General Computer Science I (320101) Fall 2014

September 25. 2014

Abstract

This document accompanies the traditional SML tutorial in GenCS. It contains a
sequence of simple (but increasingly difficult) problems designed to practice the art
of recursive programming.

The problems in this document are intended for self-study, they are supplied
with solutions(on a separate document at http://kwarc.info/teaching/GenCS1/
sml-tutorial-with-solutions.pdf).

As most students have never programmed SML (or programmed at all), most
students only manage to solve the first five to 10 problems. This is to be expected,
and sufficient, since the purpose of the tutorial is to get students started at all and
jointly remove the first roadblocks, so that they can continue alone (or in groups)
after that.

The problems from the first three assignments should be doable after the first two
lectures on SML, the later problems can be tackled as the lecture progresses.

Contents

Practice Problems 1: SML Basics
Practice Problems 2: Arithmetics
Practice Problems 3: Sorting

Practice Problems 4: Data Types

Practice Problems 5: Higher-Order Functions

Practice Problems 1 (SML Basics)

Problem 1.1 (Head and Tail)
Program the following elementary list functions in SML and test them on three examples
each. Please note that your program must work on every input except the empty list.

1. head takes a list L as input and returns the first element of L

2. tail takes a list L as input and returns the list consisting of all elements of L in original
order except the first one.

Problem 1.2 Define the member relation which checks whether an integer is member of
a list of integers. The solution should be a function of type int * int list —> bool, which
evaluates to true on arguments n and [, iff n is an element of the list I.

Problem 1.3 Define the subset relation. Set T is a subset of S iff all elements of T" are
also elements of S. The empty set is subset of any set.

Hint: Use the member function from ?prob.member?

Problem 1.4 Define functions to zip and unzip lists. zip will take two lists as input and
create pairs of elements, one from each list, as follows: zip [1,2,3] [0,2,4] ~ [[1,0],][2,2].[3.4]].
unzip is the inverse function, taking one list of tuples as argument and outputing two
separate lists. unzip [[1,4],[2,5],[3,6]] ~ [1,2,3] [4,5,6].

Problem 1.5 Declare a (abstract) data type for natural numbers and one for lists of
natural numbers in SML. Write an SML function that given two natural number n and
m (as a constructor term) creates the list [n,n + 1,...,m — 1,m] if n < m and raises an
exception otherwise.

Problem 1.6 Write three SML functions nth, take, drop that take a list and an integer as
arguments, such that

1. nth(xs,n) gives the n-th element of the list xs.
2. take(xs,n) returns the list of the first n elements of the list xs.

3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.
In all cases, the functions should raise the exception Subscript, if n is negative or the list xs
has less than n elements. We assume that list elements are numbered beginning with 0.
Problem 1.7 Write three SML functions rev, take, drop operating on lists (Ist) and integers
(n), such that

1. rev(Ist) returns the list Ist in reversed order.

2. last(lst,n) returns the list of the last n elements of the list Ist.

Make only use of the :: and @ built-in operators or those functions you have defined yourself.
Note that n is always a positive integer. Assume that list elements are numbered beginning
with 0.

Problem 1.8 Write an SML function that tabulates lists, i.e tabulate(f,n) evaluates to the
list [f(0),...,f(n—1)]. As en example if f(x)=2xx and n=[0,1,2] then tabulate(f,n)=[0,2,4]

Practice Problems 2 (Arithmetics)

Problem 2.1 (Factorial)
Write a recursive procedure fact : int —> real, that computes the factorial function n! =
1-2-----n, where 0! = 1. We want the procedure fact to diverge for negative arguments
(on an abstract interpreter without resource limitations).

What is the largest number n you can compute n! for on your system?

Problem 2.2 Define a function mymax over SML lists of integers. Here, we take the
maximum of an empty list to be the “default value” 0. You might want to consider a
notation of type mymax(x::y::;ys) and work with the first two elements of the list in the step
case.

Problem 2.3 Generalize the mymax function from ?prob.maxint? to general lists with an
ordering function (i.e. a function of type ('a * 'a) —>bool) and a default value of type 'a,
which are passed as arguments. Given a list | an ordering relation ord, and a default value
d, calling gmax(l,ord,d) evaluates to the ord-maximal element of I, or d, if | is empty.

Test this on lists of digits with the ordering relation given by 1 <3 <2 <5 <7<8<
4<9<6.
Problem 2.4 (Infinite Precision Arithmetics)
We represent natural numbers of arbitrary length by non-empty lists of digits. Write SML
functions for the arithmetical operations of addition, multiplication, integer division and
modulo.
Problem 2.5 (Binary and Decimal Addition)
Define binary and decimal addition, and multiplication on lists of digits.

Hint: This is just a sneaky way of getting you to practice with lists.

For the decimal addition function, we represent natural numbers as lists of of digits, e.g.
[5,3,4] for the number 534. Now the function badd works as follows: badd([2,8],[1,3]) evaluates to
[4,1].

