1 Maths

Problem 1.1 (Interval Intersections)

You are given a set of N open intervals $I_1, I_2, \ldots I_N$, with the property that:

$$\forall i, j. I_i \cap I_j \neq \emptyset$$

Prove by induction that:

 $\forall N \ge 2.I_1 \cap I_2 \cap \ldots I_N \neq \emptyset$

Solution:

Proof: We will prove by induction after N the hypothesis. Note that N is the number of intervals we are dealing with, irrespective to the intervals themselves.

- **P.1** Base case: For N = 2, it is obvious
- **P.2** Another base case: Consider that we have three intervals (N = 3): $I_1 := (a, b), I_2 := (c, d)$, and $I_3 := (e, f)$, and suppose without loss of generality that $a \leq c \leq e$. Because of the hypothesis, we also have e < b and e < d (otherwise some intersections would be empty). It follows that at least the number $\frac{e+\min(d,b)}{2}$ is common to all the intervals.
- **P.3** Step case: We know that the hypothesis holds for N intervals, we want to prove it for N + 1 intervals. Let us consider intervals $I_1, \ldots I_{N+1}$ and define

$$J_k := I_k \cap I_{N+1}$$

From the hypothesis of the problem, we know that any two intervals have a common element, thus

$$\forall k.J_k \neq \emptyset$$

We also know that

$$J_{k_1} \cap J_{k_2} \equiv I_{k_1} \cap I_{k_2} \cap I_{N+1}$$

However, we know from the previous step that any three intervals with the property from the problem have are all together not disjunct, therefore:

$$\forall k_1, k_2. J_{k_1} \cap J_{k_2} \neq \emptyset$$

Therefore, all the N intervals $J_1 \dots J_N$ have the property from the statement, and thus from the inductive hypothesis we have that

$$J_1 \cap J_2 \cap \ldots J_N \neq \emptyset$$

which can be rewritten as

$$I_1 \cap I_2 \cap \ldots \cap I_N \cap I_{N+1} \neq \emptyset$$

2 Abstract Data Types

Problem 2.1 (ADT for UNN and prime numbers)

Design an ADT for unary natural numbers. Write a procedure that checks whether a number is prime.

Solution: The ADT is: $\langle \{\mathbb{N}\}, \{[o:\mathbb{N}], [s:\mathbb{N}\to\mathbb{N}]\} \rangle$

The cmp procedure compares two unary natural numbers, the o procedure represents bigger or equal, s(o) represents smaller:

 $\begin{array}{l} \langle cmp::\mathbb{N}\times\mathbb{N}\to\mathbb{N}\,;\,\{cmp(x,o)\leadsto o,cmp(o,x)\leadsto s(o),cmp(s(x),s(y))\leadsto cmp(x,y)\}\rangle \\ \langle sub::\mathbb{N}\times\mathbb{N}\to\mathbb{N}\,;\,\{sub(o,x)\leadsto o,sub(x,o)\leadsto x,sub(s(x),s(y))\leadsto sub(x,y)\}\rangle \\ \langle if::\mathbb{N}\times\mathbb{N}\times\mathbb{N}\to\mathbb{N}\,;\,\{if(o,x,y)\leadsto y,if(s(o),x,y)\leadsto x\}\rangle \end{array}$

The isDiv procedure checks whether a number is divisible by another: $\langle isDiv::\mathbb{N} \times \mathbb{N} \to \mathbb{N}; \{ isDiv(o, x) \rightsquigarrow s(o), isDiv(s(x), y) \rightsquigarrow if(cmp(s(x), y), o, isDiv(sub(s(x), y), y)) \} \rangle$ The next procedure iterates over possible divisors: $\langle check::\mathbb{N} \times \mathbb{N} \to \mathbb{N}; \{ check(x, k) \rightsquigarrow if(cmp(k, x), if(isDiv(x, k), o, check(x, s(k))), , s(o)) \} \rangle$ The last procedure checks whether a number is prime: $\langle isPrime::\mathbb{N} \to \mathbb{N}; \{ isPrime(s(o)) \rightsquigarrow o, isPrime(x) \rightsquigarrow check(x, s(s(o))) \} \rangle$

3 Standard ML

Problem 3.1 (Game)

Four players A,B,C,D are playing the following game: They have a number of red and green stones and one blue stone arranged in a circle. (We will represent the circle by a list). The players perform the following actions in turn:

Player A replaces the first red stone after the blue stone by a green stone.

