
General Computer Science I (320101) Fall 2014

TEX/LATEX Tutorial

Michael Kohlhase
Jacobs University Bremen

November 24, 2014

Abstract

This document is a tutorial for the use of TEX/LATEX in GenCS; it has two parts: The
first is a brief general introduction to the concepts of the “documents-as-programs” paradigm
and the TEX typesetting system from the perspective of Computer Science. The second is a
sequence of simple (but increasingly difficult) typesetting problems designed to practice the
art of typesetting beautiful documents with LATEX

Contents

1 Programming Documents 2

2 Learning LATEX by Example 8
2.1 LATEX Basics . 8
2.2 LATEX Math . 9
2.3 LATEX Macros . 10

1

1 Programming Documents

Idea: Even though documents should be thought of as sequences of characters with markup (and
images, formulae, tables, etc.), we can also think of them as programs that produce such characters
with markup. In some situations, this is profitable, e.g. when the documents have parts that
can be computed from the rest, e.g. a table of contents, the section numberings, or indices. In
such situations, the author does not need to type in the computable document fragments, but
can just represent them by a command. A conversion program interprets such a “document
program” (usually text interspersed with commands), executes all the commands, and outputs a
document (without commands), which can then be read. The main advantage of the “documents
as programs” paradigm is that the computed document fragments can never get out of sync with
the rest of the document, which eases the maintenance burden over the document life-cycle.

There are various implementations of this idea, in this section we present the TEX/LATEX system,
in which the pdflatex program is used to transform documents with macros into PDF. Systems
like PHP do similar things for the Web.

The TEX Typesetting System

B Definition 1.1 Typesetting is the process of creating the visual appearance
of a document by assembling glyphs (visual representations of characters; also
called types) on pages.

B

Since Gutenberg’s time (to ca. 1975), typeset-
ting was done by assembling movable types (spe-
cial metal positives of single letters) into lines
and later into pages, which were inked and the
printed; or using negatives to form cast-metal
positives for printing.

B Definition 1.2 TEX is a typesetting program designed by Donald Knuth in
1978. It combines movable types (character boxes) with macro programming.

B Definition 1.3 The pdftex program reads a file of text marked up with
TEX macros and outputs PDF.

B Example 1.4 (Hello World in TEX) pdftex typesets the following TEX
file

Hello, World \bye

The command sequence \bye stops pdftex and is not shown in the output.

©:Michael Kohlhase 1

Note that the “document program”

Hello, World \bye

the pdftex interprets all characters as “self-inserting characters”, i.e the character “a” is essentially
a command that inserts a character “a” into the PDF (in the right font and size).

We have already seen one document program command used by TEX above, and there are many
more. Most of them insert special characters into the document or change the formatting. But TEX
goes much further, it allows the author to define commands as well. This makes the TEX format
self-extensible, and into a very expressive special purpose programming language for documents.

2

TEX Macros for Programming Documents

B TEX uses command sequences (words starting with “\”; also called macros)
for special effects.

B Example 1.5 \bye stops the formatter, \alpha prints α, \int prints
∫

,. . .

B Users can also define TEX macros as abbreviations via \def

B Example 1.6 \def\tdm{Text and Digital Media} defines the macro \tdm.
We love the USC ‘‘\tdm’’! expands to
“We love the USC “Text and Digital Media”!

B TEX macros can have arguments specify with #1, #2. . . : delimit with { and
}

B Example 1.7 with the macro \def\tnwhat#1{Text and \textbf{#1}}

\tnwhat{Beer} expands to “Text and Beer”

©:Michael Kohlhase 2

TEX was invented by a mathematician, so it is not a surprise that it is the most capable tool for
typesetting formulae — an art that only a select few professional typesetters (humans who put
lead into rows) could do.

Mathematical Formulae in TEX

B Definition 1.8 TEX has a math mode for formulae delimited with $ (inline
math) or \[and \] (display math)

B Example 1.9 Some TEX commands can be used everywhere: e.g. the Greek
letters, \alpha prints α, \beta prints β,. . .

