
General Computer Science I (320101) Fall 2014

Michael Kohlhase
Jacobs University Bremen

For Course Purposes Only

November 11, 2014

Contents

Assignment 1: Elementary Math 2

Assignment 2: Elementary Math 3

Assignment 3: SML Language 5

Assignment 4: Datatypes in SML 6

Assignment 5: Elementary Math 8

Assignment 6: More SML and Formal Languages 10

Assignment 7: Encodings 12

1

Assignment 1: Elementary Math

(Given Sep. 11., Due Sep. 18.)

Problem 1.1 (Induction on an inequality)
Prove by induction the following inequality: 35pt

a1 + a2 + . . .+ an
n

≥ n
√
a1 · a2 · . . . · an

for n = 2k, ai ≥ 0, ai ∈ R and k ∈ N
Note: It actually holds for all n ∈ N.

Solution: Base case 1:

a0 ≥ a0
Base case 2:

a0 + a1
2

≥
√
a0 · a1 ⇐⇒ (1)

a0 − 2 · √a0 · a1 + a1
2

≥ 0 ⇐⇒ (2)

(
√
a0 −

√
a1)

2

2
≥ 0 (3)

which is always true. Hence, the base case holds.
Assume that for some n = 2k the statement holds true. (A)
For n = 2k+1 we have the following:

a1 + a2 + . . .+ a2k+1

2k+1
=

a1+a2+...+a
2k

2k
+

a
2k+1

+a
2k+2

+...+a
2k

2k

2

(A)

≥

(A)

≥
2k
√
a1 · a2 · . . . · a2k + 2k

√
a2k+1 · a2k+2 · . . . · a2k+1

2

(3)

≥ 2k+1√
a1 · a2 · . . . · an

Our proof is now done. Note that the induction is done on the variable k.
Problem 1.2 (Unary Natural Numbers)
Let ⊕ be the addition operation and � be the multiplication operation on unary natural 30pt
numbers as defined on the slides. Prove or refute that:

1. a⊕ b = b⊕ a

2. (a⊕ b)� c = a� c⊕ b� c

3. a� b = b� a

Solution:

1. Proof : We proceed by induction over b:

2

P.1 Base case:
a⊕ 0 = 0⊕ a

P.1 W e have a⊕ 0 = a by the addition axiom, so we need a = 0⊕ a. This is easily proven
by induction over a.

P.3 Step case: We first prove by induction over a that

s(b)⊕ a = b⊕ s(a)

P.3 B ase case: a = 0. We need s(b)⊕ 0 = b⊕ s(0). But from the previous step we know:

s(b)⊕ 0 = 0⊕ s(b) = s(b⊕ 0) = b⊕ s(0)

Step case, assume s(b)⊕ a = b⊕ s(a). Now:

s(b)⊕ s(a) = s(s(b)⊕ a) = s(b⊕ s(a)) = b⊕ s(s(a))

Back to the problem, assume a⊕ b = b⊕ a and let’s prove that a⊕ s(b) = s(b)⊕ a.

P.4 W e have a⊕ s(b) = s(a⊕ b) = s(b⊕ a) = b⊕ s(a). This is equal to s(b)⊕ a, which is
what we need to prove.

2. Proof : We proceed by induction over c.

P.1 Base case: (a⊕ b)� 0 = a� 0⊕ b� 0.

P.1 T his is true by the fact that ∀nn� 0 = 0.

P.3 Step case: Assume that (a⊕ b)� c = a� c⊕ b� c. We need (a⊕ b)� s(c) = a� s(c)⊕ b� s(c)
P.3 W e have, from the multiplication axioms:

(a⊕ b)� s(c) = (a⊕ b)⊕ (a⊕ b)� c = (a⊕ b)⊕ (a� c⊕ b� c) =

= (a⊕ a� c)⊕ (b⊕ b� c) = a� s(c)⊕ b� s(c)

3. Proof : We proceed by induction over b.

P.1 Base case: a� 0 = 0� a can be easily proven by induciton over a.

P.2 Step case, assume a� b = b� a. We need a� s(b) = s(b)� a.

P.2 W e have:

a� s(b) = a⊕ a� b = s(0)� a⊕ b� a =

= (s(0)⊕ b)� a = (b⊕ s(0))� a = s(b)� a

where we used the fact that a = s(0)� a, something that can be quickly proven by
induction over a.

3

Problem 1.3: Figure out the functions on natural numbers for the following defining 15pt
equations

δ(o) = o

δ(s(n)) = s(s(δ(n)))

Solution:

The function δ doubles its argument.

Problem 1.4 (A wrong induction proof)
What is wrong with the following “proof by induction”? 20pt

Theorem: All students of Jacobs University have the same hair color.

Proof: We prove the assertion by induction over the number n of students at
Jacobs University.

base case: n = 1. If there is only one student at Jacobs University, then the
assertion is obviously true.

step case: n > 1. We assume that the assertion is true for all sets of n students
and show that it holds for sets of n + 1 students. So let us take a set S of n + 1
students. As n > 1, we can choose students s ∈ S and t ∈ S with s 6= t and
consider sets Ss = S\{s} and St := S\{t}. Clearly, #(Ss) = #(St) = n, so all
students in Ss and have the same hair-color by inductive hypothesis, and the same
holds for St. But S = Ss ∪ St, so any u ∈ S has the same hair color as the students
in Ss ∩ St, which have the same hair color as s and t, and thus all students in S
have the same hair color

Solution:

The problem with the proof is that the inductive step should also cover the case when n = 1,
which it doesn’t. The argument relies on the fact that there intersection of Ss and St is non-empty,
giving a mediating element that has the same hair color as s and t. But for n = 1, S = {s, t},
and Ss = {t}, and St = {s}, so Ss ∩ St = ∅.