For example: [#''r'',#''b'',#''g'',#''r'']
would become [#''r'',#''r'',#''b'',#''g'',#''g'',#''r'']

Player B shifts the blue stone to the clockwise (to the right) by 3 replacing all the red sones he finds by green stones, if he reaches the end of the "list" he starts at the beginning:

For example: [#''r'',#''b'',#''g'',#''r'']
would become [#''b'',#''r'',#''g'',#''g'',#''g'']

Player C changes the stone after the blue stone to a green stone:

For example: [#'`r'',#'`r'',#'`b'',#'`g'',#'`r'']
would become [#'`r'',#'`r'',#'`b'',#'`g'',#'`r'']

[#''r'',#''r'',#''b'',#''r'',#''r''] would become [#''r'',#''r'',#''b'',#''g'',#''r'']

Player D shifts the blue stone to the left (counter clockweise) by 1, and puts a green stone in it's original place:

```
For example: [#''r'',#''b'',#''g'',#''r'']
would become [#''r'',#''b'',#''g'',#''g'',#''r'']
```

The player who replaces the last red stone by a green stone wins.

Assuming player A starts first, and the players play in the order A,B,C,D, write a sml function that given the list with the arrangement of stones, determines which of the players will win, and how many moves player A makes. Don't forget to raise the appropriate exceptions.

Example and signature:

```
val game = fn : char list -> string * int
- game([#"r",#"g",#"r",#"b",#"r",#"g"]);
val it = ("A<sub>L</sub>wins",2) : string * int
```

Solution:

exception wrong_stone;

```
fun last_element ([]) = raise wrong_stone (*find the last element of the list *)
 | last_element ([a]) = ([],a) (*and the list without the last element*)
  | last_element(a::1) = let val (c,d) = last_element(l) in (a::c,d) end;
fun count([]) = true (*check if there are only blue and green stones*)
 | count((#"r")::1) = false
 | count((#"b")::1) = count(1)
  | count((#"g")::1) = count(1)
 | count(r::1) = raise wrong_stone;
fun help_a(m,(#"r")::1,0) = help_a(m@[#"r"],1,0) (*move of player A*)
  help_a(m,(#"g")::1,0) = help_a(m0[#"g"],1,0) (*find the blue stone*)
  | help_a(m,[(#"b")],0) = help_a([],m@[(#"b")],1) (*if it is at the end go to the beginning*)
  | help_a(m,(#"b")::1,0) = help_a(m@[#"b"],1,1) (*now we have found the blue stone*)
  | help_a(m,[(#"g")],1) = help_a([],m@[(#"g")],1)(*if the end of the list is reached*)
  | help_a(m,(#"g")::1,1) = help_a(m@[#"g"],1,1) (*search for a red stone*)
  help_a(m,(#"r")::1,1) = m@[(#"g")]@l (*found it, return*)
  | help_a(m,[],0) = raise wrong_stone (*no blue stone*)
  | help_a(m,(#"b")::1,1) = raise wrong_stone (*two blue stones*)
  | help_a(m,y::1,x) = raise wrong_stone; (*some other stone*)
fun help_b(m,[(#"g")],0) = raise wrong_stone(*move of player B*)
  | help_b(m,[(#"r")],0) = raise wrong_stone (*no blue stone*)
  | help_b(m,(#"r")::1,0) = help_b(m@[(#"r")],1,0) (*search for blue stone*)
  | help_b(m,(#"g")::1,0) = help_b(m@[(#"g")],1,0) (*search for blue stone*)
  | help_b(m,[(#"b")],0) = help_b([],m@[(#"g")],1) (*if the blue stone is at the end of the lis
  | help_b(m,(#"b")::1,0) = help_b(m@[(#"g")],1,1) (*found blue stone*)
  | help_b(m,(#"g")::1,3) = m0[(#"b")]01 (*made 3 steps, so shift the blue stone, return*)
  | help_b(m,(#"r")::1,3) = m@[(#"b")]@l (*made 3 steps, so shift the blue stone, return*)
 | help_b(m,[(#"r")],x) = help_b([],m@[(#"g")],x+1) (*end of list, ruturn to the baginning of
 | help_b(m,[(#"g")],x) = help_b([],m@[(#"g")],x+1) (*end of list, ruturn to the baginning of
 | help_b(m,(#"g")::1,x) = help_b(m@[(#"g")],1,x+1) (*go along the list, changing the stones*)
  help_b(m,(#"r")::1,x) = help_b(m@[(#"g")],1,x+1) (*go along the list, changing the stones*)
  | help_b(m,a::1,x) = raise wrong_stone; (*some other stone*)
```

