function is called universal (also called “functionally complete”), if
any boolean function can be expressed in terms of the functions from that set. {NAND} is an
example from the lecture.

Solution:
Proof :

P.1.1 combinational circuits without constants:

P.1.1.1 S = {IMPL} is not universal, as the NOT gate cannot be constructed from IMPL gates
only, because:

• a⇒ a = 1

• 1⇒ a = a

• a⇒ 1 = 1

• . . . and all other combinations reduce to the above.

P.1.1.2 If we choose G = NOT, we can construct NOR from the elements S because of a ↓ b =
¬(¬a⇒ b). As we know that {NOR} is universal, {IMPL, G} is universal, too.

P.1.2 combinational circuits with constants:

P.1.2.1 The NOT gate can be constructed using IMPL and a constant input of 0, because
a⇒ 0 = ¬a.

P.1.2.2 Now we can argue as in the first case.

9

Assignment 3: Combinatorial Circuits, Arithmetics
(Given Feb. 21., Due Feb. 28.)

40pt
Problem 3.8 (A Counter with Minimal Changes)
If you imagine a counter for four-bit binary numbers that counts up from 0000 to 1111
and then from 0000 again in constant time intervals, there are steps where several outputs
change at one, e.g. from 0111 to 1000. For some applications it is not desirable to have
multiple outputs change their value at once; it is better to have exactly one output change.

Design the combinational circuit of an encoder with four inputs a3 . . . a0 (which can be
the four outputs of a binary counter). In each counting step, only one bit of the output
c3 . . . c0 of the encoder should change its value.

1. Suggest an appropriate code by giving a truth table that maps each of the successive
states a3 . . . a0 of the binary counter to one code value c3 . . . c0.

2. Implement your encoder as a combinational circuit.

Solution: There is more than one solution, but the most intuitive one leads to the following
code, called a “Gray code” (see Wikipedia):

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

The conversion function from ordinary binary code to Gray code requires a right-shift op-
eration (which can here be implemented by rewiring the inputs properly) and exclusive or:
G = B ⊕ SHR(B)

10

40ptProblem 3.9 (Sign-and-Magnitude Adder)
Recall the näıve sign and magnitude representation for n-bit integers: If the sign bit is 0,
the number is positive, else negative. The other n− 1 bits represent the absolute value of
the number.

1. Describe how to add two equally-signed n-bit numbers (simple).

2. Describe how to add two n-bit numbers numbers with different sign bits (a bit more
tricky).

3. Draw a combinational circuit of a 4-bit sign and magnitude adder (one sign bit, three
data bits). You may use the 1-bit full adder/subtractor (with one input that selects
whether to add or to subtract) known from the lecture, an n-bit multiplexer that
selects one of two n-bit numbers, as well as an n-bit comparator that computes the
function f : {0, 1}2 → {0, 1} defined as follows:

f(a, b) :=

{
1 if a ≤ b
, 0 else

Be sure to explain the layout of your circuit.

4. How can an over-/underflow be detected at the outputs? In which cases can an
over-/underflow occur?

Solution:

1. Add the absolute values and keep the sign

2. Choose the greater of the absolute values of the two numbers (|a|), subtract the absolute
value of the other number (|b|) from it and take the sign of a.

3. (Wire the above.)

4. An over-/underflow can occur when two equally-signed numbers are added. It can be
detected by checking the last carry-out.

11

20ptProblem 3.10 (State After an Arithmetic Operation)
After arithmetic operations, it is important to know the following about the result:

Zero The result is zero / not zero

Negative The result is positive / negative

Overflow The operation has been executed correctly / has led to an over-/underflow

Explain in detail — but without a formal proof — how the above conditions (here,
we handle over- and underflow as one case) can be derived from the values of edges in
a combinational circuit after performing an addition of two two’s complement numbers.
Give examples, if appropriate.

Solution:

Zero Simplest solution: feed all outputs of the adder/subtractor into a NOR gate (and check
whether the 0 is not the result of an operation that caused an overflow!)

Negative Check the sign bit and whether there was no overflow

Overflow Check whether the carry-in and carry-out of the sign bit are identical (see lecture)

12

Assignment 4: Sequential Logic Circuits, Memory,

Register Machine
(Given Feb. 28., Due Mar. 7.)

30pt
Problem 4.11 (Event Detection with RS Flipflops)
Using RS flipflops, you can detect events.

1. Design a sequential logic circuit (draw a graph) with two inputs and two outputs that
detects, which out of two events occurred first. Use the RS flipflop and elementary
gates (AND, OR, NOT, . . .). Assume that, initially, all inputs are 0 and the RS
flipflop(s) are holding a 0. If input Ii, where i ∈ {1, 2}, changes its value to 1, output
Oi should change its value to 1, and all other outputs should yield 0. The outputs
must not change any more when the second input changes to 1.

