1 Maths

10pt
Problem 1.1 (Interval Intersections)
You are given a set of NV open intervals I, I, ... Iy, with the property that:

Vi, j. ;NI #0
Prove by induction that:

VN>2LNnLN...Iyn#0

Solution:
Proof: We will prove by induction after N the hypothesis. Note that N is the number of intervals
we are dealing with, irrespective to the intervals themselves.

P.1 Base case: For N = 2, it is obvious

P.2 Another base case: Consider that we have three intervals (N = 3): I; := (a,b), Iz := (¢, d),
and I3 := (e, f), and suppose without loss of generality that a < ¢ < e. Because of the
hypothesis, we also have e < b and e < d (otherwise some intersections would be empty).

It follows that at least the number %n(d’b) is common to all the intervals.

P.3 Step case: We know that the hypothesis holds for NV intervals, we want to prove it for N + 1
intervals. Let us consider intervals Iy, ... Ixyy1 and define

Jp =T NIng

From the hypothesis of the problem, we know that any two intervals have a common
element, thus
Vk.Jp £ 0

We also know that
Jigy Ny = Iy NIy, N IN1a

However, we know from the previous step that any three intervals with the property from
the problem have are all together not disjunct, therefore:

Vk‘l,k‘Q.Jkl N sz #* 0

Therefore, all the IV intervals Ji...Jy have the property from the statement, and thus
from the inductive hypothesis we have that

Jlﬂjgﬂ...JN#Q

which can be rewritten as
Lnkn...NInyNIng #@

2 Abstract Data Types

Problem 2.1 (ADT for UNN and prime numbers)
Design an ADT for unary natural numbers. Write a procedure that checks whether a
number is prime.
Solution: The ADT is: ({N},{[o: N],[s: N — N]})
The emp procdure compares two unary natural numbers, the o procedure represents bigger
or equal, s(o) represents smaller:
(emp:N x N — N; {emp(z,0) ~ o,cmp(o,x) ~ s(0),cmp(s(z), s(y)) ~ cmp(x,y)})
(sub:N x N — N; {sub(o, x) ~ o, sub(z,0) ~ x, sub(s(x), s(y)) ~ sub(z,y)})
(ifsNxNxN = N; {if(o,z,y) ~ y,if(s(0),x,y) ~ x})

10pt

The isDiv procedure checks whether a number is divisible by another:
(isDiv:N x N — N; {isDiv(o,z) ~ s(0),isDiv(s(x),y) ~ if(cmp(s(x),y), 0, isDiv(sub(s(z),y),y))})
The next procedure iterates over possible divisors:
(check:N x N — N; {check(z, k) ~ if(cmp(k,z),if(isDiv(zx, k), o0, check(x, s(k))),,s(0))})
The last procedure checks whether a number is prime:
(isPrime:N — N; {isPrime(s(0)) ~ o,isPrime(z) ~ check(z, s(s(0)))})

3 Standard ML

Problem 3.1 (Game)

Four players A,B,C,D are playing the following game: They have a number of red and
green stones and one blue stone arranged in a circle. (We will represent the circle by a
list). The players perform the following actions in turn:

Player A replaces the first red stone after the blue stone by a green stone.

20pt

For example: [#‘‘r’’ # ‘r’’ # ‘b’ # ‘g’ # ‘r’’ # ‘r’’]

would become [#¢‘r’’ # ‘x>’ # ‘b’ ,# ‘g’ , # ‘g’ , # ‘r’’]

Player B shifts the blue stone to the clockwise (to the right) by 3 replacing all the red sones
he finds by green stones, if he reaches the end of the “list” he starts at the beginning:
For example: [#‘‘r’’ ,# ‘v’ # ‘b’ # ‘g’’’ # ‘r’’]

would become [#¢‘D’’,# ‘x>’ # ‘g’ # ‘g’ , # ‘g’ ’]

Player C changes the stone after the blue stone to a green stone:

