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Chapter 1 Getting Started with “General Computer
Science”
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1.1 Overview over the Course
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Plot of “General Computer Science”

I Today: Motivation, Admin, and find out what you already know
I What is Computer Science?
I Information, Data, Computation, Machines
I a (very) quick walk through the topics

I Get a feeling for the math involved ( not a programming course!!! )
I learn mathematical language (so we can talk rigorously)
I inductively defined sets, functions on them
I elementary complexity analysis

I Various machine models (as models of computation)
I (primitive) recursive functions on inductive sets
I combinational circuits and computer architecture
I Programming Language: Standard ML (great equalizer/thought provoker)

I Representing knowledge in formal languages and reasoning about them
I formal languages and their operations
I syntax vs. semantics (form vs. function)
I inferenced systems for understanding (logical) argumenation
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1.2 Administrativa
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1.2.1 Grades, Credits, Retaking
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Prerequisites, Requirements, Grades

I Prerequisites: Motivation, Interest, Curiosity, hard work
I You can do this course if you want!

I Grades: (plan your work involvement carefully)

Tuesday Quizzes 30%
Graded Assignments 20%
Mid-term Exam 20%
Final Exam 30%

Note that for the grades, the percentages of achieved points are added with the
weights above, and only then the resulting percentage is converted to a grade.

I Tuesday Quizzes: (Almost) every tuesday, we will use the first 10 minutes for a
brief quiz about the material from the week before (you have to be there)

I Rationale: I want you to work continuously (maximizes learning)

I Requirements for Auditing: You can audit GenCS! (specify in Campus Net)
To earn an audit you have to take the quizzes and do reasonably well (I cannot
check that you took part regularly otherwise.)
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Advanced Placement

I Generally: AP let’s you drop a course, but retain credit for it (sorry no grade!)
I you register for the course, and take an AP exam
I you will need to have very good results to pass
I If you fail, you have to take the course or drop it!

I Specifically: AP exams (oral) some time next week (see me for a date)
I Be prepared to answer elementary questions about: discrete mathematics, terms,

substitution, abstract interpretation, computation, recursion, termination,
elementary complexity, Standard ML, types, formal languages, Boolean expressions

(possible subjects of the exam)

I Warning: you should be very sure of yourself to try (genius in C++ insufficient)
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1.2.2 Homeworks, Submission, and Cheating
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Homework assignments

I Goal: Reinforce and apply what is taught in class.

I Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

I Admin: To keep things running smoothly
I Homeworks will be posted on PantaRhei
I Homeworks are handed in electronically in JGrader (plain text, Postscript, PDF,. . . )
I go to the tutorials, discuss with your TA (they are there for you!)
I materials: sometimes posted ahead of time; then read before class, prepare

questions, bring printout to class to take notes

I Homework Discipline:
I start early! (many assignments need more than one evening’s work)
I Don’t start by sitting at a blank screen
I Humans will be trying to understand the text/code/math when grading it.
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Homework Submissions, Grading, Tutorials

I Submissions: We use Heinrich Stamerjohanns’ JGrader system
I submit all homework assignments electronically to https://jgrader.de.
I you can login with your Jacobs account and password. (should have one!)
I feedback/grades to your submissions
I get an overview over how you are doing! (do not leave to midterm)

I Tutorials: select a tutorial group and actually go to it regularly
I to discuss the course topics after class (lectures need pre/postparation)
I to discuss your homework after submission (to see what was the problem)
I to find a study group (probably the most determining factor of success)
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The Code of Academic Integrity

I Jacobs has a “Code of Academic Integrity”
I this is a document passed by the Jacobs community (our law of the university)
I you have signed it during enrollment (we take this seriously)

I It mandates good behaviors from both faculty and students and penalizes bad
ones:
I honest academic behavior (we don’t cheat/falsify)
I respect and protect the intellectual property of others (no plagiarism)
I treat all Jacobs members equally (no favoritism)

I this is to protect you and build an atmosphere of mutual respect
I academic societies thrive on reputation and respect as primary currency

I The Reasonable Person Principle (one lubricant of academia)
I we treat each other as reasonable persons
I the other’s requests and needs are reasonable until proven otherwise
I but if the other violates our trust, we are deeply disappointed (severe

uncompromising consequences)
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The Academic Integrity Committee (AIC)

I Joint Committee by students and faculty (Not at “student honours court”)

I Mandate: to hear and decide on any major or contested allegations, in
particular,
I the AIC decides based on evidence in a timely manner
I the AIC makes recommendations that are executed by academic affairs
I the AIC tries to keep allegations against faculty anonymous for the student

I we/you can appeal any academic integrity allegations to the AIC
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Cheating [adapted from CMU:15-211 (P. Lee, 2003)]

I There is no need to cheat in this course!! (hard work will do)
I cheating prevents you from learning (you are cutting your own flesh)
I if you are in trouble, come and talk to me (I am here to help you)
I We expect you to know what is useful collaboration and what is cheating

I you will be required to hand in your own original code/text/math for all assignments
I you may discuss your homework assignments with others, but if doing so impairs

your ability to write truly original code/text/math, you will be cheating
I copying from peers, books or the Internet is plagiarism unless properly attributed

(even if you change most of the actual words)
I more on this as the semester goes on . . .

I There are data mining tools that monitor the originality of text/code.
I Procedure: If we catch you at cheating (correction: if we suspect cheating)

I we will confront you with the allegation (you can explain yourself)
I if you admit or are silent, we impose a grade sanction and notify registrar
I repeat infractions to go the AIC for deliberation (much more serious)

I Note: both active (copying from others) and passive cheating (allowing others
to copy) are penalized equally
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1.2.3 Resources
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Textbooks, Handouts and Information, Forum

I No required textbook, but course notes, posted slides
I Information resources (e.g. Course notes) will be posted at

http://kwarc.info/teaching/GenCS
I Everything will be posted on PantaRhei (Notes+assignments+course forum)

I announcements, contact information, course schedule and calendar
I discussion among your fellow students (careful, I will occasionally check for academic

integrity!)
I http://panta.kwarc.info (use your Jacobs login)
I Set Up PantaRhei Access: to get notifications

1) Log into http://panta.kwarc.info, (use your Jacobs login)
2) find the course “GenCS Fall2016”, (this course)
3) request membership (I will approve you)

I if there are problems send e-mail to course-gencs-tas@jacobs-university.de
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Software/Hardware tools

I You will need computer access for this course (come see me if you do not have a
computer of your own)

I we recommend the use of standard software tools
I the emacs and vi text editor (powerful, flexible, available, free)
I UNIX (linux, Mac OS X, cygwin) (prevalent in CS)
I FireFox (just a better browser (for Math))

I learn how to touch-type NOW (reap the benefits earlier, not later)
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Chapter 2 Motivation and Introduction
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2.1 What is Computer Science?

Kohlhase: 320101 GenCS 19 December 8, 2016



What is Computer Science about?

I For instance: Software! (a hardware example would also work)

I Example 1.1 writing a program to generate mazes.
I We want every maze to be solvable. (should have path from entrance to exit)
I Also: We want mazes to be fun, i.e.,

I We want maze solutions to be unique
I We want every “room” to be reachable

I How should we think about this?
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An Answer:

Let’s hack
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2am in the IRC Quiet Study Area
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no, let’s think

I “The GIGO Principle: Garbage In, Garbage Out” (– ca. 1967)
I “Applets, Not Crapletstm” (– ca. 1997)
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2.2 Computer Science by Example
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Thinking about the problem

I Idea: Randomly knock out walls until
we get a good maze

I Think about a grid of rooms
separated by walls.

I Each room can be given a name.

I Mathematical Formulation:
I a set of rooms: {a, b, c, d , e, f , g , h, i , j , k, l ,m, n, o, p}
I Pairs of adjacent rooms that have an open wall between them.

I Example 2.1 For example, (a, b) and (g , k) are pairs.
I Abstractly speaking, this is a mathematical structure called a graph.
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Why math?

I Q: Why is it useful to formulate the problem so that mazes are room sets/pairs?

I A: Data structures are typically defined as mathematical structures.

I A: Mathematics can be used to reason about the correctness and efficiency of
data structures and algorithms.

I A: Mathematical structures make it easier to think — to abstract away from
unnecessary details and avoid “hacking”.
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Mazes as Graphs

I Definition 2.2 Informally, a graph consists of a set of nodes and a set of edges.
(a good part of CS is about graph algorithms)

I Definition 2.3 A maze is a graph with two special nodes.

I Interpretation: Each graph node represents a room, and an edge from node x to
node y indicates that rooms x and y are adjacent and there is no wall in
between them. The first special node is the entry, and the second one the exit of
the maze.

Can be represented as

〈
(a, e), (e, i), (i , j),
(f , j), (f , g), (g , h),
(d , h), (g , k), (a, b)
(m, n), (n, o), (b, c)
(k , o), (o, p), (l , p)

 , a, p

〉
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Mazes as Graphs (Visualizing Graphs via Diagrams)

I Graphs are very abstract objects, we need a good, intuitive way of thinking
about them. We use diagrams, where the nodes are visualized as dots and the
edges as lines between them.

Our maze

〈
(a, e), (e, i), (i , j),
(f , j), (f , g), (g , h),
(d , h), (g , k), (a, b)
(m, n), (n, o), (b, c)
(k, o), (o, p), (l , p)

 , a, p

〉

can be visualized as
I

I Note that the diagram is a visualization (a representation intended for humans
to process visually) of the graph, and not the graph itself.
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Unique solutions

I Q: What property must the graph have for
the maze to have a solution?

I A: A path from a to p.

I Q: What property must it have for the maze
to have a unique solution?

I A: The graph must be a tree.
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Mazes as trees

I Definition 2.4 Informally, a tree is a graph:
I with a unique root node, and
I each node having a unique parent.

I Definition 2.5 A spanning tree is a tree that includes all
of the nodes.

Q: Why is it good to have a spanning tree?