2. Combine several (how many?) of the circuits from step 1 to a similar event detector
for three events.

Note: You need not handle the case of two inputs simultaneously changing to 1.

Solution: Circuit that checks which out of two events (x or y) occurred first:

R Q

S Q
y

x
y first

x first

Three of those combined to a circuit that checks which out of three events (a, b, or c) occurred
first:

x

y

y first

x first

x

y

y first

x first

x

y

y first

x firstb

a

c

b

c

a<b

c<a

a<c

c<b

b<c

a b<a

(here, < means "before")

a first

b first

c first

a b c

13

10ptProblem 4.12 (3-bit Address Decoder)
Design a three-bit address decoder. Draw your circuit as a graph.

14

20ptProblem 4.13 (Poking Zeros)
Given are n ≥ 1 (n is stored in P (0)) integers stored in an array P (10) . . . P (9 + n); some
of them are zeros. Write an assembler program that overwrites all zeros in the array with
a sum calculated in the following way: If P (k) = 0, 10 ≤ k ≤ 9 + n, then the new value of
P (k) should be the sum of all values from those array fields P (10) . . . P (k − 1) that were
not zero before the execution of your program.

15

15ptProblem 4.14 (A Shift Program)
Write an assembler program that shifts the values of only the first n cells to its upper
neighbor, where n is the content of the accumulator; i.e. if P (k) = ak for k = 1 . . . n is the
state before the execution of the program then it must be P (k + 1) = ak for k = 1 . . . n
afterwards and the program must terminate.

Solution:

P instruction comment

0 MOVE ACC IN1 IN1: = ACC
1 LOADIN 1 0 ACC : = P (IN1)
2 STOREIN 1 1 P (IN1 +1): = ACC
3 MOVE IN1 ACC ACC : = IN1
4 SUBI 1 ACC : = ACC −1
5 JUMP= > 1 if ACC > 0 goto step 0
6 STOP 0 Stop

16

25ptProblem 4.15 (A Recursive Function)
Write an assembler program that computes the following recursive function:

f(0) = 0

f(1) = 1

f(i) = 4 · f(i− 2) + (−1)i · f(i− 1), i ≥ 2

Assume that the input i is given in cell 0. Store the result in cell 3. If you need
additional assembler instructions for which we know circuits from the lecture (e.g. left/right
shifting n-bit numbers, or inverting them, i.e. computing the bit-wise NOT), you may give
them descriptive names like shiftr or inv. But be sure to use only circuits that implement
functions f : Bn → Bn!

17

Assignment 5: Register Machine, Virtual Machine
(Given March 7., Due March 14.)

60pt
Problem 5.16 (Simulating a Register Machine)
Write an SML function regma (register machine) that simulates the simple register machine
we discussed in class. To represent the program and data store, you should use SML
vectors as described in http://www.standardml.org/Basis/vector.html. In a nutshell,
Vector.sub(arr,i) returns the ith element of the vector arr and Vector.update(arr,i,x) returns
the vector arr, except that the ith element is replaced by x. Finally (useful for testing)
Vector.fromList makes a vector from a list.

So the the data store should be of type int vector and the program store is of type
(instruction ∗ int) vector, where instruction is defined by the following type

datatype instruction =
load | store | add | sub | loadi | addi | subi |
loadin1 | loadin2 | storein1 | storein2 |
moveaccin1 | moveaccin2 | movein1acc | movein2acc | movein1in2 | movein2in1 |
jump | jumpeq | jumpne | jumpless | jumpleq | jumpgeq | jumpmore |
nop | stop

regma should take as input a data store data and a program store prog, and regma(prog,data)
should return the value of the accumulator register, when the program encounters a stop
instruction.

Solution: We first write an auxiliary function that takes care of the current instruction by
a large case statement. Let us start out with the load/store instructions:

\scriptsize
fun arg(n,p) = let val (,a) = Vector.sub(n,p) in a end
fun doinst ((load,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,arg(pc,prog),pc+1,in1,in2)
| doinst((store,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,i),pc+1,in1,in2)
| doinst ((loadi,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,i,pc+1,in1,in2)
| doinst((loadin1,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,Vector.sub(data,in1+i),pc+1,in1,in2)
| doinst((loadin2,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,Vector.sub(data,in2+i),pc+1,in1,in2)
| doinst((storein1,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,in1+i),pc+1,in1,in2)
| doinst((storein2,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,Vector.update(data,acc,in2+i),pc+1,in1,in2)

Then come the cases for the computation instructions, where we just make use of the SML
computation facilities.