4

Assignment 2: Elementary Math

(Given Sep. 18., Due Sep. 25.)

Problem 2.1 (Are bijective functions with composition a group?)
A group is a set G with a binary operation ∗ : G×G→ G, obeying the following axioms: 25pt

Closure: G is closed under ∗, i. e. ∀a, b ∈ Ga ∗ b ∈ G

Associativity: ∀a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c)

Identity element: ∃e ∈ G∀a ∈ Ga ∗ e = e ∗ a = a.

Inverse elements: ∀a ∈ G∃a−1 ∈ Ga ∗ a−1 = e.

If, additionally, the following axiom holds, the group is called “commutative” or “Abelian”:

Commutativity: ∀a, b ∈ Ga ∗ b = b ∗ a.

• Now prove or refute whether the set of all bijective functions f : A → A on a set A
with the function composition ◦ forms a group.

• Is it commutative?

Solution:

Associativity:

Identity element: the identity function λx.x

Inverse elements: f−1, exists due to bijectivity

Commutativity: No, easy counter-example.

Problem 2.2: Are the following functions total, injective, surjective and/or bijective? 25pt

• f : R→ R, f(x) = x2 − 3x+ 6

• g : N→ N, g(x) represents the number of distinct prime divisors of x

• h : N+ × N+ → N+,

h(m,n) :=
(m+ n− 2)(m+ n− 1)

2
+m

Prove your answers.

Solution: f is total because f(x) is defined for all real values of x. f is not injective
because f(0) = f(9) = 6. f is also not surjective because the minimal value that f can obtain is
f(4.5) = 12.75.
g is total because every natural number can be represented as a number of prime divisors. g is

5

not injective because both 4 and 9 have the same amount of prime divisors(1). g is surjective
because for any number of natural divisors k, the number p1 · p2 · . . . · pk will be a number that
has exactly k prime divisors.
h is total because it takes a defined value for every two natural numbers m and n. h is not
injective because h(1, 0) = h(1, 1) = 1. h is surjective(I will write the proof soon).
Problem 2.3: Check whether the following are equivalence relations(you can assume all 25pt
of them are from the set of natural numbers to itself):

• x ∼ y ⇐⇒ x = y(mod3) ∀x, y ∈ N

• x ∼ y ⇐⇒ x2 = y2 ∀x, y ∈ N

• x ∼ y ⇐⇒ x|y

Solution:

• ∼ is an equivalence relation. It is reflexive because x = x(mod 3) for all x ∈ N. It is
also symmetric because if x = y(mod 3) then y = x(mod 3). Transitivity follows from
x = y(mod 3) ∧ y = z(mod 3) =⇒ x = z(mod 3).

• ∼ is an equivalence relation. x2 = x2 shows reflexivity, while x2 = y2 =⇒ y2 = x2 and
x2 = y2 ∧ y2 = z2 =⇒ x2 = z2 due to positivity prove symmetry and transitivity.

• ∼ is not an equivalence relation since it isn’t symmetric. For example, 3|6 but 6 6 |3.

Problem 2.4 (Relation Cardinality)
Let S be a set of n elements. 25pt

1. How many different relations on S are there?

2. How many of these relations are reflexive?

3. How many of these relations are symmetric?

4. How many of these relations are reflexive and antisymmetric at the same time?

Justify your answers.
Solution:

Proof :

P.1 We first calculate the number of total relations on S. We have
(
n
2

)
different pairs of elements.

P.2 The number of relations on two different elements 〈a, b〉 ∈ S and 〈b, a〉 ∈ S is 2 ·
(
n
2

)
.

P.3 If we also include the reflexive relations 〈a, a〉 ∈ S we will have 2 ·
(
n
2

)
+ n total relations.

P.4 Now we need to find the number of ways to select these relations to form a relation on {S}, by
either choosing the respective relation, or not. We then find 22·

(
n
2

)
+n = 2n·(n−1)+n = 2n

2

P.5 We can simplify the next steps a bit by imagining an n · n grid to account for the tuples.
For reflexive relations we have the diagonal elements fixed, thus starting from n elements.

6

P.6 We still have the possibility of including any of the other tuples, be they below or on top of
the main diagonal, thus reaching 2n

2 − n = 2n times(n−1)

P.7 We may use the grid discretization again. For symmetry, we of course need to include 〈b, a〉
every time we have 〈a, b〉. This results in considering any elements on and above (or on
and below) the main diagonal

P.8 There are a total of n·(n+1)
2 such possibilities so our desired number will be 2

n·(n+1)
2

P.9 Let us first consider antisymmetry. By following the same matrix/grid procedure, we distin-
guish between diagonal and non-diagonal elements.

P.10 For diagonal elements, there are two possibilities for each, and since we have n such ele-
ments, we obtain a total of 2n possibilites.

P.11 For each pair of non-diagonal elements a and b, we have the following possibilities:

1. tupa, b in, tupb, a out

2. tupa, b out, tupb, a out

3. tupa, b out, tupb, a in

The number of distinct pairs of elements is fracn · (n− 1)2, and since we have three pos-

sibilities for each pair, we will have a total number of 3
n·(n−1)

2 possibilities for non-diagonal
elements

P.12 This leads to a total number of antisymmetric relations of 2n · 3
n·(n−1)

2

P.13 In order to get both reflexive and antisymmetric relations, we simply lose the degree of

freedom in choosing the diagonal elements. Hence we end up with 3
n·(n−1)

2 as our final
answer.

