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Assignment 1: Resolution Calculus
(Given Feb. 8., Due Feb. 15.)

Problem 1.1: Prove in the resolution calculus using derived rules:

|=A ∧ (B ∨ C)⇒ A ∧B ∨ A ∧ C

Solution: Clause Normal Form transformation

A ∧ (B ∨ C)⇒ A ∧B ∨A ∧ CF

A ∧ (B ∨ C)T;A ∧B ∨A ∧ CF

AT;BT ∨ CT;A ∧BF;A ∧ CF

AT;BT ∨ CT;AF ∨BF;AF ∨ CF

Resolution Proof
1 AT initial
2 BT ∨ CT initial
3 AF ∨BF initial
4 AF ∨ CF initial
5 BF with 1 and 3
6 CF with 1 and 4
7 CT with 2 and 5
8 � with 6 and 7
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25ptProblem 1.2: Consider the following two formulae where the first one is in conjunctive
normal form and the second in disjunctive normal form

1. (P ∨ ¬P ) ∧ (Q ∨ ¬Q)

2. P ∧Q ∨ (¬P ∨ ¬Q)

Try to find the shortest proofs of both formulae using the resolution method as well as the
tableau method. Describe your observations concerning the proof length in dependency on
the normal form and proof method.

Solution: For the first forumla we have the tableau

(P ∨ ¬P ) ∧ (Q ∨ ¬Q)F

P ∨ ¬P F

P F

¬P F

PT⊥

Q ∨ ¬QF

QF

¬QF

QT⊥

For the resolution proof we first have to convert into clause normal form.

((P ⇒ Q) ∧ (Q⇒ R)⇒ ¬(¬R ∧ P ))F

(P ⇒ Q) ∧ (Q⇒ R)T;¬(¬R ∧ P )F

(P ⇒ Q)T; (Q⇒ R)T;¬(¬R ∧ P )F

P F ∨QT;QF ∨RT;¬RTPT

P F ∨QT;QF ∨RT;RF;PT

then we have the resolution derivation

P F ∨QT initial
QF ∨RT initial

RF initial
PT initial
QT resolved
QF resolved
� resolved

Now to the next formula; here we have the tableau

P ∧Q ∨ (¬P ∨ ¬Q)F

P ∧QF

¬P ∨ ¬QF

¬P F

¬QF

PT

QT

pF

⊥
QF

⊥
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For the resolution proof we convert to clause normal form:

(P ∨ ¬P ) ∧ (Q ∨ ¬Q)F

(P ∨ ¬P )F ∨ (Q ∨ ¬Q)F

P F ∨ (Q ∨ ¬Q);¬P (Q ∨ ¬Q)F

P F ∨QF;P F ∨QT;PT ∨QF;PT ∨QT

So we have the resolution derivation

P F ∨QF initial
P F ∨QT initial
PT ∨QF initial
PT ∨QT initial

QT resolved
QF resolved
� resolved

We note that for the formula in DNF the shortest method is the tableaux and for the one in CNF
it is the resolution method. This is not particularly surprising, since the Resolution medthod is
CNF-based (we construct the CNF in for clause normal form first), whereas Tableau is DNF-
based.
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Assignment 2: Graphs and Trees
(Given Feb. 14., Due Feb. 22.)

15pt
Problem 2.3 (Tree of Paths of a Graph)
Let G be a directed acyclic graph (DAG). Given a node p1 in G, the set Πp1 of paths in G
that start with p1 can be arranged in a tree: The root of this tree is labeled by the empty
path 〈p1〉 and a node labeled with a path π = 〈p1, . . ., pn〉 has children labeled with paths
〈p1, . . ., pn, pn+1〉.

• Draw the tree of paths for the graph

G = 〈{a, b, c, d, e}, {〈a, b〉, 〈a, c〉, 〈b, c〉, 〈c, d〉, 〈a, d〉, 〈d, e〉}〉

• Show that for a DAG with n nodes, the tree of paths can have at most 2n−1 nodes.
Exhibit a set of graphs Gn that obtain this maximum.