II A: Trees have no cycles! (needed for uniqueness)

I A: Every room is reachable from the root!
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Algorithm

I Now that we have a data structure in mind, we can think about the algorithm.
I Definition 2.6 An algorithm is a series of instructions to control a

(computation) process

I Example 2.7 (Kruskal’s algorithm, a graph algorithm for spanning trees) I

Randomly add a pair to the tree if it won’t create a cycle. (i.e. tear down a wall)
I Repeat until a spanning tree has been created.
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Creating a spanning tree

I When adding a wall to the tree, how do we detect that it won’t create a cycle?

I When adding wall (x , y), we want to know if there is already a path from x to y
in the tree.

I In fact, there is a fast algorithm for doing exactly this, called “Union-Find”.

Definition 2.8 (Union Find Algorithm) I

The Union Find Algorithm successively puts
nodes into an equivalence class if there is a path
connecting them.

I Before adding an edge (x , y) to the tree, it
makes sure that x and y are not in the same
equivalence class.

Example 2.9 A partially
constructed maze
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How fast is our Algorithm?

I Is this a fast way to generate mazes?
I How much time will it take to generate a maze?
I What do we mean by “fast” anyway?

I In addition to finding the right algorithms, Computer Science is about analyzing
the performance of algorithms.
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Performance and Scaling

I Suppose we have three algorithms to choose from. (which one to select)
I Systematic analysis reveals performance characteristics.

I Example 2.10 For a problem of size n (i.e., detecting cycles out of n nodes) we
have

performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y
100 . . . . . . . . .

1 000 . . . . . . . . .
10 000 . . . . . . . . .

1 000 000 . . . . . . . . .
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What?! One year?

I 210 = 1 024 (u 1024µs, 1ms)
I 245 = 35 184 372 088 832 (3.5× 1013µs=3.5× 107s∼1.1Y )

I Example 2.11 we denote all times that are longer than the age of the universe
with −

performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y

< 100 100ms 7s 1016Y

1 000 1s 12min −
10 000 10s 20h −

1 000 000 1.6min 2.5mon −
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2.3 Other Topics in Computer Science
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Is it correct?

I How will we know if we implemented our solution correctly?
I What do we mean by “correct”?
I Will it generate the right answers?
I Will it terminate?

I Computer Science is about techniques for proving the correctness of programs
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Modular design

I By thinking about the problem, we have strong hints about the structure of our
program

I Grids, Graphs (with edges and nodes), Spanning trees, Union-find.
I With disciplined programming, we can write our program to reflect this structure.
I Modular designs are usually easier to get right and easier to understand.
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2.4 Summary
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The science in CS: not “hacking”, but

I Thinking about problems abstractly.
I Selecting good structures and obtaining correct and fast algorithms/machines.
I Implementing programs/machines that are understandable and correct.
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Part I Representation and Computation
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Chapter 3 Elementary Discrete Math
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Let’s start with the math!

Discrete Math for the moment
I Kenneth H. Rosen Discrete Mathematics and Its Applications, McGraw-Hill,

1990 [Ros90].
I Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of

Computation, Prentice Hall, 1998 [LP98].
I Paul R. Halmos, Naive Set Theory, Springer Verlag, 1974 [Hal74].
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3.1 Mathematical Foundations: Natural Numbers
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Something very basic:

I Numbers are symbolic representations of numeric quantities.
I There are many ways to represent numbers (more on this later)
I let’s take the simplest one (about 8,000 to 10,000 years old)

I we count by making marks on some surface.
I For instance / / / / stands for the number four (be it in 4 apples, or 4 worms)
I Let us look at the way we construct numbers a little more algorithmically,
I these representations are those that can be created by the following two rules.

o-rule consider ’ ’ as an empty space.
s-rule given a row of marks or an empty space, make another / mark at the

right end of the row.

I Example 1.1 For / / / / , Apply the o-rule once and then the s-rule four
times.

I Definition 1.2 we call these representations unary natural numbers.
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Something very basic:

I Numbers are symbolic representations of numeric quantities.
I There are many ways to represent numbers (more on this later)
I let’s take the simplest one (about 8,000 to 10,000 years old)

I we count by making marks on some surface.
I For instance / / / / stands for the number four (be it in 4 apples, or 4 worms)
I Let us look at the way we construct numbers a little more algorithmically,
I these representations are those that can be created by the following two rules.

o-rule consider ’ ’ as an empty space.
s-rule given a row of marks or an empty space, make another / mark at the

right end of the row.
I Example 1.3 For / / / / , Apply the o-rule once and then the s-rule four

times.
I Definition 1.4 we call these representations unary natural numbers.
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Something very basic:

I Numbers are symbolic representations of numeric quantities.
I There are many ways to represent numbers (more on this later)
I let’s take the simplest one (about 8,000 to 10,000 years old)
I we count by making marks on some surface.
I For instance / / / / stands for the number four (be it in 4 apples, or 4 worms)
I Let us look at the way we construct numbers a little more algorithmically,
I these representations are those that can be created by the following two rules.

o-rule consider ’ ’ as an empty space.
s-rule given a row of marks or an empty space, make another / mark at the

right end of the row.

I Example 1.5 For / / / / , Apply the o-rule once and then the s-rule four
times.

I Definition 1.6 we call these representations unary natural numbers.
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A little more sophistication (math) please

I Definition 1.7 We call a unary natural number the successor (predecessor) of
another, if it can be constructing by adding (removing) a slash. (successors are
created by the s-rule)

I Example 1.8 /// is the successor of // and // the predecessor of ///.
I Definition 1.9 The following set of axioms are called the Peano axioms

(Giuseppe Peano ∗1858, †1932)
I Axiom 1.10 (P1) “ ” (aka. “zero”) is a unary natural number. “ ” (aka. “zero”)

is a unary natural number.
I Axiom 1.11 (P2) Every unary natural number has a successor that is a unary

natural number and that is different from it.
I Axiom 1.12 (P3) Zero is not a successor of any unary natural number.
I Axiom 1.13 (P4) Different unary natural numbers have different successors.
I Axiom 1.14 (P5: Induction Axiom) Every unary natural number possesses a

property P, if
I zero has property P and (base condition)
I the successor of every unary natural number that has property P also possesses

property P (step condition)

Question: Why is this a better way of saying things (why so complicated?)
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3.2 Reasoning about Natural Numbers
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Reasoning about Natural Numbers

II The Peano axioms can be used to reason about natural numbers.
I Definition 2.1 An axiom (or postulate) is a statement about mathematical

objects that we assume to be true.
I Definition 2.2 A theorem is a statement about mathematical objects that we

know to be true.
I We reason about mathematical objects by inferring theorems from axioms or

other theorems, e.g.
I “ ” is a unary natural number (axiom P1)
I / is a unary natural number (axiom P2 and 1.)
I // is a unary natural number (axiom P2 and 2.)
I /// is a unary natural number (axiom P2 and 3.)

I Definition 2.3 We call a sequence of inferences a derivation or a proof (of the
last statement).
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Let’s practice derivations and proofs

I Example 2.4 //////////// is a unary natural number
I Theorem 2.5 /// is a different unary natural number than //.
I Theorem 2.6 ///// is a different unary natural number than //.
I Theorem 2.7 There is a unary natural number of which /// is the successor
I Theorem 2.8 There are at least 7 unary natural numbers.
I Theorem 2.9 Every unary natural number is either zero or the successor of a

unary natural number. (we will come back to this later)
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Induction for unary natural numbers

I Theorem 2.10 Every unary natural number is either zero or the successor of a
unary natural number.

I Proof: We make use of the induction axiom P5:
P.1 We use the property P of “being zero or a successor” and prove the

statement by convincing ourselves of the prerequisites of
P.2 ‘ ’ is zero, so ‘ ’ is “zero or a successor”.
P.3 Let n be a arbitrary unary natural number that “is zero or a successor”
P.4 Then its successor “is a successor”, so the successor of n is “zero or a

successor”
P.5 Since we have taken n arbitrary(nothing in our argument depends on the

choice)
we have shown that for any n, its successor has property P.

P.6 Property P holds for all unary natural numbers by P5, so we have
proven the assertion
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This seems awfully clumsy, lets introduce some notation

I Idea: we allow ourselves to give names to unary natural numbers(we use n, m, l ,
k , n1, n2, . . . as names for concrete unary natural numbers.)

I Remember the two rules we had for dealing with unary natural numbers

I Idea: represent a number by the trace of the rules we applied to construct it.
(e.g. //// is represented as s(s(s(s(o)))))

I Definition 2.11 We introduce some abbreviations
I we “abbreviate” o and ‘ ’ by the symbol ’0’ (called “zero”)
I we abbreviate s(o) and / by the symbol ’1’ (called “one”)
I we abbreviate s(s(o)) and // by the symbol ’2’ (called “two”)
I . . .
I we abbreviate s(s(s(s(s(s(s(s(s(s(s(s(o)))))))))))) and //////////// by the

symbol ’12’ (called “twelve”)
I . . .

I Definition 2.12 We denote the set of all unary natural numbers with N1.(either
representation)
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The Domino Theorem

I Theorem 2.13 Let S0,S1, . . . be a linear sequence of dominos, such that for
any unary natural number i we know that
I the distance between Si and Ss(i) is smaller than the height of Si ,
I Si is much higher than wide, so it is unstable, and
I Si and Ss(i) have the same weight.

If S0 is pushed towards S1 so that it falls, then all dominos will fall.

• • • • • •
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The Domino Induction

I Proof: We prove the assertion by induction over i with the property P that “Si
falls in the direction of Ss(i)”.