7

Assignment 3: SML Language

(Given Sep. 25., Due Oct. 2.)

Problem 3.1: We call the sequence a0 = 0, a1 = 1, an = an−1 + an−2 a Fibonacci 25pt
sequence. Write an SML function fib = fn : int → int that calculates the nth Fibonacci
number. Also, write an SML function isfib = fn : int → bool that, given a number n,
calculates whether n is a fibonacci number or not. You are allowed to define additional
functions to help you.

Solution:

fun fib(n) = if n<=0 then 0 else if n=1 then 1 else fib(n−1) + fib(n−2);

Note: this solution is extremely inefficient.A better one is covered in Chapter 6.

fun is fib(x) = let
fun helper(current, value) =
if fib(current) < value then helper(current + 1, value)

else if fib(current = value) then true else false;
in

helper(0,x)
end;

Problem 3.2: A palindrome is a sequence that is the same regardless of whether it’s 15pt
read right to left or left to right. For example, 12321 is a palindrome while 145 is not.
Write an SML function palindrome = fn :′ a list → bool that takes a list and outputs
whether that list represents a palindrome or not.

Solution:

fun rev(nil) = nil
|rev(a::b) = rev(b)@([a]);

fun palindrome(x) = x=rev(x);

Another way to implement reverse is to keep all the elements to a new list in backwards order.

fun rev helper(nil, x) = x
|rev helper(a::b, x) = rev helper(b, a::x);

fun rev(x) = rev helper(x, nil);

lstsetlanguage=ML
Problem 3.3 (SML Rap functions)
The time has come, you have decided that you and your friends are rather talented and 25pt
want to go into the music business. However the group’s imagination is not very good
so you need to create an SML program that will generate your rap lyrics. This program
rap(words,numbers) which will take two lists and repeat each word the corresponding number
of times in the same position in the numbers list. If both lists do not have the same length
just ouput the empty list.

Function signature and example:

8

val rap = fn : ’a list ∗ int list −> ’a list
− rap([”we”,”love”,”the”,”s”,”m”,”l”],[1,3,0,3,2,1]);
val it = [”we”,”love”,”love”,”love”,”s”,”s”,”s”,”m”,”m”,”l”] : string list

Solution:

fun repeat(word,num) = if num > 0 then word::(repeat(word,num−1)) else nil

fun len([]) = 0
| len(a::b) = 1+len(b);

fun rap(a,nil) = nil
| rap(nil, a) = nil
| rap(a::words, b::nums) = if (len(words) = len(nums)) then repeat(a,b)@(rap(words,nums)) else nil

Problem 3.4: Given a sequence an we call a0− a1 + a2− a3 + ... the alternating sum of 15pt
the sequence. Write an SML function alternating = fn : intlist→ int that calculates the
alternating sum of the list.

Solution:

fun alternating(nil) = 0
|alternating(a::b) = a − alternating(b);

Problem 3.5 (Remove duplicates)
20pt

Write an SML function removeDupl that takes a string as an argument and replaces all
adjacent repeated occurrences of a character with a single instance of that character.

val removeDupl = fn : string −> string

For example,

− removeDupl(”aabbacccdd”);
val it = ”abacd” : string

Solution:

(∗ Sample Solution ∗)
fun removeD [] = []
| removeD(x::nil)=[x]
| removeD(x::xs)= if x=hd(xs) then removeD(xs) else x::removeD(xs);

fun removeDupl l = implode(removeD(explode l));

(∗ Test cases ∗)
val test1 = removeDupl ”aaaaaabbbbbbcccc” = ”abc”;
val test2 = removeDupl ”fGGGGGHiiiii” = ”fGHi”;
val test3 = removeDupl ”” = ””;

9

Assignment 4: Datatypes in SML

(Given Oct. 2., Due Oct. 9.)

Problem 4.1 (Counting nucleotides)
One of the tasks Bioinformatics students used to have was computing the frequency of 20pt
DNA nucleotides (the structural elements of the nucleic acid). But, one day, after learning
SML in GenCS, a student came with the idea of writing a function that automatically does
this job for him. He created the following datatype:

datatype DNA = T| C | G | A;

He asks you to help him implement a function that returns a tuple that represents the
frequencies of T, C, G and A respectively and which has the following signature:

val frequency = fn : DNA list −> real ∗ real ∗ real ∗ real

Example:

− frequency([T,C,C,A,A,G,A,G]);
val it = (0.125,0.25,0.25,0.375) : real ∗ real ∗ real ∗ real;

Solution:

datatype DNA = T | C | G | A;

fun helper([]) = (0.0,0.0,0.0,0.0,0.0)
| helper(T :: L) = let val (nt, nc, ng, na, n) = helper(L) in (nt+1.0, nc,ng,na,n+1.0) end
| helper(C :: L) = let val (nt, nc, ng, na, n) = helper(L) in (nt, nc+1.0,ng,na,n+1.0) end
| helper(G :: L) = let val (nt, nc, ng, na, n) = helper(L) in (nt, nc,ng+1.0,na,n+1.0) end
| helper(A :: L) = let val (nt, nc, ng, na, n) = helper(L) in (nt, nc,ng,na+1.0,n+1.0) end;

fun frequency(X) = let val (nt,nc,ng,na,n) = helper(X) in (nt/n,nc/n,ng/n,na/n) end;

Problem 4.2 (Sort the mushroom!)
Red Riding Hood collected in her basket three types of mushrooms: red ones, green ones 30pt
and yellow ones. We know the following about each type of mushroom:

• The red mushrooms have a number of spots on their cap, and the more the merrier.