fun help_c(m,(#"r")::1,0) = help_c(m@[#"r"],1,0) (*move of player C*)

```
| help_c(m,(#"g")::1,0) = help_c(m@[#"g"],1,0) (*search for the blue stone*)
 | help_c(m,[],0) = raise wrong_stone (*no blue stone*)
 | help_c(m,[(#"b")],0) = help_c([],m@[(#"b")],1) (*blue stone last in the list, so return to
 | help_c(m,(#"b")::1,0) = help_c(m@[#"b"],1,1) (*found blue stone*)
 | help_c(m,(#"g")::1,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
 help_c(m,(#"r")::1,1) = m@[(#"g")]@l (*replace the stone after the blue stone*)
 | help_c(m,(#"b")::1,1) = raise wrong_stone (*two blue stones*)
 | help_c(m,y::1,x) = raise wrong_stone; (*some other stone*)
fun help_d(m,(#"r")::1) = help_d(m@[(#"r")],1) (*move of player D*)
  | help_d(m,(#"g")::1) = help_d(m@[(#"g")],1)(*search for the blue stone*)
  | help_d(m,(#"b")::1) = let val (a,b) = last_element(m) in a@[#"b"]@[(#"g")]@l end (*replace
 | help_d(m,[]) = raise wrong_stone (*no blue stone*)
 | help_d(m,a::1) = raise wrong_stone; (*some other stone*)
fun game_a(1,x) = let val c = help_a([],1,0) in if count(c) then ("A<sub>u</sub>wins", x+1) else game_b(c
(*play in turn*)
and game_b(l,x) = let val c = help_b([],1,0) in if count(c) then ("B_{\cup}wins", x+1) else game_c(c
and game_c(l,x) = let val c = help_c([],1,0) in if count(c) then ("C_wins", x+1) else game_d(c
and game_d(l,x) = let val c = help_d([],l) in if count(c) then ("D_{\sqcup}wins", x+1) else game_a(c,x)
```

```
fun game(l) = game_a(l,0); (*player A starts*)
```

Problem 3.2 (Sum decomposition)

—— 10pt

Design an SML function that takes an integer n > 0 and returns all the possible ways in which n can be written as sum of strictly positive integers. Encode the result as a string.

Function signature and example:

```
val decompose = fn : int -> string list
- decompose 3;
val it = ["3","2_{\sqcup}+_{\sqcup}1","1_{\sqcup}+_{\sqcup}2","1_{\sqcup}+_{\sqcup}1_{\sqcup}+_{\bot}1"] : string list
```

How many decompositions exist for an n? (Write your answer and a short argument at the end of the source file)

