General Computer Science
320201 GenCS I & II Problems & Solutions

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany
m.kohlhase@jacobs-university.de

November 24, 2012

m.kohlhase@jacobs-university.de

Preface

This document contains selected homework and self-study problems for the course General Com-
puter Science I/II held at Jacobs University Bremen! in the academic years 2003-2012. It is meant
as a supplement to the course notes [Kohlla, Kohl1lb]. We try to keep the numbering consistent
between the documents.

This document contains the solutions to the problems, it should only be used for checking one’s
own solutions or to learn proper formulations. There is also a version without solutions [Kohllc,
Koh11d], which is intended for self-study and practicing the concepts introduced in class.

This document is made available for the students of this course only. It is still a draft, and will
develop over the course of the course. It will be developed further in coming academic years.

Acknowledgments: Immanuel Normann, Christoph Lange, Christine Miiller, and Vyacheslav
Zholudev have acted as lead teaching assistants for the course, have contributed many of the initial
problems and organized them consistently. Throughout the time I have tought the course, the
teaching assistants (most of them Jacobs University undergraduates; see below) have contributed
new problems and sample solutions, have commented on existing problems and refined them.

GenCS Teaching Assistants: The following Jacobs University students have contributed prob-
lems while serving as teaching assiatants over the years: Darko Pesikan, Nikolaus Rath, Flo-
rian Rabe, Andrei Aiordachioaie, Dimitar Asenov, Alen Stojanov, Felix Schlesinger, Stefan Anca,
Anca Dragan, Vladislav Perelman, Josip Djolonga, Lucia Ambrosova, Flavia Grosan, Christoph
Lange, Ankur Modi, Gordan Ristovski, Darko Makreshanski, Teodora Chitiboj, Cristina Stancu-
Mara, Alin Tacob, Vladislav Perelman, Victor Savu, Mihai Cotizo Sima, Radu Cimpeanu, Mihai
Crlanaru, Maria Alexandra Alecu, Miroslava Georgieva Slavcheva, Corneliu-Claudiu Prodescu,
Flavia Adelina Grosan, Felix Gabriel Mance, Anton Antonov, Alexandra Zayets, Ivaylo Enchev.

Hnternational University Bremen until Fall 2006

ii

Contents

Preface L ii

0.1 Getting Started with “General Computer Science” 1
0.1.1 Overview over the Course 1
0.1.2 Administrativa e e 1

0.1.3 Motivation and Introduction L. 1

0.2 Motivation and Introduction Lo 2
1 Search and Declarative Computation 2
1.1 Problem Solving and Search L o 2
1.1.1 Problem Solving 2
1.1.2 Search e 9
1.1.3 Uninformed Search Strategies 11
1.1.4 Informed Search Strategies 28

1.1.5 Local Search e 40

1.2 Logic Programming 52
1.2.1 Introduction to Logic Programming and PROLOG 52
1.2.2 Programming as Search o 52
1.2.3 Logic Programming as Resolution Theorem Proving 52

iii

0.1 Getting Started with “General Computer Science”
0.1.1 Overview over the Course

This should pose no problems

0.1.2 Administrativa

Neither should the administrativa

0.1.3 Motivation and Introduction

Problem 0.1 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

e What is the intuition behind the term “algorithm”.
e What determines the quality of an algorithm?

e Give an everyday example of an algorithm.

Solution:
e An algorithm is a series of instructions to control a (computation) process.
e Termination, correctness, performance

® e.g. a recipe

Problem 0.2 (Keywords of General Computer Science)

Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a

short explanation.

Solution:
e Algorithms are abstract representations of computation instructions
e Data are representations of the objects the computations act on

e Machines are representations of the devices the computations run on

Problem 0.3 (Representations)
An essential concept in computer science is the Representation.

e What is the intuition behind the term “representation”?
e Why do we need representations?

e Give an everyday example of a representation.

Solution:

e A representation is the realization of real or abstract persons, objects, circumstances, Events, or
emotions in concrete symbols or models. This can be by diverse methods, e.g. visual, aural, or

written; as three-dimensional model, or even by dance.

e we should always be aware, whether we are talking about the real thing or a representation of it.
Allows us to abstract away from unnecessary details. Easy for computer to operate with

e e.g. graph is a representation of a maze from the lecture notes

0.2 Motivation and Introduction

Problem 0.4 (Algorithms)
One of the most essential concepts in computer science is the Algorithm.

e What is the intuition behind the term “algorithm”.
e What determines the quality of an algorithm?

e Give an everyday example of an algorithm.

Solution:
e An algorithm is a series of instructions to control a (computation) process.
e Termination, correctness, performance

e e.g. a recipe

Problem 0.5 (Keywords of General Computer Science)

Our course started with a motivation of ”General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Solution:
e Algorithms are abstract representations of computation instructions
e Data are representations of the objects the computations act on

e Machines are representations of the devices the computations run on

Problem 0.6 (Representations)
An essential concept in computer science is the Representation.

e What is the intuition behind the term “representation”?
e Why do we need representations?

e Give an everyday example of a representation.

Solution:

e A representation is the realization of real or abstract persons, objects, circumstances, Events, or
emotions in concrete symbols or models. This can be by diverse methods, e.g. visual, aural, or
written; as three-dimensional model, or even by dance.

e we should always be aware, whether we are talking about the real thing or a representation of it.
Allows us to abstract away from unnecessary details. Easy for computer to operate with

e c.g. graph is a representation of a maze from the lecture notes

1 Representation and Computation

1.1 Elementary Discrete Math

1.1.1 Mathematical Foundations: Natural Numbers 95pt

Problem 1.1 (A wrong induction proof)
What is wrong with the following “proof by induction”?

Theorem: All students of Jacobs University have the same hair color.

Proof: We prove the assertion by induction over the number n of students at Jacobs
University.

base case: n = 1. If there is only one student at Jacobs University, then the assertion is
obviously true.

step case: n > 1. We assume that the assertion is true for all sets of n students and
show that it holds for sets of n + 1 students. So let us take a set S of n + 1 students. As
n > 1, we can choose students s € S and ¢ € S with s # ¢ and consider sets S, = S\{s}
and S; := S\{t}. Clearly, #(Ss) = #(S:) = n, so all students in S, and have the same
hair-color by inductive hypothesis, and the same holds for S;. But S = S, U S;, so any
u € S has the same hair color as the students in S, NS, which have the same hair color
as s and ¢, and thus all students in S have the same hair color O

Solution:

The problem with the proof is that the inductive step should also cover the case when n = 1, which
it doesn’t. The argument relies on the fact that there intersection of Ss and S; is non-empty, giving a
mediating element that has the same hair color as s and ¢. But for n =1, S = {s,t}, and S; = {t}, and
S: = {s},s0 Ss NS = 0.

Problem 1.2 (Natural numbers)
Prove or refute that s(s(0)) and s(s(s(0))) are unary natural numbers and that their successors

are different
Solution:
Proof: We will prove the statement using the Peano axioms:

P.1 o is a unary natural number (axiom P1)
P.2 s5(0) is a unary natural number (axiom P2 and 1.)
P.3 5(s(0)) is a unary natural number (axiom P2 and 2.)
P.4 s(s(s(0))) is a unary natural number (axiom P2 and 3.)
P.5 Since s(s(s(0))) is the successor of s(s(o0)) they are different unary natural numbers (axiom P2)

P.6 Since s(s(s(0))) and s(s(o)) are different unary natural numbers their successors are also different
(axiom P4 and 5.)

O

Problem 1.3 (Peano’s induction axiom)

q p s inducti . 1 d; hat i 1 L5
Solution: Peano’s induction axiom: Every unary natural number possesses property P , if
e the zero has property P and

e the successor of every unary natural number that has property P also possesses property P

Peano’s induction axiom is useful to prove that all natural numbers possess some property. In practice
we often use the axiom to prove useful equalities that hold for all natural numbers (e.g. binomial theorem,
geometric progression).

1.1.2 Naive Set Theory _—
p

Problem 1.4: Let A be a set with n elements (i.e #(A) = n). What is the cardinality of the

power set of A, (i.e. what is #(P(A4)))?

Solution: Let #(A) = n, the power set P(A) = {S | S C A} is the set of all the possible subsets of
A. The number of possible subsets having r < n elements can be given by

ny _ (n)!
r) (M)t ((n =)

r takes values from 0 to n, so the total number of subsets of A is

and we have

Consider,

a+b" = <n>a"~b0+ <n)a"1 b+ <n>a"2 B+ (n)ao-b"
0 1 2 n

If we choose a = 1 and b = 1 then 2" = (8) + (Y) + (g) 4.+ (Z) Combing this with the equation above,
we get #(P(A)) =2".

Thus the cardinality of the power set of A it is 2". This is also the number of subsets of a set with n
elements

Solution: We can obtain this result in a simpler way if we consider representing a subset S of a
given finite set A with cardinality n := #(A) under the form of a binary number. First, associate to each
element of A an index between 1 and n. Then write an n-bit binary number Ng putting a 1 in the i-th
position if the element with index ¢ is included in the set S and a 0 otherwise. In is evident that between
the n-bit binary numbers and the elements of the power set P(A) exists a one-to-one relation (a bijection)
and therefore we conclude that the number of elements in P(A) is equal to that of n-bit representable
numbers, that is 2".

Solution: The simplest way to obtain this result is by induction on the number n. If n = 0, then
A is a singleton, wlog. A = {a}. So P(A) = {0, A} and #(P(A)) = 2 = 2'. For the step case let us
assume that #(P(A)) = 2" for all sets A with #(A) = n. We can write any set B with #(B) = n + 1
as B = AU{c} for some set A with #(A) = n and B\A = {c}. Now, each subset C of B can either
contain ¢ (then it is of the form C' U {c} for some D € P(A)) or not (then C € P(A)). Thus we have
P(B)=PA)U{DU{c} | D € P(A)}, and hence

#(P(B)) = #(P(A)) + #(P(A)) = 2#(P(4)) = 2- 2" = 2"

by inductive hypothesis.

Problem 1.5: Let A := {5,23,7,17,6} and B := {3,4,8,23}. Which of the relations are
reflexive, antireflexive, symmetric, antisymmetric, and transitive?
Note: Please justify the answers.

RiCAx AR, = {(23,7),(7,23),(55),(17,6), (6,17)}
Ry CBxB Ry = {(3,3),(3,23),(4,4),(8,23),(8,8),(3,4),(23,23), (4,23)}
RsCBxB,Rs = {(3,3),(3,23),(8,3),(4,23), (8,4), (23,23)}

Solution: R; is not reflexive since there are not all elements of A are in R; as pairs like (a, a) where
a € A. R; is not antireflexive either, because there is one of those pairs present. R; is symmetric, because
all pairs in Ry are ”turnable”, specifically, (23,7) exists and (7,23) exists. This holds for all pairs in Rj.
Since R, is symmetric, it is therefore not antisymmetric. R; is also not transitive since there are no pair
7triangles”.

R> is reflexive, it holds all elements of B in pairs like (b,b) where b € B. Therefore, it is not
antireflexive. Ry is not symmetric, because for a given pair (a,b) where a,b € B there does not exist a
pair (b,a). Rs is, however, antisymmetric since for any ”turnable” pair (like (3, 3)) the two elements in
the pair are equal. Also, R» is transitive since such a triangle (the only one in the set) exists. Namely,
that is (3,23), (3,4)and(4, 23).

Rs is neither reflexive nor antireflexive. Also, it is not symmetric or transitive. It is, however,
antisymmetric.

Problem 1.6: Given two relations R C C'x B and Q C C x A, we define a relation P C

C x (BN A) such that for every x € C and everyy € (BN A), (z,y) € P < (z,y) € RV (z,y) € Q.

Prove or refute (by giving a counterexample) the following statement: If @@ and P are total func-
tions, then P is a partial function.

Solution: The statement is false. A counterexample is C = {c}, A = B = {a,b}, R = {{c,a)},Q =
{{c,b)}. Then P = {{c,a),(c,b)} is not a partial function.

15pt

20pt

1.1.3 Naive Set Theory 5
pt

Problem 1.7: Fill in the blanks in the table of Greek letters. Note that capitalized names 3min
denote capital Greek letters.

Symbol y by 7r D
Name alpha | eta | lambda | iota
Solution:
Symbol | « n A 2 0% P T P
Name alpha eta lambda | iota gamma | Sigma pi Phi

1.1.4 Relations and Functions

Problem 1.8 (Associativity of Relation Composition)

Let R, S, and T be relations on a set M. Prove or refute that the composition operation for
relations is associative, i.e. that

(ToS)oR=To(SoR)

Solution:
Proof:

P.1 Let (z,y) € (T 0 S) o R).

P.2 321 € M.(z,z1) € RA(z1,y) € (T o S)

P.3 321,20 € M.z, 21) € RA ((z1,22) € SA(22,y) € T)

P.4 3zp € M.(z,22) € (SoR) A (z2,y) €T

P.5 (z,y) € (T o(SoR)). O

1.2 Computing with Functions over Inductively Defined Sets
1.2.1 Standard ML: Functions as First-Class Objects

Problem 1.9: Define the member relation which checks whether an integer is member of a list
of integers. The solution should be a function of type int * int list -> bool, which evaluates
to true on arguments n and 1, iff n is an element of the list 1.

Solution: The simplest solution is the following

fun member(n,nil) = false
| member(n,h::r) = if n=h then true else member(n,r);

The intuition here is that a is a member of a list [, iff it is the first element, or it is a member of the rest
list.

Note that we cannot just use member(n,n::r) to eliminate the conditional, since SML does not allow
duplicate variables in matching. But we can simplify the conditional after all: we can make use of SML’s
orelse function which acts as a logical “or” and get the slightly more elegant program

fun member(n,nil) = false
| member(n,h::r) = (n=h) orelse member(n,r);

10

Problem 1.10: Define the subset relation. Set T is a subset of S iff all elements of T' are also
elements of S. The empty set is subset of any set.
Hint: Use the member function from ??

Solution: Here we make use of SML’s andalso operator, which acts as a logical “and”

fun subset(nil,_) = true
| subset(x::xs,m) = member(x,m) andalso subset(xs,m);

The intuition here is that S C T, iff for some s € S we have s € T and S\{s} C T.

11

Problem 1.11: Define functions to zip and unzip lists. zip will take two lists as input and create
pairs of elements, one from each list, as follows: zip [1,2,3] [0,2,4] ~ [[1,0],[2,2],[3,4]].
unzip is the inverse function, taking one list of tuples as argument and outputing two separate
lists. unzip [[1,4],[2,5],[3,6]1] ~ [1,2,3] [4,5,6].