P.1 We have to consider two cases
P.1.1 base case: i is zero:

P.1.1.1 We have assumed that “S0 is pushed towards S1, so that it falls”
P.1.2 step case: i = s(j) for some unary natural number j :

P.1.2.1 We assume that P holds for Sj , i.e. Sj falls in the direction of Ss(j) = Si .
P.1.2.2 But we know that Sj has the same weight as Si , which is unstable,
P.1.2.3 so Si falls into the direction opposite to Sj , i.e. towards Ss(i) (we have a

linear sequence of dominos)
P.2 We have considered all the cases, so we have proven that P holds for all

unary natural numbers i . (by induction)
P.3 Now, the assertion follows trivially, since if “Si falls in the direction of

Ss(i)”, then in particular “Si falls”.
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3.3 Defining Operations on Natural Numbers
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What can we do with unary natural numbers?

I So far not much (let’s introduce some operations)
I Definition 3.1 (the addition “function”) We “define” the addition operation
⊕ procedurally (by an algorithm)
I adding zero to a number does not change it.

written as an equation: n⊕ o = n
I adding m to the successor of n yields the successor of m⊕ n.

written as an equation: m⊕ s(n) = s(m⊕ n)

Questions: to understand this definition, we have to know
I I Is this “definition” well-formed? (does it characterize a mathematical object?)

I May we define “functions” by algorithms? (what is a function anyways?)
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Addition on unary natural numbers is associative

I Theorem 3.2 For all unary natural numbers n, m, and l , we have
n⊕ (m⊕ l) = (n⊕m)⊕ l .

I Proof: we prove this by induction on l

P.1 The property of l is that n⊕ (m⊕ l) = (n⊕m)⊕ l holds.
P.2 We have to consider two cases

P.2.1 base case: n⊕ (m⊕ o) = n⊕m = (n⊕m)⊕ o
P.2.2 step case:

P.2.2.1 given arbitrary l , assume n⊕ (m⊕ l) = (n⊕m)⊕ l , show
n⊕ (m⊕ s(l)) = (n⊕m)⊕ s(l).

P.2.2.2 We have n⊕ (m⊕ s(l)) = n⊕ s(m⊕ l) = s(n⊕ (m⊕ l))
P.2.2.3 By inductive hypothesis s((n⊕m)⊕ l) = (n⊕m)⊕ s(l)
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More Operations on Unary Natural Numbers

I Definition 3.3 The unary multiplication operation can be defined by the
equations n� o = o and n� s(m) = n⊕ n�m.

I Definition 3.4 The unary exponentiation operation can be defined by the
equations exp(n, o) = s(o) and exp(n, s(m)) = n� exp(n,m).

I Definition 3.5 The unary summation operation can be defined by the equations⊕o
i=o ni = o and

⊕s(m)
i=o ni = ns(m)⊕

⊕m
i=o ni .

I Definition 3.6 The unary product operation can be defined by the equations⊙o
i=o ni = s(o) and

⊙s(m)
i=o ni = ns(m)�

⊙m
i=o ni .
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3.4 Talking (and writing) about Mathematics
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Talking about Mathematics (MathTalk)

I Definition 4.1 Mathematicians use a stylized language that
I uses formulae to represent mathematical objects, e.g.

∫ 1
0 x3/2dx

I uses math idioms for special situations (e.g. iff, hence, let. . . be. . . , then. . . )
I classifies statements by role (e.g. Definition, Lemma, Theorem, Proof, Example)
We call this language mathematical vernacular.

I Definition 4.2 Abbreviations for Mathematical statements in MathTalk
I ∧ and “∨” are common notations for “and” and “or”
I “not” is in mathematical statements often denoted with ¬
I ∀ x P (∀ x ∈ S P) stands for “condition P holds for all x (in S)”
I ∃ x P (∃ x ∈ S P) stands for “there exists an x (in S) such that proposition P holds”
I 6∃ x P ( 6∃ x ∈ S P) stands for “there exists no x (in S) such that proposition P

holds”
I ∃1 x P (∃1 x ∈ S P) stands for “there exists one and only one x (in S) such that

proposition P holds”
I “iff” as abbreviation for “if and only if”, symbolized by “⇔”
I the symbol “⇒” is used a as shortcut for “implies”

Observation: With these abbreviations we can use formulae for statements.

II Example 4.3 ∀ x ∃ y x = y⇔¬(x 6= y) reads
“For all x , there is a y , such that x = y , iff (if and only if) it is not the case
that x 6= y .”
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Peano Axioms in Mathtalk

I Example 4.4 We can write the Peano Axioms in mathtalk: If we write n ∈ N1
for n is a unary natural number, and P(n) for n has property P, then we can
write
I o ∈ N1 (zero is a unary natural number)
I ∀ n ∈ N1 s(n) ∈ N1 ∧ n 6= s(n) (N1closed under successors, distinct)
I ¬(∃ n ∈ N1 o = s(n)) (zero is not a successor)
I ∀ n ∈ N1 ∀m ∈ N1 n 6= m⇒ s(n) 6= s(m) (different successors)
I ∀P (P(o)∧ (∀ n ∈ N1 P(n)⇒P(s(n))))⇒ ( ∀m ∈ N1 P(m)) (induction)
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The Greek, Curly, and Fraktur Alphabets ; Homework

I Homework: learn to read, recognize, and write the Greek letters
α A alpha β B beta γ Γ gamma
δ ∆ delta ε E epsilon ζ Z zeta
η H eta θ, ϑ Θ theta ι I iota
κ K kappa λ Λ lambda µ M mu
ν N nu ξ Ξ Xi o O omicron
π,$ Π Pi ρ P rho σ Σ sigma
τ T tau υ Υ upsilon ϕ Φ phi
χ X chi ψ Ψ psi ω Ω omega

I we will need them, when the other alphabets give out.
I BTW, we will also use the curly Roman and “Fraktur” alphabets:
A, B, C, D, E , F , G, H, I, J , K, L,M, N , O, P, Q, R, S, T , U , V, W, X , Y, Z
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
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3.5 Naive Set Theory
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Understanding Sets

I Sets are one of the foundations of mathematics,
I and one of the most difficult concepts to get right axiomatically

I Early Definition Attempt: A set is “everything that can form a unity in the face
of God”. (Georg Cantor (∗1845, †1918))

I For this course: no definition; just intuition (naive set theory)
I To understand a set S , we need to determine, what is an element of S and what

isn’t.
I We can represent sets by

I listing the elements within curly brackets: e.g. {a, b, c}
I describing the elements via a property: {x | x has property P}
I stating element-hood (a ∈ S) or not (b 6∈ S).

I Axiom 5.1 Every set we can write down actually exists! (Hidden Assumption)

Warning: Learn to distinguish between objects and their representations!
({a, b, c} and {b, a, a, c} are different representations of the same set)
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Relations between Sets

II set equality: (A ≡ B) :⇔ (∀ x x ∈ A⇔ x ∈ B)

I subset: (A⊆B) :⇔ (∀ x x ∈ A⇒ x ∈ B)

I proper subset: (A⊂B) :⇔ (A⊆B)∧ (A 6≡ B)

I superset: (A⊇B) :⇔ (∀ x x ∈ B⇒ x ∈ A)

I proper superset: (A⊃B) :⇔ (A⊇B)∧ (A 6≡ B)
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Operations on Sets

I union: A∪B := {x | x ∈ A∨ x ∈ B}
I union over a collection: Let I be a set and Si a family of sets indexed by I , then⋃

i∈I Si := {x | ∃ i ∈ I x ∈ Si}.
I intersection: A∩B := {x | x ∈ A∧ x ∈ B}
I intersection over a collection: Let I be a set and Si a family of sets indexed by I ,

then
⋂

i∈I Si := {x | ∀ i ∈ I x ∈ Si}.
I set difference: A\B := {x | x ∈ A∧ x 6∈ B}
I the power set: P(A) := {S |S ⊆A}
I the empty set: ∀ x x 6∈ ∅
I Cartesian product: A×B := {(a, b) | a ∈ A∧ b ∈ B}, call (a, b) pair.
I n-fold Cartesian product: A1× . . .×An := {〈a1, . . . , an〉 | ∀ i 1≤i≤n⇒ ai ∈ Ai},

call 〈a1, . . . , an〉 an n-tuple
I n-dim Cartesian space: An := {〈a1, . . . , an〉 | 1≤i≤n⇒ ai ∈ A},

call 〈a1, . . . , an〉 a vector
I Definition 5.2 We write

⋃n
i=1 Si for

⋃
i∈{i∈N | 1≤i≤n} Si and

⋂n
i=1 Si for⋂

i∈{i∈N | 1≤i≤n} Si .
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Sizes of Sets

I We would like to talk about the size of a set. Let us try a definition
I Definition 5.3 The size #(A) of a set A is the number of elements in A.
I Conjecture 5.4 Intuitively we should have the following identities:

I #({a, b, c}) = 3
I #(N) =∞ (infinity)
I #(A∪B)≤#(A) + #(B) ( cases with ∞)
I #(A∩B)≤min(#(A),#(B))
I #(A×B) = #(A) ·#(B)

I But how do we prove any of them? (what does “number of elements” mean
anyways?)

I Idea: We need a notion of “counting”, associating every member of a set with a
unary natural number.

I Problem: How do we “associate elements of sets with each other”? (wait for
bijective functions)
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Sets can be Mind-boggling

I sets seem so simple, but are really quite powerful(no restriction on the elements)

I There are very large sets, e.g. “the set S of all sets”
I contains the ∅,
I for each object O we have {O}, {{O}}, {O, {O}}, . . . ∈ S,
I contains all unions, intersections, power sets,
I contains itself: S ∈ S (scary!)

I Let’s make S less scary
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A less scary S?

I Idea: how about the “set S ′ of all sets that do not contain themselves”

I Question: is S ′ ∈ S ′? (were we successful?)
I suppose it is, then then we must have S ′ 6∈ S ′, since we have explicitly taken out the

sets that contain themselves
I suppose it is not, then have S ′ ∈ S ′, since all other sets are elements.