\scriptsize
| doinst((add,i),prog,data,acc,pc,in1,in2) =

18

doinst(Vector.sub(pc+1,prog),prog,data,acc + Vector.sub(data,i),pc+1,in1,in2)
| doinst((Vector.sub,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc − Vector.sub(data,i),pc+1,in1,in2)
| doinst((add,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc + i,pc+1,in1,in2)
| doinst((Vector.sub,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc − i,pc+1,in1,in2)

The register move instructions are rather boring:

\scriptsize
| doinst(moveaccin1,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,acc,in2)
| doinst(moveaccin2,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,acc)
| doinst(movein1acc,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,in1,pc+1,in1,in2)
| doinst(movein2acc,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,in2,pc+1,in1,in2)
| doinst(movein1in2,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in1)
| doinst(movein2in1,prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in2,in2)

The jump instructions can be mapped to conditional expressions in SML using the SML compar-
isons

\scriptsize
| doinst((jump,i),prog,data,acc,pc,in1,in2) =

doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
| doinst((jumpeq,i),prog,data,acc,pc,in1,in2) =

if (acc = 0)
then doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
else doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

...
| doinst((jumpmore,i),prog,data,acc,pc,in1,in2) =

if (acc > 0)
then doinst(Vector.sub(pc+i,prog),prog,data,acc,pc+i,in1,in2)
else doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

For the skip instruction we do nothing, except increment the program counter and supply the
next instruction:

\scriptsize
| doinst(nop,prog,data,acc,pc,in1,in2) =
doinst(Vector.sub(pc+1,prog),prog,data,acc,pc+1,in1,in2)

Finally, the stop instruction just returns the value of the accumulator.

\scriptsize
| doinst(stop,prog,data,acc,pc,in1,in2) = acc

With this giant case distinction, the function regma is very simple, we just have to use doinst
with suitable initial values.

19

\scriptsize
fun regma (prog,data) = doinst(Vector.sub(0,prog),prog,data,0,1,0,0)

20

10ptProblem 5.17 (Testing the Simulation of the Register Machine)
Test your SML simulation regma of the register machine by implementing the assembler
programs from last week’s assignment on it, i.e. by rewriting them as SML data structures
as stated in the regma problem assignment.

21

15ptProblem 5.18 (Even Odd Test)
Assume the data stack initialized with con n for some natural number n. Write a L(VM)
program that returns on top of the stack 0 if n is even and 1 otherwise. Furthermore, draw
the evolution of the stack during the execution of your program for n = 4 and n = 5.

22

15ptProblem 5.19 (Fibonacci Numbers)
Assume the data stack initialized with con n for some natural number n. Write a L(VM)
program that computes the nth Fibonacci number and returns it on the top of the stack.

Solution:

con n The requested fibonacci number
con 0 con 1 The 0th and the 1st fibonacci number
con 0 peek 0 leq cjp 5 If $\RMdatastore{0}$ <= 0
peek 1 halt return the current fibonacci number
peek 2 else save the next fibonacci number ...
peek 1 peek 2 add poke 2 ... compute the number after next and save at $\RMdatastore{2}$
poke 1 ... make the next number current ...
con 1 peek 0 sub poke 0 ... decrease n by 1 ...
jp −28 ... and jump back the the beginning

23

Assignment 6: Virtual Machine
(Given March 14., Due March 21.)

20pt
Problem 6.20 (Environment of the Virtual Machine)
Implement the environment for the virtual machine in SML based on the following signature
introduced in class:

type a env
exception Unbound of id
val empty : a env
val insert : id ∗ a ∗ a env −> a env
val lookup : id ∗ a env −> a (∗ Unbound ∗)

Solution:

type id = string (∗ identifier ∗)
type index = int
type env = id−>index

exception Unbound of id

fun empty = ˜1; (∗ a kind of empty function ∗)

fun insert(k:id, v:index, env:env) =
fn key => if key = k then v

else env(key)

fun lookup(k:id, env:env) =
if env(k) = ˜1 then raise Unbound k
else env(k);

24

30ptProblem 6.21 (New Statements for SW)
Extend the Simple While Language SW by a repeat−until and a for loop, two variants of
the while loop. Consider both the abstract syntax data type sta and the compileS function.

The concrete syntax of a repeat−until loop looks as follows:

repeat
(∗ statements ∗)

until (∗ conditional−expression ∗);

. . . where the statements in the body are repeated until the conditional expression evalu-
ates to true (i.e. a number 6= 0).

The concrete syntax of a for loop looks as follows:

for (∗ counting−variable ∗) := (∗ start−expr ∗) to (∗ end−expr ∗) do
(∗ statements ∗)

end;

(∗ Example:
var i;
var n := 10;
var sum := 0;
for i := 1 to n do

sum := sum + i;
end; ∗)

Assume that a counting variable, e.g. named i, has been declared before. In the first
run of the loop, i is initialized to the value of start-expr. After each run of the loop, i is
increased by one. In the last run of the loop, i has the value of what end-expr evaluated
to before the loop started; then the execution of the loop stops.

