
1 Maths
10pt

Problem 1.1 (Interval Intersections)
You are given a set of N open intervals I1, I2, . . . IN , with the property that:

∀i, j.Ii ∩ Ij 6= ∅

Prove by induction that:

∀N ≥ 2.I1 ∩ I2 ∩ . . . IN 6= ∅

Solution:
Proof : We will prove by induction after N the hypothesis. Note that N is the number of intervals
we are dealing with, irrespective to the intervals themselves.

P.1 Base case: For N = 2, it is obvious

P.2 Another base case: Consider that we have three intervals (N = 3): I1 := (a, b), I2 := (c, d),
and I3 := (e, f), and suppose without loss of generality that a ≤ c ≤ e. Because of the
hypothesis, we also have e < b and e < d (otherwise some intersections would be empty).

It follows that at least the number e+min(d,b)
2 is common to all the intervals.

P.3 Step case: We know that the hypothesis holds for N intervals, we want to prove it for N + 1
intervals. Let us consider intervals I1, . . . IN+1 and define

Jk := Ik ∩ IN+1

From the hypothesis of the problem, we know that any two intervals have a common
element, thus

∀k.Jk 6= ∅

We also know that
Jk1 ∩ Jk2 ≡ Ik1 ∩ Ik2 ∩ IN+1

However, we know from the previous step that any three intervals with the property from
the problem have are all together not disjunct, therefore:

∀k1, k2.Jk1 ∩ Jk2 6= ∅

Therefore, all the N intervals J1 . . . JN have the property from the statement, and thus
from the inductive hypothesis we have that

J1 ∩ J2 ∩ . . . JN 6= ∅

which can be rewritten as
I1 ∩ I2 ∩ . . . ∩ IN ∩ IN+1 6= ∅

1

2 Abstract Data Types
10pt

Problem 2.1 (ADT for UNN and prime numbers)
Design an ADT for unary natural numbers. Write a procedure that checks whether a
number is prime.

Solution: The ADT is: 〈{N}, {[o : N], [s : N→ N]}〉
The cmp procdure compares two unary natural numbers, the o procedure represents bigger

or equal, s(o) represents smaller:
〈cmp::N× N→ N ; {cmp(x, o) o, cmp(o, x) s(o), cmp(s(x), s(y)) cmp(x, y)}〉
〈sub::N× N→ N ; {sub(o, x) o, sub(x, o) x, sub(s(x), s(y)) sub(x, y)}〉
〈if::N× N× N→ N ; {if(o, x, y) y, if(s(o), x, y) x}〉

The isDiv procedure checks whether a number is divisible by another:
〈isDiv::N× N→ N ; {isDiv(o, x) s(o), isDiv(s(x), y) if(cmp(s(x), y), o, isDiv(sub(s(x), y), y))}〉
The next procedure iterates over possible divisors:
〈check::N× N→ N ; {check(x, k) if(cmp(k, x), if(isDiv(x, k), o, check(x, s(k))), , s(o))}〉
The last procedure checks whether a number is prime:
〈isPrime::N→ N ; {isPrime(s(o)) o, isPrime(x) check(x, s(s(o)))}〉

3 Standard ML
20pt

Problem 3.1 (Game)
Four players A,B,C,D are playing the following game: They have a number of red and
green stones and one blue stone arranged in a circle. (We will represent the circle by a
list). The players perform the following actions in turn:
Player A replaces the first red stone after the blue stone by a green stone.

For example: [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’,#‘‘r’’]
would become [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘g’’,#‘‘r’’]

Player B shifts the blue stone to the clockwise (to the right) by 3 replacing all the red sones
he finds by green stones, if he reaches the end of the “list” he starts at the beginning:

For example: [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’]
would become [#‘‘b’’,#‘‘r’’,#‘‘g’’,#‘‘g’’,#‘‘g’’]

Player C changes the stone after the blue stone to a green stone:

For example: [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’]
would become [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’]

[#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘r’’,#‘‘r’’]
would become [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’]

Player D shifts the blue stone to the left (counter clockweise) by 1, and puts a green stone
in it’s original place:

2

For example: [#‘‘r’’,#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘r’’]
would become [#‘‘r’’,#‘‘b’’,#‘‘g’’,#‘‘g’’,#‘‘r’’]

The player who replaces the last red stone by a green stone wins.
Assuming player A starts first, and the players play in the order A,B,C,D, write a sml func-
tion that given the list with the arrangement of stones, determines which of the players will
win, and how many moves player A makes. Don’t forget to raise the appropriate exceptions.