B Example 1.10 Many TEX commands only make sense in math mode: e.g.
superscripts with ^, e.g. x^3 gives x3, subscripts with _, e.g. x_{ij} gives
xij , \int prints

∫
, \frac{1}{2} prints 1

2 ,. . .

B Example 1.11 $\int_0^\infty f(\theta) d\theta$ expands to
∫∞
0
f(θ)dθ

B Example 1.12 Use macros in math mode as well: \def\frac#1#2{#1\over #2}

Then \[1+\frac{2}{2+\frac{3}{3+\ldots}}\] expands to

1 +
2

2 + 3
3+...

©:Michael Kohlhase 3

One of the things that TEX is useful for is to automate numbering of sections, subsections, foot-
notes, etc. For that TEX offers some basic data structures. Here we introduce counters, and show
how we can make simple sectioning macros from them.

TEX Counters

3

B TEX uses special macros as counters, \newcount, allocates a counter, \advance
alters it, and \the references it.

B Example 1.13 We define a sectioning macros

\newcount\seccount % allocate a new counter for sections
\newcount\subseccount % allocate a new counter subsections
\seccount0\subseccount0 % initialise both with 0
\def\section#1{ % begin macro definition
\advance\seccount by 1 % step the counter
\subseccount0 % reset the subsection counter
\textbf{\Large\the\seccount. #1} % section number and title
} % end macro definition
\def\subsection#1{\advance\subseccount by 1
\textbf{\large\the\seccount.\the\subseccount. #1}}

©:Michael Kohlhase 4

Anyone who is experienced in programming realizes that TEX is not a modern programming
language. But of course, it was conceived in 1978, the age of COBOL, and a lot has happened in
programming language design since then. But even if it is relatively inconvenient and ugly code,
it gets the job done.

We will now present a couple of internal macros that build up to more document automation that
shows the advantages of programming documents: a serial letter macro.

TEX Conditionals

B TEX provides some conditionals for your use:
e.g. \ifx compares two macros, \ifnum compares two number, and \ifmmode

tells you if you are in math mode.
\if〈〈cond〉〉...\else...\fi uses it.

B TEX uses special macros for user-defined conditionals, \newif\if〈〈cond〉〉,
allocates a conditional, 〈〈cond〉〉true and 〈〈cond〉〉false alter it,

©:Michael Kohlhase 5

Programming a Chain Letter

B Example 1.14 (A Parametric Reminder)

\def\reminder#1#2{\hfill Bremen, \today\par\bigskip
\noindent Dear #1,\par\medskip\noindent
please be sure that you will not forget to come to the lecture
today. We are planning big things.\par\medskip\noindent
Sincerely,\par\bigskip\noindent #2\newpage}

B Example 1.15 (Programming a Serial Letter)
We can use arbitrary characters to delineate arguments in macro definitions.

\def\sletter#1,#2;{\def\first{#1}\def\second{#2}\def\empty{}
\ifx\first\empty\else\reminder{#1}{Thomas \& Michael}
\ifx\second\empty\else\sletter#2,;\fi\fi}

4

\def\serialletter#1{\sletter #1;}

Also nothing prevents us from using recursion.

B Example 1.16 (Making a Serial Letter)

\serialletter{Mati, Anca, Isabel, Calin}

©:Michael Kohlhase 6

Our serial letter example shows that with a bit of programming effort the self-extensibility of
TEX can be used to automate various document-oriented tasks, or style the documents for a given
situation. Naturally, this brought forth a vibrant community that started swapping and re-using
TEX programs.

TEX Macro Packages

B Idea: Separate out common macro definitions into a separate file and include
that via \input. (So we can reuse them over multiple documents)

B Actually: many people have already done that.