In either case, we have S ′ ∈ S ′ iff S ′ 6∈ S ′, which is a contradiction! (Russell’s
Antinomy [Bertrand Russell ’03])

I Does MathTalk help?: no: S ′ := {m |m 6∈ m}
I MathTalk allows statements that lead to contradictions, but are legal wrt.

“vocabulary” and “grammar”.
I We have to be more careful when constructing sets! (axiomatic set theory)

I for now: stay away from large sets. (stay naive)
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3.6 Relations
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Relations

I Definition 6.1 R ⊆A×B is a (binary) relation between A and B.
I Definition 6.2 If A = B then R is called a relation on A.
I Definition 6.3 R ⊆A×B is called total iff ∀ x ∈ A ∃ y ∈ B (x , y) ∈ R.
I Definition 6.4 R−1 := {(y , x) | (x , y) ∈ R} is the converse relation of R.

I Note: R−1⊆B ×A.
I The composition of R ⊆A×B and S ⊆B ×C is defined as

S ◦R := {(a, c) ∈ A×C | ∃ b ∈ B (a, b) ∈ R ∧ (b, c) ∈ S}
I Example 6.5 relation ⊆, =, has_color

I Note: we do not really need ternary, quaternary, . . . relations
I Idea: Consider A×B ×C as A× (B ×C) and 〈a, b, c〉 as (a, (b, c))
I we can (and often will) see 〈a, b, c〉 as (a, (b, c)) different representations of the

same object.
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Properties of binary Relations

I Definition 6.6 (Relation Properties) A relation R ⊆A×A is called
I reflexive on A, iff ∀ a ∈ A (a, a) ∈ R
I irreflexive on A, iff ∀ a ∈ A (a, a) 6∈ R
I symmetric on A, iff ∀ a, b ∈ A (a, b) ∈ R⇒ (b, a) ∈ R
I asymmetric on A, iff ∀ a, b ∈ A (a, b) ∈ R⇒ (b, a) 6∈ R
I antisymmetric on A, iff ∀ a, b ∈ A ((a, b) ∈ R ∧ (b, a) ∈ R)⇒ a = b
I transitive on A, iff ∀ a, b, c ∈ A ((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R
I equivalence relation on A, iff R is reflexive, symmetric, and transitive.

I Example 6.7 The equality relation is an equivalence relation on any set.
I Example 6.8 On sets of persons, the “mother-of” relation is an non-symmetric,

non-reflexive relation.
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Strict and Non-Strict Partial Orders

I Definition 6.9 A relation R ⊆A×A is called
I partial order on A, iff R is reflexive, antisymmetric, and transitive on A.
I strict partial order on A, iff it is irreflexive and transitive on A.

I In contexts, where we have to distinguish between strict and non-strict ordering
relations, we often add an adjective like non-strict or weak or reflexive to the
term partial order. We will usually write strict partial orderings with asymmetric
symbols like ≺, and non-strict ones by adding a line that reminds of equality,
e.g. �.

I Definition 6.10 (Linear order) A partial order is called linear on A, iff all
elements in A are comparable, i.e. if (x , y) ∈ R or (y , x) ∈ R for all x , y ∈ A.

I Example 6.11 The ≤ relation is a linear order on N (all elements are
comparable)

I Example 6.12 The “ancestor-of” relation is a partial order that is not linear.
I Lemma 6.13 Strict partial orderings are asymmetric.
I Proof Sketch: By contradiction: If (a, b) ∈ R and (b, a) ∈ R, then (a, a) ∈ R

by transitivity
I Lemma 6.14 If � is a (non-strict) partial order, then
≺ := {(a, b) | (a�b)∧ a 6= b} is a strict partial order. Conversely, if ≺ is a strict
partial order, then � := {(a, b) | (a≺b)∨ a = b} is a non-strict partial order.
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3.7 Functions
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Functions (as special relations)

I Definition 7.1 f ⊆X ×Y , is called a partial function, iff for all x ∈ X there is
at most one y ∈ Y with (x , y) ∈ f .

I Notation 7.2 f : X ⇀ Y ; x 7→ y if (x , y) ∈ f (arrow notation)
I call X the domain (write dom(f )), and Y the codomain (codom(f )) (come with f )
I Notation 7.3 f (x) = y instead of (x , y) ∈ f (function application)

I Definition 7.4 We call a partial function f : X ⇀ Y undefined at x ∈ X , iff
(x , y) 6∈ f for all y ∈ Y . (write f (x) = ⊥)

I Definition 7.5 If f : X ⇀ Y is a total relation, we call f a total function and
write f : X → Y . (∀ x ∈ X ∃1 y ∈ Y (x , y) ∈ f )

I Notation 7.6 f : x 7→ y if (x , y) ∈ f (arrow notation)

I Definition 7.7 The identity function on a set A is defined as
IdA := {(a, a) | a ∈ A}.

: this probably does not conform to your intuition about functions. Do not
worry, just think of them as two different things they will come together over
time. (In this course we will use “function” as defined here!)
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Function Spaces

II Definition 7.8 Given sets A and B We will call the set A→ B (A⇀ B) of all
(partial) functions from A to B the (partial) function space from A to B.

I Example 7.9 Let B := {0, 1} be a two-element set, then

B→ B = {{(0, 0), (1, 0)}, {(0, 1), (1, 1)}, {(0, 1), (1, 0)}, {(0, 0), (1, 1)}}

B⇀ B = B→ B∪{∅, {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}}

I as we can see, all of these functions are finite (as relations)
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Lambda-Notation for Functions I

I Problem: In maths we write f (x) := x2 + 3x + 5 to define a function f , then we
can talk about dom(f ). But if we do not want to use a name, we can only say
dom({(x , y) ∈ R×R | y = x2 + 3x + 5})

I Problem: It is common mathematical practice to write things like
fa(x) = ax2 + 3x + 5, meaning e.g. that we have a collection {fa | a ∈ A} of
functions. (is a an argument or jut a “parameter”?)

I Definition 7.10 To make the role of arguments extremely clear, we write
functions in λ-notation. For f = {(x ,E ) | x ∈ X}, where E is an expression, we
write λx ∈ X .E .
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Lambda-Notation for Functions II

I Example 7.11 The simplest function we always try everything on is the identity
function:

λn ∈ N.n = {(n, n) | n ∈ N} = IdN
= {(0, 0), (1, 1), (2, 2), (3, 3), . . .}

I Example 7.12 We can also to more complex expressions, here we take the
square function

λx ∈ N.x2 = {(x , x2) | x ∈ N}
= {(0, 0), (1, 1), (2, 4), (3, 9), . . .}
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Lambda-Notation for Functions III

I Example 7.13 λ-notation also works for more complicated domains. In this
case we have pairs as arguments.

λ(x , y) ∈ N×N.x + y = {((x , y), x + y) | x ∈ N∧ y ∈ N}
= {((0, 0), 0), ((0, 1), 1), ((1, 0), 1),

((1, 1), 2), ((0, 2), 2), ((2, 0), 2), . . .}
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Properties of functions, and their converses

I Definition 7.14 A function f : S → T is called
I injective iff ∀ x , y ∈ S f (x) = f (y)⇒ x = y .
I surjective iff ∀ y ∈ T ∃ x ∈ S f (x) = y .
I bijective iff f is injective and surjective.

I Observation 7.15 If f is injective, then the converse relation f −1 is a partial
function.

I Observation 7.16 If f is surjective, then the converse f −1 is a total relation.
I Definition 7.17 If f is bijective, call the converse relation inverse function, we

(also) write it as f −1.
I Observation 7.18 If f is bijective, then f −1 is a total function.
I Observation 7.19 If f : A→ B is bijective, then f ◦ f −1 = IdA and

f −1 ◦ f = IdB .
I Example 7.20 The function ν : N1 → N with ν(o) = 0 and ν(s(n)) = ν(n) + 1

is a bijection between the unary natural numbers and the natural numbers you
know from elementary school.

Note: Sets that can be related by a bijection are often considered equivalent,
and sometimes confused. We will do so with N1 and N in the future
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Cardinality of Sets

II Now, we can make the notion of the size of a set formal, since we can associate
members of sets by bijective functions.

I Definition 7.21 We say that a set A is finite and has cardinality #(A) ∈ N, iff
there is a bijective function f : A→ {n ∈ N | n<#(A)}.

I Definition 7.22 We say that a set A is countably infinite, iff there is a bijective
function f : A→ N. A set is called countable, iff it is finite or countably infinite.

I Theorem 7.23 We have the following identities for finite sets A and B
I #({a, b, c}) = 3 (e.g. choose f = {(a, 0), (b, 1), (c, 2)})
I #(A∪B)≤#(A) + #(B)
I #(A∩B)≤min(#(A),#(B))
I #(A×B) = #(A) ·#(B)

I With the definition above, we can prove them (last three ; Homework)
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Operations on Functions

I Definition 7.24 If f ∈ A→ B and g ∈ B → C are functions, then we call

g ◦ f : A→ C ; x 7→ g(f (x))

the composition of g and f (read g “after” f ).
I Definition 7.25 Let f ∈ A→ B and C ⊆A, then we call the function

f |C := {(c , b) ∈ f | c ∈ C} the restriction of f to C .
I Definition 7.26 Let f : A→ B be a function, A′⊆A and B ′⊆B, then we call

I f (A′) := {b ∈ B | ∃ a ∈ A′ (a, b) ∈ f } the image of A′ under f ,
I Im(f ) := f (A) the image of f , and
I f −1(B ′) := {a ∈ A | ∃ b ∈ B ′ (a, b) ∈ f } the pre-image of B ′ under f
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Chapter 4 Computing with Functions over Inductively
Defined Sets
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4.1 Standard ML: A Functional Programming Language

Kohlhase: 320101 GenCS 83 December 8, 2016



Enough theory, let us start computing with functions

I We will use Standard ML in this course.
I We call programming languages where procedures can be fully described in

terms of their input/output behavior functional.

I But most importantly. . . : . . . it emphasizes “thinking” over “hacking”.