The binary addition function is similar, only have it operates on lists of binary digits, i.e. the
numbers 1 and 0.

Problem 2.6 Program the function f with f(z) = 2 on unary natural numbers without
using the multiplication function.

Problem 2.7 (Floating Point Powers)

Write a recursive procedure power : real x int —> real, that computes the power x” for a real
number z and a natural number n by floating point operations. What is the result of
power(3.0,100), is this really the number 3'% (discuss)?

Practice Problems 3 (Sorting)

Problem 3.1 (Sorting a list)
Write a function that takes a list of strings and sorts it in ascending order like in dictionary.

Problem 3.2 Write a function split that takes a string (a sentence) and returns a list of
all pairs of strings one can get by splitting the sentence between any two words. A word is
defined as a sequence of symbols between two spaces or a space and nothing. For example,

split " We really love SML!";
val it = [("We", "really love SML!"), (" We really”, "love SML!"),
(" We really love”, "SML!")]

Problem 3.3 (Ordering Function)
Write an SML function that takes an int list and sorts it in ascending order. For example:

sort [7,4,1,3];
val it = [1,3,4,7];

Practice Problems 4 (Data Types)

Problem 4.1 Using the abstract data type of truth functions, give the defining equations
for a function myif that takes three arguments, such that myif(X,Y,Z) behaves like “if X then
Y, else Z”.

Hint: There is a control structure if...then...else in SML, of course you are not supposed to
use that.

Problem 4.2 Write three variants of the member function in SML, where member(x,xs)
returns true, iff x is an element in xs.

1. the first variant should not use another function.

2. the second variant should be non-recursive, using the function myexists (write that as
well) that takes a property p and a list | as arguments and returns true, iff there is
an element a in | such that p(a) evaluates to true.

3. the third variant should be non-recursive using the foldl function.

Problem 4.3 (Your own lists)

Define a data type mylist of lists of integers with constructors mycons and mynil. Write
translators tosml and tomy to and from SML lists, respectively.

Problem 4.4 Declare a data type myNat for unary natural numbers and NatList for lists
of natural numbers in SML syntax, and define a function that computes the length of a
list (as a unary natural number in mynat). Furthermore, define a function nms that takes
two unary natural numbers n and m and generates a list of length n which contains only
ms, i.e. nms(s(s(zero)),s(zero)) evaluates to construct(s(zero),construct(s(zero),elist)).
Problem 4.5 (Unary natural numbers)

Define a datatype nat of unary natural numbers and implement the functions

e add = fn : nat * nat —> nat (adds two numbers)

e mul = fn : nat * nat —> nat (multiplies two numbers)

4

Problem 4.6 (Nary Multiplication)
By defining a new datatype for n-tuples of unary natural numbers, implement an n-ary
multiplications using the function mul from 7prob.natoper?. For n = 1, an n-tuple should
be constructed by using a constructor named first; for n > 1, further elements should be
prepended to the first by using a constructor named next. The multiplication function nmul
should return the product of all elements of a given tuple.

For example,
nmul(next(s(s(zero)),

next(s(s(zero)),

first(s(s(s(zero)))))))
should output s(s(s(s(s(s(s(s(s(s(s(s(zero)))))))))))) since 223 = 12.

Practice Problems 5 (Higher-Order Functions)

Problem 5.1 Write a recursive higher-order SML function mapcan that maps a list-valued
function f over a list and appends all the result lists to a single list. What is the SML
type of this function (explain).

Write versions of map and mapcan that map a binary function over two lists. What are
the SML types of these functions (explain).

Problem 5.2 Write a non-recursive variant of the member function from ?prob.member?
using the foldl function.

Problem 5.3 (Higher-Order Functions)
Write three higher-order functions that take a predicate p (a function with result type bool)
and a list [.

e myfilter that returns the list of all members a of | where p(a) evaluates to true.

e myexists that returns true if there is at least one element a in [, such that p(a) evaluates
to true.

e myforall that returns true if p(a) evaluates to true on all elements of [.

Hint: If you are in need of a test predicate, you can work on a list [of ints and use the “even
number” predicate:

fun even n = n mod 2 = 0;

Hint: We expect a different solution here than the solution for the next problem.

Problem 5.4 (List functions via folding)
Write the following procedures using foldl or foldr

1. length which computes the length of a list

2. concat, which gets a list of lists and concatenates them to a list.

3. map, which maps a function over a list

4. myfilter, myexists, and myforall from the previous problem.

Problem 5.5 (Understaning map)
Given the SML higher-order function fun f x = fn (y) => y::x and the list val | = [1,2,3].

e Determine the types of f and map (f)

e cvaluate the exression map (f 1) |

Problem 5.6 Write a function napply that takes a function f:int—>int and an integer
n, and returns the result of n applications of f to itself, starting with number n as its
argument. What does napply(fn x=>x+1, n) numerically compute? Is there any n for which
napply(fn x=>x div 2, n) returns a non-zero value?

