1 Maths

Problem 1.1 (Interval Intersections)

You are given a set of N open intervals $I_{1}, I_{2}, \ldots I_{N}$, with the property that:

$$
\forall i, j . I_{i} \cap I_{j} \neq \emptyset
$$

Prove by induction that:

$$
\forall N \geq 2 . I_{1} \cap I_{2} \cap \ldots I_{N} \neq \emptyset
$$

Solution:

Proof: We will prove by induction after N the hypothesis. Note that N is the number of intervals we are dealing with, irrespective to the intervals themselves.
P. 1 Base case: For $N=2$, it is obvious
P. 2 Another base case: Consider that we have three intervals $(N=3): I_{1}:=(a, b), I_{2}:=(c, d)$, and $I_{3}:=(e, f)$, and suppose without loss of generality that $a \leq c \leq e$. Because of the hypothesis, we also have $e<b$ and $e<d$ (otherwise some intersections would be empty). It follows that at least the number $\frac{e+\min (d, b)}{2}$ is common to all the intervals.
P. 3 Step case: We know that the hypothesis holds for N intervals, we want to prove it for $N+1$ intervals. Let us consider intervals $I_{1}, \ldots I_{N+1}$ and define

$$
J_{k}:=I_{k} \cap I_{N+1}
$$

From the hypothesis of the problem, we know that any two intervals have a common element, thus

$$
\forall k . J_{k} \neq \emptyset
$$

We also know that

$$
J_{k_{1}} \cap J_{k_{2}} \equiv I_{k_{1}} \cap I_{k_{2}} \cap I_{N+1}
$$

However, we know from the previous step that any three intervals with the property from the problem have are all together not disjunct, therefore:

$$
\forall k_{1}, k_{2} . J_{k_{1}} \cap J_{k_{2}} \neq \emptyset
$$

Therefore, all the N intervals $J_{1} \ldots J_{N}$ have the property from the statement, and thus from the inductive hypothesis we have that

$$
J_{1} \cap J_{2} \cap \ldots J_{N} \neq \emptyset
$$

which can be rewritten as

$$
I_{1} \cap I_{2} \cap \ldots \cap I_{N} \cap I_{N+1} \neq \emptyset
$$

2 Abstract Data Types

Problem 2.1 (ADT for UNN and prime numbers)

Design an ADT for unary natural numbers. Write a procedure that checks whether a number is prime.

Solution: The ADT is: $\langle\{\mathbb{N}\},\{[o: \mathbb{N}],[s: \mathbb{N} \rightarrow \mathbb{N}]\}\rangle$
The cmp procdure compares two unary natural numbers, the o procedure represents bigger or equal, $s(o)$ represents smaller:
$\langle c m p:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{c m p(x, o) \rightsquigarrow o, c m p(o, x) \rightsquigarrow s(o), c m p(s(x), s(y)) \rightsquigarrow c m p(x, y)\}\rangle$
$\langle\operatorname{sub}:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{\operatorname{sub}(o, x) \rightsquigarrow o, \operatorname{sub}(x, o) \rightsquigarrow x, \operatorname{sub}(s(x), s(y)) \rightsquigarrow \operatorname{sub}(x, y)\}\rangle$
$\langle i f:: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{i f(o, x, y) \rightsquigarrow y, i f(s(o), x, y) \rightsquigarrow x\}\rangle$
The isDiv procedure checks whether a number is divisible by another:
$\langle i s D i v:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{i s \operatorname{Div}(o, x) \rightsquigarrow s(o), i s \operatorname{Div}(s(x), y) \rightsquigarrow i f(c m p(s(x), y), o, i s \operatorname{Div}(\operatorname{sub}(s(x), y), y))\}\rangle$
The next procedure iterates over possible divisors:
$\langle\operatorname{check}:: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} ;\{\operatorname{check}(x, k) \rightsquigarrow i f(\operatorname{cmp}(k, x), i f(\operatorname{isDiv}(x, k), o, \operatorname{check}(x, s(k))),, s(o))\}\rangle$
The last procedure checks whether a number is prime:
$\langle i s \operatorname{Prime}:: \mathbb{N} \rightarrow \mathbb{N} ;\{\operatorname{isPrime}(s(o)) \rightsquigarrow o, \operatorname{isPrime}(x) \rightsquigarrow \operatorname{check}(x, s(s(o)))\}\rangle$

3 Standard ML

Problem 3.1 (Game)

Four players A,B,C,D are playing the following game: They have a number of red and green stones and one blue stone arranged in a circle. (We will represent the circle by a list). The players perform the following actions in turn:
Player A replaces the first red stone after the blue stone by a green stone.

