Assignments for General CS 2 (320201)

Michael Kohlhase
Jacobs University Bremen
For Course Purposes Only

September 16, 2013

Contents

Quiz 1: Basic Math 2
Quiz 2: SML Types 3
Quiz 3: Defining Equations 4
Quiz 4: ADT and SML datatypes 5
Quiz 5: Abstract Procedures 6
Quiz 6: Formal Languages and Codes 7
Quiz 7: Boolean Expressions 9
Quiz 9: Quine McClusky Algorithm 11

Quiz 1: Basic Math(Given Sept. 19.)

Problem 1.1 (Greek Alpabet)

Fill in the blanks in the table of Greek letters. Note that capitalized names denote capital Greek letters.

Symbol	θ	τ	ν	ι				
Name					gamma	chi	xi	rho

Solution:

Symbol	θ	τ	ν	ι	γ	χ	ξ	ρ
Name	theta	tau	nu	iota	gamma	chi	xi	rho

Problem 1.2: About the notions of transitive, reflexive, and function.

1. Give the definition of transitive as well as of reflexive relations.
2. Let $A:=\{1,2,3\}$. Provide an example or argue against existence of a total function $f: A \rightarrow$ A which is also a transitive but not a reflexive relation.

Quiz 2: SML Types(Given Sept. 26.)

Problem 2.1: Write down the type (with explicit brackets) of the following expressions

1. $([2,2],(o p *, o p+))$

Hint: op+ and op* are the arithmetic functions "plus" and "times".
2. fn (x:int) $=>(f n(y)=>x:: y)$

Problem 2.2: Write down for each of the following types an appropriate SML expression

1. ((int list) * int)-> (int list)
2. (int -> int) -> (int -> int)

Quiz 3: Defining Equations(Given Oct. 4.)

Problem 3.1: Figure out the functions on natural numbers for the following defining equations

$$
\begin{gathered}
\delta(0)=0 \\
\delta(s(n))=s(s(s(\delta(n))))
\end{gathered}
$$

Problem 3.2: Figure out the functions on natural numbers for the following defining equations

$$
\begin{gathered}
\mu(0)=0 \\
\mu(s(0))=0 \\
\mu(s(s(n)))=s(\mu(n))
\end{gathered}
$$

Quiz 4: ADT and SML datatypes(Given Oct. 10.)

Problem 4.1: Declare an SML datatype complex representing complex numbers and SML functions re and img where re returns as real numbers the real and img the imaginary component of the complex number.

Moreover write down the type of the constructor of complex as well as of the two procedures re and img.

Use SML syntax for the whole problem.

Solution:

```
datatype complex = complex of real * real;
(* val complex = fn : real * real -> complex *)
fun re(complex(x,_)) = x;
(* val re = fn : complex -> real *)
fun img(complex(_,y)) = y;
(* val img = fn : complex -> real *)
```

Problem 4.2: Translate the abstract data type given in mathmatical notation into an SML datatype

$$
\left\langle\{\mathbb{T}\},\left\{\left[c_{1}: \mathbb{T}\right],\left[c_{2}: \mathbb{T} \rightarrow \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}\right]\right\}\right\rangle
$$

Solution:
datatype $T=c 1 \mid c 2$ of $T \rightarrow(T * T)$

Problem 4.3: Translate the given SML datatype
into abstract data type in mathmatical notation.
Solution: $\left\langle\{\mathbb{T}\},\left\{\left[c_{1}: \mathbb{T}\right],\left[c_{2}: \mathbb{T} \rightarrow(\mathbb{T} \times \mathbb{T} \rightarrow \mathbb{T}) \rightarrow \mathbb{T}\right]\right\}\right\rangle$

Quiz 5: Abstract Procedures(Given Oct. 17.)

Problem 5.1: Explain the concept of a "call-by-value" programming language in terms of evaluation order. Give an example program where this effects evaluation and termination, explain it.

Note: One point each for the definition, the program and the explanation.
Solution: A "call-by-value" programming language is one, where the arguments are all evaluated before the defining equations for the function are applied. As a consequence, an argument that contains a non-terminating call will be evaluated, even if the function ultimately disregards it. For instance, evaluation of the last line does not terminate.

```
fun myif (true,A,_) = A | myif (false,_,B) = B
fun bomb (n) = bomb(n+1)
myif(true,1,bomb(1))
```

Problem 5.2: Give an example of an abstract procedure that diverges on all arguments, and another one that terminates on some and diverges on others, each example with a short explanation.