25

25ptProblem 6.22 (Moving a parameter from proc to call)
In the realization of call, we write the number of arguments in the frame by taking
the parameter a of the corresponding proc instruction (referred to as ‘stealing’ in the
comments). An alternative is to have a call that takes two arguments: the address of the
procedure and the number of its arguments. Clearly, proc will have only one argument
(the length of the procedure) in that implementation. Realize such instructions in ASM by
modifying the current implementation.

26

Assignment 7: Turing Machines
(Given April 12, Due April 19)

25pt
Problem 7.23 (Turing Machine Evaluation)
What does the following Turing machine do?

• Its input is a word w ∈ {0, 1}∗, surrounded by hash marks as delimiters; i.e. the
overall alphabet is {0, 1,#}.

• The states are {s0, s1}, with an initial state of s0. Initially, the head is on the first
character of w.

• Admissible moves are L (left), R (right), and N (none).

• The transition function is defined as follows:

Old Read Write Move New

s0 0 1 N s0
s0 1 1 R s0
s0 # 1 N s1
s1 0 0 L s1
s1 1 1 L s1
s1 # (halt)

Simulate the machine on the input 1010. Specify the behaviour of the machine, interpreted
as

1. a function on strings, for example: “{0, 1}∗ 3 w 7→ 0|w|1m, where m < |w| is the
number of 1’s in w”

2. a function on binary-encoded integers, for example: “N 3 w 7→ log2w + 3w”

where the final word on the tape is considered as the return value of the function. Try to
be as formal as possible.

Solution: The input 1010 yields the output 11111.

1. {0, 1}∗ 3 w 7→ 1|w|+1

2. N 3 w 7→ 2dlog2 we+1 − 1

27

25ptProblem 7.24 (Palindrome Detector Turing Machine)
Create a Turing machine that detects whether the word w ∈ {0, 1}∗ on the tape is a
palindrome, i.e. w = wR, where wR is w reversed. If so, leave a 1 at the final position of
the head, which can be anywhere on the tape; otherwise leave a 0. Assume that, initially,
the head is over the first character of w, and that w is surrounded by hash marks as
delimiters, i.e. you have the alphabet {0, 1,#}.

Note: Admissible moves are L (left), R (right), and N (none) with the obvious meaning.

Solution: Idea: Define states that encode one memorized character, as well as the informa-
tion whether the beginning or the end of the word is currently being examined. In each step, we
compare the first character of the word to the last one, erase them and proceed.

1. Read a character at one end of the word.

• If it is a digit, memorize whether it was 0 or 1 by using an appropriate state.

• If it is a hash mark, write a 1 and halt.

2. Overwrite the character with a hash mark.

3. Walk to the other end of the word, i.e. move until a hash mark is read and then move one
cell back to the beginning/end of the word (using the “motion” information encoded in the
current state).

4. • If the character under the head does not match the memorized one, write a 0 and
halt.

• If it does match, overwrite it with a hash mark, move one cell further to the new
beginning/end of the word and continue from the beginning.

28

30ptProblem 7.25 (Number of Steps of a Turing Machine)
Let smax(n) be the maximum number of steps that an n-state Turing machine with the
alphabet {0, 1} can take on an empty tape, halting in the end. Is the function smax

computable? Give a proof or a refutation.
Note: From the lecture, we know that it is impossible to implement a function will halt(program, input).

Assume the following corollary, known as the “halting problem on the empty tape”, as given: It
is even impossible to write a Turing machine (or an equivalent function will halt empty(program),
resp.) that tells whether an arbitrary Turing machine halts on an empty tape.

Solution:
Proof : by contradiction

P.1 smax(n) is the maximum number of steps a halting n-state Turing machine can take on an
empty tape.

P.2 Any n-state machine that runs for more than smax(n) steps must be non-halting.

P.3 Using smax, one could now implement will halt empty(TM) as follows:

• Let n be the number of states of TM.

• Compute m := smax(n).

• Simulate at most m steps of TM.

• If TM has not halted so far, return “yes”; otherwise, return “no”.

P.4 This contradicts the non-computability of will halt empty.

29

Assignment 8: Problems and Searching
(Given April 18, Due April 25)

20pt
Problem 8.26 (The Dog/Chicken/Grain Problem)
A farmer wants to cross a river with a dog, a chicken, and a sack of grain. He has a boat
which can hold himself and either of these three items. He must avoid that either dog
and chicken or chicken and grain are together alone on one river bank, since otherwise
something gets eaten.