Solution:

1. We prove the
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999ptProblem 2.4 (Operations on Binary Trees)
Given the SML datatype btree for binary trees and position for a position pointer into a
binary tree:

datatype btree = leaf | parent of btree ∗ btree;
datatype position = stop | right of position | left of position;

The interpretation of a position right(left(stop)) is like a reversed path: start from root
follow the right branch then the left and then stop.

Write two SML functions:

• getSubtree that takes a binary tree and a position and returns the subtree of the that
binary at the corresponding position.

• cutSubtree that takes a binary tree and a position and returns the binary tree where
the subtree at the corresponding position is cut off; i.e replaced by a leaf.

a

b c

binary tree B

pos := left(right(stop))

getSubtree(B,pos) cutSubtree(B,pos)

a

b c

a

In both cases an exception should be raised if the position exceeds the observed binary
tree.

Solution:

datatype btree = leaf | parent of btree ∗ btree;
datatype position = stop | right of position | left of position;

exception TreeExceeded;

fun getSubtree (parent(l, r), right(pos)) = getSubtree(r, pos)
| getSubtree (parent(l, r), left(pos)) = getSubtree(l, pos)
| getSubtree (tree, stop) = tree
| getSubtree ( , ) = raise TreeExceeded;

fun cutSubtree (parent(l, r), right(pos)) = parent(l, cutSubtree(r, pos))
| cutSubtree (parent(l, r), left(pos)) = parent(cutSubtree(l, pos), r)
| cutSubtree (tree, stop) = leaf
| cutSubtree ( , ) = raise TreeExceeded;

val testTree = parent(parent(leaf, parent(leaf, leaf)),parent(leaf, leaf));

val testPos = left(right(stop));
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(∗ test get Subtree:
− getSubtree(testTree, testPos);
val it = parent (leaf,leaf) : btree
− cutSubtree(testTree, testPos);
val it = parent (parent (leaf,leaf),parent (leaf,leaf)) : btree
∗)
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4ptProblem 2.5: How many edges can a directed graph of size n (i.e. with n vertices) have
maximally. How many can it have if it is acyclic? Justify your answers (prove them).

Solution:

Theorem 1 A directed graph with n vertices has at most n2 edges.

Proof :

P.1 Let G = 〈V,E〉.

P.2 By definition E ⊆ V 2, so maximally #(V ) = n2.

Theorem 2 A DAG with n vertices has at most (n(n− 1))/2 edges.

Proof : by induction on n

P.1.1 If n = 1:

P.1.1.1 then G1 = 〈{c}, E〉, since the only possible edge 〈c, c〉 is a cycle.

P.1.2 If n > 1:

P.1.2.1 Let Gn = 〈Vn, En〉 be a maximal DAG,

P.1.2.2 then the graph Gn−1 = 〈commiVn−1, En−1〉 which we obtain from Gn by deleting an
arbitrary vertex c and all the edges c in must be a maximal DAG with n−1 nodes (otherwise
we could add an edge to Gn).

P.1.2.3 Thus #(En−1) = ((n− 1)(n− 2))/2. Now, there can be at most n−1 edges in Vn, which
c occurs in without cycles (Gn−1 has n− 1 vertices).

P.1.2.4 Therefore, #(Vn) = ((n− 1)(n− 2))/2 + (n− 1) = (n− 1)(n− 2) + (2(n− 1))/2 =
((n− 1)n)/2.
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35ptProblem 2.6 (Parse Tree)
Given the data type prop for formulae

datatype prop = tru | fals (∗ true and false ∗)
| por of prop ∗ prop (∗ disjunction ∗)
| pand of prop ∗ prop (∗ conjunction ∗)
| pimpl of prop ∗ prop (∗ implication ∗)
| piff of prop ∗ prop (∗ biconditional ∗)
| pnot of prop (∗ negation ∗)
| var of int (∗ variables ∗)

Write an SML function that computes the parse tree for a formula. The output format
should be

• a list of integers for the set of vertices,

• a list of pairs of integers for the set of edges,

• and for the labeling function a list of pairs where the first component is an integer
and the second a string (the label).