Player B shifts the blue stone to the clockwise (to the right) by 3 replacing all the red sones he finds by green stones, if he reaches the end of the "list" he starts at the beginning:

```
For example: [#'r'',#'(r'),#'(b)',#'(g)',#'(r)']
would become [#'(b)',#'(r'',#'(g)',#'(g)',#'(g)']
```

Player C changes the stone after the blue stone to a green stone:
For example: [\#'(r)',\#‘'r'’,\#'(b)',\#‘'g'),\#‘'r')] would become [\#' r '', \#' r '', \#' ' b '', \#‘' g '), \#' r '']
would become [\#'(r)',\#' r '', \#' ' b '', \#'(g '', \#' r ' r ']
Player D shifts the blue stone to the left (counter clockweise) by 1, and puts a green stone in it's original place:

The player who replaces the last red stone by a green stone wins.
Assuming player A starts first, and the players play in the order A, B, C,D, write a sml function that given the list with the arrangement of stones, determines which of the players will win, and how many moves player A makes. Don't forget to raise the appropriate exceptions.

Example and signature:

```
val game = fn : char list -> string * int
- game([#"r",#"g",#"r",#"b",#"r",#"g"]);
val it = ("A\sqcupWins",2) : string * int
```


Solution:

exception wrong_stone;

```
fun last_element ([]) = raise wrong_stone (*find the last element of the list *)
    | last_element ([a]) = ([],a) (*and the list without the last element*)
    | last_element(a::l) = let val (c,d) = last_element(l) in (a::c,d) end;
fun count([]) = true (*check if there are only blue and green stones*)
    | count((#"r")::l) = false
    | count((#"b")::l) = count(l)
    | count((#"g")::l) = count(l)
    | count(r::1) = raise wrong_stone;
```