1. Represent the farmer’s problem of crossing the river without losing his goods as a
search problem.

2. Draw a sufficiently large portion of the search tree induced by this problem to exhibit
a solution.

3. Discuss three search strategies and their advantages and disadvantages in this sce-
nario.

Solution: We present the states as a pair 〈S, T 〉 of sets, where S is the set of items of the on
the start bank and T that of items on the target bank. The initial state is 〈{f, d, c, g}, ∅〉 and the
goal state is 〈∅, {f, d, c, g}〉. The actions are represented as cross(A), where A is the item taken
over back(A) the action of taking A back.

〈{f, d, c, g}, ∅〉−→c(c)〈{d, g}, {f, c}〉−→b〈{f, d, g}, {c}〉−→c(d)

〈{g}, {f, d, c}〉−→b(c)〈{f, c, g}, {d}〉−→c(g)〈{c}, {f, d, g}〉−→b

〈{f, c}, {d, g}〉−→c(c)〈∅, {f, d, c, g}〉

30

10ptProblem 8.27: Describe a state space in which iterative deepening search performs
much worse than depth-first search (for example O(n2) vs. O(n)).

Solution: Depth-First search strategy performs great if the solutions are dense. Consider
an abstract situation where we have many possible solutions and they are roughly at the same
depth. Furthermore let the solution with minimal depth be at a high depth level.

To make the situation more concrete consider a search problem with the following parameters:

• b = 100

• d = 33

• m = 36

Assume furthermore that the solutions are very dense (most leaves represent a possible solution).
Here depth-first will find a solution extremely fast while iterative-deepening will take much more
time to reach the optimal solution at depth 33.

31

50ptProblem 8.28 (Implementing Search)
Implement the depth-first and breadth-first search algorithms in SML. The functions
depthFirst and breadthFirst take three arguments that make up the problem description:

1. the initial state

2. a function next that given a state x in the state tree returns at set of pairs (action,state):
the next states (i.e. the child nodes in the search tree) together with the actions that
reach them.

3. a predicate (i.e. a function that returns a Boolean value) goal that returns true if a
state is a goal state and false else.

the result of the functions should be the goal state together with a list of actions that
reaches the goal state from the initial state.

Solution: We will follow the hint and write a simple function first and later extend it to
the full case.

exception search exhausted
fun depthFirst next goal x =

let fun dfs [] = raise search exhausted
| dfs (state::rest) = if goal(state) then state

else dfs (next state @ rest)
in dfs [x] end;

\smlout{val depthFirst = fn : (’a −> ’a list) −> (’a −> bool) −> ’a −> ’a}

fun breadthFirst next goal x =
let fun bfs [] = raise search exhausted

| bfs (state::rest) = if goal(state) then state
else bfs (rest @ next state)

in bfs [x] end;
\smlout{val breadthFirst = fn : (’a −> ’a list) −> (’a −> bool) −> ’a −> ’a}

Note that the programs only differ in the order of the arguments in the recursive call of the local
function. Now, we extend the functions to deal with actions. Here we add the plans how to get
to the fringe node to the states in the argument of the local function. Thus we need to add the
current plan to the actions in the recursive call.

fun depthFirst next goal x =
let fun dfs [] = raise search exhausted

| dfs ((plan,state)::rest) =
if goal(state) then plan
else dfs ((map (fn ((act,st)) => (act::plan,st)) (next state)) @ rest)

in rev(dfs [(nil,x)]) end;
\smlout{val depthFirst = fn : (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’a −> ’b list}
fun breadthFirst next goal x =

let fun bfs [] = raise search exhausted
| bfs ((plan,state)::rest) =

if goal(state) then plan
else bfs (rest @ (map (fn ((act,st)) => (act::plan,st)) (next state)))

32

in rev(bfs [(nil,x)]) end;
\smlout{val breadthFirst = fn : (’a −> (’b ∗ ’a) list) −> (’a −> bool) −> ’a −> ’b list}

33

20ptProblem 8.29 (Repeated States)
Extend the functions in ?? with a check for repeated states. Compare the run-times with
the naive versions.

Solution: To check for repeated states, we simply add another argument visited to the local
function and check whether states have been visited before.

fun member q [] = false | member q(x::xs) = (q=x) orelse (member q xs);
fun depthFirst next goal x =

let fun dfs([],) = raise search exhausted
| dfs((plan,state)::rest,visited) =

if member(state,visited) then dfs(rest,visited)
else if goal(state) then plan
else dfs((map (fn ((act,st)) => (act::plan,st))
(next state)) @ rest,state::visited)

in rev(dfs([(nil,x)],nil)) end;
\smlout{val depthFirst = fn : (’a −> (’b ∗ ’a) list) −>

(’a −> bool) −> ’a −> ’b list}

34

Assignment 9: Problems and Searching
(Given April 28, Due May 9)

20pt
Problem 9.30 (Actions with Negative Costs)
Suppose that actions can have arbitrary large negative costs.