For example: [#‘‘r’’ ,#‘‘r’’ #° ‘b’ # ‘g’’’ # ‘r’’]

would become [#‘‘r’’ ,# ‘x>’ # ‘b’ ,# ‘g’ ,# ‘r’’]
[#x2 #r20 # D 0 # r]

would become [#‘‘r’’ ,# ‘x>’ # ‘b’ ,# ‘g’ ,# ‘r’’]

Player D shifts the blue stone to the left (counter clockweise) by 1, and puts a green stone
in it’s original place:

For example: [#‘‘r’’ ,# ‘x>’ ,# ‘b’ ,# ‘g’ ,# ‘r’’]

would become [#‘‘r’’,# ‘b’ ,# ‘g’ , # ‘g’ ,# ‘r’’]

The player who replaces the last red stone by a green stone wins.

Assuming player A starts first, and the players play in the order A,B,C,D, write a sml func-
tion that given the list with the arrangement of stones, determines which of the players will
win, and how many moves player A makes. Don’t forget to raise the appropriate exceptions.

Example and signature:
val game = fn : char list -> string * int
- game([#llrll #Ilgﬂ #Ilrll #Ilbll #llrll #IIgH]) .
val it = ("A,wins",2) : string * int

Solution:

exception wrong_stone;

fun last_element ([]) = raise wrong_stone (*find the last element of the list *)
| last_element ([a]) = ([],a) (*and the list without the last elementx*)
| last_element(a::1) = let val (c,d) = last_element(l) in (a::c,d) end;

fun count([]) = true (*check if there are only blue and green stonesx*)
| count((#"r")::1) = false
| count((#"b")::1) = count(l)
| count((#"g")::1) = count(l)
| count(r::1) = raise wrong_stone;

fun help_a(m, (#"r")::1,0) = help_a(m@[#"r"],1,0) (*move of player Ax)
| help_a(m, (#"g")::1,0) = help_a(m@[#"g"],1,0) (*find the blue stonex*)
| help_a(m, [(#"Db")],0) = help_a([]l,m@[(#"b")],1) (*if it is at the end go to the beginning*)
| help_a(m, (#"b")::1,0) = help_a(m@[#"b"],1,1) (*now we have found the blue stonex)
| help_a(m,[(#"g")],1) = help_a([],m@[(#"g")],1) (*if the end of the list is reachedx)
| help_a(m, (#"g")::1,1) = help_a(m@[#"g"],1,1) (*search for a red stonex)
| help_a(m, (#"r")::1,1) = m@[(#"g")]@Ll (xfound it, return*)
| help_a(m,[],0) = raise wrong_stone (*no blue stonex)
| help_a(m,(#"b")::1,1) = raise wrong_stone (*two blue stonesx*)
| help_a(m,y::1,x) = raise wrong_stone; (*some other stonex*)

fun help_b(m, [(#"g")],0) = raise wrong_stone(*move of player Bx)
| help_b(m, [(#"r")],0) raise wrong_stone (*no blue stonex)
| help_b(m, (#"r")::1,0) = help_b(m@[(#"r")],1,0) (*search for blue stonex*)
| help_b(m, (#"g")::1,0) help_ b(m@[(#"g")],1,0) (*search for blue stone*)
| help_b(m, [(#"b")],0) = help_b([],m@[(#"g")],1) (*if the blue stone is at the end of the li:
| help_b(m, (#"b")::1,0) = help_bm@[(#"g")],1,1) (*found blue stone*)
| help_b(m, (#"g")::1,3) m@[(#"b")]@1l (*made 3 steps, so shift the blue stone, returnx)
| help_b(m, (#"r")::1,3) m@[(#"b")]@1 (*made 3 steps, so shift the blue stone, return*)
[
|
[
|
[

help_b(m, [(#"r")],x) = help_b([],m@[(#"g")],x+1) (xend of list, ruturn to the baginning of
help_b(m, [(#"g")],x) = help_b([],me[(#"g")],x+1) (*end of list, ruturn to the baginning of
help_b(m, (#"g")::1,x) = help_b(m@[(#"g")],1,x+1) (xgo along the list, changing the stones*,
help_b(m, (#"r")::1,x) = help_bm@[(#"g")],1,x+1) (*go along the list, changing the stones*,
help_b(m,a::1,x) = raise wrong_stone; (*some other stonex)

