Assignments for General CS 2 (320201)

Michael Kohlhase
Jacobs University Bremen
For Course Purposes Only

September 16, 2013

Contents

Quiz 1: Natural Numbers 2
Quiz 2: Unary natural numbers 3
Quiz 3: Relation properties 4
Quiz 4: SML 5
Quiz 5: Abstract data types 6
Quiz 6: Codes \& Boolean Expressions 7
Quiz 7: Call by value 8
Quiz 8: QMC 9
Quiz 9: Boolean Expressions 10
Quiz 10: Normal forms and Landau sets 11
Quiz 11: Graphs 12
Quiz 12: Calculi and boolean expressions 13

Quiz 1: Natural Numbers(Given Sep. 14.)

Problem 1.1 (Addition Definition)

Give the two basic rules that define the "addition" operation. Provide examples along with and a mathematical representation for each rule stated. Use the unary representation of numbers (e.g. o for $0, s(o)$ for 1 and so on).

Quiz 2: Unary natural numbers(Given Sep. 15.)

Problem 2.1 (Peano's induction axiom)

State Peano's induction axiom and discuss what it can be used for.

Problem 2.2 (Natural numbers)
Prove or refute that $s(s(o))$ and $s(s(s(o)))$ are unary natural numbers and that their successors are different.

Quiz 3: Relation properties(Given Sep. 22.)

Problem 3.1 (Lists)

Write an SML function that returns the greatest positive number in a list. If there are no positive numbers in the list it should return 0 .

Examples:

```
max [1,3,-2];
val it = 3 : int
max [-1,-2];
val it = 0 : int
```


Quiz 4: SML(Given Sep. 29.)

Problem 4.1 (Lists)

Write an SML function that returns the sum of the last 2 elements of a list of integers. If the list has less than 2 elements simply return the sum of all elements.

Quiz 5: Abstract data types(Given Oct. 6.)

Problem 5.1 (ADTs and Ground Constructor Terms)
Given the ADT

$$
\langle\{\mathbb{A}, \mathbb{B}\}, M\rangle
$$

write down the constructor declarations, i.e. the set M such that the following are ground constructor terms of the respective sorts:

ground constructor term	sort
$g(a, c(a, b))$	\mathbb{B}
$f(g(d(a, e)))$	\mathbb{A}
$c(b, f(g(b, a)))$	\mathbb{A}

Quiz 6: Codes \& Boolean Expressions(Given Nov. 2.)

Problem 6.1 (Prefix codes)
What is a prefix code?
4pt

8 pt
Problem 6.2: Let $e:=(\overline{x 1} * x 2+\overline{x 1+x 2} *(x 3+x 4))$ and $\varphi:=[F / x 1],[T / x 2],[F / x 3],[T / x 4]$, compute the value $\mathcal{I}_{\varphi}(e)$, tracing all computational steps.

Quiz 7: Call by value(Given Nov. 20.)

Problem 7.1 (Call by Value)
Explain the concept of a "call-by-value" programming language in terms of evaluation order. Give an example program where this affects evaluation and termination, explain it.

Quiz 8: QMC(Given Nov. 16.)

Problem 8.1 (Practising Quine McCluskey)
12 pt
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the following function:

$x 1$	$x 2$	$x 3$	f
F	F	F	F
F	F	T	F
F	T	F	T
F	T	T	F
T	F	F	T
T	F	T	T
T	T	F	F
T	T	T	T

Quiz 9: Boolean Expressions(Given Nov. 10.)

Problem 9.1 (Evaluating Expressions)
Given $\varphi_{1}:=\left(\left[\mathrm{T} / x_{1}\right],\left[\mathrm{F} / x_{2}\right],\left[\mathrm{F} / x_{3}\right]\right)$ and $\varphi_{2}:=\left(\left[\mathrm{F} / x_{1}\right],\left[\mathrm{T} / x_{2}\right],\left[\mathrm{F} / x_{3}\right]\right)$ write a boolean expression containing the variables x_{1}, x_{2} and x_{3} that evaluates to T under φ_{1} and to F under φ_{2}. Show the evaluation of your expression under the two assignments step by step.

Quiz 10: Normal forms and Landau sets(Given Nov. 17.)

Problem 10.1 (CNF and DNF)

Write the CNF and DNF of the boolean function that corresponds to the truth table below.

x_{1}	x_{2}	x_{3}	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Problem 10.2 (Landau sets)
Order the landau sets below by specifying which ones are subsets and which ones are equal (e.g.: $O(a) \subset O(b) \subset O(c) \equiv O(d) \subset O(e) \ldots$)

$$
O\left(n^{2}\right) ; O((n)!) ; O(|\sin n|) ; O\left(n^{n}\right) ; O(1) ; O\left(2^{n}\right) ; O\left(2 n^{2}+2^{72}\right)
$$

Quiz 11: Graphs(Given Dec. 7.)

Problem 11.1 (Directed Graph)

We call a graph connected, iff for any two nodes n_{1} and n_{2} there is a path starting at n_{1} and ending at n_{2}.
a. Look at the directed graph bellow. How many initial, terminal nodes and paths does it have?
b. Complete the graph by adding directed edges such that it becomes a connected and for each node $n, \operatorname{indeg}(n)=\operatorname{outdeg}(n)$. How many initial and terminal nodes does your graph have now?

Quiz 12: Calculi and boolean expressions(Given Dec. 1.)

Problem 12.1 (Calculus Properties)

Explain briefly what the following properties of calculi mean:

- correctness
- completeness

Problem 12.2 (Properties of boolean expressions)
In the table below mark the properties that each of the expressions has.

	valid	satisfiable	falsifiable	unsatisfiable
$\left(x_{1}+x_{2}\right) * \overline{x_{1}}$				
$\left(x_{1}+x_{2}\right) *\left(\overline{x_{1}} * \overline{x_{2}}\right)$				
$x_{1} * x_{2}+\left(\overline{x_{1}}+\overline{x_{2}}\right)$				