B The AMS (American Mathematical Society) supplies AMSTEX: TEX macros
that make it more convenient to write Math (e.g. the \frac macro)

B Till Tantau supplies tikz (TEX ist kein Zeichenprogram): TEX macros that
allow you to draw images.

B Leslie Lamport supplies LATEX, a set of TEX packages and classes. pdflatex

is pdftex with the LATEX package macros pre-loaded.

B The bibTEX package handles bibliographic references.

©:Michael Kohlhase 7

The most widely used macro package for TEX is LATEX, there are tens of thousands of macro
packages that use the basic LATEX infrastructure. LATEX is the standard for high-end document
formatting for scientific/technical documents nowadays. We now show a typical document as
model for your own documents.

The Anatomy of a LATEX Document

B Example 1.17 A LATEX file: main.tex

\documentclass{article} % use the article class (Journal Article)
\title{Anatomy of a {\LaTeX} Document} % specify the title,
\author{Michael Kohlhase\\Jacobs University Bremen} % author,
\date{\today} % and date
\begin{document} % start the document
\maketitle % make the title
\tableofcontents % make the table of contents
\section{Introduction}\label{sec:intro}
This is really easy, just start writing,
\section{Main Part}\label{sec:main}

5

We refer the reader to~\cite{Lamport:ladps94} for details.
But there should be at least one formula:
\[1+\frac{2}{2+\frac{3}{3+\ldots}}\]
\section{Conclusion}\label{concl:intro}
As we already said in Section~\ref{sec:intro} on
p. \pageref{sec:intro} this was not so bad was it?
\bibliographystyle{alpha}
\bibliography{example}
\end{document}

B Format it with pdflatex main (generates main.aux for references)

©:Michael Kohlhase 8

and the bibTEX database used in it

B Example 1.18 a bibTEX file example.bib

@BOOK{Lamport:ladps94,
title = {LaTeX: A Document Preparation System, 2/e},
publisher = {Addison Wesley},
year = {1994},
author = {Leslie Lamport}}

B Generate bibliography with bibtex main(it knows about example.bib from main.aux)

B run pdflatex twice (to get all the cross-references right)

©:Michael Kohlhase 9

The Result (generated parts in red)

6

Anatomy of a LATEX
Document

Michael Kohlhase
Jacobs University Bremen

November 24, 2014

Contents
1. Introduction 1
2. Main Part 1
3. Conclusion 1

1. Introduction
This is really easy, just start writing,

2. Main Part
We refer the reader to [Lam84] for details. But there
should be at least one formula:

1 +
2

2 + 3
3+...

3. Conclusion
As we already said in Section 1 on p. 1 this was not so
bad was it?

References
[Lam94] Leslie Lamport, LaTeX: A Document Prepara-

tion System, 2/e, Addison Wesley, 1994.

©:Michael Kohlhase 10

7

2 Learning LATEX by Example

The best way of learning LATEX is to “program” a set of example documents. The problems below
provide you with a set of problems that gradually introduce the salient features of LATEX and
should get you going for most of the documents you will need initially.

Solutions to these problems are available at

http://kwarc.info/teaching/GenCS1/latex-tutorial-with-solutions.pdf.

But you should try them alone first to maximize learning.

There are good TEX, LATEX, and bibTEX tutorials on the Web which you should use for solving
these problems, but also consult [?, ?] and (if you want to drink from the source and know the
gory details) [?] (als known as the TEX bible). The course instructor and the TAs will be happy
to help you and get you unstuck, when necessary. But you should try to solve them by yourself
first to make progress.

But before you can start, you will need a LATEX installation on your computer, so that you can
format your documents and practice. For UNIX-based systems (e.g. linux and MacOSX), the
TeXLive distribution is currently the best (see http://www.tug.org/texlive/ for details and
installation instructions). For Windows, you should use MikTeX (see http://miktex.org).

You should not expect to be able to get through all the problems in the tutorial itself, indeed, if
you manage the first six or seven, then you are on a very good track. The remaining ones are for
self-study in the next weeks. The introduce the finer points of TEX/LATEX.