fun help_a(m, (\#"r")::l,0) = help_a(m@[\#"r"],l,0) (*move of player A*)
| help_a(m, (\#"g")::l,0) = help_a(m@[\#"g"],l,0) (*find the blue stone*)
| help_a(m,[(\#"b")],0) = help_a([],m@[(\#"b")],1) (*if it is at the end go to the beginning*)
| help_a(m, (\#"b")::l,0) = help_a(m@[\#"b"],l,1) (*now we have found the blue stone*)
| help_a(m,[(\#"g")],1) = help_a([],m@[(\#"g")],1)(*if the end of the list is reached*)
| help_a(m, (\#"g")::l,1) = help_a(m@[\#"g"],l,1) (*search for a red stone*)
| help_a(m, (\#"r")::l,1) = m@[(\#"g")]@1 (*found it, return*)
| help_a(m, [],0) = raise wrong_stone (*no blue stone*)
| help_a(m, (\#"b")::l,1) = raise wrong_stone (*two blue stones*)
| help_a(m,y::l,x) = raise wrong_stone; (*some other stone*)
fun help_b(m, [(\#"g")],0) = raise wrong_stone(*move of player B*)
| help_b(m,[(\#"r")],0) = raise wrong_stone (*no blue stone*)
| help_b(m, (\#"r")::l,0) = help_b(m@[(\#"r")],l,0) (*search for blue stone*)
| help_b(m, (\#"g")::l,0) = help_b(m@[(\#"g")],l,0) (*search for blue stone*)
| help_b(m,[(\#"b")],0) = help_b([],m@[(\#"g")],1) (*if the blue stone is at the end of the lis
| help_b(m, (\#"b")::l,0) = help_b(m@[(\#"g")],l,1) (*found blue stone*)
| help_b(m, (\#"g")::l,3) = m@[(\#"b")]@l (*made 3 steps, so shift the blue stone, return*)
| help_b(m, (\#"r")::l,3) = m@[(\#"b")]@l (*made 3 steps, so shift the blue stone, return*)
| help_b(m,[(\#"r")],x) = help_b([],m@[(\#"g")],x+1) (*end of list, ruturn to the baginning of
| help_b(m,[(\#"g")],x) = help_b([],m@[(\#"g")],x+1) (*end of list, ruturn to the baginning of
| help_b(m, (\#"g") ::l,x) = help_b(m@[(\#"g")],l,x+1) (*go along the list, changing the stones*)
| help_b(m, (\#"r")::l,x) = help_b(m@[(\#"g")],l,x+1) (*go along the list, changing the stones*)
| help_b(m,a::l,x) = raise wrong_stone; (*some other stone*)
fun help_c(m,(\#"r")::l,0) = help_c(m@[\#"r"],l,0) (*move of player C*)

```
    | help_c(m,(#"g")::l,0) = help_c(m@[#"g"],l,0) (*search for the blue stone*)
    | help_c(m,[],0) = raise wrong_stone (*no blue stone*)
    | help_c(m,[(#"b")],0) = help_c([],m@[(#"b")],1) (*blue stone last in the list, so return to
    | help_c(m,(#"b")::l,0) = help_c(m@[#"b"],l,1) (*found blue stone*)
    | help_c(m,(#"g")::l,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
    | help_c(m,(#"r")::l,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
    | help_c(m,(#"b")::l,1) = raise wrong_stone (*two blue stones*)
    | help_c(m,y::l,x) = raise wrong_stone; (*some other stone*)
fun help_d(m,(#"r")::l) = help_d(m@[(#"r")],l) (*move of player D*)
    | help_d(m,(#"g")::l) = help_d(m@[(#"g")],l)(*search for the blue stone*)
    | help_d([],(#"b")::l) = let val (a,b) = last_element(l) in [(#"g")]@a@[#"b"] end (*if the b
    | help_d(m,(#"b")::l) = let val (a,b) = last_element(m) in a@[#"b"]@[(#"g")]@l end (*replace
    | help_d(m,[]) = raise wrong_stone (*no blue stone*)
    | help_d(m,a::l) = raise wrong_stone; (*some other stone*)
fun game_a(l,x) = let val c = help_a([],l,0) in if count(c) then ("A&wins", x+1) else game_b(c
(*play in turn*)
and game_b(l,x) = let val c = help_b([],l,0) in if count(c) then ("B⿱wins", x+1) else game_c(c
and game_c(l,x) = let val c = help_c([],l,0) in if count(c) then ("Cbwins", x+1) else game_d(c
and game_d(l,x) = let val c = help_d([],l) in if count(c) then ("D\wins", x+1) else game_a(c,x
fun game(l) = game_a(l,0); (*player A starts*)
```


Problem 3.2 (Sum decomposition)

10pt

Design an SML function that takes an integer $n>0$ and returns all the possible ways in which n can be written as sum of strictly positive integers. Encode the result as a string.

Function signature and example:

```
val decompose = fn : int -> string list
- decompose 3;
```


How many decompositions exist for an n ? (Write your answer and a short argument at the end of the source file)

Solution:

Control.Print.printLength := 1000;
fun append x ll $=\operatorname{map}(f n \mathrm{ls}=>\mathrm{x}:: \mathrm{ls}) 11$
fun addOne $11=\operatorname{map}(f n(h:: t)=>(1+h):: t) l l$
fun decomposeInList $1=$ [[1]]
|decomposeInList $\mathrm{n}=$ let val $11=$ decomposeInList ($n-1$) in addOne ll @ append 1 ll end
fun convertToString [h] = Int.toString h
| convertToString (h : : t) = Int.toString h ~ " $\mathrm{U}^{+} \mathrm{U}^{\prime}$ ~ convertToString t
fun decompose $\mathrm{n}=$ map convertToString (decomposeInList n)

4 Formal Languages

Problem 4.1 (Formal Languages)

You are given the alphabet $A=\{a, b, c\}$ and a $L:=\bigcup_{i=0}^{\infty} L_{i}$, where $L_{0}=\{a\}$ and $L_{i+1}=\left\{x x b, x c y \mid x, y \in \bigcup_{k=0}^{i} L_{k}\right\}$.