Example and signature:

val game = fn : char list -> string * int
- game([#"r",#"g",#"r",#"b",#"r",#"g"]);
val it = ("A wins",2) : string * int

Solution:

exception wrong_stone;

fun last_element ([]) = raise wrong_stone (*find the last element of the list *)
| last_element ([a]) = ([],a) (*and the list without the last element*)
| last_element(a::l) = let val (c,d) = last_element(l) in (a::c,d) end;

fun count([]) = true (*check if there are only blue and green stones*)
| count((#"r")::l) = false
| count((#"b")::l) = count(l)
| count((#"g")::l) = count(l)
| count(r::l) = raise wrong_stone;

fun help_a(m,(#"r")::l,0) = help_a(m@[#"r"],l,0) (*move of player A*)
| help_a(m,(#"g")::l,0) = help_a(m@[#"g"],l,0) (*find the blue stone*)
| help_a(m,[(#"b")],0) = help_a([],m@[(#"b")],1) (*if it is at the end go to the beginning*)
| help_a(m,(#"b")::l,0) = help_a(m@[#"b"],l,1) (*now we have found the blue stone*)
| help_a(m,[(#"g")],1) = help_a([],m@[(#"g")],1)(*if the end of the list is reached*)
| help_a(m,(#"g")::l,1) = help_a(m@[#"g"],l,1) (*search for a red stone*)
| help_a(m,(#"r")::l,1) = m@[(#"g")]@l (*found it, return*)
| help_a(m,[],0) = raise wrong_stone (*no blue stone*)
| help_a(m,(#"b")::l,1) = raise wrong_stone (*two blue stones*)
| help_a(m,y::l,x) = raise wrong_stone; (*some other stone*)

fun help_b(m,[(#"g")],0) = raise wrong_stone(*move of player B*)
| help_b(m,[(#"r")],0) = raise wrong_stone (*no blue stone*)
| help_b(m,(#"r")::l,0) = help_b(m@[(#"r")],l,0) (*search for blue stone*)
| help_b(m,(#"g")::l,0) = help_b(m@[(#"g")],l,0) (*search for blue stone*)
| help_b(m,[(#"b")],0) = help_b([],m@[(#"g")],1) (*if the blue stone is at the end of the list*)
| help_b(m,(#"b")::l,0) = help_b(m@[(#"g")],l,1) (*found blue stone*)
| help_b(m,(#"g")::l,3) = m@[(#"b")]@l (*made 3 steps, so shift the blue stone, return*)
| help_b(m,(#"r")::l,3) = m@[(#"b")]@l (*made 3 steps, so shift the blue stone, return*)
| help_b(m,[(#"r")],x) = help_b([],m@[(#"g")],x+1) (*end of list, ruturn to the baginning of the list*)
| help_b(m,[(#"g")],x) = help_b([],m@[(#"g")],x+1) (*end of list, ruturn to the baginning of the list*)
| help_b(m,(#"g")::l,x) = help_b(m@[(#"g")],l,x+1) (*go along the list, changing the stones*)
| help_b(m,(#"r")::l,x) = help_b(m@[(#"g")],l,x+1) (*go along the list, changing the stones*)
| help_b(m,a::l,x) = raise wrong_stone; (*some other stone*)

fun help_c(m,(#"r")::l,0) = help_c(m@[#"r"],l,0) (*move of player C*)