2.1 LATEX Basics

Problem 2.1 (Hello World in LATEX)
Write a “hello world” document in LATEX, i.e. a document that only contains the two words “Hello
World”.

Problem 2.2 (A LATEX with Title)
Write a document with a title, the date of today, and yourself as an author (with Jacobs University
as the affiliation) It should look like this:

The Evolution of Abstract Nonsense

General Computer Scientist
Jacobs University Bremen

gc.scientist@jacobs-university.de

23. July 2011

Problem 2.3 (A LATEX Document with Sections and Table of Content)
Extend the document from ?prob.doctitle? with a couple of sections and subsections of your choice
via the \section macro for sections and (correspondingly) \subsection for subsections.

Cross-reference various of the sections using the \label and \ref macros.

Hint: When you use the hyperref package (use \usepackage{hyperref} at the very end of the preamble),
then the references become hyper-references (clickable in the PDF). Try this on your document!

Problem 2.4 (Complex Tables)

Component % Comment

Monday Quizzes 30 to make you study contin-
uously

Homeworks 20 practice
Midterm Exam 20 to see if you excel at CS
Final Exam 30 to prove that

Write the GenCS Grading Table on the
right using the tabular environment.
Note that the first column in this table
is left aligned, the second one centered,

8

and the third one is 4 cm long and al-
lows multi-line content. Note further-
more, that there is a double line after the
first row.

The tabular environment takes a format string in the first argument. Here | makes a table
cell border, l and c specify left/centered alignment, and p{4cm} a paragraph box 4 centimeters
wide. & separates columns, \\ makes a new table row, and \hline a horizontal cell border.

Problem 2.5 (Creating a Bibliography)
Extend the paper from ?prob.docsections? with three references: your Bachelor’s thesis, your first
journal article, and your first book (make them up if you have not written those). You should use
the bibTEX program for this.

Hint: It is generally a good idea to start a bibTEX database of the scientific papers and books you have
read early, so that you can cite them in your papers later.

Hint: There is a relatively new successor to bibTEX called biblatex, you may want to eventually have
a look at that.

2.2 LATEX Math

Problem 2.6 (Simple Math Formulae)

The solutions of the quadratic equation ax2 + bx+ c = 0 are
−b±

√
b2 − 4ac

2a
.

Write this in LATEX

Problem 2.7 (A more complex Math Formula)

The Taylor series of
√

1 + x about x = 0 converges for |x| ≤ 1 and is given by

√
1 + x =

∞∑
n=0

(−1)n2n!

(1− 2n)(n!)2(4n)
xn = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . .

Write this in LATEX, but note that the last multi-equation is in “display style” (i.e. centered and
with bigger fonts).

Problem 2.8 (Matrices)
Write the following multiplication of 2× 2 matrices in LATEX:(

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b21 + a12b22
a21b12 + a22b21 a21b21 + a12b22

)

Problem 2.9 (Displayed Equations)
Write the formula from ?prob.math-display? as an equation array using the eqnarray environment
and reference the second equation in the text, so that it looks like

√
1 + x =

∞∑
n=0

(−1)n2n!

(1− 2n)(n!)2(4n)
xn (1)

= 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . . (2)

Now we reference the partial equations: the first with (1) and the second with (2). Note that
there is a variant eqnarray* that does not make the equation numbers.

9

2.3 LATEX Macros

Problem 2.10 (Matrix Macros)
You can make TEX macros to make your life easier.

1. Write a macro \ttmatrix that takes four arguments and writes a 2× 2 matrix: for example

\ttmatrix{a}{b}{c}{d} prints

(
a b
c d

)
.

2. Write a macro \gttmatrix that takes a single argument variable and prints a generic 2× 2

matrix: for example \gttmatrix{a} prints

(
a11 a12
a21 a22

)
.

3. With these macros write the matrix multiplication from ?prob.math-matrices? more suc-
cinctly.

10