Solution:

datatype prop = tru | fals (∗ true and false ∗)
| por of prop ∗ prop (∗ disjunction ∗)
| pand of prop ∗ prop (∗ conjunction ∗)
| pimpl of prop ∗ prop (∗ implication ∗)
| piff of prop ∗ prop (∗ biconditional ∗)
| pnot of prop (∗ negation ∗)
| var of int (∗ variables ∗)

The output is a triple (vertices, edges, labeling list) where

• vertices is simply an integer (so the vertices are represented as integers from 1 to that
number)

• edges is a list of pairs of integers that are the vertices between which there are edges

• labeling list: a list of (vertex:integer, label:string) pairs that will be used to make a labeling
function which takes the index of a vertex and returns its label, e.g. a string ”impl” Input:
A pair (root, p)

• root is a name for the root node (an integer), see the function maketree

• p a variable of datatype prop in which a boolean expression is stored

fun totree(mroot, pnot(be)) = let val (verout, edges, lblpairs) = totree(mroot+1, be)
in (verout, [mroot, mroot+1] :: edges, (mroot, ”−”) :: lblpairs)
end |

totree(mroot, tru) = (mroot, nil, [(mroot, ”T”)])|
totree(mroot, fals) = (mroot, nil, [(mroot, ”F”)])|
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totree(mroot, var v) = (mroot, nil, [(mroot, Int.toString(v))])|
totree(mroot, two var) = let val ax = fn (por(be1, be2)) => (”OR”, be1, be2) |

(pand(be1, be2)) => (”AND”, be1, be2) |
(pimpl(be1, be2)) => (”=>”, be1, be2) |
(piff(be1, be2)) => (”<=>”, be1, be2)

val (lbl, be1, be2) = ax two var
val (verout1, edges1, lblpairs1) = totree(mroot+1, be1)
val (verout2, edges2, lblpairs2) = totree(verout1+1, be2)

in (verout2, [[mroot, mroot+1],[mroot, verout1+1]] @ edges1 @ edges2, (mroot, lbl) :: (lblpairs1 @ lblpairs2))
end

Now we have an optional wrapper function that

• eliminates the need for the index of the root (default value is 1)

• converts the labeling list into labeling function that takes a vertex and returns its label

local
fun findString(num, hd::tl) = let

val (a,b) = hd
in

if a = num then b
else findString(num, tl)

end

in
fun maketree(t) = let

val (lastnode, edges, lblpairs) = totree(1, t)
in (lastnode, edges, fn num => findString(num, lblpairs))
end

end

Finallly: an example of how the program can be tested:

totree(1, por(por(piff(pnot(var 4), fals), pimpl(tru, pand(var 2, var 3))), var 9));
val it =
(12,[[1,2],[1,12],[2,3],[2,7],[3,4],[3,6],[4,5],[7,8],[7,9],[9,10],[9,11]],
[(1,”OR”),(2,”OR”),(3,”<=>”),(4,”−”),(5,”4”),(6,”F”),(7,”=>”),(8,”T”),
(9,”AND”),(10,”2”),(11,”3”),(12,”9”)])
: int ∗ int list list ∗ (int ∗ string) list ∗)
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20ptProblem 2.7 (Spanning Tree of a Graph)
A spanning tree of a graph is a tree containing all nodes of the graph as well as a subset
of its edges (but no additional edges!).

We call an (undirected) graph connected, iff for any two different nodes n1 and n2 there
is a path starting at n1 and ending at n2.

• Draw the following undirected graph together with one corresponding spanning tree

G = 〈{a, b, c, d, e}, {{a, b}, {a, c}, {b, c}, {c, d}, {c}, {b, d}, {d, e}}〉

• Prove by induction or refute that every undirected, connected, and non-empty graph
has a spanning tree.

Solution: The graph G:

a

b

c d e

b

A spanning tree of G:
Proof by induction on the number K of Nodes.
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10ptProblem 2.8 (Combinational Circuit for a Boolean Function)
Draw a combinational circuit that is defined by the following Boolean function:

f : {0, 1}3 → {0, 1}2; 〈i1, i2, i3〉 7→ 〈i1 + i3〉, i1 + i2 ∗ i3
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Assignment 3: Combinatorial Circuits
(Given Feb. 22., Due March. 1.)