3

| help_c(m,(#"g")::l,0) = help_c(m@[#"g"],l,0) (*search for the blue stone*)
| help_c(m,[],0) = raise wrong_stone (*no blue stone*)
| help_c(m,[(#"b")],0) = help_c([],m@[(#"b")],1) (*blue stone last in the list, so return to the beginning*)
| help_c(m,(#"b")::l,0) = help_c(m@[#"b"],l,1) (*found blue stone*)
| help_c(m,(#"g")::l,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
| help_c(m,(#"r")::l,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
| help_c(m,(#"b")::l,1) = raise wrong_stone (*two blue stones*)
| help_c(m,y::l,x) = raise wrong_stone; (*some other stone*)

fun help_d(m,(#"r")::l) = help_d(m@[(#"r")],l) (*move of player D*)
| help_d(m,(#"g")::l) = help_d(m@[(#"g")],l)(*search for the blue stone*)
| help_d([],(#"b")::l) = let val (a,b) = last_element(l) in [(#"g")]@a@[#"b"] end (*if the blue stone is first*)
| help_d(m,(#"b")::l) = let val (a,b) = last_element(m) in a@[#"b"]@[(#"g")]@l end (*replace the previous stone*)
| help_d(m,[]) = raise wrong_stone (*no blue stone*)
| help_d(m,a::l) = raise wrong_stone; (*some other stone*)

fun game_a(l,x) = let val c = help_a([],l,0) in if count(c) then ("A wins", x+1) else game_b(c,x+1) end
(*play in turn*)
and game_b(l,x) = let val c = help_b([],l,0) in if count(c) then ("B wins", x+1) else game_c(c,x) end
and game_c(l,x) = let val c = help_c([],l,0) in if count(c) then ("C wins", x+1) else game_d(c,x) end
and game_d(l,x) = let val c = help_d([],l) in if count(c) then ("D wins", x+1) else game_a(c,x) end;

fun game(l) = game_a(l,0); (*player A starts*)
10pt

Problem 3.2 (Sum decomposition)
Design an SML function that takes an integer n > 0 and returns all the possible ways in
which n can be written as sum of strictly positive integers. Encode the result as a string.

Function signature and example:

val decompose = fn : int -> string list
- decompose 3;
val it = ["3","2 + 1","1 + 2","1 + 1 + 1"] : string list

How many decompositions exist for an n ? (Write your answer and a short argument
at the end of the source file)

Solution:

Control.Print.printLength := 1000;

fun append x ll = map (fn ls => x :: ls) ll
fun addOne ll = map (fn (h :: t) => (1 + h) :: t) ll

fun decomposeInList 1 = [[1]]
|decomposeInList n =

let val ll = decomposeInList (n - 1)
in addOne ll @ append 1 ll
end

fun convertToString [h] = Int.toString h
| convertToString (h :: t) = Int.toString h ^ " + " ^ convertToString t

fun decompose n = map convertToString (decomposeInList n)

4

4 Formal Languages
10pt

Problem 4.1 (Formal Languages)
You are given the alphabet A = {a, b, c} and a L :=

⋃∞
i=0 Li, where L0 = {a} and

Li+1 = {xxb, xcy |x, y ∈
⋃i

k=0 Lk}.

1. Determine the cardinality of L2, without explicitly writing down the strings it con-
tains.

2. For each of the strings below, determine whether it is in L. Explain why or why not!

• s1 = accca

• s2 = acca

• s3 = acacaab

Solution:

1. L1 = aab, aca. Thus
⋃1

k=0 Lk = a, aab, aca with cardinality 3.
When constructing L2, we will get 3 strings from xxb, since x is the same string.
In addition, we will get 3 · 3 = 9 strings from xcy, since x and y are different.
However, in this way we will get acaca twice: from xcy with a and aca, and from aca and
a. There are no other such symmetries, so there are no other repetitions.
So the cardinality of L2 is 3 + 9− 1 = 11.

2. First we note that the number of characters in each string is always an odd number.

• s1 is not in L, because the construction rules do not allow two consecutive occurrances
of the character c.

• s2 is not in L, because there cannot be strings with an even number of characters.

• s3 is in L: starting from the empty string, we get a, from there we get aca via xcy
and aab via xxb, and then we get acacaab via xcy.