Solution:

```
Control.Print.printLength := 1000;
fun append x ll = map (fn ls => x :: ls) ll
fun addOne ll = map (fn (h :: t) => (1 + h) :: t) ll
fun decomposeInList 1 = [[1]]
|decomposeInList n =
    let val ll = decomposeInList (n - 1)
    in addOne ll @ append 1 ll
    end
fun convertToString [h] = Int.toString h
    | convertToString (h :: t) = Int.toString h ^ "_u+_u" ^ convertToString t
fun decompose n = map convertToString (decomposeInList n)
```

4 Formal Languages

Problem 4.1 (Formal Languages)

You are given the alphabet $A = \{a, b, c\}$ and a $L := \bigcup_{i=0}^{\infty} L_i$, where $L_0 = \{a\}$ and $L_{i+1} = \{xxb, xcy \mid x, y \in \bigcup_{k=0}^{i} L_k\}.$

- 1. Determine the cardinality of L_2 , without explicitly writing down the strings it contains.
- 2. For each of the strings below, determine whether it is in L. Explain why or why not!
 - $s_1 = accca$
 - $s_2 = acca$
 - $s_3 = acacaab$

Solution:

- L₁ = aab, aca. Thus ∪¹_{k=0} L_k = a, aab, aca with cardinality 3. When constructing L₂, we will get 3 strings from xxb, since x is the same string. In addition, we will get 3 · 3 = 9 strings from xcy, since x and y are different. However, in this way we will get acaca twice: from xcy with a and aca, and from aca and a. There are no other such symmetries, so there are no other repetitions. So the cardinality of L₂ is 3 + 9 - 1 = 11.
- 2. First we note that the number of characters in each string is always an odd number.
 - s_1 is not in L, because the construction rules do not allow two consecutive occurrances of the character c.
 - s_2 is not in L, because there cannot be strings with an even number of characters.
 - s_3 is in L: starting from the empty string, we get a, from there we get aca via xcy and aab via xxb, and then we get acacaab via xcy.

Problem 4.2 (Code definitions)

Define the following concepts and give an example of each:

- 1. Character code.
- 2. String code.
- 3. Prefix code.

Why are prefix codes also string codes? Solution:

1. Let A and B be alphabets, then we call an injective function c from A to B^+ a character code

5

10pt

- 2. Let c' be a function from A^* to B^* if it is injective then it induces a string code
- 3. A (character) code c : A to B+ is a prefix code if none of the codewords is a proper prefix to an other codeword

Proof of a prefix code being a string code in slide 130.

Problem 4.3 (Formal Languages and Concatenation and Intersection) Given the alphabet $A = \{a, b\}$ and 3 formal languages in $A L_1 = \{a^{[n]} | n \in \mathbb{N}\}, L_2 = \{ba^{[n]} | n \in \mathbb{N}\}, L_3 = \{b^{[k]}a^{[2n]} | n \in \mathbb{N}, k \in \mathbb{N}\}.$

- 1. What is $L_1 \cap L_3$?
- 2. Write down three words that belong in $L_4 = \operatorname{conc}(L_2, L_1)$.

Solution:

- 1. $\{a^{[2n]} \mid n \in \mathbb{N}\}$
- 2. baa, b, baaa

5 Boolean Expressions

Problem 5.1 (Practising Quine McCluskey)

Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the following function:

x1	x2	x3	f
F	F	F	F
F	F	Т	F
F	Т	F	Т
F	Т	Т	F
Т	F	F	Т
Т	F	Т	Т
Т	Т	F	F
Т	Т	Т	Т

Solution:

 QMC_1 :

M_0	=	$\{\overline{x_1} x_2 \overline{x_3}, x_1 \overline{x_2} \overline{x_3}, x_1 \overline{x_2} x_3, x_1 \overline{x_2} x_3, x_1 x_2 x_3\}$
M_1	=	$\{x_1 \overline{x_2}, x_1 x_3\}$
P_1	=	$\{\overline{x_1} x_2 \overline{x_3}\}$
M_2	=	Ø
P_2	=	$\{x_1\overline{x_2}, x_1x_3\}$

 QMC_2 :

	FTF	TFF	TFT	TTT
$x_1 \overline{x_2}$	F	Т	Т	F
$x_1 x_3$	F	F	Т	Т
$\overline{x_1} x_2 \overline{x_3}$	Т	F	F	F

7pt

Final result: 1. $f = x_1 \overline{x_2} + x_1 x_3 + \overline{x_1} x_2 \overline{x_3}$

Problem 5.2 (Model for Boolean Expressions)

Give a variable assignment φ for which all the following expressions evaluate to true.