Kohlhase: 320101 GenCS 84 December 8, 2016



Standard ML (SML)

I Why this programming language?
I Important programming paradigm (Functional Programming (with static typing))
I because all of you are unfamiliar with it (level playing ground)
I clean enough to learn important concepts (e.g. typing and recursion)
I SML uses functions as a computational model (we already understand them)
I SML has an interpreted runtime system (inspect program state)

Book: SML for the working programmer by Larry Paulson [Pau91]

II Web resources: see the post on the course forum in PantaRhei.

I Homework: install it, and play with it at home!
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Programming in SML (Basic Language)

I Generally: start the SML interpreter, play with the program state.
I Definition 1.1 (Predefined objects in SML) (SML comes with a basic

inventory)
I basic types int, real, bool, string , . . .
I basic type constructors −>, ∗,
I basic operators numbers, true, false, +, ∗, −, >, ^, . . . ( overloading)
I control structures if Φ then E1 else E2;
I comments (∗this is a comment ∗)
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Programming in SML (Declarations)

I Definition 1.2 declarations bind variables (abbreviations for convenience)
I value declarations e.g. val pi = 3.1415;
I type declarations e.g. type twovec = int ∗ int;
I function declarations e.g. fun square (x:real) = x∗x; (leave out type, if

unambiguous)

A function declaration only declares the function name as a globally visible
name. The formal parameters in brackets are only visible in the function body.

I SML functions that have been declared can be applied to arguments of the right
type, e.g. square 4.0, which evaluates to 4.0 ∗ 4.0 and thus to 16.0.

I Definition 1.3 A local declaration uses let to bind variables in its scope
(delineated by in and end).

I Example 1.4 Local definitions can shadow existing variables.
− val test = 4;
val it = 4 : int
− let val test = 7 in test ∗ test end;
val it = 49 :int
− test;
val it = 4 : int
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Programming in SML (Component Selection)

I Definition 1.5 Using structured patterns, we can declare more than one
variable. We call this pattern matching.

I Example 1.6 (Component Selection) (very convenient)
− val unitvector = (1,1);
val unitvector = (1,1) : int ∗ int
− val (x,y) = unitvector
val x = 1 : int
val y = 1 : int

I Definition 1.7 anonymous variables (if we are not interested in one value)
− val (x,_) = unitvector;
val x = 1 :int

I Example 1.8 We can define the selector function for pairs in SML as
− fun first (p) = let val (x,_) = p in x end;
val first = fn : ’a ∗ ’b −> ’a

Note the type: SML supports universal types with type variables ’a, ’b,. . . .
II first is a function that takes a pair of type ’a∗’b as input and gives an object of

type ’a as output.
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What’s next?

More SML constructs and general theory of functional programming.
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Using SML lists

I SML has a built-in “list type” (actually a list type constructor)
I given a type ty, list ty is also a type.

− [1,2,3];
val it = [1,2,3] : int list

I constructors nil and :: (nil =̂ empty list, :: =̂ list constructor “cons”)

− nil;
val it = [] : ’a list
− 9::nil;
val it = [9] : int list

I A simple recursive function: creating integer intervals

− fun upto (m,n) = if m>n then nil else m::upto(m+1,n);
val upto = fn : int ∗ int −> int list
− upto(2,5);
val it = [2,3,4,5] : int list

Question: What is happening here, we define a function by itself? (circular?)
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Defining Functions by Recursion

II Observation: SML allows to call a function already in the function definition.

fun upto (m,n) = if m>n then nil else m::upto(m+1,n);

I Evaluation in SML is “call-by-value” i.e. to whenever we encounter a function
applied to arguments, we compute the value of the arguments first.

I Example 1.9 We have the following evaluation trace with result [2,3,4]

upto(2,4) ; 2::upto(3,4) ; 2::(3::upto(4,4)) ; 2::(3::(4::nil))

I Definition 1.10 We call an SML function recursive, iff the function is called in
the function definition.

I Note that recursive functions need not terminate, consider the function
fun diverges (n) = n + diverges(n+1);

which has the evaluation sequence

diverges(1) ; 1 + diverges(2) ; 1 + (2 + diverges(3)) ; . . .
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Defining Functions by cases

I Idea: Use the fact that lists are either nil or of the form X::Xs, where X is an
element and Xs is a list of elements.

I The body of an SML function can be made of several cases separated by the
operator |.

I Example 1.11 Flattening lists of lists (using the infix append operator @)

fun flat [] = [] (∗ base case ∗)
| flat (h::t) = h @ flat t; (∗ step case ∗)

val flat = fn : ’a list list −> ’a list

Let’s test it on an argument:

flat [["When","shall"],["we","three"],["meet","again"]];
["When","shall","we","three","meet","again"]
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Lists and Strings

I some programming languages provide a type for single characters(strings are lists
of characters there)

I in SML, string is an atomic type
I function explode converts from string to char list
I function implode does the reverse

− explode "GenCS 1";
val it = [#"G",#"e",#"n",#"C",#"S",#" ",#"1"] : char list
− implode it;
val it = "GenCS 1" : string

Exercise: Try to come up with a function that detects palindromes like ’otto’ or
’anna’, try also (more at [Pal])

I I ’Marge lets Norah see Sharon’s telegram’, or (up to case, punct and space)
I ’Ein Neger mit Gazelle zagt im Regen nie’ (for German speakers)
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Higher-Order Functions

I Idea: pass functions as arguments (functions are normal values.)
I Example 1.12 Mapping a function over a list
− fun f x = x + 1;
− map f [1,2,3,4];
[2,3,4,5] : int list

I Example 1.13 We can program the map function ourselves!
fun mymap (f, nil) = nil
| mymap (f, h::t) = (f h) :: mymap (f,t);

I Example 1.14 declaring functions (yes, functions are normal values.)

− val identity = fn x => x;
val identity = fn : ’a −> ’a
− identity(5);
val it = 5 : int

I Example 1.15 returning functions: (again, functions are normal values.)

− val constantly = fn k => (fn a => k);
− (constantly 4) 5;
val it = 4 : int
− fun constantly k a = k;
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Cartesian and Cascaded Functions

I We have not been able to treat binary, ternary,. . . functions directly

I Workaround 1: Make use of (Cartesian) products (unary functions on tuples)

I Example 1.16 +: Z×Z→ Z with +((3, 2)) instead of +(3, 2)

fun cartesian_plus (x:int,y:int) = x + y;
cartesian_plus : int ∗ int −> int

Workaround 2: Make use of functions as results

II Example 1.17 + : Z→ Z→ Z withn +(3)(2) instead of +((3, 2)).

fun cascaded_plus (x:int) = (fn y:int => x + y);
cascaded_plus : int −> (int −> int)

Note: cascaded_plus can be applied to only one argument: cascaded_plus 1 is
the function (fn y:int => 1 + y), which increments its argument.
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Cartesian and Cascaded Functions (Brackets)

II Definition 1.18 Call a function Cartesian, iff the argument type is a product
type, call it cascaded, iff the result type is a function type.

I Example 1.19 the following function is both Cartesian and cascading

− fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus (int ∗ int) −> (int −> int)

Convenient: Bracket elision conventions
I I e1 e2 e3 ; (e1 e2) e3 (function application associates to the left)

I τ1−>τ2−>τ3 ; τ1 −>(τ2−>τ3) (function types associate to the right)
I SML uses these elision rules
− fun both_plus (x:int,y:int) = fn (z:int) => x + y + z;
val both_plus int ∗ int −> int −> int
cascaded_plus 4 5;

I Another simplification (related to those above)

− fun cascaded_plus x y = x + y;
val cascaded_plus : int −> int −> int
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Folding Operators

I Definition 1.20 SML provides the left folding operator to realize a recurrent
computation schema

foldl : (’a ∗ ’b −> ’b) −> ’b −> ’a list −> ’b
foldl f s [x1,x2,x3] = f(x3,f(x2,f(x1,s)))

f

f

f

x3

x2

x1 s
We call the function f the iterator and s the start value

I Example 1.21 Folding the iterator op+ with start value 0:

foldl op+ 0 [x1,x2,x3] = x3+(x2+(x1+0))

+

+

+

x3

x2

x1 0
Thus the function given by the expression foldl op+ 0 adds the elements of
integer lists.
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Folding Procedures (continued)

I Example 1.22 (Reversing Lists)

foldl op:: nil [x1,x2,x3] = x3 :: (x2 :: (x1:: nil))

::

::

::

x3

x2

x1 nil
Thus the procedure fun rev xs = foldl op:: nil xs reverses a list
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Folding Procedures (foldr)

I Definition 1.23 The right folding operator foldr is a variant of foldl that
processes the list elements in reverse order.

foldr : (’a ∗ ’b −> ’b) −> ’b −> ’a list −> ’b
foldr f s [x1,x2,x3] = f(x1,f(x2,f(x3,s)))

f

f

f

x1

x2

x3 s

I Example 1.24 (Appending Lists)

foldr op:: ys [x1,x2,x3] = x1 :: (x2 :: (x3 :: ys))

::

::

::

x1

x2

x3 ys
fun append(xs,ys) = foldr op:: ys xs
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Now that we know some SML

SML is a “functional Programming Language”

What does this all have to do with functions?

Back to Induction, “Peano Axioms” and functions (to keep it simple)
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4.2 Inductively Defined Sets and Computation
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What about Addition, is that a function?

I Problem: Addition takes two arguments (binary function)

I One solution: +: N1×N1 → N1 is unary
I +((n, o)) = n (base) and +((m, s(n))) = s(+((m, n))) (step)
I Theorem 2.1 +⊆ (N1×N1)×N1 is a total function.
I We have to show that for all (n,m) ∈ N1×N1 there is exactly one l ∈ N1 with

((n,m), l) ∈ +.
I We will use functional notation for simplicity
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Addition is a total Function

I Lemma 2.2 For all (n,m) ∈ N1×N1 there is exactly one l ∈ N1 with
+((n,m)) = l .