20pt
Problem 3.9 (Binary Number Conversion)
Write an SML function binary that converts decimal numbers into binary strings and an
inverse decimal that converts binary strings into decimal numbers. Use the positive integers
(of built-in type int) as a representation for decimal numbers. binary should raise an
exception, if applied to a negative integer.

Solution:

exception NegInteger
fun binary 0 = ”0” |

binary 1 = ”1” |
binary n = if (n<0) raise NegInteger

else binary(n div 2)ˆ(Int.toString(n mod 2))

fun decimal s = let
fun bintodec nil = 0
| bintodec sa = foldl (fn (x, y) => 2∗y+(if x = #”0” then 0 else 1)) 0 sa

in bintodec(explode(s))
end
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25ptProblem 3.10 (DNF Circuit with Quine McCluskey)
Design a combinational circuit for the following Boolean function:

X3 X2 X1 f3(X) f2(X) f1(X)
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

Solution: After applying the QMC we get something like:

f1(X) = (X3 ∧ ¬X1 ∨X3 ∧ ¬X2) ∨ ¬X3 ∧ (X2 ∧X1)

f2(X) = ¬X1 ∧X2 ∨X1 ∧ ¬X2

f3(X) = X1 ∧X2 ∨X3

Hence the circuit:
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35ptProblem 3.11 (Carry Chain and Conditional Sum Adder)
Draw an explicit combinational circuit of a 4-bit Carry Chain Adder and a 4-bit Conditional
Sum Adder. Do not use abbreviations, but only NOT, AND, OR, XOR gates. Demonstrate
the addition of the two binary numbers 〈1, 0, 1, 1〉 and 〈0, 0, 1, 1〉 on both adders; i.e.
annotate the output of each logic gate of your adders with the result bit for the given
two binary numbers as input of the whole adder.
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Assignment 5: Virtual Machine
(Given March 16., Due March 22.)

50pt
Problem 5.12 (Comparing Imperative and Functional Style via VM)
Write a L(VM) program that implements DIV and MOD functions, using imperative access
to your variables (i.e. with peek and poke instructions). Your program expects numbers
A ≥ 0 and B ≥ 0 on the stack (A is on the top), and upon termination leaves only numbers
C and D on the stack (C is on the top), where C := Adiv B and D := AmodB. If B = 0,
leave only an error code -1 on the stack. Furthermore

1. Show the evolution of the stack for A = 7 and B = 3. Include all intermediate steps.

2. Is it possible to solve a) using only instructions of functional programming? (i.e. all
but peek and poke). If yes, solve a) again without peek and poke If no, explain why
by arguing about fundamental differences between imperative (C-like) and functional
(SML-like) programming languages.

Solution: Darko says (in a mail to Christoph, 2007-Mar-20):

It is indeed not possible to program divmod without PEEK and POKE. One of the
reasons is that all other instructions in the imperative version of VM destroy the data
once they access it. For example, ADD would take the two topmost elements and
replace them with the sum. However, PEEK can read memory without destroying
it, so we can access memory outside the top of the stack. One might ask how is then
possible that functional programming languages despite that have the same power?
Well, by the use of recursion which is supported by four additional instructions
(PROC, ARG, RET and CALL) we enable the recursion pattern and make PEEK
and POKE superfluous. This is the functional version of VM, which they learn
later in the course. It performs calculations on stack, with all the variables being
temporary.
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20ptProblem 5.13 (Convert Highlevel Code to L(VM) Code)
Given is an array A[0..10] and the following piece of imperative code:

for j := 1 to 5 do
for i := j to 10−j do
A[i] := A[i−j] + A[i+j];

Suppose the array is loaded on stack (top value being A[10]). Convert the code into L(VM)
code.
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30pt
Problem 5.14 (Compiling If-construct)
Write an SML function simpleif that takes a string of form

IF \RMdatastore{X} rel Y THEN Z ELSE W

where X, Y, Z, W are non-negative integers, ∼ an element of {≤,≥, >,<,=, 6=}, and returns
the appropriate L(VM) language piece of code. For example, given IF $\RMdatastore{2}$ > 4 THEN 200 ELSE 3 ,
your function should return an array of L(VM) instructions that reads the second cell of the
stack and pushes 200 if its content is greater than 4 and 3 otherwise. Note that your pro-
gram should treat any (non-empty) concatenation of white-space as a single white-space.