• The green mushrooms are edible only when they have a black spot on their cap.

• The yellow mushrooms are tastier when they are less dense (and we can only measure
weight and volume, but we still can determine which mushroom is tastier, can’t we?).

As soon as she arrived at her grandmother’s house, she started to arrange the mush-
rooms by color (red first, then green and then yellow), and each mushroom by it’s property
(for red ones, she wanted increasing number of spots, for green ones, the edible should be
at the right of non-edible, and for yellow ones, in increasing order of tastiness). Help her
finish faster by writing an SML data type mushroom that can represent a mushroom and a

10

function sort that, given a list of mushrooms, returns them in the order Red Riding Hood
wants them.

For example, say that the girl found 2 red mushrooms (r1 with 10 dots and r2 with 12
dots), 1 yellow mushroom (y with weight 2 and volume 3) and 2 green mushroom (g1 with
a black dot and g2 without). The result of calling sort on the list [r1, r2, y, g1, g2] would be
the list [r1, r2, g2, g1, y].

Solution:

datatype mushroom = red of int | green of bool | yellow of int∗int;

(∗ use this to faster compare two mushroom(s) ∗)
fun compare(red(a), red(b)) = a<b
| compare(red(), green()) = true
| compare(green(), red()) = false
| compare(red(), yellow(,)) = true
| compare(yellow(,), red()) = false
| compare(green(a), green(b)) = a=false orelse b=true
| compare(green(), yellow(,)) = true
| compare(yellow(,), green()) = false
| compare(yellow(a1,b1), yellow(a2,b2)) = a1∗b2 < a2∗b1; (∗ always prefer multiplication over division! ∗)

(∗ classical mergesort algo ∗)
fun merge([], B) = B
| merge(A, []) = A
| merge(a::A, b::B) = if compare(a,b) then a::merge(A,b::B) else b::merge(a::A, B);

fun sort([a]) = [a]
|sort(A) = let val len = List.length(A)

val l1 = List.take(A, len div 2)
val l2 = List.drop(A, len div 2)

in
merge(sort(l1), sort(l2))

end;

Problem 4.3 (High-Order functions - Look up)
You are given the following SML datatype 25pt

datatype num = undefined | value of int;

Your task is to program a function create lookup in SML. The function takes three
arguments as inputs: two functions f and g and a list l. create lookup returns a new
function as a result. If we call the result lookup then it is defined in the following way

lookup(x) =

{
value(y) if ∃v ∈ l f(v) = x ∧ g(v) = y

undefined if 6∃v ∈ l f(v) = x

If the condition f(v) = x ∧ g(v) = y is satisfied by more that one v just pick any pair.
The signature of create lookup is:
create lookup = fn : (’a −> int) ∗ (’a −> int) ∗ ’a list −> int −> num

Here is an example:

11

fun identity x = x;
fun inverse x = ˜x;
val l = [1,2,3];
val lookup = create lookup (inverse,identity,l);
lookup 1;
val it = undefined : num

lookup ˜2;
val it = value 2 : num

Solution:

datatype num = undefined | value of int;

fun combine nil nil = nil
| combine (a::l) nil = (a,a)::(combine l nil)
| combine nil (a::l) = (a,a)::(combine nil l)
| combine (a::l) (b::m) = (a,b)::(combine l m);

fun create lookup (funa,funb,l) =
let
val map1 = map funa l;
val map2 = map funb l;
val table = combine map1 map2;

in
fn x => (foldl

(fn ((ca,cb),p) => if p=undefined andalso ca = x then value(cb) else p)
undefined
table
)

end;

(∗ Test cases ∗)

(∗ we need some functions to test with ∗)
val l = [1,2,3,4,˜5,6];
fun add1 x = x+1;
fun inv x = ˜x;
val test fun = create lookup (add1,inv,l);

val test1 = test fun 0 = undefined;
val test2 = test fun 1 = undefined;
val test3 = test fun ˜1 = undefined;
val test4 = test fun ˜2 = undefined;
val test5 = test fun ˜3 = undefined;
val test6 = test fun 10 = undefined;
val test7 = test fun 2 = value(˜1);
val test8 = test fun 3 = value(˜2);
val test9 = test fun 4 = value(˜3);
val test10 = test fun 5 = value(˜4);
val test11 = test fun 6 = undefined;
val test12 = test fun 7 = value(˜6);
val test13 = test fun ˜4 = value(5);

12

Problem 4.4 (Understaning map)
Given the SML higher-order function fun f x = fn (y) => y::x and the list val l = [1,2,3]. 15pt

• Determine the types of f and map (f l)

• evaluate the exression map (f l) l

Solution:

− fun f x = fn (y) => y::x;
val f = fn : ’a list −> ’a −> ’a list
− map (f l);
val it = fn : int list −> int list list

− map (f l) l;
val it = [[1,1,2,3],[2,1,2,3],[3,1,2,3]] : int list list

Problem 4.5: Given the following SML data type for an arithmetic expressions 25pt

datatype arithexp = aec of int (∗ 0,1,2,... ∗)
| aeadd of arithexp ∗ arithexp (∗ addition ∗)
| aemul of arithexp ∗ arithexp (∗ multiplication ∗)
| aesub of arithexp ∗ arithexp (∗ subtraction ∗)
| aediv of arithexp ∗ arithexp (∗ division ∗)
| aemod of arithexp ∗ arithexp (∗ modulo ∗)
| aev of int (∗ variable ∗)

give the representation of the expression (4x+ 5)− 3x.
Write a (cascading) function eval : (int −> int) −> arithexp −> int that takes a variable

assignment ϕ and an arithmetic expresson e and returns its evaluation as a value.
Note: A variable assignment is a function that maps variables to (integer) values, here it is

represented as function ϕ of type int −> int that assigns ϕ(n) to the variable aev(n).