1. Explain why this possibility would force any optimal algorithm to explore the entire
state space.

2. Does it help if we insist that step costs must be greater than or equal than to some
negative constant c? Justify your answer.

35

20ptProblem 9.31 (A Trip Through Romania)
Represent the Romanian map we talked about in class in a concrete next function. Search
with the procedures from Problem 8.28 a trip from Arad to Bucharest. Compare the
solution paths and run times.

Solution:

datatype State = Arad | Zerind | Oradea | Timisoara | Sibiu | Lugoj | Mehadia |
RimnicuVilcea | Fagaras | Pitesti | Craiova | Dobreta | Giurgiu |
Bucharest | Urziceni | Hirsova | Eforie | Vaslui | Iasi | Neamt;

datatype Actions = goAra | goZer | goOra | goTim | goSib | goLug | goMeh | goRim | goFag | goPit |
goCra | goDob | goGiu | goBuc | goUrz | goHir | goEfo | goVas | goIas | goNea;

fun next Arad = [(goZer, Zerind), (goSib, Sibiu), (goTim, Timisoara)] |
next Timisoara = [(goAra, Arad), (goLug, Lugoj)] |
next Zerind = [(goAra, Arad), (goOra, Oradea)] |
next Oradea = [(goZer, Zerind), (goSib, Sibiu)] |
next Sibiu = [(goAra, Arad), (goOra, Oradea), (goRim, RimnicuVilcea), (goFag, Fagaras)] |
next Lugoj = [(goTim, Timisoara), (goMeh, Mehadia)] |
next Mehadia = [(goLug, Lugoj), (goDob, Dobreta)] |
next Dobreta = [(goMeh, Mehadia), (goCra, Craiova)] |
next Craiova = [(goDob, Dobreta), (goPit, Pitesti), (goRim, RimnicuVilcea)] |
next RimnicuVilcea = [(goCra, Craiova), (goPit, Pitesti), (goSib, Sibiu)] |
next Pitesti = [(goRim, RimnicuVilcea), (goCra, Craiova), (goBuc, Bucharest)] |
next Fagaras = [(goSib, Sibiu), (goBuc, Bucharest)] |
next Bucharest = [(goPit, Pitesti), (goFag, Fagaras), (goGiu, Giurgiu), (goUrz, Urziceni)] |
next Giurgiu = [(goBuc, Bucharest)] |
next Urziceni = [(goBuc, Bucharest), (goHir, Hirsova), (goVas, Vaslui)] |
next Hirsova = [(goEfo, Eforie), (goUrz, Urziceni)] |
next Eforie = [(goHir, Hirsova)] |
next Vaslui = [(goUrz, Urziceni), (goIas, Iasi)] |
next Iasi = [(goVas, Vaslui), (goNea, Neamt)] |
next Neamt = [(goIas, Iasi)];

fun goal Sibiu = true |
goal = false;

val RESdepth = depthFirst(Giurgiu, next, goal);
val RESbreadth = breadthFirst(Giurgiu, next, goal);

(∗ The result is:
val RESdepth = (Bucharest,[goZer,goOra,goSib,goRim,goCra,goPit,goBuc])
: State ∗ Actions list
val RESbreadth = (Bucharest,[goSib,goFag,goBuc]) : State ∗ Actions list

We know that BFS always finds the optimal solution, and in our case
this is actually so. We go to Bucharest in 3 actions, while DFS has found a path with 7 actions.
Depending of where a solution it, BFS may prove to be faster than DFS. However, DFS will use less
memory in literally all cases. Our test case is too simple to notice any difference ∗)

36

40ptProblem 9.32 (A∗ search on Jacobs campus)
Implement the A∗ search algorithm in SML and test it on the problem of walking from the
main gate to the entrance of Research 3 with linear distance as heuristic. The length of
line segments are annotated in the map below.

No function signature is provided, instead at the end of your program call your function
so that it prints the actions needed to reach the entrance and the associated cost.