I Proof: by induction on m. (what else)

P.1 we have two cases
P.1.1 base case (m = o):

P.1.1.1 choose l := n, so we have +((n, o)) = n = l .
P.1.1.2 For any l ′ = +((n, o)), we have l ′ = n = l .
P.1.2 step case (m = s(k)):

P.1.2.1 assume that there is a unique r = +((n, k)), choose l := s(r), so we
have +((n, s(k))) = s(+((n, k))) = s(r).

P.1.2.2 Again, for any l ′ = +((n, s(k))) we have l ′ = l .

I Corollary 2.3 +: N1×N1 → N1 is a total function.
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Reflection: How could we do this?

I we have two constructors for N1: the base element o ∈ N1 and the successor
function s : N1 → N1

I Observation: Defining Equations for +: +((n, o)) = n (base) and
+((m, s(n))) = s(+((m, n))) (step)
I the equations cover all cases: n is arbitrary, m = o and m = s(k) (otherwise we

could have not proven existence)
I but not more (no contradictions)

I using the induction axiom in the proof of unique existence.

I Example 2.4 Defining equations δ(o) = o and δ(s(n)) = s(s(δ(n)))

I Example 2.5 Defining equations µ(l , o) = o and µ(l , s(r)) = +((µ(l , r), l))

I Idea: Are there other sets and operations that we can do this way?
I the set should be built up by “injective” constructors and have an induction axiom

(“abstract data type”)
I the operations should be built up by case-complete equations
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Inductively Defined Sets

I Definition 2.6 An inductively defined set 〈S ,C 〉 is a set S together with a finite
set C := {ci | 1≤i≤n} of ki -ary constructors ci : Ski → S with ki≥0, such that
I if si ∈ S for all 1≤i≤ki , then ci (s1, . . . , ski ) ∈ S (generated by constructors)
I all constructors are injective, (no internal confusion)
I Im(ci )∩ Im(cj) = ∅ for i 6= j , and (no confusion between constructors)
I for every s ∈ S there is a constructor c ∈ C with s ∈ Im(c). (no junk)

I Note that we also allow nullary constructors here.

I Example 2.7 〈N1, {s, o}〉 is an inductively defined set.
I Proof: We check the three conditions in Definition 2.6 using the Peano Axioms

P.1 Generation is guaranteed by P1 and P2
P.2 Internal confusion is prevented P4
P.3 Inter-constructor confusion is averted by P3
P.4 Junk is prohibited by P5.
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Peano Axioms for Lists L[N]

I Lists of (unary) natural numbers: [1, 2, 3], [7, 7], [], . . .
I nil-rule: start with the empty list []
I cons-rule: extend the list by adding a number n ∈ N1 at the front

I two constructors: nil ∈ L[N] and cons : N1×L[N]→ L[N]

I Example 2.8 e.g. [3, 2, 1] =̂ cons(3, cons(2, cons(1, nil))) and [] =̂ nil
I Definition 2.9 We will call the following set of axioms are called the Peano

Axioms for L[N] in analogy to the Peano Axioms in Definition 1.9.

I Axiom 2.10 (LP1) nil ∈ L[N] (generation axiom (nil))

I Axiom 2.11 (LP2) cons : N1×L[N]→ L[N] (generation axiom (cons))

I Axiom 2.12 (LP3) nil is not a cons-value

I Axiom 2.13 (LP4) cons is injective

I Axiom 2.14 (LP5) If the nil possesses property P and (Induction Axiom)
I for any list l with property P, and for any n ∈ N1, the list cons(n, l) has property P

then every list l ∈ L[N] has property P.
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Operations on Lists: Append

I The append function @: L[N]×L[N]→ L[N] concatenates lists
Defining equations: nil@ l = l and cons(n, l) @ r = cons(n, l @ r)

I Example 2.15 [3, 2, 1] @ [1, 2] = [3, 2, 1, 1, 2] and
[] @ [1, 2, 3] = [1, 2, 3] = [1, 2, 3] @ []

I Lemma 2.16 For all l , r ∈ L[N], there is exactly one s ∈ L[N] with s = l @ r .
I Proof: by induction on l . (what does this mean?)

P.1 we have two cases
P.1.1 base case: l = nil: must have s = r .
P.1.2 step case: l = cons(n, k) for some list k :

P.1.2.1 Assume that here is a unique s ′ with s ′ = k @ r ,
P.1.2.2 then s = cons(n, k) @ r = cons(n, k @ r) = cons(n, s ′).

I Corollary 2.17 Append is a function (see, this just worked fine!)
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Operations on Lists: more examples

I Definition 2.18 λ(nil) = o and λ(cons(n, l)) = s(λ(l))

I Definition 2.19 ρ(nil) = nil and ρ(cons(n, l)) = ρ(l) @ cons(n, nil).
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4.3 Inductively Defined Sets in SML
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Data Type Declarations I

I Definition 3.1 SML data type provide concrete syntax for inductively defined
sets via the keyword datatype followed by a list of constructor declarations.

I Example 3.2 We can declare a data type for unary natural numbers by
− datatype mynat = zero | suc of mynat;
datatype mynat = suc of mynat | zero
this gives us constructor functions zero : mynat and suc : mynat −> mynat.

I Observation 3.3 We can define functions by (complete) case analysis over the
constructors

I Example 3.4 (Converting types)
fun num (zero) = 0 | num (suc(n)) = num(n) + 1;
val num = fn : mynat −> int
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Data Type Declarations II

I Example 3.5 (Missing Constructor Cases)
fun incomplete (zero) = 0;
stdIn:10.1−10.25 Warning: match non−exhaustive

zero => ...
val incomplete = fn : mynat −> int

I Example 3.6 (Inconsistency)
fun ic (zero) = 1 | ic(suc(n))=2 | ic(zero)= 3;
stdIn:1.1−2.12 Error: match redundant

zero => ...
suc n => ...
zero => ...
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Data Types Example (Enumeration Type)

I a type for weekdays (nullary constructors)
datatype day = mon | tue | wed | thu | fri | sat | sun;

I use as basis for rule-based procedure (first clause takes precedence)
− fun weekend sat = true

| weekend sun = true
| weekend _ = false

val weekend : day −> bool
I this give us
− weekend sun
true : bool
− map weekend [mon, wed, fri, sat, sun]
[false, false, false, true, true] : bool list

I nullary constructors describe values, enumeration types finite sets
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Data Types Example (Geometric Shapes)

I describe three kinds of geometrical forms as mathematical objects

r

Circle (r)

a

Square (a)

c
ba

Triangle (a, b, c)

Mathematically: R+ ] R+ ] (R+×R+×R+)

II In SML: approximate R+ by the built-in type real.

datatype shape =
Circle of real

| Square of real
| Triangle of real ∗ real ∗ real

I This gives us the constructor functions

Circle : real −> shape
Square : real −> shape
Triangle : real ∗ real ∗ real −> shape
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Data Types Example (Areas of Shapes)

I a procedure that computes the area of a shape:

− fun area (Circle r) = Math.pi∗r∗r
| area (Square a) = a∗a
| area (Triangle(a,b,c)) = let val s = (a+b+c)/2.0

in Math.sqrt(s∗(s−a)∗(s−b)∗(s−c))
end

val area : shape −> real

New Construct: Standard structure Math (see [SML10])

II some experiments

− area (Square 3.0)
9.0 : real
− area (Triangle(6.0, 6.0, Math.sqrt 72.0))
18.0 : real
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Chapter 5 A Theory of SML: Abstract Data Types and
Term Languages
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What’s next?

Let us now look at representations
and SML syntax
in the abstract!
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5.1 Abstract Data Types and Ground Constructor Terms
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Abstract Data Types (ADT)

I Definition 1.1 Let S0 := {A1, . . . ,An} be a finite set of symbols, then we call
the set S the set of sorts over the set S0, if
I S0⊆S (base sorts are sorts)
I If A,B ∈ S, then A× B ∈ S (product sorts are sorts)
I If A ∈ S and B ∈ S0, then A→ B ∈ S (function sorts are sorts)

I Definition 1.2 If c is a symbol and A ∈ S, then we call a pair [c : A] a
constructor declaration for c over S.

I Definition 1.3 Let S0 be a set of symbols and D a set of constructor
declarations over S, then we call the pair 〈S0,D〉 an abstract data type

I Example 1.4 B := 〈{B}, {[T : B], [F : B]}〉 is an abstract data for truth values.

I Example 1.5 〈{N}, {[o : N], [s : N→ N]}〉 represents unary natural numbers.

I Example 1.6
L := 〈{N,L(N)}, {[o : N], [s : N→ N], [nil : L(N)], [cons : N× L(N)→ L(N)]}〉 In
particular, the term cons(s(o), cons(o, nil)) represents the list [1, 0]

I Example 1.7 〈{S0,S}, {[ι : S0 → S], [→ : S × S0 → S], [× : S × S → S]}〉
(what is this?)
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Ground Constructor Terms

I Definition 1.8 Let A := 〈S0,D〉 be an abstract data type, then we call a
representation t a ground constructor term of sort T, iff
I T ∈ S0 and [t : T] ∈ D, or
I T = A× B and t is of the form 〈a, b〉, where a and b are ground constructor terms

of sorts A and B, or
I t is of the form c(a), where a is a ground constructor term of sort A and there is a

constructor declaration [c : A→ T] ∈ D.
We denote the set of all ground constructor terms of sort A with T g

A(A) and
use T g (A) :=

⋃
A∈S T g

A(A).

I Example 1.9 cons(s(o), nil) ∈ T g
L(N)(L) where L is the ADT from

Example 1.6.
I Definition 1.10 If t = c(t ′) then we say that the symbol c is the head of t

(write head(t)). If t = a, then head(t) = a; head(〈t1, t2〉) is undefined.
I Notation 1.11 We will write c(a, b) instead of c(〈a, b〉) (cf. binary function)
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Peano Axioms for Sorts in Abstract Data Types

I Observation 1.12 The set T g (A) of ground constructor terms over an abstract
data type A form an inductively defined set.