Solution:

datatype arithexp = aec of int (∗ 0,1,2,... ∗)
| aeadd of arithexp ∗ arithexp (∗ addition ∗)
| aemul of arithexp ∗ arithexp (∗ multiplication ∗)
| aesub of arithexp ∗ arithexp (∗ subtraction ∗)
| aediv of arithexp ∗ arithexp (∗ division ∗)
| aemod of arithexp ∗ arithexp (∗ modulo ∗)
| aev of int (∗ variable ∗)

(∗ aesub(aeadd(aemul(aec(4),aev(1)),aec(5)),aemul(aec(3),aev(1))) ∗)

fun eval phi =
let

fun calc (aev(x)) = phi(x) |
calc (aec(x)) = x |
calc (aeadd(e1,e2)) = calc(e1) + calc(e2) |
calc (aesub(e1,e2)) = calc(e1) − calc(e2) |
calc (aemul(e1,e2)) = calc(e1) ∗ calc(e2) |
calc (aediv(e1,e2)) = calc(e1) div calc(e2) |
calc (aemod(e1,e2)) = calc(e1) mod calc(e2);

13

in fn x => calc(x)
end;

(∗ Test:
− eval (fn 1=>6) (aesub(aeadd(aemul(aec(4),aev(1)),aec(5)),aemul(aec(3),aev(1))));
stdIn:14.7−14.14 Warning: match nonexhaustive
1 => ...

val it = 11 : int
− ∗)

14

Assignment 5: Elementary Math

(Given Oct. 8., Due Oct. 11.)

Problem 5.1 (Abstract Procedures on a Deck of Cards)
You are given the following abstract data type for a deck of cards: 35pt

〈{D,C,S,N,B}, {[nil : D], [S : S], [H : S], [C : S], [D : S], [o : N], [s : N→ N], [card : S× N→ C], [add : C× D→ D], [T : B], [F : B]}〉

1. given a deck, count the number of cards of a specific suit:

count suit(add(card(S, s(s(o))), add(card(D, s(s(s(o)))), add(card(S, s(s(s(o)))), nil))), S)

= s(s(o))

2. given a deck, count the number of cards with a specific number:

count number(add(card(S, s(s(o))), add(card(D, s(s(s(o)))), add(card(S, s(s(s(o)))), nil))),

s(s(s(o)))) = s(s(o))

3. given a deck, reverse the order of the cards inside:

reverse(add(card(H, s(s(o))), add(card(D, s(s(s(o)))), add(card(S, s(s(s(o)))), nil))))

= add(card(S, s(s(s(o)))), add(card(D, s(s(s(o)))), add(card(H, s(s(o))))), nil)

4. given 2 decks, check if the first is included in the second:

included(add(card(D, s(s(o))), add(card(S, s(o)), nil)),

add(card(D, s(s(o))), add(card(H, s(s(s(o)))), add(card(S, s(o)), nil)))) = T

5. given 2 decks, check if they contain they contain the same cards:

same(add(card(D, s(s(o))), add(card(S, s(s(o))), nil)), add(card(D, s(s(o))),

add(card(H, s(s(o))), nil))) = F

6. given a deck, sort the cards inside so that they are first ordered by suit (spades,
hearts, diamonds and then clubs) and then in increasing order by their number:

sort(add(card(D, s(s(o))), add(card(H, s(s(o))), add(card(D, s(s(s(o)))),

add(card(S, s(s(o))), add(card(C, s(s(s(o)))), nil))))))

= add(card(S, s(s(o))), add(card(H, s(s(o))), add(card(D, s(s(o))),

add(card(D, s(s(s(o)))), add(card(C, s(s(s(o)))), nil)))))

15

Solution:
Problem 5.2 (ADT for rational numbers)
Define an abstract data type for rational numbers. Write the numbers 2

3
and −1

2
using 25pt

your definition. Also define all other data types you need to construct rationals.
Note: Make sure that there is only one representation for the integer 0!
A proper data type for rational numbers would not be allowed to have more than one represen-

tation for one value. As reducing fractions is a bit out of scope here, you can ignore this problem
and permit e. g. two distinct representations for 2

4 and 1
2 , although these rational numbers are

actually equal.

Solution: Thanks to Dimitar “Dasenov” Asenov for contributing this exercise. Thanks to
Felix Schlesinger for contributing to the disclaimer about mathematical soundness.

〈{P, I,Q}, {[one : P], [suc : P→ P], [zero : I], [pos : P→ I], [neg : P→ I], [q : I× P→ Q]}〉

. . . where P are the positive integers, I all integers and Q rational numbers.
There are actually many ways to define this, but in any case it’s important that 0 and any

number 6= 0 are of different sorts.

2
3 = q(pos(suc(one)), suc(suc(one)))
−1

2 = q(neg(one), suc(one))

Grading for 100% = 4 points:

• 0.5 points for each example (they’re easy once the ADT works)

• 1 point per sort: naturals, integers, fractions

Problem 5.3 (Applying substitutions)
Given the expressions s = h(a, x, f(g(y, a), z, x)) and t = f(x, y, g(z, h(x))) and the substi- 10pt
tutions σ := [(h(y))/x], [(g(z, x))/y], [x/z] and τ := [(f(x, g(y, a)))/a], [z/x], [(h(x, y))/y], [(f(a))/z]
write down all combinations of substitution applications.

Note: We don’t care about the type in this problem, instead we assume that all symbols
are appropriately typed.