Solution: Zipping is relatively simple, we will just define a recursive function by considering 4 cases:

fun zip nil nil = nil
| zip nil 1
| zip 1 nil
| zip (h::t) (k::1) = [h,k]::(zip t 1)

1
1

Unzipping is slightly more difficult. We need map functions that select the first and second elements of a
two-element list over the zipped list. Since the problem is somewhat under-specified by the example, we
will put the rest of the longer list into the first list. To avoid problems with the empty tails for the shorter
list, we use the mapcan function that appends the tail lists.

fun mapcan(f,nil) = nil | mapcan(f,h::t) = (f h)@(mapcan(f,t))

fun unzip (1) = if (1 = nil) then nil
else [(map head 1), (mapcan tail 1)]

12

20pt

Problem 1.12 (Compressing binary lists)

Define a data type of binary digits. Write a function that takes a list of binary digits and returns
an int list that is a compressed version of it and the first binary digit of the list (needed for
reconversion). For example,

ZIPit([zero,zero,zero, one,one,one,one,
zero,zero,zero, one, zero,zerol]) -> (0,[3,4,3,1,2]),

because the binary list begins with 3 zeros, followed by 4 ones etc.
Solution:

datatype bin = zero | one;
local fun ZIP(nil,_,cnt) = [cnt] |
ZIP(hd::tl, last, cnt) =
if hd=last then ZIP(tl, hd, cnt+1)
else cnt::ZIP(tl, hd, 1);
in
fun ZIPit(hd::t1l) = (hd, ZIP(tl, hd, 1))
end;

13

Problem 1.13 (Decompressing binary lists)
Wi . ¢ ion UNZIPit of £l . oo
Solution:

local fun pump(a,0) = nil |

pump(a,n) = a::pump(a,n-1);
fun not zero = one |

not one = zero;

in
fun UNZIPit(a,nil) = nil |
UNZIPit(a, hd::tl) = pump(a,hd)@UNZIPit(not(a),tl);
end;

14

Problem 1.14: Program the function f with f(z) = z

using the multiplication function.

2

on unary natural numbers without

Solution: We will use the abstract data type mynat

datatype mynat = zero | s of mynat
fun add(n,zero) = n | add(n,s(m))=s(add(n,m))
fun sq(zero)=zerolsq(s(n))=s(add(add(sq(n),n),n))

15

15pt

Problem 1.15 (Translating between Integers and Strings) 20pt
SML has pre-defined types int and string, write two conversion functions:

e int2string converts an integer to a string, i.e. int2string(~317) ~» "~317":string

e string2int converts a suitable string to an integer, i.e. string2int("444") ~» 444:int.
For the moment, we do not care what happens, if the input string is unsuitable, i.e does not
correspond to an integer.

do not use any built-in functions except elementary arithmetic (which include mod and div BTW)),

explode, and implode.

Solution:
(* Note: this implementation does not consider negative numbers *)

(*integer to stringx)

fun dig2chr 0 = #"0" | dig2chr 1 = #"1" |
dig2chr 2 = #"2" | dig2chr 3 = #"3" |
dig2chr 4 = #"4" | dig2chr 5 = #"5" |
dig2chr 6 = #"6" | dig2chr 7 = #"7" |
dig2chr 8 = #"8" | dig2chr 9 = #"9";

fun int21st 0 = [] |

int21lst num = int2lst(num div 10) @ [dig2chr(num mod 10)];

fun int2string 0 = "0" |
int2string num = implode(int2lst num);

(*string to integerx)

fun chr2dig #"0" = 0 | chr2dig #"1" = 1 |
chr2dig #"2" = 2 | chr2dig #"3" = 3 |
chr2d1g #"4" = | Chr2d1g #"5" = 5 |
chr2dig #"6" = 6 | chr2dig #"7" = 7 |
chr2dig #"8" = 8 | chr2dig #"9" = 9;

0 |
(1st2int t + chr2dig h)*10;

fun 1lst2int []
1st2int (h::t) =

fun rev nil = nil |
rev (h::t) = rev t @ [h];

fun string2int(s) = lst2int(rev (explode s)) div 10;

16

Problem 1.16: Write a function that takes an odd positive integer and returns a char list list
which represents a triangle of stars with n stars in the last row. For example,

triangle 5;

val it =

[#ll ll’ #Il II’ #ll*ll, #ll ll, #ll Il]’
[#ll n #Il*ll #Il*ll #II*" #ll II:I

[#ll*ll, #Il*ll, #II*II’ #II*II, #ll*ll]]

Solution:

fun stars(0) = nil |
stars(n) = #"*x" :: stars(n-1)

fun wall(nil) = nil |
wall(hd::t1) = ((#" "::hd)@[#" "])::wall(tl)

C# 1] |

fun triangle(1)
wall(triangle(n-2))@[stars(n)];

triangle(n)

17

Problem 1.17: Write a non-recursive variant of the member function from 7?7 using the foldl

function
Solution:

fun member (x,xs) = foldl (fn (y,b) => b orelse x=y) false

18

Problem 1.18 (Decimal representations as lists) 10ntin
The decimal representation of a natural number is the list of its digits (i.e. integers between 0

and 9). Write an SML function decToInt of type int list -> int that converts the decimal
representation of a natural number to the corresponding number:

- decTolInt [7,8,5,6];
val it = 7856 : int

Hint: Use a suitable built-in higher-order list function of type fn : (int * int -> int) -> int -> int list -> int
that solves a great part of the problem.

Solution:
val decToInt = foldl (fn (x,y) => 10*xy + x) O;

19

Problem 1.19 (List functions via foldl/foldr) 30pt
Write the following procedures using foldl or foldr

1. length which computes the length of a list
2. concat, which gets a list of lists and concatenates them to a list.
3. map, which maps a function over a list

4. myfilter, myexists, and myforall from 77

Solution:

fun length xs = foldl (fn (x,n) => n+l1) 0 xs
fun concat xs = foldr op@ nil xs
fun map f = foldr (fn (x,yr) => (f x)::yr) nil
fun myfilter f =

foldr (fn (x,ys) => if f x then x::ys else ys) nil
fun myexists f = foldl (fn (x,b) => b orelse f x) false
fun myall £ = foldl (fn (x,b) => b andalso f x) true

20

Problem 1.20 (Mapping and Appending) 10pt
Can the functions mapcan and mapcan2 be written using foldl/foldr?

Solution:
fun mapcan_with(f,1) = foldl(fn (v,s) => s@f(v)) nil 1;

21

1.2.2 Inductively Defined Sets and Computation

Problem 1.21: Figure out the functions on natural numbers for the following defining equations
7(0) =0

7(s(n)) = s(s(s(7(n))))

Solution: The function 7 triples its argument.

22

Problem 1.22 (A function on natural numbers)

Figure out the function on natural numbers defined by the following equations:

n(o) =o

n(s(0)) = o
n(s(s(n))) = s(n(n))

Solution:

The function 7 halves its argument.

23

biith

Problem 1.23: In class, we have been playing with defining equations for functions on the
natural numbers. Give the defining equations for the function o with o(z) = x? without using
the multiplication function (you may use the addition function though). Prove from the Peano
axioms or refute by a counterexample that your equations define a function. Indicate in each step
which of the axioms you have used.

Solution:

Lemma 1 The relation defined by the equations o(0) = o and o(s(n)) = +({(+({(o(n),n)),n)) is a func-
tion.
Proof:

P.1 The proof of functionality is is carried out by induction. We show that for every n € N sq is
one-valued.

P.1.1 n =o0: Then the value is fixed to o there so we have the assertion.

P.1.2 n > 0: let ¢ is one-valued for n.:

P.1.2.1 By the defining equation we know that o(s(n)) = +({+({c(n),n)),n))
P.1.2.2 By inductive hypothesis, o(n) is one-valued, so o(s(n)) is as + is a function.

P.1.2.3 This completes the step case and proves the assertion. O

24

15pt

1.2.3 Inductively Defined Sets in SML -
p

Problem 1.24: Declare an SML datatype pair representing pairs of integers and define SML 8min
functions fst and snd where fst returns the first- and snd the second component of q the pair.
Moreover write down the type of the constructor of pair as well as of the two procedures fst and
snd.

Use SML syntax for the whole problem.

Solution:

datatype pair = pair of int * int; (* val pair = fn : int * int -> pair *)

fn : pair -> int *)
fn : pair -> int *)

x; (x val fst
y; (x val snd

fun fst(pair(x,_))
fun snd(pair(_,y))

25

Problem 1.25: Declare a data type myNat for unary natural numbers and NatList for lists of 4ifin
natural numbers in SML syntax, and define a function that computes the length of a list (as a unary
natural number in mynat). Furthermore, define a function nms that takes two unary natural num-
bers n and m and generates a list of length n which contains only ms, i.e. nms (s (s(zero)) ,s(zero))
evaluates to construct(s(zero),construct(s(zero),elist)).

Solution:

= zero | s of mynat;

datatype natlist elist | construct of mynat * natlist;

fun length (nil) = zero | length (comnstruct (n,1)) = s(length(l));
fun nms(zero,m) = elist | nms(s(n),m) = construct(m,nms(n));

datatype mynat

26

Problem 1.26: Given the following SML data type for an arithmetic expressions

datatype arithexp = aec of int (* 0,1,2,... *)
| aeadd of arithexp * arithexp (* addition *)
| aemul of arithexp * arithexp (* multiplication *)
| aesub of arithexp * arithexp (* subtraction *)
| aediv of arithexp * arithexp (* division *)
| aemod of arithexp * arithexp (* modulo *)
| aev of int (* variable *)

give the representation of the expression (4a + 5) — 3.
Write a (cascading) function eval : (int —-> int) -> arithexp -> int that takes a vari-
able assignment ¢ and an arithmetic expresson e and returns its evaluation as a value.

Note: A variable assignment is a function that maps variables to (integer) values, here it is represented
as function ¢ of type int -> int that assigns ¢(n) to the variable aev(n).

Solution:

datatype arithexp = aec of int (* 0,1,2,... *)
| aeadd of arithexp * arithexp (* addition *)

| aemul of arithexp * arithexp (* multiplication *)
| aesub of arithexp * arithexp (* subtraction *)

| aediv of arithexp * arithexp (* division *)

| aemod of arithexp * arithexp (* modulo *)

|

aev of int (* variable *)

(* aesub(aeadd(aemul (aec(4),aev(1)),aec(5)),aemul (aec(3),aev(1))) *)

fun eval phi =
let

fun calc (aev(x)) = phi(x) |

calc (aec(x)) = x |
calc (aeadd(el,e2)) = calc(el) + calc(e2) |
calc (aesub(el,e2)) = calc(el) - calc(e2) |
calc (aemul(el,e2)) = calc(el) * calc(e2) |
calc (aediv(el,e2)) = calc(el) div calc(e2) |
calc (aemod(el,e2)) = calc(el) mod calc(e2);

in fn x => calc(x)

end;

(x Test:

- eval (fn 1=>6) (aesub(aeadd(aemul (aec(4) ,aev(1l)),aec(5)),aemul(aec(3),aev(1))));
stdIn:14.7-14.14 Warning: match nonexhaustive
1 => ...

val it = 11 : int
- %)

27

20pt

Problem 1.27 (Your own lists)
Define a data type mylist of lists of integers with constructors mycons and mynil. Write trans-
lators tosml and tomy to and from SML lists, respectively.

Solution: The data type declaration is very simple

datatype mylist = mynil | mycons of int * mylist;

it declares three symbols: the base type mylist, the individual constructor mynil, and the constructor
function mycons.

The translator function tosml takes a term of type mylist and gives back the corresponding SML list;
the translator function tomy does the opposite.

fun tosml mynil = nil

| tosml mycons(n,l) = n::tosml(l)
fun tomy nil = mynil

| tomy (h::t) = mycons(h,tomy(t))

28

Problem 1.28 (Unary natural numbers)
Define a datatype nat of unary natural numbers and implement the functions

e add = fn : nat * nat -> nat (adds two numbers)

fn : nat * nat -> nat (multiplies two numbers)

e mul

Solution:

datatype nat = zero | s of nat;
fun add(zero:nat,n2:nat) = n2

| add(nl,zero) = ni

| add(s(nl),s(n2))
fun mult(zero:nat,_)

| mult(_,zero) = zero

| mult(nl,s(zero)) = ni

| mult(s(zero),n2) = n2

| mult(nl,s(n2)) = add(nl,mult(nl,n2));

s(add(n1,s(n2)));
Zero

29

Problem 1.29 (Nary Multiplication)

By defining a new datatype for n-tuples of unary natural numbers, implement an n-ary multipli-
cations using the function mul from ??. For n = 1, an n-tuple should be constructed by using a
constructor named first; for n > 1, further elements should be prepended to the first by using
a constructor named next. The multiplication function nmul should return the product of all
elements of a given tuple.

For example,
nmul (next (s(s(zero)),

next (s(s(zero)),
first(s(s(s(zero)))))))

should output s(s(s(s(s(s(s(s(s(s(s(s(zero)))))))))))) since 223 = 12.
Solution:

datatype tuple = first of nat | next of nat*tuple;
fun nmult(first(num)) = num |
nmult (next (num, rest)) = mult(num, nmult(rest));

30

1.2.4 A Theory of SML: Abstract Data Types and Term Languages

5pt
Problem 1.30: Translate the abstract data types given in mathematical notation into SML Abstract
datatypes Data
Types and
1. {({S},{[e1:S],[c2: S—S],[e3: SXxS—=§),[ca: S—= S = S|}) Ground
)) Construc-
2. ({T},{le1: T),[e2: T x (T — T) — TJ}) tor Torms
Solution: Smin

cl | c20f S| c30of S*S | cdofS->8
2. datatype S =cl | c2 of T * (T -> T)

1. datatype S

31

Problem 1.31: Translate the given SML datatype Batin
datatype T =0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation.
Solution:

{T}, {[er: T],[e2: T x T|T, [c2: T|T x T — T})

32

Problem 1.32 (Nested lists) 20pt
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3,4,[7,[8,2],9],122,[2, 2]].

Solution: We choose the abstract data type

(N, L}, {[er: L x L — L], [en: N x L — L], [nil: L], [o: N], [s: N — N]})

The constructors ¢; and ¢; construct lists by adding a list or a number at the front of the list. With this,
the list above has the constructor term.

en (3, cn(4, ci(en (7, ci(cn (8, en(2,nil)), cn (9, nil)), cn(122), ci(cn (2, cn (2, nil)))nil))))

where n is the s, o-constructor term of the number n.

33

A First Abstract Interpreter Problem 1.33: Give the defining equations for the maximum
function for two numbers. This function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ¢ from
above.

Solution: We first define the equality predicate on natural numbers by the rules
eq(0,0)~T eq(s(nn),0)~ F eq(s(nn), s(mn)) ~ eq(nn, mn)
Using this we define a relation of “greater than” by the rules
glo,nn) ~ F g(s(nw), mn) ~ V(eq(s(mn), nn), g(nn, mn))
This allows us to finally define the function max by the rule

maz(ny, my) ~ t(V(g(ny, my), eq(svarnN, my)), ny, my)

34

30pt

Problem 1.34: Using the abstract data type of truth functions from 7?7, give the defining 15pt
equations for a function ¢ that takes three arguments, such that ¢(¢p, ayn,by) behaves like “if ¢
then a, else b”, where a and b are natural numbers.

