
Name: Matriculation Number:

Midterm Exam

General CS 1 (320101)

October 21, 2008

You have one hour(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 55 minutes, leaving you 5 minutes for
revising your exam.

You can reach 29 points if you solve all problems. You will only need 27 points for a
perfect score, i.e. 2 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 1.3 1.4 2.1 2.2 3.1 3.2 Sum grade
total 2 2 3 4 3 5 6 4 29
reached

Good luck to all students who take this test

1



1 Mathematical Foundations
2pt
2minProblem 1.1 (Greek Alpabet)

Fill in the blanks in the table of Greek letters. Note that capitalized names denote capital
Greek letters.

Symbol θ τ ν ι
Name gamma chi xi rho

Solution:

Symbol θ τ ν ι γ χ ξ ρ
Name theta tau nu iota gamma chi xi rho

2



2pt3minProblem 1.2 (Properties of Sets)
Prove that:

1. A ∩ ((B ∪ C)) = A ∩B ∪ A ∩ C

2. A ∪B ∩ C = ((A ∪B)) ∩ ((A ∪ C))

Use MathTalk throughout the proof.
Solution:

1.
A ∩ ((B ∪ C)) = {x | x ∈ A ∧ (x ∈ B ∨ x ∈ C)}

= {x | (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)}
= A ∩B ∪A ∩ C

2.
A ∪B ∩ C = {x | x ∈ A ∨ (x ∈ B ∧ x ∈ C)}

= {x | (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)}
= ((A ∪B)) ∩ ((A ∪ C))

3



3pt5minProblem 1.3 (Sets and Functions)
Let A and B be sets such that:

• A: ∀S.S is a set⇒ (A ⊂ S)

• B: B = P(A)

and let f : A→ B be a total injective function from A to B.
Your task is to:

1. state when a function f : A→ B is called injective. Use math-talk.

2. identify A and B.

3. give an example for f or explain why f does not exist.

Solution:

1. ∀x, y ∈ A.f(x) = f(y)⇒ x = y

2. A = ∅, B = {∅}

3. f = ∅

4



4pt5minProblem 1.4 (Bernoulli inequality)
Prove by induction the Bernoulli inequality:

(1 + x)n ≥ nx

where n ∈ N, x ∈ Q, and x ≥ −1
Hint: You can acomplish this by proving a stronger statement first, namely that the left

hand side is greater or equal to nx+ 1.

Solution:
Proof :

P.1 We have two cases

P.1.1 n = 0:

P.1.1.1 (1 + x)0 = 1 ≥ 1 = 0x+ 1.

P.1.2 Step case: n =⇒ n+ 1:

P.1.2.1 Assume (1 + x)n ≥ nx+ 1.

P.1.2.2 (1 + x)n+1 = (1+x)(1 + x)n ≥ (1+x)(nx+1) = 1+nx+x+nx2 = (n+1)x+1+nx2 ≥
(n+ 1)x+ 1, since nx2 ≥ 0.

P.2 We have proven that (1 + x)n ≥ nx+ 1 thus (1 + x)n ≥ nx.

5



2 Abstract Data Types and Abstract Procedures
3pt
5minProblem 2.1 (ADT for trains)

Write an ADT for train configurations. Each train has a locomotive (engine) in the front
and a number of cars attached to it. Each car can be either a passenger car or a cargo car.
Cargo cars are characterized by capacity which can be either ’small’ or ’large’.

Using your representation of trains, write down a train with three passenger cars after
the engine and two cargo cars at the end, having large and small capacity, respectively.

Solution:

1. 〈{T,C}, {[large : C], [small : C], [loc : T], [pass c : T→ T], [carg c : C× T→ T]}〉

2. carg c(small, carg c(large, pass c(pass c(pass cloc))))

6



5pt15minProblem 2.2 (Abstract Procedures)

Given the ADT for natural numbers

〈{N}, {[o : N], [s : N→ N]}〉

and the following procedures:
〈f::N× N→ N ; {f(o, o) o, f(o, y) g(o, y), f(s(x), y) s(g(x, s(y)))}〉
〈g::N× N→ N ; {g(o, o) o, g(x, o) f(x, o), g(x, s(y)) s(s(f(x, y)))}〉

1. Show the computation process for:
f(s(s(o)), o)
and
f(s(o), s(s(o)))

2. What arithmetic expression does f compute and what arithmetic expression does g
compute?

3. Do f and g terminate for all inputs?

Solution:

1. f(s(s(o)), o) s(g(s(o), s(o)))
 s(s(s(f(s(o), o))))
 s(s(s(s(g(o, s(o))))))
 s(s(s(s(s(s(f(o, o)))))))
 s(s(s(s(s(s(o))))))

f(s(o), s(s(o))) s(g(o, s(s(s(o)))))
 s(s(s(f(o, s(s(o))))))
 s(s(s(g(o, s(s(o))))))
 s(s(s(s(s(f(o, s(o)))))))
 s(s(s(s(s(g(o, s(o)))))))
 s(s(s(s(s(s(s(f(o, o))))))))
 s(s(s(s(s(s(s(o)))))))

2. Both f and g compute the same function f(x, y) = g(x, y) = x+ 2(x+ y)

3. f and g terminate for all inputs.

7



3 Programming in Standard ML
6pt
10minProblem 3.1 (Frequency of characters in a list)

Write an SML function that given a string returns the frequency of characters in that
string. The signature of the function is fn : string -> (char * int) list

For example

freq "Red Riding Hood";

val it = [(#"R",2),(#"e",1),(#"d",3),(#" ",2),(#"i",2),(#"n",1),
(#"g",1),(#"H",1), (#"o",2)] : (char * int) list

Solution:

(*Removes a character from a list*)
fun remove (a, []) = [] |

remove(a, h::t) = if a = h then remove (a, t) else h::remove(a, t);

(*Counts the occurence of a character in a list*)
fun count(a, []) = 0 |

count(a, h::t) = if a = h then 1+count(a, t) else count(a, t);

(*The function that returns a list of character and frequency pairs*)
fun freq_help([]) = [] |

freq_help(h::t) = (h, count(h, h::t))::freq_help(remove(h, t));

(*Final function that explodes the string*)
fun freq(x) = freq_help(explode(x));

8



4pt10minProblem 3.2 (Find My Children)
Suppose you have 2 lists given, the first one contains husband-wife pairs, the second one
contains mother-child pairs. Write an SML function FatherChildren that returns a list
of all children for a given father, or nil if the father has no children yet. If the father is
not in the list, you raise a NoFather exception. Assume that there are no two fathers with
the same name, and there are no two mothers with the same name.

The signature of the function is

fn : string * (string * string) list * (string * string) list -> string list

ex:

val x = [("Brad", "Angelina"), ("Ramratan", "Shashi"), ("Dragi", "Vesna")];
val y = [("Angelina", "Shiloh"),("Angelina", "Knox"), ("Angelina", "Vivienne")

, ("Shashi", "Richa"),("Vesna", "Pavlinka")];

FatherChildren("Brad", x, y);
val it = ["Shiloh","Knox","Vivienne"] : string list

Solution:

exception NoFather;

(*Finds a mother for a given father*)
fun findMother(f, nil) = raise NoFather |

findMother(f, (a:string, b:string)::l) = if f = a then b else findMother(f, l);

(*Returns all the children for a given mother*)
fun findChildren(m, []) = [] |

findChildren(m, (a:string, b:string)::l) =
if m = a then b::findChildren(m, l) else findChildren(m, l);

(*Final function*)
fun FatherChildren(f:string, x, y) = findChildren(findMother(f, x), y);

9