Solution: σ(s) = h(a, h(y), f(g(g(z, x), a), x, h(y)))
σ(t) = f(h(y), g(z, x), g(x, h(h(y))))
τ(s) = h(f(x, g(y, a)), z, f(g(h(x, y), f(x, g(y, a))), f(a), z))
τ(t) = f(z, h(x, y), g(f(a), h(z)))

Problem 5.4 (SML datatype and ADT)
The following SML datatype: 30pt

datatype figure = f id of int;
datatype hw = title page of int | solution page of int∗hw | figure page of figure∗hw;

represents homeworks. The number of each homework is indicated on the title page. After
that more pages follow (or none if the student didn’t submit anything). A solution page
is characterized by the number of the problem it contains the solution to. A figure page
contains a single figure. A figure is characterized by an id.

16

1. Convert the datatypes above to an ADT. Use natural numbers for integers.

2. Show in your ADT representation how the example below will look like.

solution page(2,figure page(f id(1),solution page(3,solution page(1,title page(2)))));

Solution:

1. 〈{N,F,H}, {[o : N], [s : N→ N], [f id : N→ F], [tp : N→ H], [sp : N×H→ H], [fp : F×H→ H]}〉

2. sp(s(s(o)), fp(f id(s(o), sp(s(s(s(o))), sp(s(o), tp(s(s(o))))))))

17

Assignment 6: More SML and Formal Languages

(Given Oct. 16., Due Oct. 30.)

Problem 6.1 (Mutual Recursion)
25pt

Write two mutually recursive SML functions odd and even that given n > 0 return how
many words of length n over the alphabet {A,B,C,D} there are which contain an odd
number of Bs and an even number of Bs respectively. Make sure you raise appropriate
exceptions. Signature and example:

val odd = fn : int −> int
val even = fn : int −> int

− odd(2);
val it = 6 : int
− even(3);
val it = 36 : int

Explanation for the first example: The words of length two with an odd number of Bs
are BA, BC, BD, AB, CB and DB.

Solution:

exception nonpositive;

fun odd(1) = 1
| odd(n) = if n<1 then raise nonpositive else 3∗odd(n−1) + even(n−1)

and even(1) = 3
| even(n) = if n<1 then raise nonpositive else 3∗even(n−1) + odd(n−1);

Problem 6.2: A Turing machine is a machine that has an infinite tape, a set of states 30pt
and a set of rules. Let’s call T a simplified Turing machine that has a starting input(string)
and state actions that are defined in a file that has the following format:

state_name new_symbol

state name can be either p, q or r. new symbol is either 0 or 1 and represents the
character with which we’re replacing the current character. The simplified Turing machine
has a head that is originally pointing to the beginning of the string. When the machine is
in state p the head moves to the right, when it is in state q it moves to the left and when
it is in state r it stays in the same place. The current state of the machine is determined
by the state name of the file(the first line is the first state, the second line is the second
state etc.). When a state is finished executing, the machine moves to the next state in the
file. Raise appropriate exceptions when the current state moves the head outside of the
limits of the string and for all other cases that you can think of.

Your task is to write an SML function evaluate that takes a filename that contains the
rules for the states and a string as the input and outputs a string that is the result when
all states finish executing. Your function must have the following signature:

18

val evaluate = fn: string−>string−>string

evaluate ”filename.txt” ”11100”;
−val ”10101”:string

In the example above, filename.txt might look like this:

p 1

p 0

p 1

p 0

p 1

Problem 6.3 (Basis for Huffman encoding in SML)
30pt

Huffman is an encoding algorithm usually used for compressing files based on the prin-
ciple that the characters that occur most often have the shortest code. Your task is to
define a prepareHuffman function in SML that will take a string as input and will output a
list of tuples of character and the frequency of the character in the string. The list should
be sorted by the frequency in an ascending manner.

The signature of the function should be:
val prepareHuffman = fn : string −> (char ∗ int) list

An example output of is:

− prepareHuffman(”Some sample text”);
val it =

[(#”S”,1),(#”o”,1),(#”s”,1),(#”a”,1),(#”p”,1),(#”l”,1),(#”x”,1),(#”m”,2),
(#” ”,2),(#”t”,2),(#”e”,3)] : (char ∗ int) list

Solution:

fun eliminate(a, nil) = nil
| eliminate(a, b::r) = if a = b then eliminate(a,r) else b::eliminate(a,r);

fun count(a, nil) = 0
| count(a, b::r) = if a = b then 1 + count(a, r) else count(a, r);

fun doWork(nil) = nil
| doWork(h::t) = (h,count(h,h::t))::doWork(eliminate(h,t));

fun findsmallest(nil, a) = a
| findsmallest((e,c)::r, (e1,c1)) = if (c < c1) then findsmallest(r, (e,c)) else findsmallest(r, (e1,c1));

fun sort(nil) = nil
| sort(l) = let val x = findsmallest(l,hd(l)) in x::sort(eliminate(x,l)) end;

fun prepareHuffman(string) = sort(doWork(explode(string)));

(∗ Test cases: ∗)

19

fun eliminatetup(c,f,nil) = nil
| eliminatetup(c,f,(a,b)::r) = if (c = a) andalso (f = b) then r else (a,b)::eliminatetup(c,f,r);

fun checkOne(f, c, nil) = false
| checkOne(f, c, (c1, f1)::r) = if (f <> f1) then false else if (c = c1) then true else checkOne(f,c,r);

fun checkInternal(f, nil, nil) = (true, nil, nil)
| checkInternal(f, a, nil) = (false, a, nil)
| checkInternal(f, nil, a) = (false, nil, a)
| checkInternal(f, (c1,f1)::r1, l2) = if (f = f1) then if checkOne(f, c1, l2) then checkInternal(f, r1, eliminatetup(c1,f1,l2)) else (false, r1, l2) else