Solution: The defining equations are ¢(T, an, by) ~ an and ¢(F, aN, by) ~ by.

35

Problem 1.35: Consider the following abstract data type:

= ({A,B,C}{[f: C—>B],[g: AxB — C],[h: C— Al [a:

6pt
Al [b: B, [e: C]})

Which of the following expressions are constructor terms (with variables), which ones are ground
Give the sorts for the terms.

| Answer with Yes or No or /. and give the sort (if term) |

’ expression \ term? \ ground? \ Sort ‘
f(g(a))
flg((a,b)))
hg((h(zc), FO))
h(g({h(zB), f(yc))))
l expression ‘ term? ‘ ground? ‘ Sort ‘
 [Ju@ X / /
Solution: flg({a,b))) Y Y B
Wg(h(we). J@0) | Y N [A
h(g({h(zs), f(yc)))) | N / /

36

Problem 1.36 (Substitution) Spibstitutions

Apply the substitutions o := [b/z], [(g(a))/y], [a/w] and T := [(h(c))/z],[c/z] to the terms s := Omin
flg(z,g(a,z,b),y)) and t := g(x, z, h(y)) (give the 4 result terms o(s), o(t), 7(s), and 7(¢)).
Solution:
U(S) = f(g(a7 f(0),9(a,a,b))) o) = g(a, f(b), h(a))
m(s) = [fg(f(b),y,9(a, f(0),0))) 7(t) = g(f(b),y,h(c))

37

Definition 2 We call a substitution ¢ idempotent, iff o(c(A)) = o(A) for all terms A.

Definition 3 For a substitution o = [Ay/z1],- -, [Ay/z,], we call the set intro(o) := |, ., free(A,)
the set of variables introduced by o, and the set supp(c) := {z; | 1 <i < n} o

30pt
Problem 1.37: Prove or refute that o is idempotent, if intro(c) N supp(c) = 0.

38

Problem 1.38 (Substitution Application) 30pt

Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(¢) are constructed from the name string and the argument. Remember
that we use f(a,b) as an abbreviation for f({a,b)). Thus a term f(a,g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution o = [(f(a))/z|, [b/y] as [(appl("f", const("a")), "x"), (const("b"),
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution o and a term A as arguments and returns the term o(A) if o is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/z], [z/z](f(2)) =
[(@).

Solution:

exception ambiguous_substitution

local
fun sa(s,const(str)) = const(str)
| sa(s,pair(t1,t2)) pair(sa(s,tl),sa(s,t2))
| sa(s,appl(fs,tl)) = appl(fs,sa(s,tl))
| sa(nil,var(str)) = var(str)
| sa((t,x)::L,var(str)) = if str = x then t else sa(L,var(str))
fun ambiguous = ...
in
fun substApply (s,t) = if ambiguous(s)
then raise ambiguous_substitution
else sa(s,t)

end

or
(* (C) by Anna Michalska *)

datatype term = const of string

| var of string

| pair of term * term

| appl of string * term;

type subst = (term * string) list;

exception ania;

fun comparingl ((x1,x2), []) = true | comparingl ((x1,x2), hd::tl) = if
hd=x2 then false else comparingl ((x1,x2),tl);

fun comparing2([],_)=true | comparing2 ((x3,x4)::t,tl) = if (comparingl
((x3,x4),t1)) then comparing2 (t,x4::tl) else raise ania;

fun tab (a,[]) = var(a)
| tab (a, (al,a2)::tl) = if (a=a2) then al else tab(a,tl);

fun substApply_r (appl(a,b),subst_in) = appl(a,substApply_r(b,subst_in))
| substApply_r (pair(a,b),subst_in) =
pair(substApply_r(a,subst_in),substApply_r(b,subst_in))
| substApply_r (var(a),subst_in) = tab(a,subst_in)
| substApply_r (const(x),subst_in) = const(x);

39

llyll)] .

fun substApply (subst_in,term_in) =
if (comparing2(subst_in,[])) then substApply_r(term_in,subst_in)
else raise ania;

40

A Second Abstract Interpreter Problem 1.39: Consider the following abstract procedure 20pt
on the abstract data type of natural numbers:

P = ({f:N = N; {f(0) ~ o0, f(s(0)) ~ 0, f(s(s(nn))) ~ s(f(nn))})
1. Show the computation process for P on the arguments s(s(s(0))) and s(s(s(s(s(s(0)))))).
2. Give the recursion relation of P.
3. Does P terminate on all inputs?

4. What function is computed by P?

Solution:
L f(s(s(s(0)))) ~ s(f(s(0))) ~ s(0), and f(s(s(s(s(s(s(0))))))) ~ s(f(s(s(s(s(0)))))) ~ s(s(f(s(s(0))))) ~ s(s(s(f(0)))) ~ s(
The recursion relation is {(s(s(n)),n) € (N x N) | n € N} (or (n+2,n))

the abstract procedure terminates on all inputs.

- LN

the abstract procedure computes the function f: N — N with 2n +— n and 2n — 1 — n.

41

Problem 1.40: Explain the concept of a “call-by-value” programming language in terms of
evaluation order. Give an example program where this effects evaluation and termination, explain
it

Note: One point each for the definition, the program and the explanation.

Solution: A “call-by-value” programming language is one, where the arguments are all evaluated
before the defining equations for the function are applied. As a consequence, an argument that contains
a non-terminating call will be evaluated, even if the function ultimately disregards it. For instance,
evaluation of the last line does not terminate.

fun myif (true,A,_) = A | myif (false,_,B) =B
fun bomb (n) = bomb(n+1)
myif (true,1,bomb(1))

42

Fptaluation
Order and

Termina-
tion
10min

Problem 1.41: Give an example of an abstract procedure that diverges on all arguments, Bifin
and another one that terminates on some and diverges on others, each example with a short
explanation.

Solution: The abstract procedure (f:N — N; {f(ny) ~ s(f(nn))}) diverges everywhere. The ab-
stract procedure (f:N — N; {f(s(s(nn))) ~ nn, f(s(0)) ~ f(s(0))}) terminates on all odd numbers and
diverges on all even numbers.

43

Problem 1.42: Give the recursion relation of the abstract procedures in ??, 77, 77 and 77 and 15pt

discuss termination
Solution:

??7: {(s(n),n) | n € N}

77: all recursion relations are empty

77: the recursion relation is empty

?7: the recursion relation for g is {(s(n),n) | n € N}, the one for max is empty

44

1.2.5 More SML: Recursion in the Real World

No problems supplied yet.

45

1.2.6 Even more SML: Exceptions and State in SML 5

pt
Problem 1.43 (Integer Intervals) 10min
Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list

[n,n+1,\1dots,m-1,m] if n < m and raises an exception otherwise.

Solution:

datatype nat = z | s of nat;
datatype lnat = nil | ¢ of nat*lnat;

exception Bad;

(x cmp(a,b) returns 1 if a>b, 0 if a=b, and "1 if a<b *)
fun cmp(z,z) = 0 |

cmp(s(L),z) =1 |

cmp(z,s()) = "1 |

cmp(s(n) ,s(m)) = cmp(n,m);

fun makelist(n, m) =
case cmp(n, m) of
1 => c(n, makelist(s(n),m)) |
0 => c(m, nil) |
1 => raise Bad

46

Problem 1.44 (Operations with Exceptions)
Add to the functions from ?7 functions for subtraction and division that raise exceptions where

necessary.
e function sub: nat*nat -> nat (subtracts two numbers)

e function div: nat*nat -> nat (divides two numbers)

Solution:

exception Underflow;

datatype nat = zero | s of nat;

fun sub(nl:nat,zero) = nil
| sub(zero,s(n2)) = raise Underflow
| sub(s(nl),s(n2)) = sub(nl,n2);

47

Problem 1.45 (List Functions with Exceptions) 6pinin
Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.
2. take(xs,n) returns the list of the first n elements of the list xs.
3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0.
Solution:

exception Subscript
fun nth (nil,_) = raise Subscript
| nth (h::t,n) = if n < O then raise Subscript
else if n=0 then h else nth(t,n-1)
fun take (1,0) = nil
| take (nil,_) = raise Subscript
| take (h::t,n) = if n < O then raise Subscript
else h::take(t,n-1)
fun drop (1,0) =
| drop (nil,_) = raise Subscript
| drop (h::t,n) = if n < O then raise Subscript
else drop(t,n-1)

1

48

Problem 1.46 (Transformations with Errors) 10pt
Extend the function from 7?7 by an error flag, i.e. the value of the function should be a pair
consisting of a string, and the boolean value true, if the string was suitable, and false if it was

not.

Solution: !

1EDNOTE: need one; please help

49

Problem 1.47 (Simple SML data conversion)

Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0 — 9] returns the corresponding integer. Do not use the built-in function Int.fromString
but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

Solution:

exception InvalidDigit of char;

(* Converts a character representing a digit to an integer *)
fun char_to_int c =

let

val res = (ord c) - (ord #"0");
in

if res >= 0 andalso res <= 9 then res else raise InvalidDigit(c)
end;

(* TEST CASES *)

val testl = char_to_int #"O"
val test2 = char_to_int #"3"
val test3 = char_to_int #"9"

val test4 = char_to_int #"7" 6 handle InvalidDigit c => true | other => false;
val testbs = char_to_int #"a" = 6 handle InvalidDigit c => true | other => false;
val test6 = char_to_int #"Z" = 6 handle InvalidDigit c => true | other => false;

wonn
O©Owo

3
)
3

a0

10pt

Problem 1.48 (Strings and numbers) 10pt
Write two SML functions

1. str_to_int = fn : string -> int
2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

e Negative numbers begin with a >~ character (not).

e If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.

e If the input string is empty raise an exception.

e Examples of valid inputs for the second function are: "1, ~1.5, 4.63, 0.0, 0, .123

Solution:

(* Converts a list of characters to an integer. The list must be reversed and

there should be only digit characetrs (no minus). *)
fun inv_pos_charl_to_int nil = 0
| inv_pos_charl_to_int (a::1) = char_to_int a + 10*inv_pos_charl_to_int(1);

(* Converts a list of characters to a positive or a negative integer. *)
fun charl_to_int (#"""::1) = ~(inv_pos_charl_to_int(rev 1))
| charl_to_int 1 = inv_pos_charl_to_int(rev(1l));

(* Converts a string to a negative or a positive integer *)
fun str_to_int s = charl_to_int(explode(s));

(*x TEST CASES %)

val testl = str_to_int "O" = 0;

val test2 = str_to_int "1" = 1;

val test3 = str_to_int "234" = 234;

val test4 = str_to_int "70" = 0;

val testb = str_to_int "74" = 74;

val test6 = str_to_int "75734" = “5734;

val test7 = str_to_int "hello" = 6 handle InvalidDigit c¢ => true| other => false;

val test8 = str_to_int "713.2" 6 handle InvalidDigit c => true| other => false;

Solution:

exception NegativeFraction;

(* Splits a character list into two lists delimited by a ’.’ character *)
fun cl_get_num_parts nil whole _ = (whole,nil)
| cl_get_num_parts (#"."::1) whole fract = (whole, 1)
| cl_get_num_parts (c::1) whole fract = cl_get_num_parts 1 (whole @ [c]) fract;

(* Given a real number makes it into a fraction by dividing by 10 until the
input is less than 1 *)

fun make_fraction fr =
if fr < 1.0 then fr else make_fraction (fr / 10.0);

(* Converts a string to a real number. Only decimal dot notation is allowed *)
fun str_to_real s =
let
val (w,f) = cl_get_num_parts (explode s) nil nil;
val is_negative = (length w > 0) andalso (hd w = #""");
val whole_r = real(str_to_int (implode w));
val fract = real (str_to_int (implode £f));
val fract_r = if fract < 0.0
then raise NegativeFraction
else make_fraction fract;
in

ol

if is_negative then whole_r - fract_r else whole_r + fract_r
end;

(* TEST CASES *)
val EPSILON = 0.0001;

fun eq a b = abs(a - b) < EPSILON;

str_to_real "0") 0.0;

str_to_real "0.156") 0.156;

str_to_real "14.723") 14.723;

str_to_real "~0.123") ~0.123;

str_to_real "~12.789") ~12.789;

str_to_real ".123") 0.123;

str_to_real "hello") 4.2 handle InvalidDigit c¢ => true| other => false;
str_to_real "713..2") 4.2 handle InvalidDigit c => true| other => false;
str_to_real "~13.72") 4.2 handle NegativeFraction => true| other => false;

val testl = eq
val test2 = eq
val test3 = eq
val testd = eq
val testb = eq
val test6 = eq
val test7 = eq
val test8 = eq
val test9 = eq

AN AAAAAAAAAAA

92

Problem 1.49 (Recursive evaluation)

Write an SML function evaluate = fn : expression -> real that takes an expression of the

following datatype and computes its value:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate (div(num(2.2) ,num(1.0))) -> 2.2
evaluate (add(num(4.2),sub(mul (num(2.1) ,num(2.0)) ,num(1.4)))) -> 7.0

Solution:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expressionkexpression (* multiply *)
| num of real;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate (add(x,y)) = (evaluate x) + (evaluate y)

| evaluate (sub(x,y)) = (evaluate x) - (evaluate y)

| evaluate (dvd(x,y)) = (evaluate x) / (evaluate y)

| evaluate (mul(x,y)) = (evaluate x) * (evaluate y)

| evaluate (num(x)) = x;

(* TEST CASES *)
val EPSILON = 0.0001;

fun eq a b = abs(a - b) < EPSILON;

val testl = eq (evaluate (num(0.0))) 0.0;

(
val test2 = eq (evaluate (num(1.23))) 1.23;
val test3 = eq (evaluate (num(~2.78))) ~2.78;
val test4 = eq (evaluate (add(num(1.52),num(~1.78)))) ~0.26;
val testb = eq (evaluate (sub(num(1.52),num(~1.78)))) 3.3;
val test6 = eq (evaluate (mul(num(1.5),num("3.2)))) ~4.8;
val test7 = eq (evaluate (dvd(num(3.2),num("0.5)))) 76.4;
val test8 = eq (evaluate (add(add(add(num(1.0),num(1.0)),num(1.0)),num(1.0)))) 4.0;
val test9 = eq (evaluate (add(mul(add(num(2.0),num(1.0)), sub(num(9.0),

mul (num(2.0) ,add (num(1.0) ,num(2.0))))) ,dvd (mul (num(2.0),
num(4.0)) ,dvd(add (num(1.0) ,num(1.0)) ,num(~4.0)))))) ~7.0;

33

10pt

Problem 1.50 (List evaluation)

Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression
datatype from the previous exercise by the additional constructor: var of int.

