# Midterm Exam <br> General CS 1 (320101) 

October 21, 2008
You have one hour(sharp) for the test;
Write the solutions to the sheet.
The estimated time for solving this exam is 55 minutes, leaving you 5 minutes for revising your exam.

You can reach 29 points if you solve all problems. You will only need 27 points for a perfect score, i.e. 2 points are bonus points.

Different problems test different skills and knowledge, so do not get stuck on one problem.

|  | To be used for grading, do not write here |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| prob. | 1.1 | 1.2 | 1.3 | 1.4 | 2.1 | 2.2 | 3.1 | 3.2 | Sum | grade |
| total | 2 | 2 | 3 | 4 | 3 | 5 | 6 | 4 | 29 |  |
| reached |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Good luck to all students who take this test

## 1 Mathematical Foundations

Problem 1.1 (Greek Alpabet)
Fill in the blanks in the table of Greek letters. Note that capitalized names denote capital Greek letters.

| Symbol | $\theta$ | $\tau$ | $\nu$ | $\iota$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name |  |  |  |  | gamma | chi | xi | rho |

Solution:

| Symbol | $\theta$ | $\tau$ | $\nu$ | $\iota$ | $\gamma$ | $\chi$ | $\xi$ | $\rho$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | theta | tau | nu | iota | gamma | chi | xi | rho |

Problem 1.2 (Properties of Sets)
Prove that:

1. $A \cap((B \cup C))=A \cap B \cup A \cap C$
2. $A \cup B \cap C=((A \cup B)) \cap((A \cup C))$

Use MathTalk throughout the proof.

## Solution:

$$
\text { 1. } \begin{align*}
A \cap((B \cup C)) & =\{x \mid x \in A \wedge(x \in B \vee x \in C)\} \\
& =\{x \mid(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C)\} \\
& =A \cap B \cup A \cap C
\end{aligned} \quad \begin{aligned}
A \cup B \cap C= & \{x \mid x \in A \vee(x \in B \wedge x \in C)\} \\
\text { 2. } \quad & \{x \mid(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)\} \\
= & ((A \cup B)) \cap((A \cup C)) \tag{2.}
\end{align*}
$$

Problem 1.3 (Sets and Functions)
Let $A$ and $B$ be sets such that:

- A: $\forall S . S$ is a set $\Rightarrow(A \subset S)$
- $B: B=\mathcal{P}(A)$
and let $f: A \rightarrow B$ be a total injective function from $A$ to $B$.
Your task is to:

1. state when a function $f: A \rightarrow B$ is called injective. Use math-talk.
2. identify $A$ and $B$.
3. give an example for $f$ or explain why $f$ does not exist.

## Solution:

1. $\forall x, y \in A \cdot f(x)=f(y) \Rightarrow x=y$
2. $A=\emptyset, B=\{\emptyset\}$
3. $f=\emptyset$

Problem 1.4 (Bernoulli inequality)
Prove by induction the Bernoulli inequality:

$$
(1+x)^{n} \geq n x
$$

where $n \in \mathbb{N}, x \in \mathbb{Q}$, and $x \geq-1$
Hint: You can acomplish this by proving a stronger statement first, namely that the left hand side is greater or equal to $n x+1$.

## Solution:

Proof:
P. 1 We have two cases
P.1. $1 n=0$ :
P.1.1. $1(1+x)^{0}=1 \geq 1=0 x+1$.
P.1.2 Step case: $n \Longrightarrow n+1$ :
P.1.2.1 Assume $(1+x)^{n} \geq n x+1$.
P.1.2.2 $(1+x)^{n+1}=(1+x)(1+x)^{n} \geq(1+x)(n x+1)=1+n x+x+n x^{2}=(n+1) x+1+n x^{2} \geq$ $(n+1) x+1$, since $n x^{2} \geq 0$.
P. 2 We have proven that $(1+x)^{n} \geq n x+1$ thus $(1+x)^{n} \geq n x$.

## 2 Abstract Data Types and Abstract Procedures

## Problem 2.1 (ADT for trains)

Write an ADT for train configurations. Each train has a locomotive (engine) in the front and a number of cars attached to it. Each car can be either a passenger car or a cargo car. Cargo cars are characterized by capacity which can be either 'small' or 'large'.

Using your representation of trains, write down a train with three passenger cars after the engine and two cargo cars at the end, having large and small capacity, respectively.