1. Determine the cardinality of L_{2}, without explicitly writing down the strings it contains.
2. For each of the strings below, determine whether it is in L. Explain why or why not!

- $s_{1}=a c c c a$
- $s_{2}=a c c a$
- $s_{3}=a c a c a a b$

Solution:

1. $L_{1}=a a b, a c a$. Thus $\bigcup_{k=0}^{1} L_{k}=a, a a b, a c a$ with cardinality 3 .

When constructing L_{2}, we will get 3 strings from $x x b$, since x is the same string.
In addition, we will get $3 \cdot 3=9$ strings from $x c y$, since x and y are different.
However, in this way we will get acaca twice: from $x c y$ with a and $a c a$, and from $a c a$ and a. There are no other such symmetries, so there are no other repetitions.
So the cardinality of L_{2} is $3+9-1=11$.
2. First we note that the number of characters in each string is always an odd number.

- s_{1} is not in L, because the construction rules do not allow two consecutive occurrances of the character c.
- s_{2} is not in L, because there cannot be strings with an even number of characters.
- s_{3} is in L : starting from the empty string, we get a, from there we get $a c a$ via $x c y$ and $a a b$ via $x x b$, and then we get $a c a c a a b$ via $x c y$.

Problem 4.2 (Code definitions)

Define the following concepts and give an example of each:

1. Character code.
2. String code.
3. Prefix code.

Why are prefix codes also string codes?

Solution:

1. Let A and B be alphabets, then we call an injective function c from A to B^{+}a character code
2. Let c^{\prime} be a function from A^{*} to B^{*} if it is injective then it induces a string code
3. A (character) code c: A to B+ is a prefix code if none of the codewords is a proper prefix to an other codeword

Proof of a prefix code being a string code in slide 130.
Problem 4.3 (Formal Languages and Concatenation and Intersection)
Given the alphabet $A=\{a, b\}$ and 3 formal languages in $A L_{1}=\left\{a^{[n]} \mid n \in \mathbb{N}\right\}, L_{2}=$ $\left\{b a^{[n]} \mid n \in \mathbb{N}\right\}, L_{3}=\left\{b^{[k]} a^{[2 n]} \mid n \in \mathbb{N}, k \in \mathbb{N}\right\}$.

1. What is $L_{1} \cap L_{3}$?
2. Write down three words that belong in $L_{4}=\operatorname{conc}\left(L_{2}, L_{1}\right)$.

Solution:

1. $\left\{a^{[2 n]} \mid n \in \mathbb{N}\right\}$
2. baa, b, baaa

5 Boolean Expressions

Problem 5.1 (Practising Quine McCluskey)
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the following function:

$x 1$	$x 2$	$x 3$	f
F	F	F	F
F	F	T	F
F	T	F	T
F	T	T	F
T	F	F	T
T	F	T	T
T	T	F	F
T	T	T	T

Solution:

$Q M C_{1}$:

$$
\begin{aligned}
M_{0} & =\left\{\overline{x_{1}} x_{2} \overline{x_{3}}, x_{1} \overline{x_{2}} \overline{x_{3}}, x_{1} \overline{x_{2}} x_{3}, x_{1} x_{2} x_{3}\right\} \\
M_{1} & =\left\{x_{1} \overline{x_{2}}, x_{1} x_{3}\right\} \\
P_{1} & =\left\{\overline{x_{1}} x_{2} \overline{x_{3}}\right\} \\
M_{2} & =\emptyset \\
P_{2} & =\left\{x_{1} \overline{x_{2}}, x_{1} x_{3}\right\}
\end{aligned}
$$

$Q M C_{2}$:

	FTF	TFF	TFT	TTT
$x_{1} \overline{x_{2}}$	F	T	T	F
$x_{1} x_{3}$	F	F	T	T
$\overline{x_{1}} x_{2} \overline{x_{3}}$	T	F	F	F

Final result: 1. $f=x_{1} \overline{x_{2}}+x_{1} x_{3}+\overline{x_{1}} x_{2} \overline{x_{3}}$

Problem 5.2 (Model for Boolean Expressions)

Give a variable assignment φ for which all the following expressions evaluate to true.