The variables here are the final results of previosly evaluated expressions. IL.e. the first expres-
sion from the list should not contain any variables. The second can contain the term var (0) which
should evaluate to the result from the first expression and so on ...If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]

Solution:

exception InvalidVariable of int;

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real
| var of int;

(* Evaluates an arithmetic expression to a real value *)

fun evaluate vars (add(x,y)) = (evaluate vars x) + (evaluate vars y)
| evaluate vars (sub(x,y)) = (evaluate vars x) - (evaluate vars y)
| evaluate vars (dvd(x,y)) (evaluate vars x) / (evaluate vars y)

| evaluate vars (mul(x,y)) = (evaluate vars x) * (evaluate vars y)

|

|

evaluate _ (num(x)) = x

evaluate vars (var(v)) = if v < O orelse v>= length vars
then raise InvalidVariable(v)
else List.nth(vars, v);

fun evaluate_list_helper nil vars = vars
| evaluate_list_helper (a::1l) vars =

let

val res = evaluate vars a;
in

evaluate_list_helper 1 (vars @ [res])
end;

fun evaluate_list 1 = evaluate_list_helper 1 nil;

Solution:

(x TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs(a - b) < EPSILON;
fun eql nil nil = true
| eql 1 nil = false
| eql nil 1 = false
| eql (a::1) (b::m) = (eq a b) andalso (eql 1 m);

val testl = eql (evaluate_list [num(1.0)]) [1.0];

val test2 = eql (evaluate_list [num(1.0),num(~2.3)]) [1.0,72.3];

val test3 = eql (evaluate_list [num(1.0),num(~2.3),add(var(0),var(1))])
[1.0,72.3,71.3];

eql (evaluate_list [add(num(1.0),num(4.2)),
mul (num(~2.0),sub(num(2.0) ,num(~5.0))),
add (var (0) ,mul (var(1) ,num(~1.0)))])
[6.2,714.0,19.2];

val test4

val testb = eql (evaluate_list [var(~1)]) [1.0]

handle InvalidVariable v => truel| other => false;
val test6 = eql (evaluate_list [var(0)]) [1.0]

handle InvalidVariable v => truel| other => false;

o4

10pt

eql (evaluate_list [var(1)]) [1.0]

handle InvalidVariable v => truel| other => false;
val test8 = eql (evaluate_list [num(1.0),var(1)]) [1.0]
handle InvalidVariable v => truel| other => false;

val test7

%)

Problem 1.51 (String parsing)

Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

e strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1+ 2+ 3 would be represented as ((1+2)+3) (or (1+(2+3)))

e no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.
Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have
evaluate_str ["((4%.5)-(1+2.5))"] -> [71.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*x~2)"] -> [1.5,3.0]
evaluate_str ["(1.8/2)","(1-"3)","(vO+v1)"] -> [0.9,4.0,4.9]

Solution:

exception InvalidSyntax;

fun parserest [] n = raise InvalidSyntax
| parserest [#")"] 0 = []
| parserest (#"("::t) n = #"("::(parserest t (n+1))
| parserest (#")"::t) n = #")"::(parserest t (n-1))
| parserest (h::t) n = h::(parserest t n);

fun findop [] n left = raise InvalidSyntax

findop (#")"::t) n left = findop t (n-1) (left@[#")"])
findop (h::t) n left = findop t n (left@[h]);

| findop (#"+"::t) O left = (#"+",left,(parserest t 0))
| findop (#"-"::t) 0 left = (#"-",left, (parserest t 0))
| findop (#"*"::t) O left = (#"x",left,(parserest t 0))
| findop (#"/"::t) O left = (#"/",left,(parserest t 0))
| findop (#"("::t) n left = findop t (n+1) (left@[#"("]1)
|

|

fun charl_to_exp [] = raise InvalidSyntax
| charl_to_exp (#"("::t) =
let val (c,x,y) = findop t O [];
in
if (c = #"+") then add(charl_to_exp x,charl_to_exp y)
else if (c = #"-") then sub(charl_to_exp x,charl_to_exp y)
else if (c = #"*") then mul(charl_to_exp x,charl_to_exp y)
else dvd(charl_to_exp x,charl_to_exp y)
end
| charl_to_exp (#"v"::t) = var(str_to_int (implode t))
| charl_to_exp (h::t) = num(str_to_real (implode(h::t)));

fun str_to_exp str = charl_to_exp (explode str);

fun evaluate_str 1 = evaluate_list (map str_to_exp 1);

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs(a - b) < EPSILON;
fun eql nil nil = true
| eql 1 nil = false
| eql nil 1 = false
| eql (a::1) (b::m) = (eq a b) andalso (eql 1 m);

val testl = eql (evaluate_str ["0"]) [0.0];
val test2 = eql (evaluate_str ["1.5"]) [1.5];
val test3 = eql (evaluate_str [".5"]) [0.5];

o6

10pt

val
val
val
val
val
val
val
val
val
val

val
val

val

val
val
val
val
val
val
val
val
val
val
val

testd eql (evaluate_str ["~1.2"]) ["1.2];

testb = eql (evaluate_str ["(1+3)"]) [4.0];

test6 = eql (evaluate_str ["(1.2+3.5)"]) [4.7];

test7 eql (evaluate_str ["(1.2+73.5)"]) [2.3];

test8 = eql (evaluate_str ["(1.2-73.5)"]) [4.7];

test9 eql (evaluate_str ["(71.5+3.2)"]) [1.7];

testl0 = eql (evaluate_str ["("1.5%73.2)"]) [4.8];

testll = eql (evaluate_str ["(5.5/71.1)"]) [75.0];

testl2 = eql (evaluate_str ["(71.5/3.0)"]) [70.5];

testl3 = eql (evaluate_str
["(((6.4/71.6)-7)+((.50-"10)*(20/(2.5/0.5))))"]) [31.0];

testl4 = eql (evaluate_str ["42.5","v0"]) [42.5,42.5];

testl5 = eql (evaluate_str

["~2","(vOxv0)"," (vi*vO)"," (v2*xv0)"]) [*2.0,4.0,78.0,16.0];
test16 = eql (evaluate_str
[r~2", " (vO*xv0)"," (v1*x(v0O+(~2.5/v0)))"]) [*2.0,4.0,73.0];

testl7

testl18 =

test19
test20
test21
test22
test23
test24
test2b
test26
test27

eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql

(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str

["(((1+2)*3)"]) [42.5] handle all => true;
["((1+2)3)"]) [42.5] handle all => true;
["(13"]) [42.5] handle all => true;
["(((1+2)*3)"]) [42.5] handle all => true;
["%3)"]) [42.5] handle all => true;
["(*3)"]) [42.5] handle all => true;
["(7/3%x2)"]) [42.5] handle all => true;
["(C(7/3)*x(2#6))"]) [42.5] handle all => true;
["(3-6))"]) [42.5] handle all => true;
["vO"]) [42.5] handle all => true;
["0","v1i"]) [42.5] handle all => true;

o7

Problem 1.52 (SML File I0)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
10 operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt" "output.txt";

Contents of input.txt:

0.7
(v0/v1)
Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0
Solution:
fun get_lines istream =
let
val line = TextIO.inputLine (istream);
in
case line of
NONE => nil
| SOME(1) => let
val cl = explode 1;
val cl = List.take(cl, length cl - 1);
val 1 = implode cl;
in
(1 :: (get_lines istream))
end
end;

fun write_lines nil ostream = true
| write_lines ((s:real)::1) ostream =

let
val _ = TextIO.output (ostream, Real.toString(s));
val _ = TextIO.output (ostream, "\textbackslash{n}");
in
write_lines 1 ostream
end;

fun evaluate_file in_filename out_filename =
let
val input = TextIO0.openIn in_filename;
val output = TextIO.openOut out_filename;
val 1 = evaluate_str (get_lines input);
val _ = write_lines 1 output;
in
(TextIO.closelIn input; TextIO.closeOut output)
end;

a8

10pt

1.3 A Theory of SML: Abstract Data Types and Term Languages
1.3.1 Abstract Data Types and Ground Constructor Terms 5

pt
Problem 1.53: Translate the abstract data types given in mathematical notation into SML 5min
datatypes

1. ({S}{[c1: S|, [c2: S—=S],[e35: SxS = S),[ca: S— S — S|})
2. ({T},{[c1: T],[co: T x (T — T) — T]})

Solution:
1. datatype S =cl | c2 of S| c3 0of S* S | c4 of S->8

2. datatype S =cl | c2 of T * (T -> T)

99

Problem 1.54: Translate the given SML datatype Batin
datatype T =0 | c1 of T * T | c2 of T -> (T * T)

into abstract data type in mathmatical notation.
Solution:

{T}, {[er: T],[e2: T x T|T, [c2: T|T x T — T})

60

Problem 1.55 (Nested lists) 20pt
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition,
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3,4,[7,[8,2],9],122,[2, 2]].

Solution: We choose the abstract data type

(N, L}, {[er: L x L — L], [en: N x L — L], [nil: L], [o: N], [s: N — N]})

The constructors ¢; and ¢; construct lists by adding a list or a number at the front of the list. With this,
the list above has the constructor term.

en (3, cn(4, ci(en (7, ci(cn (8, en(2,nil)), cn (9, nil)), cn(122), ci(cn (2, cn (2, nil)))nil))))

where n is the s, o-constructor term of the number n.

61

1.3.2 A First Abstract Interpreter

Problem 1.56: Give the defining equations for the maximum function for two numbers. This
function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ¢ from
above.

Solution: We first define the equality predicate on natural numbers by the rules
eq(o,0)~T eq(s(nn),0)~ F eq(s(nn),s(mn)) ~ eq(nn, mn)
Using this we define a relation of “greater than” by the rules
g(o,nn) ~ F g(s(nn), mn) ~ V(eq(s(mn), nw), g(nw, my))
This allows us to finally define the function maz by the rule

mazx(nn, my) ~ t(V(g(ny, mn), eq(svarnN, my)), ny, my)

62

30pt

Problem 1.57: Using the abstract data type of truth functions from 7?7, give the defining 15pt
equations for a function ¢ that takes three arguments, such that ¢(¢p, ayn,by) behaves like “if ¢
then a, else b”, where a and b are natural numbers.

Solution: The defining equations are ¢(T, an, by) ~ an and ¢(F, aN, by) ~ by.

63

Problem 1.58: Consider the following abstract data type:

= ({A,B,C}{[f: C—>B],[g: AxB — C],[h: C— Al [a:

6pt
Al [b: B, [e: C]})

Which of the following expressions are constructor terms (with variables), which ones are ground
Give the sorts for the terms.

| Answer with Yes or No or /. and give the sort (if term) |

’ expression \ term? \ ground? \ Sort ‘
f(g(a))
flg((a,b)))
hg((h(zc), FO))
h(g({h(zB), f(yc))))
l expression ‘ term? ‘ ground? ‘ Sort ‘
 [Ju@ X / /
Solution: flg({a,b))) Y Y B
Wg(h(we). J@0) | Y N [A
h(g({h(zs), f(yc)))) | N / /

64

1.3.3 Substitutions
4pt

Problem 1.59 (Substitution) 5min
Apply the substitutions o := [b/z],[(9(a))/y], [a/w] and T := [(h(c))/x],[c/z] to the terms s :=
flg(z,g(a,2,b),y)) and t := g(z,z, h(y)) (give the 4 result terms o(s), o(t), 7(s), and 7(1)).

Solution:

g(a, f(b), h(a))
9(f(b),y; h

65

Definition 4 We call a substitution ¢ idempotent, iff o(c(A)) = o(A) for all terms A.

Definition 5 For a substitution o = [Ay/z1],- -, [Ay/z,], we call the set intro(o) := |, ., free(A,)
the set of variables introduced by o, and the set supp(c) := {z; | 1 <i < n} o

30pt
Problem 1.60: Prove or refute that o is idempotent, if intro(c) Nsupp(c) = 0.

66

Problem 1.61 (Substitution Application) 30pt

Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term * term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(¢) are constructed from the name string and the argument. Remember
that we use f(a,b) as an abbreviation for f({a,b)). Thus a term f(a,g(x)) is represented as
appl("f",pair(const("a"), appl("g", var("x")))).

With this, we can represent substitutions as lists of elementary substitutions, which are pairs
of type term * string. Thus we can set

type subst = term * string list

and represent a substitution o = [(f(a))/z|, [b/y] as [(appl("f", const("a")), "x"), (const("b"),
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution o and a term A as arguments and returns the term o(A) if o is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/z], [z/z](f(2)) =
[(@).

Solution:

exception ambiguous_substitution

local
fun sa(s,const(str)) = const(str)
| sa(s,pair(t1,t2)) pair(sa(s,tl),sa(s,t2))
| sa(s,appl(fs,tl)) = appl(fs,sa(s,tl))
| sa(nil,var(str)) = var(str)
| sa((t,x)::L,var(str)) = if str = x then t else sa(L,var(str))
fun ambiguous = ...
in
fun substApply (s,t) = if ambiguous(s)
then raise ambiguous_substitution
else sa(s,t)

end

or
(* (C) by Anna Michalska *)

datatype term = const of string

| var of string

| pair of term * term

| appl of string * term;

type subst = (term * string) list;

exception ania;

fun comparingl ((x1,x2), []) = true | comparingl ((x1,x2), hd::tl) = if
hd=x2 then false else comparingl ((x1,x2),tl);

fun comparing2([],_)=true | comparing2 ((x3,x4)::t,tl) = if (comparingl
((x3,x4),t1)) then comparing2 (t,x4::tl) else raise ania;

fun tab (a,[]) = var(a)
| tab (a, (al,a2)::tl) = if (a=a2) then al else tab(a,tl);

fun substApply_r (appl(a,b),subst_in) = appl(a,substApply_r(b,subst_in))
| substApply_r (pair(a,b),subst_in) =
pair(substApply_r(a,subst_in),substApply_r(b,subst_in))
| substApply_r (var(a),subst_in) = tab(a,subst_in)
| substApply_r (const(x),subst_in) = const(x);

67

llyll)] .

fun substApply (subst_in,term_in) =
if (comparing2(subst_in,[])) then substApply_r(term_in,subst_in)
else raise ania;

68

1.3.4 A Second Abstract Interpreter 50
pt

Problem 1.62: Consider the following abstract procedure on the abstract data type of natural
numbers:

P = (f:N = N; {f(0) ~ o, f(s(0)) ~ o, f(s(s(nn))) ~ s(f(nn))})
1. Show the computation process for P on the arguments s(s(s(0))) and s(s(s(s(s(s(0)))))).
2. Give the recursion relation of P.
3. Does P terminate on all inputs?

4. What function is computed by P?

Solution:
L f(s(s(s(0)))) ~ s(f(s(0))) ~ s(0), and f(s(s(s(s(s(s(0))))))) ~ s(f(s(s(s(s(0)))))) ~ s(s(f(s(s(0))))) ~ s(s(s(f(0)))) ~ s(
The recursion relation is {(s(s(n)),n) € (N x N) | n € N} (or (n+2,n))

the abstract procedure terminates on all inputs.

L

the abstract procedure computes the function f: N — N with 2n +— n and 2n — 1 — n.

69

1.3.5 Evaluation Order and Termination ot
P

Problem 1.63: Explain the concept of a “call-by-value” programming language in terms of 10min
evaluation order. Give an example program where this effects evaluation and termination, explain

it

Note: One point each for the definition, the program and the explanation.