I Proof Sketch: We just think of each of the clauses in the definition as
constructors: “constants”, “pairs”, and “constructor applications”.

I Example 1.13 We can even program it in SML with the datatype constructor:

datatype basesort = a | b | c | ...
datatype sort = base of basesort | pairsort of sort ∗ sort| funsort of sort ∗ sort
symbol = string
datatype gct = const of symbol | pair of gct ∗ gct | app of symbol ∗ gct

With this, the term cons(s(o), nil) ∈ T g
L(N)(L) from Example 1.9 is represented

as app("cons’’,app("suc",const("zero")),const"nil").

I Idea: In abstract data types we have a kind of Peano Axioms as well.
I Axiom 1.14 if t is a ground constructor term of sort T, then t ∈ T
I Axiom 1.15 equality on ground constructor terms is trivial
I Axiom 1.16 only ground constructor terms of sort T are in T(induction axioms)

Kohlhase: 320101 GenCS 120 December 8, 2016



Towards Understanding Computation on ADTs

I Aim: We want to understand computation with data from ADTs
I Idea: Let’s look at a concrete example: abstract data type
B := 〈{B}, {[T : B], [F : B]}〉 and the operations we know from mathtalk: ∧, ∨,
¬, for “and”, “or”, and “not”.

I Idea: think of these operations as functions on B that can be defined by
“defining equations” e.g. ¬(T ) = F , which we represent as ¬(T ) ; F to stress
the direction of computation.

I Example 1.17 We represent the operations by declaring sort and equations.
¬: 〈¬::B→ B ; {¬(T ) ; F ,¬(F ) ; T}〉,
∧ : 〈∧::B× B→ B ; {∧(T ,T ) ; T ,∧(T ,F ) ; F ,∧(F ,T ) ; F ,∧(F ,F ) ; F}〉,
∨ : 〈∨::B× B→ B ; {∨(T ,T ) ; T ,∨(T ,F ) ; T ,∨(F ,T ) ; T ,∨(F ,F ) ; F}〉.
Idea: Computation is just replacing equals by equals

∨(T ,∧(F ,¬(F ))) ; ∨(T ,∧(F ,T )) ; ∨(T ,F ) ; T

II Next Step: Define all the necessary notions, so that we can make this work
mathematically.
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5.2 A First Abstract Interpreter

Kohlhase: 320101 GenCS 122 December 8, 2016



But how do we compute?

I Problem: We can define functions, but how do we compute them?

I Intuition: We direct the equations (l2r) and use them as rules.
I Definition 2.1 Let A be an abstract data type and s, t ∈ T g

T(A) ground
constructor terms over A, then we call a pair s ; t a rule for f , if head(s) = f .

I Example 2.2 turn λ(nil) = o and λ(cons(n, l)) = s(λ(l))
to λ(nil) ; o and λ(cons(n, l)) ; s(λ(l))

I Definition 2.3 Let A := 〈S0,D〉, then call a quadruple 〈f ::A→ R ; R〉 an
abstract procedure, iff R is a set of rules for f . A is called the argument sort
and R is called the result sort of 〈f ::A→ R ; R〉.

I Definition 2.4 A computation of an abstract procedure p is a sequence of
ground constructor terms t1 ; t2 ; . . . according to the rules of p. (whatever
that means)

I Definition 2.5 An abstract computation is a computation that we can perform
in our heads. (no real world constraints like memory size, time limits)

I Definition 2.6 An abstract interpreter is an imagined machine that performs
(abstract) computations, given abstract procedures.
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Example: the functions ρ and @ on lists

I Example 2.7 Consider the abstract procedures
〈ρ::L(N)→ L(N) ; {ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)), ρ(nil) ; nil}〉
〈@::L(N)× L(N)→ L(N) ; {@(cons(n, l), r) ; cons(n,@(l , r)),@(nil, l) ; l}〉

I Then we have the following abstract computation
I ρ(cons(2, cons(1, nil))) ; @(ρ(cons(1, nil)), cons(2, nil))

(ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)) with n = 2 and l = cons(1, nil))
I @(ρ(cons(1, nil)), cons(2, nil)) ; @(@(ρ(nil), cons(1, nil)), cons(2, nil))

(ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)) with n = 1 and l = nil)
I @(@(ρ( nil ), cons(1, nil)), cons(2, nil)) ; @(@(nil, cons(1, nil)), cons(2, nil))

(ρ(nil) ; nil)
I @(@( nil, cons(1, nil)), cons(2, nil)) ; @(cons(1, nil), cons(2, nil)) (@(nil, l) ; l with

l = cons(1, nil))
I @(cons(1, nil), cons(2, nil)) ; cons(1,@(nil, cons(2, nil)))

(@(cons(n, l), r) ; cons(n,@(l , r)) with n = 1, l = nil, and r = cons(2, nil))
I cons(1,@( nil, cons(2, nil))) ; cons(1, cons(2, nil)) (@(nil, l) ; l with

l = cons(2, nil))

Aha: ρ terminates on the argument cons(2, cons(1, nil))
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An Abstract Interpreter (preliminary version)

II Definition 2.8 (Idea) Replace equals by equals! (this is licensed by the rules)
I Input: an abstract procedure 〈f ::A→ R ; R〉 and an argument a ∈ T g

A(A).
I Output: a result r ∈ T g

R(A).
I Process:

I find a part t := f (t1, . . . tn) in a,
I find a rule (l ; r) ∈ R and values for the variables in l that make t and l equal.
I replace t with r ′ in a, where r ′ is obtained from r by replacing variables by values.
I if that is possible call the result a′ and repeat the process with a′, otherwise stop.

I Definition 2.9 We say that an abstract procedure 〈f ::A→ R ; R〉 terminates
(on a ∈ T g

A(A)), iff the computation (starting with f (a)) reaches a state, where
no rule applies.

I There are a lot of words here that we do not understand
I let us try to understand them better ; more theory!
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An Abstract Interpreter (preliminary version)

I Definition 2.10 (Idea) Replace equals by equals! (this is licensed by the rules)
I Input: an abstract procedure 〈f ::A→ R ; R〉 and an argument a ∈ T g

A(A).
I Output: a result r ∈ T g

R(A).
I Process:

I find a part t := f (t1, . . . tn) in a,
I find a rule (l ; r) ∈ R and values for the variables in l that make t and l equal.
I replace t with r ′ in a, where r ′ is obtained from r by replacing variables by values.
I if that is possible call the result a′ and repeat the process with a′, otherwise stop.

I Definition 2.11 We say that an abstract procedure 〈f ::A→ R ; R〉 terminates
(on a ∈ T g

A(A)), iff the computation (starting with f (a)) reaches a state, where
no rule applies.

I There are a lot of words here that we do not understand
I let us try to understand them better ; more theory!
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Constructor Terms with Variables

I Wait a minute!: what are these rules in abstract procedures?

I Answer: pairs of constructor terms (really constructor terms?)

I Idea: variables stand for arbitrary constructor terms (let’s make this formal)
I Definition 2.12 Let 〈S0,D〉 be an abstract data type. A (constructor term)

variable is a pair of a symbol and a base sort.
I Example 2.13 xA, nN, xC3 ,. . . are variable .s
I Definition 2.14 We denote the current set of variables of sort A with VA, and

use V :=
⋃

A∈S0 VA for the set of all variables.

I Idea: add the following rule to the definition of constructor terms
I variables of sort A ∈ S0 are constructor terms of sort A.

I Definition 2.15 If t is a constructor term, then we denote the set of variables
occurring in t with free(t). If free(t) = ∅, then we say t is ground or closed.
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Constr. Terms with Variables: The Complete Definition

I Definition 2.16 Let 〈S0,D〉 be an abstract data type and V a set of variables,
then we call a representation t a constructor term (with variables from V) of
sort T, iff
I T ∈ S0 and [t : T] ∈ D, or
I t ∈ VT is a variable of sort T ∈ S0, or
I T = A× B and t is of the form 〈a, b〉, where a and b are constructor terms with

variables of sorts A and B, or
I t is of the form c(a), where a is a constructor term with variables of sort A and

there is a constructor declaration [c : A→ T] ∈ D.
We denote the set of all constructor terms of sort A with TA(A;V) and use
T (A;V) :=

⋃
A∈S TA(A;V).

I Definition 2.17 We define the depth of a constructor term t ∈ T (A;V) by the
way it is constructed.

dp(t) :=

 1 if [t : T] ∈ Σ or t ∈ V
max(dp(a), dp(b)) + 1 if t = 〈a, b〉

dp(a) + 1 if t = f (a)

I Observation 2.18 This is a recursive function on the inductively defined set
T (A;V). (made possible by Peano axioms)
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5.3 Substitutions
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Substitutions

I Definition 3.1 Let A be an abstract data type and σ ∈ V → T (A;V), then we
call σ a substitution on A, iff supp(σ) := {xA ∈ VA |σ(xA) 6= xA} is finite and
σ(xA) ∈ TA(A;V). supp(σ) is called the support of σ.

I Definition 3.2 If supp(σ) = ∅, then we call σ the empty substitution and write
σ as ε.

I Notation 3.3 We denote the substitution σ with supp(σ) = {x iAi
| 1≤i≤n} and

σ(x iAi
) = ti by [t1/x

1
A1

], . . ., [tn/x
n
An

].
I Definition 3.4 (Substitution Extension) Let σ be a substitution, then we

denote with σ, [t/xA] the function {〈yB, t〉 ∈ σ | yB 6= xA}∪ {〈xA, t〉}. (σ, [t/xA]
coincides with σ off xA, and gives the result t there.)

I Note: If σ is a substitution, then σ, [t/xA] is also a substitution.
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Substitution Application

I Definition 3.5 (Substitution Application) Let A be an abstract data type, σ
a substitution on A, and t ∈ T (A;V), then then we denote the result of
systematically replacing all variables xA in t by σ(xA) by σ(t). We call σ(t) the
application of σ to t.