fun help_c(m, (#"r")::1,0) = help_c(m@[#"r"],1,0) (*move of player Cx)

help_c(m, (#"g")::1,0) = help_c(m@[#"g"],1,0) (*search for the blue stonex)
help_c(m,[],0) = raise wrong_stone (*no blue stonex)

help_c(m, (#"b")::1,0) = help_c(m@[#"b"],1,1) (*found blue stonex*)
help_c(m, (#"g")::1,1)
help_c(m, (#"r")::1,1)
help_c(m, (#"b")::1,1) raise wrong_stone (*two blue stones*)
help_c(m,y::1,x) = raise wrong_stone; (*some other stonex*)

fun help_d(m, (#"r")::1) = help_d@m@[(#"r")],1) (#move of player Dx*)
help_d(m, (#"g")::1) = help_d(m@[(#"g")],1) (xsearch for the blue stonex)

help_c(m, [(#"b")],0) = help_c([],m@[(#"b")],1) (*blue stone last in the list, so return to

m@[(#"g")]@1 (*replace the stone after the blue stonex)
m@[(#"g")]@1 (xreplace the stone after the blue stonex)

|

| help_d([],(#"b")::1) = let val (a,b) = last_element(1l) in [(#"g")]@a@[#"b"] end (*if the b!
| help_d(m, (#"b")::1) = let val (a,b) = last_element(m) in a@[#"b"]JQ[(#"g")]@l end (*replace
|
|

help_d(m,[]) = raise wrong_stone (*no blue stonex*)
help_d(m,a::1) = raise wrong_stone; (*some other stonex*)

fun game_a(l,x) = let val c
(*play in turn*)

help_a([],1,0) in if count(c) then ("A_wins", x+1) else game_b(c

and game_b(1l,x) = let val ¢ = help_b([],1,0) in if count(c) then ("B wins", x+1) else game_c(c
and game_c(l,x) = let val ¢ = help_c([],1,0) in if count(c) then ("C_,wins", x+1) else game_d(c

and game_d(1l,x) = let val c

fun game(1l) = game_a(l,0); (*player A starts*)

Problem 3.2 (Sum decomposition)
Design an SML function that takes an integer n > 0 and returns all the possible ways in
which n can be written as sum of strictly positive integers. Encode the result as a string.
Function signature and example:
val decompose = fn : int -> string list
- decompose 3;
val it = ["3","2,+ 1","1+.2", "1+ 1+, 1"] : string list
How many decompositions exist for an n ? (Write your answer and a short argument
at the end of the source file)

Solution:
Control.Print.printLength := 1000;

fun append x 11 = map (fn 1s => x :: 1s) 11
fun addOne 11 = map (fn (h :: t) => (1 + h) :: t) 11

fun decomposeInlist 1 = [[1]]
|decomposeInlist n =

let val 11 = decomposelnlList (n - 1)
in addOne 11 @ append 1 11
end

fun convertToString [h] = Int.toString h
| convertToString (h :: t) = Int.toString h = "_+," ~ convertToString t

fun decompose n = map convertToString (decomposeInlList n)

help_d([],1) in if count(c) then ("D wins", x+1) else game_a(c,x

10pt

4 Formal Languages

10pt
Problem 4.1 (Formal Languages)
You are given the alphabet A = {a,b,c} and a L := |J;2, L;, where Ly = {a} and

Lity = {xzb,zey |,y € Up—o L}

1. Determine the cardinality of Ly, without explicitly writing down the strings it con-
tains.

2. For each of the strings below, determine whether it is in L. Explain why or why not!

® S| = accca
® Sy = acca

e 53 = acacaab

Solution:

1. L = aab,aca. Thus U}C:O L, = a,aab, aca with cardinality 3.
When constructing Lo, we will get 3 strings from zxb, since x is the same string.
In addition, we will get 3 - 3 = 9 strings from xcy, since x and y are different.
However, in this way we will get acaca twice: from xcy with a and aca, and from aca and
a. There are no other such symmetries, so there are no other repetitions.
So the cardinality of Lo is 3+ 9 —1 =11.