Raise exception if the input string is not valid.
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Assignment 8: A∗ Search
(Given April 26., Due May 3.)

60pt
Problem 8.15 (Associating Students to Tutorials)
This is a real world problem you all know: At the beginning of a term all students of a
course have to choose a tutorial that doesn’t conflict with his/her time schedules.

Obviously this can be viewed as a search problem. For this exercise we want to simplify
this real world problem slightly: Let us assume 65 students each of them having at least one
and at most five free time slots for taking a tutorial. We assume that students commit to
their favored time slots at the very beginning of the term (in real world this is unfortunately
not always the case). For the 65 students 7 tutorials are offered for each day of the week
one. Each tutorial accepts at most 10 students.

Implement in SML an A∗ search algorithm that tries to solve this problem for a given
dataset of students and their free time slots.

A state is a set of 65 (student ∗ tutorial) pairs meaning that the student is associated
with this tutorial. The tutorials should be represented by

datatype tutorial = Mo | Tu | We | Th | Fr | Sa | Su | None

Thereby the None tutorial is used to express the set of students that aren’t associated
with any (real) tutorial. So in the initial state all students are in the ”None” tutorial
whereas in the goal state this None tutorial must be empty.

Possible actions are to move one student per step from one to another tutorial. Only
those moves are allowed which are compatible with the student’s free time slots. Moving
a student to the None tutorial is always allowed. The definition of the step cost is up to
you.

An example dataset is the following:

(∗ Example dataset: the second component of each pair in the dataset
lists the free time slots of the corresponding student ∗)

datatype tutorial = Mo | Tu | We | Th | Fr | Sa | So | None
datatype student = s of int;
dataset =
[(s 1,[Mo,We]),
(s 2,[Mo,Tu,Fr]),
(s 3,[Mo]),
(s 4,[Mo,Fr,Sa]),
(s 5,[Mo,We,So]),
(s 6,[Mo,Tu,We,Fr,Sa]),
(s 7,[Mo,Tu]),
(s 8,[Mo,We]),
(s 9,[Mo]),
(s 10,[Mo,Tu,Fr]),
(s 11,[Mo,Tu,Sa]),
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(s 12,[Tu,Fr]),
(s 13,[Tu]),
(s 14,[Tu,We,Th,Sa,So]),
(s 15,[Mo,Tu,Fr]),
(s 16,[Tu,We]),
(s 17,[Tu,Th,Fr,So]),
(s 18,[Mo,Tu]),
(s 19,[Tu]),
(s 20,[Mo,We,Th]),
(s 21,[Tu,We,Fr]),
(s 22,[Mo,We,Sa]),
(s 23,[We]),
(s 24,[Mo,We]),
(s 25,[Tu,We,Th]),
(s 26,[We,Th]),
(s 27,[We,Sa,So]),
(s 28,[Tu,We,Sa]),
(s 29,[Mo,We]),
(s 30,[Mo,We,Th]),
(s 31,[Mo,Th,Fr]),
(s 32,[Tu,Th]),
(s 33,[Th,Fr]),
(s 34,[Th,Sa]),
(s 35,[Mo,Tu,Th,Fr]),
(s 36,[Sa,Th,Fr]),
(s 37,[Mo,Th]),
(s 38,[Tu,Th,Fr]),
(s 39,[We,Th,Sa]),
(s 40,[Mo,Tu,Fr]),
(s 41,[Mo,Fr]),
(s 42,[Fr]),
(s 43,[Tu,Fr]),
(s 44,[Mo,Fr]),
(s 45,[Fr]),
(s 46,[Mo,Tu,We,Fr,Sa]),
(s 47,[We,Fr]),
(s 48,[Tu,Fr]),
(s 49,[Fr,Sa]),
(s 50,[Th,Fr,Sa]),
(s 51,[Sa,So]),
(s 52,[Mo,Tu,Sa]),
(s 53,[Tu, We,Sa]),
(s 54,[Mo,Sa,So]),
(s 55,[Tu,We,ThSa]),
(s 56,[Sa]),
(s 57,[Fr,Sa]),
(s 58,[Fr,So]),

20



(s 59,[Mo,Tu,So]),
(s 60,[So]),
(s 61,[Fr,So]),
(s 62,[Sa,So]),
(s 63,[Mo,We,So]),
(s 64,[Th,Fr,So]),
(s 65,[Tu,So])

];
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Assignment 9: Prolog Programming
(Given May 3., Due May 10.)