Solution: A “call-by-value” programming language is one, where the arguments are all evaluated
before the defining equations for the function are applied. As a consequence, an argument that contains
a non-terminating call will be evaluated, even if the function ultimately disregards it. For instance,
evaluation of the last line does not terminate.

fun myif (true,A,_) = A | myif (false,_,B) = B
fun bomb (n) = bomb(n+1)
myif (true,1,bomb(1))

70

Problem 1.64: Give an example of an abstract procedure that diverges on all arguments, B8ifin
and another one that terminates on some and diverges on others, each example with a short
explanation.

Solution: The abstract procedure (f:N — N; {f(ny) ~ s(f(nn))}) diverges everywhere. The ab-
stract procedure (f:N — N; {f(s(s(nn))) ~ nn, f(s(0)) ~ f(s(0))}) terminates on all odd numbers and
diverges on all even numbers.

71

Problem 1.65: Give the recursion relation of the abstract procedures in ??, 77, 77 and 77 and 15pt

discuss termination
Solution:

??7: {(s(n),n) | n € N}

77: all recursion relations are empty

77: the recursion relation is empty

?7: the recursion relation for g is {(s(n),n) | n € N}, the one for max is empty

72

1.4 More SML
1.4.1 More SML: Recursion in the Real World

No problems supplied yet.

1.4.2 Programming with Effects: Imperative Features in SML
Input and Output nothing here yet.

5Ept
Problem 1.66 (Integer Intervals) ven more

Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write SML: Ex-
an SML function that given two natural number n and m (as a constructor term) creates the list ceptions

[n,n+1,\ldots,m-1,m] if n < m and raises an exception otherwise. and State
Solution: m S.ML
10min

datatype nat = z | s of nat;
datatype lnat = nil | c of nat*lnat;

exception Bad;

(* cmp(a,b) returns 1 if a>b, 0 if a=b, and ~“1 if a<b *)
fun cmp(z,z) = 0 |

cmp(s(_),z) =1 |

cmp(z,s()) = 1 |

cmp(s(n),s(m)) = cmp(n,m);

fun makelist(n, m) =
case cmp(n, m) of
~1 => c(n, makelist(s(n),m)) |
0 => c(m, nil) |
1 => raise Bad

73

Problem 1.67 (Operations with Exceptions)
Add to the functions from ?7 functions for subtraction and division that raise exceptions where

necessary.
e function sub: nat*nat -> nat (subtracts two numbers)

e function div: nat*nat -> nat (divides two numbers)

Solution:

exception Underflow;

datatype nat = zero | s of nat;

fun sub(nl:nat,zero) = nil
| sub(zero,s(n2)) = raise Underflow
| sub(s(nl),s(n2)) = sub(nl,n2);

74

Problem 1.68 (List Functions with Exceptions) 6pinin
Write three SML functions nth, take, drop that take a list and an integer as arguments, such
that

1. nth(xs,n) gives the n-th element of the list xs.
2. take(xs,n) returns the list of the first n elements of the list xs.
3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.

In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less
than n elements. We assume that list elements are numbered beginning with 0.
Solution:

exception Subscript
fun nth (nil,_) = raise Subscript
| nth (h::t,n) = if n < O then raise Subscript
else if n=0 then h else nth(t,n-1)
fun take (1,0) = nil
| take (nil,_) = raise Subscript
| take (h::t,n) = if n < O then raise Subscript
else h::take(t,n-1)
fun drop (1,0) =
| drop (nil,_) = raise Subscript
| drop (h::t,n) = if n < O then raise Subscript
else drop(t,n-1)

1

(6]

Problem 1.69 (Transformations with Errors) 10pt
Extend the function from 7?7 by an error flag, i.e. the value of the function should be a pair
consisting of a string, and the boolean value true, if the string was suitable, and false if it was

not.

Solution: 2

2EDNOTE: need one; please help

76

Problem 1.70 (Simple SML data conversion)

Write an SML function char_to_int = fn : char -> int that given a single character in the
range [0 — 9] returns the corresponding integer. Do not use the built-in function Int.fromString
but do the character parsing yourself. If the supplied character does not represent a valid digit
raise an InvalidDigit exception. The exception should have one parameter that contains the
invalid character, i.e. it is defined as exception InvalidDigit of char

Solution:

exception InvalidDigit of char;

(* Converts a character representing a digit to an integer *)
fun char_to_int c =

let

val res = (ord c) - (ord #"0");
in

if res >= 0 andalso res <= 9 then res else raise InvalidDigit(c)
end;

(* TEST CASES *)

val testl = char_to_int #"O"
val test2 = char_to_int #"3"
val test3 = char_to_int #"9"

val test4 = char_to_int #"7" 6 handle InvalidDigit c => true | other => false;
val testbs = char_to_int #"a" = 6 handle InvalidDigit c => true | other => false;
val test6 = char_to_int #"Z" = 6 handle InvalidDigit c => true | other => false;

wonn
O©Owo

3
)
3

7

10pt

Problem 1.71 (Strings and numbers) 10pt
Write two SML functions

1. str_to_int = fn : string -> int
2. str_to_real = fn : string -> real

that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString, Real.fromString but do the string parsing yourself.

e Negative numbers begin with a >~ character (not).

e If the string does not represent a valid integer raise an exception as in the previous exercise.
Use the same definition and indicate which character is invalid.

e If the input string is empty raise an exception.

e Examples of valid inputs for the second function are: "1, ~1.5, 4.63, 0.0, 0, .123

Solution:

(* Converts a list of characters to an integer. The list must be reversed and

there should be only digit characetrs (no minus). *)
fun inv_pos_charl_to_int nil = 0
| inv_pos_charl_to_int (a::1) = char_to_int a + 10*inv_pos_charl_to_int(1);

(* Converts a list of characters to a positive or a negative integer. *)
fun charl_to_int (#"""::1) = ~(inv_pos_charl_to_int(rev 1))
| charl_to_int 1 = inv_pos_charl_to_int(rev(1l));

(* Converts a string to a negative or a positive integer *)
fun str_to_int s = charl_to_int(explode(s));

(*x TEST CASES %)

val testl = str_to_int "O" = 0;

val test2 = str_to_int "1" = 1;

val test3 = str_to_int "234" = 234;

val test4 = str_to_int "70" = 0;

val testb = str_to_int "74" = 74;

val test6 = str_to_int "75734" = “5734;

val test7 = str_to_int "hello" = 6 handle InvalidDigit c¢ => true| other => false;

val test8 = str_to_int "713.2" 6 handle InvalidDigit c => true| other => false;

Solution:

exception NegativeFraction;

(* Splits a character list into two lists delimited by a ’.’ character *)
fun cl_get_num_parts nil whole _ = (whole,nil)
| cl_get_num_parts (#"."::1) whole fract = (whole, 1)
| cl_get_num_parts (c::1) whole fract = cl_get_num_parts 1 (whole @ [c]) fract;

(* Given a real number makes it into a fraction by dividing by 10 until the
input is less than 1 *)

fun make_fraction fr =
if fr < 1.0 then fr else make_fraction (fr / 10.0);

(* Converts a string to a real number. Only decimal dot notation is allowed *)
fun str_to_real s =
let
val (w,f) = cl_get_num_parts (explode s) nil nil;
val is_negative = (length w > 0) andalso (hd w = #""");
val whole_r = real(str_to_int (implode w));
val fract = real (str_to_int (implode £f));
val fract_r = if fract < 0.0
then raise NegativeFraction
else make_fraction fract;
in

78

if is_negative then whole_r - fract_r else whole_r + fract_r
end;

(* TEST CASES *)
val EPSILON = 0.0001;

fun eq a b = abs(a - b) < EPSILON;

str_to_real "0") 0.0;

str_to_real "0.156") 0.156;

str_to_real "14.723") 14.723;

str_to_real "~0.123") ~0.123;

str_to_real "~12.789") ~12.789;

str_to_real ".123") 0.123;

str_to_real "hello") 4.2 handle InvalidDigit c¢ => true| other => false;
str_to_real "713..2") 4.2 handle InvalidDigit c => true| other => false;
str_to_real "~13.72") 4.2 handle NegativeFraction => true| other => false;

val testl = eq
val test2 = eq
val test3 = eq
val testd = eq
val testb = eq
val test6 = eq
val test7 = eq
val test8 = eq
val test9 = eq

AN AAAAAAAAAAA

79

Problem 1.72 (Recursive evaluation)

Write an SML function evaluate = fn : expression -> real that takes an expression of the

following datatype and computes its value:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real;

For example we have

evaluate(num(1.3)) -> 1.3
evaluate (div(num(2.2) ,num(1.0))) -> 2.2
evaluate (add(num(4.2),sub(mul (num(2.1) ,num(2.0)) ,num(1.4)))) -> 7.0

Solution:

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expressionkexpression (* multiply *)
| num of real;

(* Evaluates an arithmetic expression to a real value *)
fun evaluate (add(x,y)) = (evaluate x) + (evaluate y)

| evaluate (sub(x,y)) = (evaluate x) - (evaluate y)

| evaluate (dvd(x,y)) = (evaluate x) / (evaluate y)

| evaluate (mul(x,y)) = (evaluate x) * (evaluate y)

| evaluate (num(x)) = x;

(* TEST CASES *)
val EPSILON = 0.0001;

fun eq a b = abs(a - b) < EPSILON;

val testl = eq (evaluate (num(0.0))) 0.0;

(
val test2 = eq (evaluate (num(1.23))) 1.23;
val test3 = eq (evaluate (num(~2.78))) ~2.78;
val test4 = eq (evaluate (add(num(1.52),num(~1.78)))) ~0.26;
val testb = eq (evaluate (sub(num(1.52),num(~1.78)))) 3.3;
val test6 = eq (evaluate (mul(num(1.5),num("3.2)))) ~4.8;
val test7 = eq (evaluate (dvd(num(3.2),num("0.5)))) 76.4;
val test8 = eq (evaluate (add(add(add(num(1.0),num(1.0)),num(1.0)),num(1.0)))) 4.0;
val test9 = eq (evaluate (add(mul(add(num(2.0),num(1.0)), sub(num(9.0),

mul (num(2.0) ,add (num(1.0) ,num(2.0))))) ,dvd (mul (num(2.0),
num(4.0)) ,dvd(add (num(1.0) ,num(1.0)) ,num(~4.0)))))) ~7.0;

80

10pt

Problem 1.73 (List evaluation)

Write a new function evaluate_list = fn : expression list -> real list that evaluates
a list of expressions and returns a list with the corresponding results. Extend the expression
datatype from the previous exercise by the additional constructor: var of int.

The variables here are the final results of previosly evaluated expressions. IL.e. the first expres-
sion from the list should not contain any variables. The second can contain the term var (0) which
should evaluate to the result from the first expression and so on ...If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier
was used for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] -> [3.0,2.5,7.5]

Solution:

exception InvalidVariable of int;

datatype expression = add of expression*expression (* add *)
| sub of expression*expression (* subtract *)
| dvd of expression*expression (* divide *)
| mul of expression*expression (* multiply *)
| num of real
| var of int;

(* Evaluates an arithmetic expression to a real value *)

fun evaluate vars (add(x,y)) = (evaluate vars x) + (evaluate vars y)
| evaluate vars (sub(x,y)) = (evaluate vars x) - (evaluate vars y)
| evaluate vars (dvd(x,y)) (evaluate vars x) / (evaluate vars y)

| evaluate vars (mul(x,y)) = (evaluate vars x) * (evaluate vars y)

|

|

evaluate _ (num(x)) = x

evaluate vars (var(v)) = if v < O orelse v>= length vars
then raise InvalidVariable(v)
else List.nth(vars, v);

fun evaluate_list_helper nil vars = vars
| evaluate_list_helper (a::1l) vars =

let

val res = evaluate vars a;
in

evaluate_list_helper 1 (vars @ [res])
end;

fun evaluate_list 1 = evaluate_list_helper 1 nil;

Solution:

(x TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs(a - b) < EPSILON;
fun eql nil nil = true
| eql 1 nil = false
| eql nil 1 = false
| eql (a::1) (b::m) = (eq a b) andalso (eql 1 m);

val testl = eql (evaluate_list [num(1.0)]) [1.0];

val test2 = eql (evaluate_list [num(1.0),num(~2.3)]) [1.0,72.3];

val test3 = eql (evaluate_list [num(1.0),num(~2.3),add(var(0),var(1))])
[1.0,72.3,71.3];

eql (evaluate_list [add(num(1.0),num(4.2)),
mul (num(~2.0),sub(num(2.0) ,num(~5.0))),
add (var (0) ,mul (var(1) ,num(~1.0)))])
[6.2,714.0,19.2];

val test4

val testb = eql (evaluate_list [var(~1)]) [1.0]

handle InvalidVariable v => truel| other => false;
val test6 = eql (evaluate_list [var(0)]) [1.0]

handle InvalidVariable v => truel| other => false;

81

10pt

eql (evaluate_list [var(1)]) [1.0]

handle InvalidVariable v => truel| other => false;
val test8 = eql (evaluate_list [num(1.0),var(1)]) [1.0]
handle InvalidVariable v => truel| other => false;

val test7

82

Problem 1.74 (String parsing)

Write an SML function evaluate_str = fn : string list -> real list that given a list of
arithmetic expressions represented as strings returns their values. The strings follow the following
conventions:

e strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1+ 2+ 3 would be represented as ((1+2)+3) (or (1+(2+3)))

e no spaces: the string contains no empty characters

The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.
Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have
evaluate_str ["((4%.5)-(1+2.5))"] -> [71.5]
evaluate_str ["((4*.5)-(1+2.5))","(v0*x~2)"] -> [1.5,3.0]
evaluate_str ["(1.8/2)","(1-"3)","(vO+v1)"] -> [0.9,4.0,4.9]

Solution:

exception InvalidSyntax;

fun parserest [] n = raise InvalidSyntax
| parserest [#")"] 0 = []
| parserest (#"("::t) n = #"("::(parserest t (n+1))
| parserest (#")"::t) n = #")"::(parserest t (n-1))
| parserest (h::t) n = h::(parserest t n);

fun findop [] n left = raise InvalidSyntax

findop (#")"::t) n left = findop t (n-1) (left@[#")"])
findop (h::t) n left = findop t n (left@[h]);

| findop (#"+"::t) O left = (#"+",left,(parserest t 0))
| findop (#"-"::t) 0 left = (#"-",left, (parserest t 0))
| findop (#"*"::t) O left = (#"x",left,(parserest t 0))
| findop (#"/"::t) O left = (#"/",left,(parserest t 0))
| findop (#"("::t) n left = findop t (n+1) (left@[#"("]1)
|

|

fun charl_to_exp [] = raise InvalidSyntax
| charl_to_exp (#"("::t) =
let val (c,x,y) = findop t O [];
in
if (c = #"+") then add(charl_to_exp x,charl_to_exp y)
else if (c = #"-") then sub(charl_to_exp x,charl_to_exp y)
else if (c = #"*") then mul(charl_to_exp x,charl_to_exp y)
else dvd(charl_to_exp x,charl_to_exp y)
end
| charl_to_exp (#"v"::t) = var(str_to_int (implode t))
| charl_to_exp (h::t) = num(str_to_real (implode(h::t)));

fun str_to_exp str = charl_to_exp (explode str);

fun evaluate_str 1 = evaluate_list (map str_to_exp 1);