16

1642 42

50

32

18

10

25 25

25 25

4242

50

50

25

25 25

25

25 25

17
8 8 17

17 8 8 17

35 35

35 35

25

10

10

10

Solution:
val it = ([”E”,”E”,”S”,”E”,”SE”,”E”,”S”,”W”],202) (∗ The states here are directions e.g. SE means Southeast. ∗)

fun coor 1 = (0,0) | coor 2 = (25,0) | coor 3 = (67,0) | coor 4 = (83,0) | coor 5 = (125,0) |
coor 6 = (25,18) | coor 7 = (35,18) | coor 8 = (115,18) | coor 9 = (125,18) | coor 10 = (50,25) |

coor 11 = (67,25) | coor 12 = (75,25) | coor 13 = (83,25) | coor 14 = (100,25) | coor 15 = (25,50) |
coor 16 = (50,50) | coor 17 = (100,50) | coor 18 = (125,50) | coor 19 = (50,75) | coor 20 = (67,75) |
coor 21 = (75,75) | coor 22 = (83,75) | coor 23 = (100,75) | coor 24 = (25,82) | coor 25 = (35,82) |
coor 26 = (115,82) | coor 27 = (125,82) | coor 28 = (25,100) | coor 29 = (67,100) | coor 30 = (83,100) |
coor 31 = (125,100);

val edges = [(1,2), (2,3), (3,4), (4,5), (6,7), (8,9), (10,11), (11,12), (12,13), (13,14), (15,16), (17,18),
(19,20), (20,21), (21,22), (22,23), (24,25), (26,27), (28,29), (29,30), (30,31),
(2,6), (6,15), (15,24), (24,28), (10,16), (16,19), (3,11), (20, 29), (4,13), (22,30),
(14,17), (17,23),
(5,9), (9,18), (18,27), (27,31),
(12,16), (16,21), (21,17), (17,12)];

fun heuristic(n,m) = let
val (x1,y1) = coor(n);
val (x2,y2) = coor(m);

37

in Real.round(Math.sqrt(Real.fromInt((x1−x2)∗(x1−x2)+(y1−y2)∗(y1−y2))))
end;

fun next(n) = let
fun successors(,nil) = nil |

successors(n,(a,b)::tl) = if n=a then b::successors(n,tl)
else if n=b then a::successors(n,tl)

else successors(n,tl);
fun hlist(, nil) = nil |

hlist(n, hd::tl) = heuristic(n, hd) :: hlist(n, tl);
fun tie(nil,nil) = nil |

tie(h1::t1, h2::t2) = (h1,h2) :: tie(t1,t2);
val succ = successors(n,edges)
val cost = hlist(n, succ)

in
tie(succ,cost)

end;

exception NoSolution;

(∗ASearch takes and initial node, next function and goal node and returns
the optimal path between initial and goal node ∗)

fun AStarSearch(initial, next, goal) = let
fun putCheapestInFront(hd::tl, nil) = putCheapestInFront(tl,[hd]) |

putCheapestInFront(nil, x) = x |
putCheapestInFront((a,b,c,d)::tl1, (xa,xb,xc,xd)::tl2) =

if c < xc then putCheapestInFront(tl1, (a,b,c,d)::((xa,xb,xc,xd)::tl2))
else putCheapestInFront(tl1, ((xa,xb,xc,xd)::tl2)@[(a,b,c,d)]);

fun addActionsCosts(, ,nil) = nil |
addActionsCosts(pcost, pactions, (node, cost)::tl) =

(node, pcost + cost, pcost + cost + heuristic(node, goal), pactions@[node]) ::
addActionsCosts(pcost, pactions, tl);

fun asearch(nil) = raise NoSolution |
asearch((node, pathcost, totalcost, actions)::rfringe) =

if node = goal then actions
else let

val expansion = next(node); (∗ next(20) = [(19,17), (21,8), (29,25)] ∗)
val newFringeEl = addActionsCosts(pathcost, actions, expansion);

in
asearch(putCheapestInFront(newFringeEl@rfringe, nil))

end
in

asearch([(initial, 0, heuristic(initial, goal), [])])
end

(∗ The nodes are labeled starting from the upper−left corner of the map to right/down direction ∗)
val result = AStarSearch(1, next, 26);

38

20ptProblem 9.33 (A variant of A∗)
Imagine an algorithm B∗ that uses the evaluation function f(n) = g(n) · h(n), where g(n)
is the path cost to the current node n, and h(n) is a heuristic function. Is this algorithm
better or worse than A∗? Explain your findings. What does h(n) represent?

Solution: Comment by Andrei Aiordachioaie, to be formatted. . .
It’s not that complicated and it leaves room for creativity to students. It would be nice to see

how exactly they think :) As I see it, it’s worse than A∗ because heuristics h(n) needs extreme
values for different nodes. When n is close to the root, h(n) needs to be very big to estimate a
realistic distance to the goal, while if n is near the goal, the heuristic has to be very small. We
will therefore need to work with floating-point numbers, which are a bit slower :)

39

Assignment 10: Prolog Programming
(Given May 12, Due May 21)

30pt
Problem 10.34 (Merging Dictionaries)
Consider a dictionary data structure represented as a list of key = value pairs. Implement
a predicate dict merge(dict1,dict2,merger) that merges one dictionary with another one, if
a merger is possible without a contradiction, i. e. if there is no pair of two different val-
ues for one key. If, for example, the first dictionary is [topic=gencs, lecturer=kohlhase],
it can be merged with a second dictionary [university=jacobs], yielding the dictionary
[topic=gencs, lecturer=kohlhase, university=jacobs]. Merging with [lecturer=kohlhase, semester=2]
should also be possible, as the value for the “lecturer” key is the same, but merging with
[lecturer=kramer, university=jacobs] should fail, as there are two contradicting values for
the “lecturer” key.