20pt
Problem 9.16 (Sort)
Write a ProLog program that sorts a list of integers; i.e. a predicate sort(L1,L2) that
evaluates to true iff the list L2 is the sorted version of L1. For instance,

?− sort([5,2,6,1],X)

should return X=[1,2,5,6].
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30ptProblem 9.17 (Querying the Greek Mythology Family Tree)
Who is related to whom in the large family of Greek gods that is the question in this
problem. An overview can be found at http://en.wikipedia.org/wiki/Family\_tree\
_of\_the\_Greek\_gods. Take a fragment of this tree and encode it in ProLog as facts
in terms of mother/2, father/2 relations. (Note: in ProLog notation p/n means that p is a
predicate of arity n).

Add predicates all sibling of, all cousins of, all ancestors of, all descendants of and rules
such that predicate(God,List of Gods) hold for each predicate. For instance all sibling of(zeus,S)
should return S=[hera,demeter, hades, poseidon]. read(∆,t)oΓ
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40ptProblem 9.18 (Derivation of Arithmetic Expressions)
Write a ProLog program that “computes” the derivative of an arithmetic expression; i. e.
write facts and rules such that derivative(E1,x,E2) is satisfied if and only if the arithmetic
expression E2 is the derivative of E1 with respect to x (where x is an atomic expression
of course). The constructors of arithmetic expressions should be any integer or lower
case letter as atomic expressions together with mul/2 and add/2 for building compound
arithmetic expressions.

For instance, derivative(mul(x,add(x,2)),x,add(mul(1,add(x,2)),mul(x,add(1,0)))) should
evaluate to true.

Note: You do not need to implement term rewriting, i. e. you need not be recognize all
possible ways of writing expressions equivalent to E2.
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Assignment 10: Prolog Programming 2
(Given May 11., Due May 17.)

This assignment is intended to make you aware how the order of literals and rules affect
the program execution. 10pt
Problem 10.19 (Trace of a ProLog Program)
With the trace command in ProLog you can look at the execution of a given program step
by step. Try this command on the program below and explain the trace output.

a(X,Y):−b(X,Y),c(Y).
b(X,Y):−d(X,Y),e(Y).
b(X, ):−f(X).
c(4).
d(1,3).
d(2,4).
e(3).
f(4).
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20ptProblem 10.20 (Relevance of Rule and Literal Order for Termination)
Whether a program terminates may depend on the order of rules and even on the order
of literals within one rule. Write two ProLog programs to demonstrate this; i.e. both
programs should terminate for some query, but after a permutation of the rules in the first
program and a permutation of some literals in the second program neither the first nor the
second should terminate for the same query.

Moreover give an explanation why the programs don’t terminate in the latter case.
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30ptProblem 10.21 (Relevance of Rule and Literal Order for Efficiency)
The order of rules can affect the efficiency of ProLog programs. Demonstrate this on the
example program below: Compose two variants of this program by reordering the rules
such that you get three different degrees of efficiency for the query ?− a([1,2,3],2) from
the three programs. Each program variant should terminate as the original does! Rank
the three programs with respect to their efficiency and explain the cause of the efficiency
differences. Also give quantitative evidence using trace.

b( , ).
a([A],C):−b(A,C).
a([A,B|R],C):−b(A,C),b(B,C),a([B|R],C).
a([A,B|R],C):−b(B,C),a([A|R],C),a([B|R],C).
a([A,B| ], ):−b(A,B).

Apart from the rules order the order of literals can be relevant for efficiency. To demon-
strate this invent two programs differing only in the order of some literals and specify a
query for testing the efficiency difference of your programs. Again both programs should
terminate on this query.
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