7pt
Problem 4.2 (Code definitions)

Define the following concepts and give an example of each:

1. Character code.

2. String code.

3. Prefix code.

Why are prefix codes also string codes?
Solution:

1. Let A and B be alphabets, then we call an injective function c from A to B+ a character
code

5

2. Let c′ be a function from A∗ to B∗ if it is injective then it induces a string code

3. A (character) code c : A to B+ is a prefix code if none of the codewords is a proper prefix
to an other codeword

Proof of a prefix code being a string code in slide 130. 7pt
Problem 4.3 (Formal Languages and Concatenation and Intersection)
Given the alphabet A = {a, b} and 3 formal languages in A L1 = {a[n] |n ∈ N}, L2 =
{ba[n] |n ∈ N}, L3 = {b[k]a[2n] |n ∈ N, k ∈ N}.

1. What is L1 ∩ L3?

2. Write down three words that belong in L4 = conc(L2, L1).

Solution:

1. {a[2n] |n ∈ N}

2. baa, b, baaa

5 Boolean Expressions
7pt

Problem 5.1 (Practising Quine McCluskey)
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the fol-
lowing function:

x1 x2 x3 f
F F F F
F F T F
F T F T
F T T F
T F F T
T F T T
T T F F
T T T T

Solution:

QMC1 :
M0 = {x1 x2 x3, x1 x2 x3, x1 x2 x3, x1 x2 x3}
M1 = {x1 x2, x1 x3}
P1 = {x1 x2 x3}
M2 = ∅
P2 = {x1 x2, x1 x3}

QMC2 :
FTF TFF TFT TTT

x1 x2 F T T F
x1 x3 F F T T

x1 x2 x3 T F F F

6

Final result: 1. f = x1 x2 + x1 x3 + x1 x2 x3
7pt

Problem 5.2 (Model for Boolean Expressions)
Give a variable assignment ϕ for which all the following expressions evaluate to true.

1. e1 := x1 ∗ x2 + x2 + x3 ∗ x1 + x3

2. e2 := x1 ∗ (x2 ∗ x3) + x1 ∗ (x2 ∗ x3)

3. e3 := (x1 + x2) ∗ (x2 + x3)

Show your reasoning using truth tables.

Solution:
ϕ = {[T/x1], [F/x2], [T/x3]}
We have the truth tables

x1 x2 x3 x1 + x2 x2 + x3 e3 x1 ∗ (x2 ∗ x3) x1 ∗ (x2 ∗ x3) e2
T T T T T T F F F
T T F T T T F F F
T F T T T T F T T
T F F T F F F F F
F T T T T T F F F
F T F T T T T F T
F F T F T F F F F
F F F F F F F F F

From this table we find two possible assignments (the rows for which both e2 and e3 are true):
ϕ1 = {[T/x1], [F/x2], [T/x3]} and ϕ2 = {[F/x1], [T/x2], [F/x3]}.

Evaluating e1 under ϕ1 and ϕ2 reveals that ϕ1 is in fact the only solution. The truth table
for e1 is omitted.

6 Propositional Logic
7pt

Problem 6.1 (Hilbert calculus)
Prove the following theorem of Hilbert Calculus (using Hilbert Calculus rules only!!!

- and make sure you specify the rules used on the way)

(S ⇒ R)⇒ S ⇒ S ⇒ R

Solution:
P.1 (S ⇒ R⇒ (S ⇒ R))⇒ (S ⇒ R)⇒ S ⇒ S ⇒ R

(S with [S/P], [R/Q], [S ⇒ R/R])

P.2 R⇒ S ⇒ R (K with [R/P], [S/Q])

7

P.3 (R⇒ S ⇒ R)⇒ S ⇒ (R⇒ S ⇒ R) (K with [R⇒ S ⇒ R/P], [S/Q])

P.4 S ⇒ R⇒ S ⇒ R (MP on P.3 and P.2)

P.5 (S ⇒ R)⇒ S ⇒ S ⇒ R (MP on P.1 and P.4)

10pt
Problem 6.2 (Natural deduction)

Prove the following theorem of Natural Deduction (using ND Calculus rules only!!!
- give their short abbreviation too when applying them)

(P ⇒ Q)⇒ (¬P ∨Q)

Solution:

¬P ∨ P
TND

[P ⇒ Q]1

[¬P]2

¬P
¬P ∨Q

∨Il

P ⇒ Q

[P]2

P

Q
⇒E

¬P ∨Q
∨Ir

¬P ∨Q
∨E2

(P ⇒ Q)⇒ (¬P ∨Q)
⇒I1

8