Note: You will need the built-in predicate select(Elem, List, Rest), which selects an element
Elem from a List (as member(Elem, List) does) leaving a Rest. Use \+ to negate an expression,
e. g. when checking whether an entry is not contained in a dictionary.

You can easily access the two components of a pair by pattern matching. The following
predicate would, for example, match the second argument with the key of the given pair:
key(K=V, K).

Solution:

% An empty dictionary can be merged with any other dictionary.
dict merge([], Dict, Dict).

% As our dictionaries are lists and therefore unordered,
% we have to retrieve the Key=Value pair from the second dictionary
% using the built−in predicate select.

dict merge([Key=Value|Rest1], Dict, [Key=Value|Rest3]) :−
% if Key=Value exists in both dictionaries, ...
select(Key=Value, Dict, Rest2),
% ... merge the remainders of both.
dict merge(Rest1, Rest2, Rest3).

% If the key of the Key=Value pair does not exist in the second
% dictionary, we can add it to the result dictionary.

dict merge([Key=Value|Rest1], Dict, [Key=Value|Rest2]) :−
% if Key=something does not exist in the second dictionary, ...
\+ member(Key= , Dict),
% retain this entry and merge the rest of the first
% dictionary into the second one.
dict merge(Rest1, Dict, Rest2).

Test cases:

dict merge([lect=kohl,top=gencs],[uni=jac],R).
% R = [lect=kohl, top=gencs, uni=jac]

40

% Yes
dict merge([lect=kohl,top=gencs],[lect=kohl,top=gencs],R).
% R = [lect=kohl, top=gencs]
% Yes
dict merge([lect=kohl,top=gencs],[uni=jac,lect=kram],R).
% No

(Source of this problem: Wilhelm Weisweber, ProLog – logisches Programmieren in der Praxis.
International Thomson Publishing 1997. ISBN 3-8266-0174-2.)

41

40ptProblem 10.35 (Derivation of Arithmetic Expressions)
Write a ProLog program that “computes” the derivative of an arithmetic expression; i. e.
write facts and rules such that derivative(E1,x,E2) is satisfied if and only if the arithmetic
expression E2 is the derivative of E1 with respect to x (where x is an atomic expression
of course). The constructors of arithmetic expressions should be any integer or lower
case letter as atomic expressions together with mul/2 and add/2 for building compound
arithmetic expressions.

For instance, derivative(mul(x,add(x,2)),x,add(mul(1,add(x,2)),mul(x,add(1,0)))) should
evaluate to true.

Note: You do not need to implement term rewriting, i. e. you need not be recognize all
possible ways of writing expressions equivalent to E2.

42

20ptProblem 10.36 (1+1=2)
Given the facts and rules:

nat(zero).
nat(s(X)):−nat(X).
add(X,zero,X).
add(X,s(Y),s(Z)):−add(X,Y,Z).

prove with the inference rules MP, ∧I and Subst, which ProLog uses, that informally
speaking 1 + 1 = 2.

Solution:

1. nat(zero) . . . from knowledge base

2. nat(zero)⇒nat(s(zero)) . . . Subst[zero/X] in nat(X)⇒nat(s(X))

3. nat(s(zero)) . . . MP on 1. and 2.

4. add(s(zero),zero,s(zero)) . . . Subst [s(zero)/X] in add(X,zero,X)

5. add(a(zero),zero,s(zero))⇒add(s(zero),s(zero),s(s(zero))) . . . Subst [s(zero)/X],[zero/Y],[s(zero)/Z]
in add(X,Y,Z)⇒add(X,s(Y),s(Z))

6. add(s(zero),s(zero),s(s(zero))) . . . MP on 4. and 5.

Therefore, 1 + 1 = 2 indeed :−)

43

10ptProblem 10.37 (Relevance of Rule and Literal Order for Termination)
Consider the recursive definition of unary natural numbers from the lecture:

unat(o).
unat(s(X)) :− unat(X).

Consider a variant of this program with the two clauses swapped:

unat(s(X)) :− unat(X).
unat(o).

With both programs, first try to check whether a given argument (e. g. pi or s(s(o))) is a
natural number, and then try to step-wise generate all natural numbers by entering the
query unat(X). and making ProLog back-track and find the next result by pressing ;. Which
difference do you notice, and why does it occur?

44