1. $e_{1}:=x_{1} * \overline{x_{2}}+\overline{x_{2}+x_{3}} * \overline{x_{1}+\overline{x_{3}}}$
2. $e_{2}:=\overline{x_{1}} *\left(x_{2} * \overline{x_{3}}\right)+x_{1} *\left(\overline{x_{2}} * x_{3}\right)$
3. $e_{3}:=\left(x_{1}+x_{2}\right) *\left(x_{2}+x_{3}\right)$

Show your reasoning using truth tables.

Solution:

$\varphi=\left\{\left[T / x_{1}\right],\left[F / x_{2}\right],\left[T / x_{3}\right]\right\}$
We have the truth tables

x_{1}	x_{2}	x_{3}	$x_{1}+x_{2}$	$x_{2}+x_{3}$	e_{3}	$\overline{x_{1}} *\left(x_{2} * \overline{x_{3}}\right)$	$x_{1} *\left(\overline{x_{2}} * x_{3}\right)$	e_{2}
T	T	T	T	T	T	F	F	F
T	T	F	T	T	T	F	F	F
T	F	T	T	T	T	F	T	T
T	F	F	T	F	F	F	F	F
F	T	T	T	T	T	F	F	F
F	T	F	T	T	T	T	F	T
F	F	T	F	T	F	F	F	F
F	F	F	F	F	F	F	F	F

From this table we find two possible assignments (the rows for which both e_{2} and e_{3} are true): $\varphi_{1}=\left\{\left[T / x_{1}\right],\left[F / x_{2}\right],\left[T / x_{3}\right]\right\}$ and $\varphi_{2}=\left\{\left[F / x_{1}\right],\left[T / x_{2}\right],\left[F / x_{3}\right]\right\}$.

Evaluating e_{1} under φ_{1} and φ_{2} reveals that φ_{1} is in fact the only solution. The truth table for e_{1} is omitted.

6 Propositional Logic

Problem 6.1 (Hilbert calculus)

Prove the following theorem of Hilbert Calculus (using Hilbert Calculus rules only!!! - and make sure you specify the rules used on the way)

$$
(S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R
$$

Solution:

P. $1(S \Rightarrow R \Rightarrow(S \Rightarrow R)) \Rightarrow(S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R$
(S with $[S / P],[R / Q],[S \Rightarrow R / R])$
P. $2 R \Rightarrow S \Rightarrow R(\mathbf{K}$ with $[R / P],[S / Q])$
P. $3(R \Rightarrow S \Rightarrow R) \Rightarrow S \Rightarrow(R \Rightarrow S \Rightarrow R)(\mathbf{K}$ with $[R \Rightarrow S \Rightarrow R / P],[S / Q])$
P. $4 S \Rightarrow R \Rightarrow S \Rightarrow R$ (MP on P. 3 and P.2)
P. $5(S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R$ (MP on P. 1 and $\mathbf{P} .4)$

Problem 6.2 (Natural deduction)

Prove the following theorem of Natural Deduction (using ND Calculus rules only!!! - give their short abbreviation too when applying them)

$$
(P \Rightarrow Q) \Rightarrow(\neg P \vee Q)
$$

Solution:

$$
\begin{gathered}
{[P \Rightarrow Q]^{1}} \\
\\
\frac{[\neg P]^{2}}{\neg P \vee P} T N D \quad \frac{\neg P}{\neg P \vee Q} \vee I_{l} \quad \frac{P \Rightarrow Q \quad P}{Q} \Rightarrow E \\
\frac{\neg P \vee Q}{\neg P \vee Q} \vee I_{r} \\
\\
\\
\quad(P \Rightarrow Q) \Rightarrow(\neg P \vee Q)
\end{gathered}
$$