(true, (c1,f1)::r1, l2);

fun check(nil, nil) = true
| check(a, nil) = false
| check(nil, b) = false
| check(a, b) =
let val (c,f) = hd(a)
in

let val (res, r1, r2) = checkInternal(f,a,b)
in if res = false then false else check(r1,r2)
end

end;

val test1 = check([],prepareHuffman(””));
val test2 = check([(#”a”,7)], prepareHuffman(”aaaaaaa”));
val test3 = check([(#”J”,1),(#”a”,1),(#”c”,1),(#”o”,1),(#”b”,1),(#” ”,1),(#”U”,1),(#”n”,1),

(#”v”,1),(#”e”,1),(#”r”,1),(#”t”,1),(#”y”,1),(#”s”,2),(#”i”,2)], prepareHuffman(”Jacobs University”));
val test4 = check([(#”G”,1),(#”l”,1),(#”o”,1),(#”u”,1),(#”s”,1),(#”i”,1),(#”d”,1),(#”a”,2),

(#”m”,2),(#”p”,2),(#”n”,3),(#”r”,3),(#” ”,3),(#”c”,3),(#”t”,3),(#”e”,7)], prepareHuffman(”General computer science department”));
val test5 = check([(#”d”,1),(#”c”,2),(#”b”,3),(#”a”,4)], prepareHuffman(”aaaabbbccd”));

Problem 6.4: Given the alphabet A = {0,#,@} and a L :=
⋃∞

i=0 Li, where 15pt

• L0 = {0}

• Li+1 = {xx#, x@y |x, y ∈
⋃i

k=0 Lk}

Write down all the strings in L2

Solution:

• L2 = {00#, 00#00##, 0@00@0#, 0@0, 0@00#, 0@0@0, 00#@0, 00#@00#, 00#@0@0, 0@0@0, 0@0@00#, 0@0@0@0}

20

Assignment 7: Encodings

(Given Oct. 30., Due Nov. 5.)

Problem 7.1 (UTF encodings)
30pt

UTF encodings are very popular in the modern world. The three main types are UTF-
8, UTF-16 and UTF-32.
Your task is to write SML functions:

• encodeUTF8 that takes a string that represents the Unicode code point of the
character(The euro sign is represented as U+20AC) and returns the binary UTF-8
encoding as a string

• decodeUTF8 that takes a string representing the binary encoding in UTF-8 and
returns the Unicode code point as a string.

• encodeUTF16 that encodes the Unicode code point in UTF-16

• decodeUTF16 that decodes a binary UTF-16 to a Unicode code point.

val encodeUTF8 = fn: string −> string
val encodeUTF16 = fn: string −> string
val decodeUTF8 = fn: string −> string
val decodeUTF16 = fn: string −> string

encodeUTF8(”U+20AC”);
val it=”111000101000001010101100”:string

decodeUTF8(”111000101000001010101100”);
val it=”U+20AC”:string

encodeUTF16(”U+20AC”);
val it=”0010000010101100”:string

decodeUTF16(”0010000010101100”);
val it=”U+20AC”:string

Please use the following links for referencing how to encode and decode the strings.
http://en.wikipedia.org/wiki/UTF-8

http://en.wikipedia.org/wiki/UTF-16

Problem 7.2 (Huffman in SML)
35pt

In your last homework you were supposed to do a preparation for the Huffman algo-
rithm, namely you created an ordered list of characters and their frequencies. This time
you will need to implement the remainding part of the algorithm.

For this purpose you are supposed to build up on the solution from last week and create
a huffman function which should return a list of tuples of characters and their codes.

21

Basically you should first generate the tree and then get the codes from the tree (See
http://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_

tutorial.html for an excellent tutorial of how the tree is built).

Your tree should be of datatype huffmantree which is defined as:

datatype huffmantree = leaf of (int ∗ char) | node of (huffmantree ∗ huffmantree ∗ int);

The signature of huffman should be:

val it = fn : string −> (char ∗ string) list

An example output is:

− huffman(”aaaabbbccdd”);
val it = [(#”a”,”0”),(#”b”,”10”),(#”c”,”110”),(#”d”,”111”)] : (char ∗ string) list

Solution:

datatype huffmantree = leaf of (int ∗ char) | node of (huffmantree ∗ huffmantree ∗ int);

(∗ code from last week ∗)

fun eliminate(a, nil) = nil
| eliminate(a, b::r) = if a = b then eliminate(a,r) else b::eliminate(a,r);

fun count(a, nil) = 0
| count(a, b::r) = if a = b then 1 + count(a, r) else count(a, r);

fun doWork(nil) = nil
| doWork(h::t) = (h,count(h,h::t))::doWork(eliminate(h,t));

fun findsmallest(nil, a) = a
| findsmallest((e,c)::r, (e1,c1)) = if (c < c1) then findsmallest(r, (e,c)) else findsmallest(r, (e1,c1));

fun sort(nil) = nil
| sort(l) = let val x = findsmallest(l,hd(l)) in x::sort(eliminate(x,l)) end;

fun prepareHuffman(string) = sort(doWork(explode(string)));