- 1. $e_1 := x_1 * \overline{x_2} + \overline{x_2 + x_3} * \overline{x_1 + \overline{x_3}}$
- 2. $e_2 := \overline{x_1} * (x_2 * \overline{x_3}) + x_1 * (\overline{x_2} * x_3)$
- 3. $e_3 := (x_1 + x_2) * (x_2 + x_3)$

Show your reasoning using truth tables.

Solution:

 $\varphi = \{[T/x_1], [F/x_2], [T/x_3]\}$ We have the truth tables

x_1	x_2	x_3	$x_1 + x_2$	$x_2 + x_3$	e_3	$\overline{x_1} * (x_2 * \overline{x_3})$	$x_1 * (\overline{x_2} * x_3)$	e_2
Т	Т	Т	Т	Т	Т	F	F	F
T	Т	F	Т	Т	Т	F	F	F
T	F	Т	Т	Т	Т	F	Т	Т
T	F	F	Т	F	F	F	F	F
F	Т	Т	Т	Т	Т	F	F	F
F	Т	F	Т	Т	Т	Т	F	Т
F	F	Т	F	Т	F	F	F	F
F	F	F	F	F	F	F	F	F

From this table we find two possible assignments (the rows for which both e_2 and e_3 are true): $\varphi_1 = \{[T/x_1], [F/x_2], [T/x_3]\}$ and $\varphi_2 = \{[F/x_1], [T/x_2], [F/x_3]\}$.

Evaluating e_1 under φ_1 and φ_2 reveals that φ_1 is in fact the only solution. The truth table for e_1 is omitted.

6 Propositional Logic

Problem 6.1 (Hilbert calculus)

Prove the following theorem of Hilbert Calculus (using Hilbert Calculus rules only!!! - and make sure you specify the rules used on the way)

$$(S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R$$

Solution:

 $\begin{array}{l} \mathbf{P.1} \ (S \Rightarrow R \Rightarrow (S \Rightarrow R)) \Rightarrow (S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R \\ (\mathbf{S} \text{ with } [S/P], \ [R/Q], \ [S \Rightarrow R/R]) \end{array}$

P.2 $R \Rightarrow S \Rightarrow R$ (**K** with [R/P], [S/Q])

7pt

P.3 $(R \Rightarrow S \Rightarrow R) \Rightarrow S \Rightarrow (R \Rightarrow S \Rightarrow R)$ (**K** with $[R \Rightarrow S \Rightarrow R/P], [S/Q]$)

P.4 $S \Rightarrow R \Rightarrow S \Rightarrow R$ (**MP** on **P.3** and **P.2**)

P.5 $(S \Rightarrow R) \Rightarrow S \Rightarrow S \Rightarrow R$ (**MP** on **P.1** and **P.4**)

Problem 6.2 (Natural deduction)

Prove the following theorem of Natural Deduction (using ND Calculus rules only!!! - give their short abbreviation too when applying them)

$$(P \Rightarrow Q) \Rightarrow (\neg P \lor Q)$$

Solution:

$$\begin{split} & [P \Rightarrow Q]^1 \\ & [P]^2 \\ \hline \neg P \lor P^T ND & \frac{\neg P}{\neg P \lor Q} \lor I_l & \frac{P \Rightarrow Q \quad P}{Q} \Rightarrow E \\ \hline \hline & \neg P \lor Q \\ \hline & \neg P \lor Q \\ \hline & (P \Rightarrow Q) \Rightarrow (\neg P \lor Q) \\ \hline \end{matrix} \Rightarrow I^1 \end{split}$$

- 10pt