Solution: The abstract procedure $\left\langle f:: \mathbb{N} \rightarrow \mathbb{N} ;\left\{f\left(n_{\mathbb{N}}\right) \rightsquigarrow s\left(f\left(n_{\mathbb{N}}\right)\right)\right\}\right\rangle$ diverges everywhere. The abstract procedure $\left\langle f:: \mathbb{N} \rightarrow \mathbb{N} ;\left\{f\left(s\left(s\left(n_{\mathbb{N}}\right)\right)\right) \rightsquigarrow n_{\mathbb{N}}, f(s(o)) \rightsquigarrow f(s(o))\right\}\right\rangle$ terminates on all odd numbers and diverges on all even numbers.

Quiz 6: Formal Languages and Codes(Given Nov. 7.)

Problem 6.1: Given the alphabet $A=\{a, b, c\}$ and a $L:=\bigcup_{i=1}^{\infty} L_{i}$, where $L_{1}=\{\epsilon\}$ and L_{i+1} contains the strings $x, x b b, a c x$ for all $x \in L_{i}$.

1. Is L a formal language?
2. Which of the following strings are in L ? Justify your answer

$s_{1}=a c b b$	$s_{2}=b b a c$	$s_{3}=b b b a c$
$s_{4}=a c a c$	$s_{5}=a c a c b b$	$s_{6}=a c b b a c$

Solution:

1. L is a formal language as $L_{1} \in A^{+}$and every step from L_{i} to L_{i+1} concatenates only elements from A.
2. $s_{1}, s_{4}, s_{5} \in L$
[^0]Problem 6.2: Given the alphabets $A:=\{x, 3\}$ and $B:=\{7, @, \mathbf{z}\}$.

1. Is c with $c(x)=@ @ @$ and $c(3)=@ @ z 7$ a character code?
2. Is the extension of c on strings over A a code on strings? Explain your answer.

Solution: ${ }^{2}$

[^1]
Quiz 7: Boolean Expressions(Given Nov. 14.)

Problem 7.1: Is the expression $e:=(\overline{x 1}+x 2) *(\overline{x 1}+x 3)$ valid, satisfiable, unsatisfiable, falsifiable? Prove at least one property.

Problem 7.2: Give a model for $C_{b o o l}$, where the following expression are theorems: $a * \bar{a}, a+\bar{a}, \quad 10 \mathrm{pt}$ $a * a, \overline{a+a}$.

Hint: Give the truth tables for the Boolean functions.
Solution: Let $\mathcal{U}:=\mathbb{B}$, and $\mathcal{I}(0)=F, \mathcal{I}(1)=T$, and

$\mathcal{I}(+)$	T	F	$\mathcal{I}(*)$	T	F	$\mathcal{I}(-)$	
T	F	T	T	T	T	T	F
F	T	F	F	T	T	F	T

With this, we have the truth tables

a	\bar{a}	$a * \bar{a}$
T	F	T
F	T	T

a	\bar{a}	$a+\bar{a}$
T	F	T
F	T	T

a	$a * a$
T	T
F	T

a	$a+a$	$\overline{a+a}$
T	F	T
F	F	T

which verify that we have indeed found the desired model.

Quiz 9: Quine McClusky Algorithm(Given Nov. 28.)

Problem 9.1 (Practising Quine McCluskey)
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the following function:

$x 1$	$x 2$	$x 3$	f
F	F	F	F
F	F	T	F
F	T	F	T
F	T	T	F
T	F	F	T
T	F	T	T
T	T	F	F
T	T	T	T

Solution:	
$Q M C_{1}$:	
	$M_{0}=\left\{\overline{x_{1}} x_{2} \overline{x_{3}}, x_{1} \overline{x_{2}} \overline{x_{3}}, x_{1} \overline{x_{2}} x_{3}, x_{1} x_{2} x_{3}\right\}$
	$M_{1}=\left\{x_{1} \overline{x_{2}}, x_{1} x_{3}\right\}$
	$P_{1}=\left\{\overline{x_{1}} x_{2} \overline{x_{3}}\right\}$
	$M_{2}=\emptyset$
	$P_{2}=\left\{x_{1} \overline{x_{2}}, x_{1} x_{3}\right\}$

$Q M C_{2}$:

	FTF	TFF	TFT	TTT
$x_{1} \overline{x_{2}}$	F	T	T	F
$x_{1} x_{3}$	F	F	T	T
$\overline{x_{1}} x_{2} \overline{x_{3}}$	T	F	F	F

Final result: 1. $f=x_{1} \overline{x_{2}}+x_{1} x_{3}+\overline{x_{1}} x_{2} \overline{x_{3}}$

[^0]: ${ }^{1}$ EdNote: adapt the solution from indlang

[^1]: ${ }^{2}$ EdNote: adapt the solution from isacode