Solution:

(* TEST CASES *)
val EPSILON = 0.0001;
fun eq a b = abs(a - b) < EPSILON;
fun eql nil nil = true
| eql 1 nil = false
| eql nil 1 = false
| eql (a::1) (b::m) = (eq a b) andalso (eql 1 m);

val testl = eql (evaluate_str ["0"]) [0.0];
val test2 = eql (evaluate_str ["1.5"]) [1.5];
val test3 = eql (evaluate_str [".5"]) [0.5];

83

10pt

val
val
val
val
val
val
val
val
val
val

val
val

val

val
val
val
val
val
val
val
val
val
val
val

testd eql (evaluate_str ["~1.2"]) ["1.2];

testb = eql (evaluate_str ["(1+3)"]) [4.0];

test6 = eql (evaluate_str ["(1.2+3.5)"]) [4.7];

test7 eql (evaluate_str ["(1.2+73.5)"]) [2.3];

test8 = eql (evaluate_str ["(1.2-73.5)"]) [4.7];

test9 eql (evaluate_str ["(71.5+3.2)"]) [1.7];

testl0 = eql (evaluate_str ["("1.5%73.2)"]) [4.8];

testll = eql (evaluate_str ["(5.5/71.1)"]) [75.0];

testl2 = eql (evaluate_str ["(71.5/3.0)"]) [70.5];

testl3 = eql (evaluate_str
["(((6.4/71.6)-7)+((.50-"10)*(20/(2.5/0.5))))"]) [31.0];

testl4 = eql (evaluate_str ["42.5","v0"]) [42.5,42.5];

testl5 = eql (evaluate_str

["~2","(vOxv0)"," (vi*vO)"," (v2*xv0)"]) [*2.0,4.0,78.0,16.0];
test16 = eql (evaluate_str
[r~2", " (vO*xv0)"," (v1*x(v0O+(~2.5/v0)))"]) [*2.0,4.0,73.0];

testl7

testl18 =

test19
test20
test21
test22
test23
test24
test2b
test26
test27

eql
eql
eql
eql
eql
eql
eql
eql
eql
eql
eql

(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str
(evaluate_str

["(((1+2)*3)"]) [42.5] handle all => true;
["((1+2)3)"]) [42.5] handle all => true;
["(13"]) [42.5] handle all => true;
["(((1+2)*3)"]) [42.5] handle all => true;
["%3)"]) [42.5] handle all => true;
["(*3)"]) [42.5] handle all => true;
["(7/3%x2)"]) [42.5] handle all => true;
["(C(7/3)*x(2#6))"]) [42.5] handle all => true;
["(3-6))"]) [42.5] handle all => true;
["vO"]) [42.5] handle all => true;
["0","v1i"]) [42.5] handle all => true;

84

Problem 1.75 (SML File I0)
Write an SML function evaluate_file = fn : string -> string -> unit that performs file
10 operations. The first argument is an input file name and the second is an output file name. The
input file contains lines which are arithmetic expressions. evaluate_file reads all the expressions,
evaluates them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt" "output.txt";

Contents of input.txt:

0.7
(v0/v1)
Contents of output.txt (after evaluate_list is executed):
4.9
0.7
7.0
Solution:
fun get_lines istream =
let
val line = TextIO.inputLine (istream);
in
case line of
NONE => nil
| SOME(1) => let
val cl = explode 1;
val cl = List.take(cl, length cl - 1);
val 1 = implode cl;
in
(1 :: (get_lines istream))
end
end;

fun write_lines nil ostream = true
| write_lines ((s:real)::1) ostream =

let
val _ = TextIO.output (ostream, Real.toString(s));
val _ = TextIO.output (ostream, "\textbackslash{n}");
in
write_lines 1 ostream
end;

fun evaluate_file in_filename out_filename =
let
val input = TextIO0.openIn in_filename;
val output = TextIO.openOut out_filename;
val 1 = evaluate_str (get_lines input);
val _ = write_lines 1 output;
in
(TextIO.closelIn input; TextIO.closeOut output)
end;

85

10pt

1.5 Encoding Programs as Strings

1.5.1 Formal Languages

Problem 1.76: Given the alphabet A = {a,b,c} and a L := |J;=, L;, where L; = {e} and L; 4

contains the strings z, bbzx, zac for all x € L;.

1. Is L a formal language?

2. Which of the following strings are in L? Justify your answer

s1 =bbac

s9 = bbacc

s3 = bbbac

S4 = acac

s5 = bbbacac

s¢ = bbacac

Solution:

1. L is a formal language as L1 € AT and every step from L; to L;+1 concatenates only elements from

A.

2. $1,84,86 € L}

SEDNOTE: Need a justification here. Please help

86

3pt
Smin

Problem 1.77: Given the alphabet A = {a, 2, §}.
1. Determine k = #(Q) with Q = {s € AT | |s| <5}.

2. Is Q a formal language over A7 Justify your results.

Solution:

ko= #({seA" ||s|=0})+

#{se AT | |s|=1P) +...

#({s€ AT | |s|=5})
= 1+3'4+...+3°=364

Q is a formal language over A, since Q C A™.

87

2pt

Problem 1.78: Let A:={a,h,/,#,x} and < be the ordering relation on A with x < # </ < Bhfin
h < a. Order the following strings in A* in the lexical order <y induced by <.

51 = HH#HH#HH# Sp = ##XFHh | 53 =€
sq = #H#hHHx | 55 = a#tH#H#a#t | s¢ = #H#H#HH#/

88

Problem 1.79 (Lexical Ordering)
Write a lexical ordering function lex on lists in SML, such that lex takes three arguments, an
ordering relation (i.e. a binary function from list elements to Booleans), and two lists (representing
strings over an arbitrary alphabet). Then lex(o,1,r) compares lists 1 and r in the lexical ordering
induced by the character ordering o.

We want the function lex to return three value strings "1<r", "r<1", and "1l=r" with the
obvious meanings.

Solution:

fun lex (ts, nil, nil) = "1=r"
| lex (ts, nil, (_::_)) = "r<1"
| lex (ts, (_::_), nil) = "1<r"
| lex (ts, (h::t), (k::1)) =
if h=k then lex(ts, t, 1)
else if ts(h,k) then "1<r" else "r<1";

89

20pt

1.5.2 Elementary Codes
Problem 1.80: Given the alphabets A = {a,2} and B = {9, #, /}.

2pt

1. Is ¢ with c(a) = ## and ¢(2) = 9##+#/ a character code?

2. Is the extension of ¢ on strings over A a code?

Solution: c is a character code, since ¢: A — B and c(a) # ¢(2), so ¢ is injective. Furthermore c is a
prefix code, so the extension of ¢ is a code.

90

Problem 1.81 (Testing for prefix codes) 30pt
Write an SML function prefix_code that tests whether a code is a prefix code. The code is given
as a list of pairs (SML type char*string list).

Example:

prefix_code [(#uan’nou)’ (#"b","l")];
val it = true : bool

Hint: You have to test for functionhood, injectivity and the prefix property.

Solution:

infix mem (* list membership *)
fun x mem nil = false | x mem (y::1) = (x=y) orelse (x mem 1)
(* test for repeated elements in list *)
fun repeat nil = false

| repeat (h::t) = h mem t orelse repeat(t)
fun function rel = not (repeat (map (fn (x,_) => x) rel))
fun injective rel = not (repeat (map (fn (_,x) => x) rel))
(* test whether a list is a prefix of another *)
fun prefix_list _ nil = false

| prefix_list nil _ = true

| prefix_list (h::t) (k::1) = if (h = k) then prefix_list t 1 else false;
(* testing if there is an element with property p in list *)
fun exists p nil = false | exists p (h::t) = p h orelse exists p t;
(* testing for the prefix property *)
fun prefix_prop code =

exists (fn (_,c) =>
exists (fn (_,d) =>
prefix_list (explode c) (explode d))

code)
code;
(* putting it all together x*)
fun prefix_code code = function code
andalso injective code
andalso prefix_prop code = false;

(*Test cases:*)

val testl = prefix_code [(#"a","0"), (#"b","10")] = true;

val test2 = prefix_code [(#"a","0"), (#"b","1")] = true;

val test3 = prefix_code [(#"a","0"), (#"b","10"), (#"c", "110")]=true;

val test4 = prefix_code [(#"a","0"), (#"a","10")]=false;

val testb = prefix_code [(#"a", "0"), (#"b", "01")]=false;

val test6 = prefix_code [(#"a", "10"), (#"b", "101"), (#"c", "01")]=false;
val test7 = prefix_code [(#"a", "10"), (#"b", "11")]=true;

val test8 = prefix_code [(#"a","0")]=true;

val test9 = prefix_code []=true;

91

Problem 1.82: Let A :={a,b,c,d,e, f,g,h} and B := {0,1}, and

Is ¢ a character code? Does it induce a code on strings?

92

c(a):

c(c

Cc
Cc

(
(

e):
g):

)
):
)
)

=010010010101001
=010011110101001
=(010010010110001
=010011110101000

c(b):B#fH9110010101001
¢(d):=010010011101001
¢(f):=010010010101101
¢(h):=011111110101000

Problem 1.83 (Morse Code Translator)
Write an SML program that transforms arbitrary strings into Morse Code. Write a translation
function from Morse code to regular strings and show on some examples that the translators are

inverses
Hint: The Morse codes are multi-character strings. In the Morse representation of the string, these

codes should be separated by space characters. This makes a back-translation possible.

Solution: The first task is to program the character-level translation procedures, to make things
simple, we will represent the translation table in a list of pairs and use functions assoc and rassoc to do
the lookup. Note that we have conveniently added the separating blanks to the table. Then translating
to Morse code is just a simple call to the mapcan function from ?7.

Val table = [(#uAu,n__ u),(#uBu,n_.'_ "),\ldOtS,(#"O"," _____ u)]
exception Lookup
fun assoc (k,nil) = raise Lookup
| assoc (k,(key,value)::t) = if key = k then value else assoc(k,t);
fun rassoc (k,nil) = raise Lookup
| rassoc (k,(value,key)::t) = if key = k then value else rassoc(k,t)
fun morse s = implode(mapcan(fn c => explode(assoc(c,table)),explode(s)));

The translation back is more involved, since we cannot just “explode” the string into the right pieces
(which we call the tokens); we have to compute the tokens first. Armed with this procedure, we can
proceed almost like above:

fun tok(nil,chars,strings) = implode(chars)::strings
| tok(h::t,chars,strings) =
if h - #Il n
then tok(t,nil, implode(chars)::strings)
else tok(t,h::chars,strings)
fun tokenize(s) = tok(explode(s),nil,nil)
fun demorse s = implode(map (fn s => rassoc(s,table)) (tokenize s));

93

40pt

Problem 1.84 (Morse Code again) 20pt
With what you know about codes now, is the Morse Code (without the blank characters as stop
symbols) a code on strings? Give a proof for your answer.

Solution: The Morse code is not a code on strings without stop characters: We have morse(IE) =
..+ .= ... =morse(S), so the Morse code is not injective.

94

Problem 1.85 (String Decoder without Stop Characters) 30pt
Write a general string decoder that takes as the first argument a code (in the representation you
developed in 7?) and decodes strings with respect to this code if possible and raises and exception

otherwise
Solution: The algorithm for decoding works as follows, we find a prefix of the coded string that is

a codeword, decode that and add it to the result string and recurse on the rest string.

(* drop the first n elements from a list of length >= n *)
exception too_short
fun drop n nil = raise too_short
| drop 01 =1
| drop n (h::t) = drop (n-1) t
exception invalid
(x find a code word in a coded string as a prefixx)
fun find code nil = raise invalid
| find ((char,cw)::t) coded =
if prefix_list (explode cw) coded
then cw
else decode_one t coded
exception Lookup
fun rassoc (k,nil) = raise Lookup
| rassoc (k,(value,key)::t) = if key = k then value else rassoc(k,t)
fun decode code nil = nil
| decode code coded =
let cw = find code coded (* raises exception if not found *)
in (rassoc cw code) @ (decode code (drop (length cw) coded))
end

95

1.5.3 Character Codes in the Real World

No problems supplied yet.

96

1.5.4 Formal Languages and Meaning

No problems supplied yet.

97

1.6 Boolean Algebra

1.6.1 Boolean Expressions and their Meaning 5
pt

Problem 1.86 (Boolean complements)
Prove or refute that the following is a theorem of Boolean Algebra:

For all a,b € B, if both a +b =1 and a *b = 0, we obtain b = @. (That is, any b € B
has a unique complement, regardless of whether we’re considering Boolean sums or

products.)

Observation: You are not allowed to use truth tables in this proof. Give a solution that is
only based on Boolean Algebra rules and theorems.

Solution: Source: [MMOO0]
Let a+b=1and a*b=0. Then:

a = lxa=(a+b)xa=bxa
O+a=axbt+a=b+a

Q|
I

Now we replace @ in the rightmost term in (2) by the right side of (1), b * @, and obtain

a=b+bxa=>

98

Problem 1.87: Give a model for Cy,,;, where the following expression are theorems: axa, a+a, 10pt
axa,a+a.

Hint: Give the truth tables for the Boolean functions.
Solution: Let U/ :=B, and Z(0) =F, Z(1) = T, and

I+) | T F I(x)|T F Z(-) |
T F T T T T T F
F T F F T T F T
With this, we have the truth tables
ala axa a|a a+ta a | ax*xa a|lat+a a-+a
T|F T T|F T T T T F T
FI|T T F|T T F T F F T

which verify that we have indeed found the desired model.

99

Problem 1.88 (Partial orders in a Boolean algebra) 15pt
For a given boolean algebra with a universe B and a,b € B, we define that the relation a < b holds
iff a + b = b. Prove for refute that < is a partial order on B.

Note: There are boolean algebras with a universe B larger than just {0,1}. We are not going to
consider them in the scope of this lecture, but still try to keep your proof as generic as possible. That is,
assume that a, b are arbitrary elements of B instead of just distinguishing the cases a/b =0 and a/b = 1.

Solution: Source: Meinel/Mundhenk: Mathematische Grundlagen der Informatik. Teubner, 2000.
ISBN 3-519-02949-9.

reflexive: because of idempotence

transitive: let z < y and y < z for arbitrary z,y,z € B. Then, z + y = y and y 4+ z = 2z by definition.
We obtain:
z+z=xz+@Wy+z)=@+y)+z=y+z==2

ie.x < z.

antisymmetric: Let x < y and y < z for arbitrary x,y € B. That implies x +y =y and y + = = x by
definition, and we obtain:
r=ytr=r+y=y

100

Problem 1.89: Given the following SML data types for Boolean formulae and truth values

datatype boolexp = zero | one
| plus of boolexp * boolexp
| times of boolexp * boolexp
| compl of boolexp
| var of int

datatype mybool = mytrue | myfalse

write a (cascading) evaluation function eval : (int -> mybool) -> boolexp -> mybool that
takes an assignment ¢ and a Boolean formula e and returns Z,(e) as a value.