2. First we note that the number of characters in each string is always an odd number.
e sy isnot in L, because the construction rules do not allow two consecutive occurrances
of the character c.
e 5o is not in L, because there cannot be strings with an even number of characters.

e s3 is in L: starting from the empty string, we get a, from there we get aca via xcy
and aab via xxb, and then we get acacaad via xcy.

" pt
Problem 4.2 (Code definitions)

Define the following concepts and give an example of each:

1. Character code.
2. String code.
3. Prefix code.

Why are prefix codes also string codes?
Solution:

1. Let A and B be alphabets, then we call an injective function ¢ from A to BT a character
code

2. Let ¢ be a function from A* to B* if it is injective then it induces a string code

3. A (character) code ¢ : A to B+ is a prefix code if none of the codewords is a proper prefix
to an other codeword

Proof of a prefix code being a string code in slide 130.

Problem 4.3 (Formal Languages and Concatenation and Intersection)
Given the alphabet A = {a,b} and 3 formal languages in A L; = {a |n € N}, L, =

{ba" |n € N}, Ly = {baP") |n € N k € N}.

1. What is L1 N Lg7

2. Write down three words that belong in L, = conc(Ls, Ly).

Solution:
1. {al®"|n € N}
2. baa, b, baaa

5 Boolean Expressions

Problem 5.1 (Practising Quine McCluskey)

Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the fol-

lowing function:

i o e s B e B

A4
it R e R iy 58
-~

Solution:

QMCll

QMCs :

{ZT1 22 T3, 21 T2 T3, 1 T 3, T1 T2 T3}

{z172, 21 23}
{7122 73}

0

{172, 21 23}

FTF TFF TFT TTT

T X2
xr1 I3

Ty T2 T3

F T T F
F F T T
T F F F

pt

pt

Final result: 1. f=x1Ta+x123+T1 2273

Problem 5.2 (Model for Boolean Expressions)
Give a variable assignment ¢ for which all the following expressions evaluate to true.

1. ey =21 %Tg + 29+ 23 %21 + 73
2. €9 :=T7 * (To xT3) + 21 * (T * x3)
3. e3 = (T + x2) * (x2 + 3)

Show your reasoning using truth tables.

Solution:

¢ ={[T/a1], [F/x2], [T/xs]}
We have the truth tables

T1 + x0 | T2 + 23 T1 % (2 % T3) | 21 % (T * 3)

i B s B s E B B B s
MM A AT A S
e B B e s B R BT
M 4444444
e B N e R I B
T AAT A A8
b W I M e M e M 5 |
b W e e e B s W 3
B B M o M o B B 1 RS

From this table we find two possible assignments (the rows for which both es and e3 are true):

o1 = {[T/x1], [F/xa], [T/x3]} and @y = {[F/x1], [T/ o], [F/x3]}.
Evaluating e; under ¢; and 9 reveals that ¢ is in fact the only solution. The truth table
for ey is omitted.

6 Propositional Logic

Problem 6.1 (Hilbert calculus)
Prove the following theorem of Hilbert Calculus (using Hilbert Calculus rules only!!!
- and make sure you specify the rules used on the way)

(S=R)=S=S=R

Solution:
P1(S=R=(S=R)=(S=R)=5S=S5S=R
(S with [S/P], [R/Q], [S = R/R])

P.2 R= S = R (K with [R/P], [S/Q])

pt

pt

P3(R=S=R)=S=(R=S5=R) (Kwith [R= 5= R/P], [S/Q])
P4S=R=S= R (MP onP.3 and P.2)

P5(S=R)=S= 5= R (MP on P.1 and P.4)

. 10pt
Problem 6.2 (Natural deduction)

Prove the following theorem of Natural Deduction (using ND Calculus rules only!!!
- give their short abbreviation too when applying them)

(P= Q)= (=PVQ)

Solution:
P =Q
[P
[—P)? P= % P N
~PVEQ =J!

(P=@)=(=PVQ)