(∗ new code ∗)

fun toHufLeafList(nil) = nil
| toHufLeafList((a,b)::r) = leaf(b,a)::toHufLeafList(r);

fun getCode(leaf(n,ch),l) = if l <> nil then [(ch,implode(l))] else [(ch,”0”)]
| getCode(node(t1,t2,n),l) = getCode(t1,l@[#”0”]) @ getCode(t2,l@[#”1”]);

fun getFreq(leaf(n,c)) = n
| getFreq(node(t1,t2,n)) = n;

fun findSmallestHuf(nil, sm) = sm
| findSmallestHuf(a::r, sm) = if getFreq(a) < getFreq(sm) then findSmallestHuf(r,a) else findSmallestHuf(r,sm);

22

fun sortHufList(nil) = nil
| sortHufList(l) = let val sm = findSmallestHuf(l,hd(l)) in sm::sortHufList(eliminate(sm,l)) end;

fun huffmanHelp(nil) = nil
| huffmanHelp(a::nil) = getCode(a,nil)
| huffmanHelp(a::b::l) = huffmanHelp(sortHufList(node(a,b,getFreq(a)+getFreq(b))::l));

fun huffman(st) = huffmanHelp(toHufLeafList(prepareHuffman(st)));

Problem 7.3 (Finding a Prefix Code)
Write an SML function prefix code that takes an original string and an encoded version of 35pt
this string and returns a prefix code that induces such encoding. The signature of your
function should be

val prefix code = fn : string −> string −> (char ∗ string) list

If there is no such prefix code, raise an exception DoesntExist. The original string may
contain duplicate characters.

Solution:

exception DoesntExist;
exception BadCode;

fun check prefix [] b = true
| check prefix a [] = false
| check prefix ((h1:char)::l1) (h2::l2) = if (h1 <> h2) then false

else check prefix l1 l2;

fun is prefix of any code [] = false
| is prefix of any code ((,h)::t) = if (check prefix code h orelse check prefix h code)

then true else is prefix of any code t;

fun is prefix code [] = true
| is prefix code ((,h)::t) = if (is prefix of any h t) then false

else is prefix code t;

fun find char code c [] = []
| find char code c ((h,code)::t) = if (h = c) then code else (find char code c t);

(∗ checks that the code fits into the encoded string and returns the rest of the encoded string ∗)
fun check next [] encoded = encoded
| check next l [] = raise DoesntExist
| check next (h1::t1) (h2::t2) = if (h1 = h2) then (check next t1 t2) else raise DoesntExist;

(∗ the boolean variable indicates whether a new character code should be started (if true) ∗)
fun partition b [] [] codelist = if (is prefix code codelist) then codelist else raise DoesntExist
| partition b [] (h::t) codelist = raise DoesntExist
| partition b (h::t) [] codelist = raise DoesntExist
| partition false l1 l2 [] = raise DoesntExist
| partition false (h1::t1) (h2::t2) ((,code)::ct) =

(partition true t1 t2 ((h1,code@[h2])::ct)
handle DoesntExist => partition false (h1::t1) t2 ((h1,code@[h2])::ct))

| partition true (h1::t1) (h2::t2) codelist =

23

let val code = find char code h1 codelist;
val next = check next code (h2::t2);

in
if (code = []) then partition true t1 t2 ((h1,[h2])::codelist)

handle DoesntExist => partition false (h1::t1) t2 ((h1,[h2])::codelist)
else partition true t1 next codelist

end;

fun implode code [] = []
| implode code ((c,list)::t) = (c,implode list)::(implode code t);

fun prefix code original encoded = implode code (partition true (explode original) (explode encoded) []);

Solution:

(∗TEST CASES∗)
exception CharacterMissing;
fun find code c [] = raise CharacterMissing
| find code c ((h,code)::t) = if (c = h) then (explode code) else (find code c t);

fun assemble [] code = []
| assemble (h::t) code = (find code h code)@(assemble t code);

fun explode code [] = []
| explode code ((c,list)::t) = (c,explode list)::(explode code t);

fun check code original encoded exc = let val code = prefix code original encoded
in (implode (assemble (explode original) code) = encoded)

andalso is prefix code (explode code code)
end
handle CharacterMissing => false

| DoesntExist => exc;

(∗ simple codes ∗)
val test ok 0 = check code ”” ”” false;
val test ok 1 = check code ”a” ”1” false;
val test ok 2 = check code ”a” ”10” false;
val test ok 3 = check code ”ab” ”10” false;
val test ok 4 = check code ”ab” ”101” false;
val test ok 5 = check code ”ab” ”1001” false;
val test ok 6 = check code ”abc” ”101001” false;
val test ok 7 = check code ”abc” ”abc” false;
val test ok 8 = check code ”abc” ”cba” false;
val test ok 9 = check code ”abcd” ”01100011” false;
val test ok 10 = check code ”ab” ”0001” false;
val test ok 11 = check code ”ab” ”1011” false;
(∗ repeated characters ∗)
val test ok 12 = check code ”aab” ”110” false;
val test ok 13 = check code ”abba” ”11000011” false;
val test ok 14 = check code ”hello” ”1100101001” false;
val test ok 15 = check code ”aloha” ”1100100111110” false;
val test ok 16 = check code ”aa” ”11” false;
(∗ nonexistent codes ∗)
val test exc 1 = check code ”a” ”” true;
val test exc 2 = check code ”ab” ”1” true;
val test exc 3 = check code ”ab” ”11” true;

24

val test exc 4 = check code ”aa” ”1110” true;
val test exc 5 = check code ”ab” ”111” true;
val test exc 6 = check code ”ababab” ”1001020010201” true;
val test exc 7 = check code ”hello” ”1100101000101110001” true;
val test exc 8 = check code ”gencs” ”1110010011” true;
val test exc 9 = check code ”itworks!” ”00100111001” true;

25