Solution:

fun evall(_,zero) = myfalse
| evall(_,one) = mytrue
evall(f,plus(x,y)) =
if (evall(f,x) = mytrue orelse evall(f,y) = mytrue)
then mytrue else myfalse
| evall(f,times(x,y)) =
if (evall(f,x) = mytrue andalso evall(f,y) = mytrue)
then mytrue else myfalse
| evall(f,compl(x)) = if evall(f,x) = myfalse
then mytrue else myfalse
| evalli(f,var(n)) = f(n)

fun eval f e = evall(f,e);

101

20pt

Problem 1.90: Given the SML data types from 77, write a simplified version of the function us- 20pt

ing the built-in truth values in SML, i.e. an evaluation function evalbib :

This function should not use any if constructs.

(int -> bool) -> boolexp -> bool.

Solution:

fun evalbib(_,bez)
| evalbib(_,beo)
| evalbib(f,bep(x,y)) = evalbib(f,x) orelse evalbib(f,y)
| evalbib(f,bet(x,y)) = evalbib(f,x) andalso evalbib(f,y)
|
|

myfalse
mytrue

evalbib(f,bec(x)) not evalbib(f,x)
evalbib(f,bev(n)) f(n)

102

Problem 1.91 (Parsing boolean expressions) 40pt
Given the following SML data types for Boolean formulae
datatype boolexp = bez | beo (* 0 and 1 *)

| bep of boolexp * boolexp (* plus *)

| bet of boolexp * boolexp (* times *)

| bec of boolexp (* complement *)

| bev of int (* variables *)

write an SML function beparse : string -> boolexp that takes a string as input and transforms
it into an boolexp representation of this formula, if it is in Fyo0 and raises an exception if not.

Note: As there is no ASCII representation for the complement operation we used in the definition
in class, we use -(x) for the complement of x in the input syntax. So the relevant clause in the definition
is now:

o Bio={a,—(a),(a+b),(axd) | a,b€ Eyoy}

boo

Hint: For this you will need to write a couple of auxiliary functions, e.g. to convert lists of characters
into integers and strings. A main function will have to look at all the characters in turn and decide what
to do next.

Solution: We will need some auxiliary functions take and drop for manipulating lists of characters:

exception parse_error;

fun take(nil,n) = if n=0 then nil else raise parse_error
| take(h::t,n) = if n<0 then raise parse_error
else if n=0 then nil else h::take(t,n-1);

fun drop(nil,n) = if n=0 then nil else raise parse_error
| drop(h::t,n) = if n<0
then raise parse_error
else if n=0 then(h::t) else drop(t,n-1);

furthermore, we need functions to convert lists of characters to integers and strings

fun to_int(1l) =
if length(1)=0 then raise parse_error
else let fun to_int_rev(nil) = 0
| to_int_rev(h::t) = if h>=(#"0")
then if h<=(#"9")
then to_int_rev(t)*10 + ord(h)-ord(#"0")
else raise parse_error
else raise parse_error
in to_int_rev(rev 1) end;

The following function finds out the head symbol of the expression

fun find_sign(nil,_,_) = raise parse_error
| find_sign(h::t,np,pos) =
if h=(#"(") then find_sign(t,np+1,pos+1)
else if h=(#")") then find_sign(t,np-1,pos+1)
else if (h=(#""") orelse h=(#"+") orelse h=(#"x")) andalso np=0
then (pos,h)
else find_sign(t,np,pos+1);

With these, we can finally build the main processing function

fun process(nil) = raise parse_error
| process(h::t) =
case (h) of
(#"X") => if hd(t)=(#"0") then raise parse_error
else bev(str2int (implode(t)))
| (#"0") => if t=nil then bez else raise parse_error
| (#"1") => if t=nil then beo else raise parse_error
| (#u(n) =>
let
val 1st = if hd(rev t)=(#")") then take(t,length(t)-1)
else raise parse_error

103

val (p,s)=find_sign(lst,0,1)
(* we find the next sign to be interpreted, and its position *)
in
case (s) of
(#"+") => bep(process(take(lst,p-1)),process(drop(lst,p)))
| (#ll*ll)

=> bet (process(take(lst,p-1)),process(drop(lst,p)))
| (#"~") => bec(process(drop(lst,1)))

| (L) => raise parse_error end (* to surpress the warning *)
| (L) => raise parse_error;
With this, the main parsing function is simply

fun beparse(s) = process(explode(s));

104

Problem 1.92: Write a function beprint : boolexp -> string that converts boolexp for- 20pt
mulae from ?? to Ejyoo strings. This should be the inverse function to the function beparse from
7.

Test your implementation by round-tripping (check on some examples whether beparse (beprint (x))=x
and beprint (beparse(x))=x). Exhibit at least three examples with at least 8 operators each,

and show the results on them
Solution: For the inverse function beprint we will need a function that converts an integer to a

string.
fun to_string(v) = if v<0 then """“to_string((~1)*v)
else if v>9
then to_string(v div 10) “to_string(v mod 10)
else implode([chr(v+48)]);

With this, the print function is a simple recursion over the structure of the object

fun beprint(bez) = "O" | beprint(beo) = "1"
| beprint(bec(e)) = "(""“beprint(e)~")"
| beprint(bep(el,e2)) = "(" beprint(el) "+""beprint(e2) ")"
| beprint(bet(el,e2)) = " (" beprint(el) " "*""beprint(e2)~")"
| beprint(bev(v)) = "X""to_string(v);

To test that this is really an inverse, we have

- beprint(beparse (" ((X200+X100) *(X1+X2))"));
val it= "((X200+X100)*(X1+X2))"" : string

105

Problem 1.93: Is the expression e := x123 * 272 + 2123 % 24 valid, satisfiable, unsatisfiable, Bifin
falsifiable? Justify your answer.
Solution: To determine the class of e, we determine its value under all assignments in a truth table,

assignments intermediate results full
x4 x72 x123 | e :=x123 %272 ezx:=e€¢1 e3:=x123xx24 | ex +es3
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T

Ergo, e is satisfiable and falsifiable.

106

Problem 1.94 (Evaluating Expressions) 2ntin
Let e := a1 + o + (T3 * w3 + w3 x x4) and ¢ := [F/x1], [F/x2], [T /x3)], [F/x4], compute the value
Z,(e), give a (partial) trace of the computation.

Solution:

99(331 + x2 + (T2 * x3) + (23 * 24)))
Zo(z1 + 22) VI (T2 * 23) + (T3 * x4))
—Z,(x1 + xg) V Zo((T2 * x3) V Ly (x5 * x4))
(Zp(21) V Zp(22)) V (—(Z. (xz*xs))\/fap(m*m))
—(p(z1) V @(x2)) V ((Zp(T2) A Zp(23)) V (Lo (23) A L (24)))
(F x2) A
T)V(TAF))

F) v (—(=Zy(p(x3)) v (so(m:s) A p(x4)))
V (= (=p(x2) A
Tv(ﬁ(ﬁF/\T)\/F)
V(=(TAT)VF)
(=TVF)
(FVF)
F=T

TV
TV
TV

107

Problem 1.95 (Boolean Equivalence)
Prove or refute the following equivalence:

Ty * 11+ T1 + 22 = (T1 + x2) * ((T7 + T2) * (T1 + 771))

For each step write down which equivalence rule you used (by equivalence rules we mean commu-
tativity, associativity, etc.).

Solution:
T1*T1+T1+x2 =Ti+az2+xxzy (commutativity)
=x1+%T2+x1 %21 (De Morgan)
=x % (T2 + 1) (distributivity)
=71 (covering)
(T1T+ z2) * (TT+T2) * (TL +T1)) = (Tx +x2) * (T1 +T2) (consensus)
=71 (combining)

Since both expressions are equivalent to Z7, they are equivalent to each other.

108

1.6.2 Boolean Functions

10pt
Problem 1.96 (Induced Boolean Function)
Determine the Boolean function f. induced by the Boolean expression e := (zl + x2) % z1 % 23.
Moreover determine the CNF and DNF of f..
Solution:
argument | value || argument | value

(F,F,F) T (T,F,F) T

(F,F,T) T (T,F,T) T

(F,T,F) T (T,T,F) F

(F,T.T) T (T, T,T) T

109

Problem 1.97 (CNF and DNF)
Write the CNF and DNF of the boolean function that corresponds to the truth table below.

HO)—‘OHOHO§
O == O O

HH»—!HOOOO,_.H
»—A»—\OO»—\»—!OOMH

Solution:

DNF: Z1Z2T5 + Z1 22 T3 + 1 T2 T3 + 21 T2 T3 + T1 T2 T3

CNF: (21 + 2+ 73) (21 + T3 + T3) (T1 + T2 + T3)

110

1.6.3 Complexity Analysis for Boolean Expressions

Problem 1.98 (Landau sets)
Order the landau sets below by specifying which ones are subsets and which ones are equal

(e.g.: O(a) C O(b) C O(c) = 0O(d) C O(e)...)

O(n?); O((n)!); O(Jsinn|); O(n™); O(1); O(2™); O(2n? +272)

Solution: O(Jsinn|) € O(1) C O(2r? +27) = O(n?) C O(2") C O((n)!) C O(n™)

111

Problem 1.99 (Relations among polynomials) Batin
Prove or refute that O(n') C O(n?) for 0 <i < j,n (i,j,n € N).

112

Problem 1.100:

Determine for the following functions f and g whether f € O(g), or f € Q(g),

or f € ©(g), explain your answers.

f g f g

4572 84 n>+3xn| nd

log(n?) | log(n) || (n?)—22 | n3
16" | on nn | oo

Solution: The following table summarizes the results.

Fact

Explanation

1572 € ©(34)

For all n € N we have 1000 - 84 < 4572 and 0.001 - 4572 <
84

(n®) +3%n € Q(n)

For all n: If c = 1 then n° +3%n > n® and if ¢ = 10
then n® + 3 xn < nd.

(log(

7)) € O(log(n))

Since log(n®) = 3 - log(n)

)

l
((n?) —2%) € Q(n®)

larger exponents win

(16™) € ©(2")

For all ¢ there is an n such that 16™ > ¢ - 2"; just take n
for a given c such that 8" > c.

(n") € 02"

Forc=2and n > 1 we have 2" 71 = 2% 2" < ¢-n"

113

$0tnin

Problem 1.101 (Upper and lower bounds)
For each of the functions below determine whether f € O(g), f € Q(g) or f € O(g). Briefly
explain your answers.

1. f(n) =235, g(n) =12
2. f(n) =n, g(n) =16n
3. f(n) =logyy(n), g(n) ="7n+2
4. f(n) =3 +4n -2, g(n) =3n* +1
log, () _ n
5. f(n) fL , g(n) Tog, (n)
6. f(n) =8", g(n) =2"
7. f(n) =n'o#®) g(n) = 2"
8. f(n) = n", g(n) = (1og, (3))(n)!
9. f(n) = (2)7 g(n) = (4)
Solution:
1. f € ©(g) both are constants.
2. f € ©(g) the leading terms of the polynomial are of the same order.
3. f € O(g) n grows faster than log,(n) as in the slides.
4. f € O(g) the leading term of f n® grows slower than n* from g.
5. f € O(g) The numerator of f grows slower that the numerator of g and the denominator of f grows

e

faster than the one from g. There fore f clearly grows slower.
f € Q(g) 8" = 2°™ which clearly grows faster than 2".
f € O(g) 2" is or a higher rank (see slides) and grows much faster.

8. f € Q(g) n™ is clearly asymptotically bigger than (n)!. And the logarithm in front plays an

insignificant role when n is large.

f € O(g) The first is a polynomial of degree 2 while the second is a polynomial of degree 4.

114

Problem 1.102:

What is the time complexity of the following SML function? Take one evalu-

ation step to be a creation of a head in function unwork and disregard other operations.
fun gigatwist 1lst = let

fun unwork nil = nil |
unwork(hd::tl) = hd::unwork(tl)
fun nextwork(nil, _) = nil |

nextwork(hd::tl, fnc) = fnc(lst)@nextwork(tl, fnc)

fun nthwork 1 = unwork |
nthwork n = let

fun work arg = nextwork(arg, nthwork(n-1))
in

work
end
in
nthwork(length lst) 1st
end

Solution: Time complexity is ©(n").

115

Problem 1.103 (Proof of Membership in Landau Set)
Prove by induction or refute: the function f(n) := n" is in O((n)!?); i.e. there is a constant ¢ such
that n™ < (n)!* for sufficiently large n.

Hint:

Solution: We choose ¢ = 1. Induction step: Show (n + 1)"*Y < (n +1)!2 under the induction
hypothesis (TH) is n™ < (n)!?. We have (n+ 1)!1?> = n+ 12 % (n)!1? > n 4 120" by (IH). Hence, we have
to show that n 4+ 12n™ > n + 1™ which we do by the equivalence transformations n + 1?n™ > n 4+ 1"*!

116

30tnin

1.6.4 The Quine-McCluskey Algorithm

Problem 1.104 (Quine-McCluskey)
Execute the QMC algorithm for the following function:

14pt

444 A4mmmmB
e B I s B | A
4 a4m - ng
e i e R I Ce

Moreover you are required to find the solution with minimal cost where each operation (and,
not, or) adds 1 to the cost. E.g. the cost of (1 + x3) (z3) is 3.

Solution:
QMClt
My = {T1T2T3,T1T2x3,T1 X2 23,21 T2 T3, L1 L2 T3, L1 T2 T3}
M, = {T17T2,T2T3,T1 23, T2 T3,T1 T2, T1 T3}
P =0
M, = 0
P, = {Z1%3,T2T3,T1x3,T2T3,T1 T2, T1 T3}
QMCs :
FFF_FFT _FTT TFF TTF TTT
mwm| T T F F F F
mwm| T F F T F F
TZaes| F T T F F F
wes| FOF T F F T
ma| FOF F F T T
nw| F O F F T T F

Final result: There are two solutions with optimal cost 8 which are actually the only solutions with
three polynomials:

1. f=x2234+T1 22+ 2173

2. f=x0x3+T2T3 +T123

117

Problem 1.105: Use the algorithm of Quine-McCluskey to determine the minimal polynomial
of the following functions:

1 22 23 247 fi 1l 22 23 247 fo
F F F FI|F FF F F [T
F F F T]|F F F F T|F
F F T F|T F F T F|T
F F T T|T F F T T|F
F T F F|T F T F F|F
F T F T|T F T F T|F
F T T F|T F T T F|F
F T T T|T F T T T|T
T F F F|T T F F F|T
T F F T|F T F F T|T
T F T F|F T F T F|F
T F T T|T T F T T|F
T T F F|T T T F F|F
T T F T|F T T F T]|F
T T T F|F T T T F|F
T T T T|F T T T T|T

Solution: For fi, we first enter the monomials and delete the rows that do not result in a monomial:

xl x2 x3 x4 Monomaials
F F T F |z1%22923"24°
F F T T | 21°22° 23" 24!
F T F F | 21°22'23%24°
F T F T | 21° 22" 23° 24!
F T T F | 21°22' 23! 24°
F T T T | 21°22' 23 24!
T F F F | z1'22°23%24°
T F T T |z1t22°23 24!
T T F F | z1'22'23%24°

The next two tables show each step in the Quine McCluskey Algorithm.

zl x2 x3 x4 | Monomials
F F T X | 21922237
0,.91,.40
E § $ _'I:_ Iio chl mil rl x2 x3 x4 | Monomials
LT T F X T X | 219237
X F T T | z2°x3 z4 0 a1
1,00 ,.40 F T X X zl” 22
X 7T F F | 22" 23" z4 0 ol 1
F T X T 21°2 24 X F T T | a2a3ad
F T T X | 21%22'23 X T F F|a2adad
F T F X | 21%22" 23° T X F F|al'edat
T X F F | 21'23%24°
F T X F | 21°2"24°

Finally, we have to determine the prime implicants that form the minimal polynomial.