## Solution:

1. $\langle\{\mathbb{T}, \mathbb{C}\},\{[$ large : $\mathbb{C}],[$ small : $\mathbb{C}],[$ loc: $\mathbb{T}],[$ pass_c $: \mathbb{T} \rightarrow \mathbb{T}],[$ carg_c : $\mathbb{C} \times \mathbb{T} \rightarrow \mathbb{T}]\}\rangle$
2. carg_c(small, carg_c(large, pass_c(pass_c(pass_cloc))))

## Problem 2.2 (Abstract Procedures)

Given the ADT for natural numbers

$$
\langle\{\mathbb{N}\},\{[o: \mathbb{N}],[s: \mathbb{N} \rightarrow \mathbb{N}]\}\rangle
$$

and the following procedures:

$$
\begin{aligned}
& \langle f:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{f(o, o) \rightsquigarrow o, f(o, y) \rightsquigarrow g(o, y), f(s(x), y) \rightsquigarrow s(g(x, s(y)))\}\rangle \\
& \langle g:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{g(o, o) \rightsquigarrow o, g(x, o) \rightsquigarrow f(x, o), g(x, s(y)) \rightsquigarrow s(s(f(x, y)))\}\rangle
\end{aligned}
$$

1. Show the computation process for:
$f(s(s(o)), o)$
and
$f(s(o), s(s(o)))$
2. What arithmetic expression does $f$ compute and what arithmetic expression does $g$ compute?
3. Do $f$ and $g$ terminate for all inputs?

## Solution:

1. $f(s(s(o)), o) \rightsquigarrow s(g(s(o), s(o)))$
$\rightsquigarrow s(s(s(f(s(o), o))))$
$\rightsquigarrow s(s(s(s(g(o, s(o))))))$
$\rightsquigarrow s(s(s(s(s(s(f(o, o)))))))$
$\rightsquigarrow s(s(s(s(s(s(o))))))$
$f(s(o), s(s(o))) \rightsquigarrow s(g(o, s(s(s(o)))))$
$\rightsquigarrow s(s(s(f(o, s(s(o))))))$
$\rightsquigarrow s(s(s(g(o, s(s(o))))))$
$\rightsquigarrow s(s(s(s(s(f(o, s(o)))))))$
$\rightsquigarrow s(s(s(s(s(g(o, s(o)))))))$
$\rightsquigarrow s(s(s(s(s(s(s(f(o, o))))))))$
$\rightsquigarrow s(s(s(s(s(s(s(o)))))))$
2. Both $f$ and $g$ compute the same function $f(x, y)=g(x, y)=x+2(x+y)$
3. $f$ and $g$ terminate for all inputs.

## 3 Programming in Standard ML

Problem 3.1 (Frequency of characters in a list)

6pt
10 min

Write an SML function that given a string returns the frequency of characters in that string. The signature of the function is fn : string $\rightarrow$ (char * int) list

For example
freq "Red Riding $_{\llcorner }$Hood";
val it $=[(\# " R ", 2),(\# " e ", 1),(\# " d ", 3),(\# " \sqcup ", 2),(\# " i ", 2),(\# " n ", 1)$, (\#"g",1),(\#"H",1), (\#"○",2)] : (char * int) list

## Solution:

```
(*Removes a character from a list*)
fun remove (a, []) = [] |
    remove(a, h::t) = if a = h then remove (a, t) else h::remove(a, t);
(*Counts the occurence of a character in a list*)
fun count(a, []) = 0 |
    count(a, h::t) = if a = h then 1+count(a, t) else count(a, t);
(*The function that returns a list of character and frequency pairs*)
fun freq_help([]) = [] |
    freq_help(h::t) = (h, count(h, h::t))::freq_help(remove(h, t));
(*Final function that explodes the string*)
fun freq(x) = freq_help(explode(x));
```


## Problem 3.2 (Find My Children)

Suppose you have 2 lists given, the first one contains husband-wife pairs, the second one contains mother-child pairs. Write an SML function FatherChildren that returns a list of all children for a given father, or nil if the father has no children yet. If the father is not in the list, you raise a NoFather exception. Assume that there are no two fathers with the same name, and there are no two mothers with the same name.

The signature of the function is

```
fn : string * (string * string) list * (string * string) list -> string list
ex:
```

```
val x = [("Brad", "Angelina"), ("Ramratan", "Shashi"), ("Dragi", "Vesna")];
```

val x = [("Brad", "Angelina"), ("Ramratan", "Shashi"), ("Dragi", "Vesna")];
val y = [("Angelina", "Shiloh"),("Angelina", "Knox"), ("Angelina", "Vivienne")
val y = [("Angelina", "Shiloh"),("Angelina", "Knox"), ("Angelina", "Vivienne")
, ("Shashi", "Richa"),("Vesna", "Pavlinka")];

```
        , ("Shashi", "Richa"),("Vesna", "Pavlinka")];
```

FatherChildren("Brad", x, y);

```
val it = ["Shiloh","Knox","Vivienne"] : string list
```


## Solution:

```
exception NoFather;
(*Finds a mother for a given father*)
fun findMother(f, nil) = raise NoFather |
    findMother(f, (a:string, b:string)::l) = if f = a then b else findMother(f, l);
(*Returns all the children for a given mother*)
fun findChildren(m, []) = [] |
    findChildren(m, (a:string, b:string)::l) =
    if m = a then b::findChildren(m, l) else findChildren(m, l);
(*Final function*)
fun FatherChildren(f:string, x, y) = findChildren(findMother(f, x), y);
```