FFTF_FFTT_FTFF_FTFT_FITF _FTTT_TFFF_TFIT_TTFF
wiz3 | T T F F T T F F F
r122 F F T T T T F F F
2x3x4 | F T F F F F F T F
w273z4 | F F T F F F F F T
217324 | F F F F F F T F T

All prime implicants but the last one are essential. Hence, the minimal polynomial of f; is:

fi=2la3+ 2122+ 222324 + 2223 24

For f2, we first enter the monomials and delete all rows which do not result in a monomial and get the
following table from which we can start the algorithm from.

118

35pt

xl x2 x3 x4 Monomzals
F F F F | 219229237 24"
F F T F | 21°22°23" 24°
F T T T |x1°22' 23" 24"
T F F F | 21t 22° £3° £4°
T F F T |a1'22°23%24"
T T T T |z1ta2! 23" 24
The next table shows the only step in the Quine McCluskey Algorithm that can be made for this
function.
xl x2 23 x4 | Monomials
F F X F | 21922%24°
X F F F | 22°23°24°
T F F X | 21'22°23°
X T T T/ a2'z3 24!
We are already done after one step. Now, we have to find out the prime implicants that form the minimal
polynomial.
FFFF FFTF TFFF TFFT FTTT TTTI
zlx2zd T T F F F F
22324 T F T F F F
xlx223 F F T T F F
223 x4 F F F F T T

We see that all of the prime implicants but the second one are needed for the minimal polynomial.
Hence, we are finished and can write the polynomial. Our resulting polynomial is:

fo=xla2zd + 212222 + 2l 234

119

Problem 1.106 (Quine-McCluskey with Don’t-Cares)

How can the Quine-McCluskey algorithm be modified to take advantage of don’t-cares? Find
out which steps of the algorithm are affected by this modification and explain how they change
by showing the respective steps of applying the algorithm to the function f(x1,22,23,24) that
yields T for x£1°22' 3% 249, 219 22! 23% 24!, 21022 23! 24°, 21! 220 23° 240, 21! 220 30 24!,
21t 220 231 240 211 221 230 z41, “don’t care” for £1° 220 230 249, 210 22! 231 241, 21" 22! 231 24!,
and F for the other inputs.

Solution: A nice explanation for the same function can be found at http://www-static.cc.gatech.
edu/classes/AY2005/cs3220_spring/quine-mccluskey.pdf. One basically takes all all inputs with a
don’t-care output into account in QMC,, where the prime implicants are determined. In the top row of
the table used for QMC,, the don’t-cares are not included.

120

15pt

http://www-static.cc.gatech.edu/classes/AY2005/cs3220_spring/quine-mccluskey.pdf
http://www-static.cc.gatech.edu/classes/AY2005/cs3220_spring/quine-mccluskey.pdf

Problem 1.107 (CNF with Quine-McCluskey) 14ntin

In class you have learned how to derive the optimal formula for a given function in DNF form
using the Quine-McCluskey algorithm. It appears that the same algorithm could be applied to
find the optimal formula in CNF form. Think of how this can be done and apply it on the function
defined by the following table:

4444 mmB
e B I B s B | e
e T B i B s I B o | B
SR T e R G Y

Hint:
The basic rule used in the QMC algorithm: az 4+ aZ = a also applies for formulas in CNF: (a + z) (a + T) =

(a)

Solution:
QMCll
Co = {x1+T2+735,Z1 + T2+ 23,1 + T2+ T3}
P =0
Ci = {Z2+4+73,T1+7T2}
P, = {Z2+7%3,71+7T2}
QMCs :

FTT TTF TTT
Ttz | F T F
Ti+®m | T F F

Final result:
f = (T2 +T3) (T1 + 72)

121

1.6.5 A simpler Method for finding Minimal Polynomials

10pt

Problem 1.108 (Karnaugh-Veitch Minimization)
Given the boolean function f = Bx D+ C + B * (D + A) * (A + D):

1.

2.

Use a KV map to determine the minimal polynomial for the function.

Try to further reduce the cost of the resulting polynomial using boolean equivalences. The
result does not need to be a polynomial.

Using boolean equivalences, transform the original expression into the the result from (2).
Show all intermediate steps.

Solution:

1.

2.
3.

The KV map looks like this:
AB | AB | AB | A

CD| T T T

CD| F | F | F

CD| F | F | F

T

CD| T F F

The minimal polynomial is: D B+ D C
We can reduce the cost by 1 if we use the following expression: f = D * (B + C)

[T
IR
¥ K K ¥
EEE
* ¥
aAa
+ +
ol =
* ¥
* 4
N
l’
|
+
S

122

Problem 1.109 (Karnaugh-Veitch Diagrams)

1. Use a KV map to determine all possible minimal polynomials for the function defined by

the following truth table:

e e B B I B B IO M M e M B e M M [0 S
e B e M M i M i n B I B B s M 5 e o M [H 0
e e M i B B B B B B iy B B s B s B | RO

e e M B B s B B s B B s B B B B B e s [

R e i I R I R I IR |

2. How would you use a KV map to find a minimal polynomial for a function with 5 variables?
What does your map look like? Which borders in the map are virtually connected? (A

simple but clear explanation suffices.)

Solution:
1. The resulting KV Map is:

AB | AB | AB | AB
CD| F T T T
CD| T F F T
CD| F T T T
CD| T T T F

The two possible minimal polynomials are:

() AD+AC+BCD+ACD+BCD+BCD

(b) AD+AC+BCD+ACD+BCD+ABD
2. The picture below should be self explanatory:

123

10min

Problem 1.110 (CNF with Karnaugh-Veitch Diagrams) bk
KV maps can also be used to compute a minimal CNF for a Boolean function. Using the function
f(x1,22,23) that yields T for #1°22°23% 21922 23%, 21922 23!, 21 22°23°, and F for the
other inputs, develop an idea (and verify it for this example!) how to do this.

Hint: Start by grouping F-cells together.

Solution: Grading: Assuming 3 pt = 100%:

e 1 pt for the map

e 0.5 pt for correct grouping

e 1 pt for a reasonable description of the procedure

e 0.5 pt for a correct minimal CNF

124

Problem 1.111 (Karnaugh-Veitch Diagrams with Don’t-Cares)
In some cases, there is an input d € dom(f) to a boolean function f: B® — B for which no
output is specified — because the input is invalid or it would never occur. In a truth table for f,
a function value f(d) would be written as X instead of F or T, which means, “Don’t care!”
Describe how don’t-cares can be utilized when determining the minimal polynomial of a
Boolean function using a KV map.
Note: Considering don’t-cares is particularly beneficial when designing digital circuits. This will be
done in GenCS 2. Just consider an electronic device with six states, which we can conveniently encode by
using three boolean memory elements, which leads to 2% — 6 = two leftover “don’t-care” states.

Solution: One tries to assign values, either F or T, to the don’t-care fields that lead to maximal
groups in the KV map.

125

10pt

Problem 1.112 (Don’t-Care Minimization) 10pt

1. Devise a concrete Boolean function f: B* — B that gives T for 6 of the 16 possible inputs,
F for 7 inputs, and “don’t care” for the remaining 3 possible inputs.

2. Apply the don’t-care minimization algorithm from the previous exercise to it.

3. Then replace all don’t-cares by T, do minimization without don’t-cares, compare, and give
a short comment.

126

1.7 Propositional Logic
1.7.1 Boolean Expressions and Propositional Logic 5
pt

Problem 1.113 (The Nor Connective) Tmin
All logical binary connectives can be expressed by the | (nor) connective which is defined as
A | B:=—(A Vv B). Rewrite PV =P (tertium non datur) into an expression containing only | as
a logical connective.

Hint: Recall that ~A < A | A.

Solution: P\/ﬁP:ﬁﬁ(P\/ﬁP) :ﬁ(P\LﬁP) = (P\L(P\LP))J,(P\L(P\LP))

127

1.7.2 Logical Systems and Calculi

Problem 1.114 (Calculus Properties)
Explain briefly what the following properties of calculi mean:

e correctness

e completeness

Solution:

e correctness (H - B implies H = B) - A calculus is correct if any derivable(provable) formula is also
a valid formula.

e completeness (H |= B implies H F B) - A calculus is complete if any valid formula can also be
derived(proven).

128

1.7.3 Proof Theory for the Hilbert Calculus

Problem 1.115: We have proven the correctness of the Hilbert calculus H° in class. The
problems of this quiz is about two incorrect calculi C! and C? which differ only slightly from H°.
What makes them incorrect?

Hint: The fact that H° has two axioms, but each of C' and C? only have one is not the point.
Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus CT incorrect?

o C! Axiom:P = PAQ

o Inf Rul A=B AMP A Subst
e ———— Subs
° nference Rules B B/P|A

Why is this calculus C? incorrect?

e C? Axiom: P = (Q = P)

AVvB A

e (C? Inference Rules: T/\B R2 m Subst

Solution: A correct calculus requires valid axioms.
However the Axiom of C' is not valid since the assignment ¢ = [T/ P], [T/Q)], [F/R] makes it false.

129

5pt

Problem 1.116 (Almost a Proof)
Please consider the following sequence of formulae: it pretends to be a proof of the formula A = A
in #°. For each line annotate how it is derived by the inference rules from proceeding lines or
axioms. If a line is not derivable in such a manner then mark it as underivable and explain what
went wrong.

Use the aggregate notation we used in the slides for derivations with multiple steps (e.g. an

axiom with multiple applications of the Subst rule)
1.
2.
3.
4

5.

A= (B=A)
B=A
B= (A=B)

.A=B

B=A)= (A= B=A))

6. (A= B=A)=(A=B)=(A=A))
7. (A=B)=(A=A)
8. A=A

Solution:
1. A= (B=A) Ax1 with [A/P] and [B/Q]
2. B= A underivable
3. B= (A=B) Ax1 with [B/P] and [A/Q)]
4. A= B underivable
5. (B=>A)= (A= (B=A)) Ax1 with [B = A/P] and [A/Q)]
6. A= (B=A)=(A=B)= (A= A)) Ax2 with [A/P], [B/Q] and [A/R]
7. (A=B)= (A= A) MP16
8. A=A MP47

130

Problem 1.117: We have proven the correctness of the Hilbert calculus H° in class. The
problems of this quiz is about two incorrect calculi C* and C? which differ only slightly from #.

What makes them incorrect?
Hint: The fact that H° has two axioms, but each of C' and C? only have one is not the point.
Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus C! incorrect?

e C! Axiom: P= (Q = R)

A=B A

A
e C! Inference Rules: T MP m Subst

Solution: A correct calculus requires valid axioms.
However the Axiom of C! is not valid since the assignment ¢ = [T/ P], [T/Q], [F/R] makes it false.

131

Problem 1.118 (Alternative Calculus)
Consider a calculus given by the axioms A V -A and A NB = B A A and the following
rules:

A=B A
———Transp ————— Subst
-B = -A [B/P]A

__ Prove that the calculvsissoond. 000000000
Solution: First we show that the axioms are theorems by constructing their truth tables:

A BJ]JAVB BVA|AAB=BAA
A -AJAV-A 0 O 0 0 1
0 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1

1 1 1 1 1

The substitutionn rule is shown to be sound in the slides, so we are left to show that transposition is
sound. We use a truth table to show that its outcome is true whenever the precondition is true.

A B -A -B|A=B | B=-A
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 0 1 1

All axioms and rules were shown to be sound, thus we can conclude that the calculus is sound.

132

Problem 1.119 (A calculus for propositional logic)
Let us assume a calculus for propositional logic that consists of the single axiom A = A and the

inference rule:
A= (B=C)

— = Subst
AAB=C [B/P]A

1. Show that this calculus is sound (i. e. correct).

2. Prove the formula ((P = Q) A P) = @ using this calculus.

Solution:

1. Induction over proof length:

e The axiom is valid.

e The first inference rule is valid.

e The substitution inference rule is valid (see lecture).
F A=A

2. F (P=Q)=(P=Q)
F (P=Q)AP)=Q

133

10ntin

Problem 1.120 (Hilbert Calculus)
Prove the following theorem using H?: (A = C)= A)= (A= C)= ((B=B)= A))

Solution:
Proof:
Pl (A=C)=(A=(B=B)=A)=((A=C)=A)=((A=C)=((B=B)=A))) (Swith [A = C/P],[A/Q],
P2 A= (B=B)=A) (K with [A/P],[B = B/Q)])
P3 (A= (B=B)=A)=(A=C)=A=(B=B)=A)) Kwith[A=((B=B)=A)/P,[A=C/Q)])
P4 (A=C)= (A= (B=B)=A)) (MP on P.2 and P.3)
P5 (A=C)=A)=((A=C)=((B=B)=A)) (MP on P.1 and P.4)

O

134

Problem 1.121 (A Hilbert Calculus)
Consider the Hilbert-style calculus given by the following axioms:

1. (FVF) = F (idempotence of disjunction)
2. F = (FV G) (weakening)

3. (GVF)= (FVG) (commutativity)

4. (G=H)= (FVG)= (FVH))

and the identities

1. A=B=-AVB

2. FAG=-(-FV-QG)

You can use the MP and substitution as inference rules:

A=B A
Subst
B [B/X](A)
Prove the formula PAQV (P V (=P V -Q))
Solution:
Proof:

P1 (P=-QVP)=FPV(FP=-Q))=(PAQV(P=-Q)VP)=(PAQVEPVFP=-Q)))

)
(ax.4 with [P A Q/F],[(P = -Q) VP/G],[P V (P = -Q)/H])

P2 (P=-QVP)= (PV(P=-Q) (ax.3 with [P/F],[P = —-Q/G])
P3 (PAQV(P=-QVP)=(PAQV(PV(P=-Q)) (MP on P.1 and