I With this definition we extend a substitution σ from a function σ : V → T (A;V)
to a function σ : T (A;V)→ T (A;V).

I Definition 3.6 Let s and t be constructor terms, then we say that s matches t,
iff there is a substitution σ, such that σ(s) = t. σ is called a matcher that
instantiates s to t. We also say that t is an instance of s.

I Example 3.7 [a/x ], [f (b)/y ], [a/z ] instantiates g(x , y , h(z)) to g(a, f (b), h(a)).
(sorts elided here)

I Definition 3.8 We give the defining equations for substitution application on an
abstract data type A := 〈S0,D〉:
I σ(c) = c if [c : T] ∈ D.
I σ(xA) = t if [t/xA] ∈ σ.
I σ(〈a, b〉) = 〈σ(a), σ(b)〉.
I σ(f (a)) = f (σ(a)).

I this definition uses the inductive structure of the terms.
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Substitution Application conserves Sorts

I Theorem 3.9 Let A be an abstract data type, t ∈ TT(A;V), and σ a
substitution on A, then σ(t) ∈ TT(A;V).

I Proof: by induction on dp(t) using Definition 2.16 and Definition 3.5
P.1 By Definition 2.16 we have to consider four cases

P.1.1 [t : T] ∈ D: σ(t) = t by Definition 3.5, so σ(t) ∈ TA(A;V) by
construction.

P.1.2 t ∈ VT: We have σ(t) ∈ TA(A;V) by Definition 3.1,
P.1.3 t = 〈a, b〉 and T = A× B, where a ∈ TA(A;V) and b ∈ TB(A;V): We

have σ(t) = σ(〈a, b〉) = 〈σ(a), σ(b)〉. By inductive hypothesis we have
σ(a) ∈ TA(A;V) and σ(b) ∈ TB(A;V) and therefore
〈σ(a), σ(b)〉 ∈ TA×B(A;V) which gives the assertion.

P.1.4 t = c(a), where a ∈ TA(A;V) and [c : A→ T] ∈ D: We have
σ(t) = σ(c(a)) = c(σ(a)). By IH we have σ(a) ∈ TA(A;V) therefore
(c(σ(a))) ∈ TT(A;V).
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Uniqueness of Matchers

I Theorem 3.10 For any s, t ∈ T (A;V), there is at most one σ with σ(s) = t.
I Proof: We prove this by induction on s (using the Peano Axioms for T (A;V))

P.1 We have four cases to consider
P.1.1 s is a constant ([c : T] ∈ D): If t = c , then σ = ε, else no matcher

exists.
P.1.2 s is a variable xT: Here σ must be [t/xT].
P.1.3 s is a pair 〈a, b〉:

P.1.3.1 Then t must be of the form 〈c , d〉 for some terms c and d by
Definition 3.8.

P.1.3.2 By inductive hypothesis, we have at most one matcher σa and σb with
σa(a) = c and σb(b) = d respectively.

P.1.3.3 Now let C := supp(σa, σb). If σa|C = σb|C , then σ := σa ∪σb
instantiates s = 〈a, b〉 to t = 〈c , d〉, otherwise no matcher exists.

P.1.4 s is an application f (a) with [f : A→ T] ∈ D and a ∈ TA(A;V):
P.1.4.1 Then t must be of the form f (b) for some term b by Definition 3.8.
P.1.4.2 By inductive hypothesis, we have at most one matcher ρ with ρ(a) = b.
P.1.4.3 σ must be equal to ρ if that exists, since

σ(s) = σ(f (a)) = f (σ(a)) = f (ρ(a)) = f (b) = t.
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Note: that we used two different inductions in the proofs of these two theorems:
For the proof of Theorem 3.9, we used an “induction over the depth of [a
constructor term]”, which is really an induction on natural numbers and
correspondingly uses the induction axiom for natural numbers. Here we use the
trick of making the property of all constructor terms we want to prove a property
of natural numbers by involving the depth function: The property P is that
“substitution application conserves sorts on all constructor terms of depth n”. The
four cases in the recursive definition of dp in Definition 2.17 give rise to four cases
in the proof: two for the base case n = 0 and two for the step case n > 0.
For the proof of Theorem 3.10 we directly used the induction axiom for the
inductively defined set T (A;V). Here the induction is over the “constructors” of
T (A;V), which correspond to the four cases in Definition 2.16.
So even though the two proofs start with very different induction axioms, they end
up with a very similar case analysis. Some authors like the directness of “structural
induction” (induction over the structure of terms), while some prefer the mor
“elementary” nature of natural numbers induction. We have used both here to
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expose the two methods.

5.4 Terms in Abstract Data Types
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Are Constructor Terms Really Enough for Rules?

I Example 4.1 ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)). (ρ is not a constructor)

I Idea: need to include symbols for the defined procedures. (provide declarations)
I Definition 4.2 Let A := 〈S0,D〉 be an abstract data type with A ∈ S and let

f 6∈ D be a symbol, then we call a pair [f : A] a procedure declaration for f over
S.

I Definition 4.3 We call a finite set Σ of procedure declarations for distinct
symbols a signature over A.

I Idea: add the following rules to the definition of constructor terms
I T ∈ S0 and [p : T] ∈ Σ, or
I t is of the form f (a), where a is a term of sort A and there is a procedure

declaration [f : A→ T] ∈ Σ.
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Terms: The Complete Definition

I Idea: treat procedures (from Σ) and constructors (from D) at the same time.
I Definition 4.4 Let 〈S0,D〉 be an abstract data type, and Σ a signature over A,

then we call a representation t a term of sort T (over A, Σ, and V), iff
I T ∈ S0 and [t : T] ∈ D or [t : T] ∈ Σ, or
I t ∈ VT and T ∈ S0, or
I T = A× B and t is of the form 〈a, b〉, where a and b are terms of sorts A and B, or
I t is of the form c(a), where a is a term of sort A and there is a constructor

declaration [c : A→ T] ∈ D or a procedure declaration [c : A→ T] ∈ Σ.

We denote the set of terms of sort A over A, Σ, and V with TA(A,Σ;V) and the
set of all terms with T (A,Σ;V).
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Subterms

I Idea: Well-formed parts of constructor terms are constructor terms again (maybe
of a different sort)

I Definition 4.5 Let A be an abstract data type and s, t, and b be terms over
A, then we say that s is an immediate subterm of t, iff t = f (s) or t = 〈s, b〉 or
t = 〈b, s〉.

I Definition 4.6 We say that a s is a subterm of t, iff s = t or there is an
immediate subterm t ′ of t, such that s is a subterm of t ′.

I Note: that we see a recursive definition of a realtion in Maths here – recursion is
not restricted to computation or computer science.

I Example 4.7 f (a) is a subterm of the terms f (a) and h(g(f (a), f (b))), and an
immediate subterm of h(f (a)).
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5.5 A Second Abstract Interpreter
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Abstract Procedures, Final Version

I Definition 5.1 (Rules, final version) Let A := 〈S0,D〉 be an abstract data
type, Σ a signature over A, and f 6∈ (dom(D)∪dom(Σ)) a symbol, then we
call f (s) ; r a rule for [f : A→ B] over Σ, if s ∈ TA(A,Σ;V) has no duplicate
variables, constructors, or defined functions and r ∈ TB(A,Σ, [f : A→ B];V).

I Note: Rules are well-sorted, i.e. both sides have the same sort and recursive, i.e.
rule heads may occur on the right hand side.

I Definition 5.2 (Abstract Procedures, final version)
We call a quadruple P := 〈f ::A→ R ; R〉 an abstract procedure over Σ, iff R is
a set of rules for [f : A→ R] ∈ Σ. We say that P induces the procedure
declaration [f : A→ R].

I Example 5.3 Let A be the union of the abstract data types from Example 1.6
and Example 1.17, then

〈µ::N× L(N)→ B ; {µ(〈xN, nil〉) ; F , µ(〈xN, cons(hN, tL(N))〉) ; ∨(x = h, µ(〈y , t〉))}〉

is an abstract procedure that induces the procedure declaration
[µ : N× L(N)→ B]
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Abstract Programs

I Definition 5.4 (Abstract Programs) Let A := 〈S0,D〉 be an abstract data
type, and P := P1, . . . ,Pn a sequence of abstract procedures, then we call P an
abstract program with signature Σ over A, if the Pi induce (the procedure
declarations) in Σ and
I n = 0 and Σ = ∅ or
I P = P ′,Pn and Σ = Σ′, [f : A], where

I P ′ is an abstract program over Σ′

I and Pn is an abstract procedure over Σ′ that induces the procedure declaration [f : A].

I Example 5.5 The two abstract procedures from Example 2.7
〈@::L(N)× L(N)→ L(N) ; {@(cons(n, l), r) ; cons(n,@(l , r)),@(nil, l) ; l}〉
〈ρ::L(N)→ L(N) ; {ρ(cons(n, l)) ; @(ρ(l), cons(n, nil)), ρ(nil) ; nil}〉

constitute an abstract program over the abstract data type from Example 1.6:

〈{N,L(N)}, {[o : N], [s : N→ N], [nil : L(N)], [cons : N× L(N)→ L(N)]}〉
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An Abstract Interpreter (second version)

I Definition 5.6 (Abstract Interpreter (second try)) Let a0 := a repeat the
following as long as possible:
I choose (l ; r) ∈ R, a subterm s of ai and matcher σ, such that σ(l) = s.
I let ai+1 be the result of replacing s in a with σ(r).

I Definition 5.7 We say that an abstract procedure P := 〈f ::A→ R ; R〉
terminates (on a ∈ TA(A,Σ;V)), iff the computation (starting with a) reaches a
state, where no rule applies. Then an is the result of P on a

Question: Do abstract procedures always terminate?

II Question: Is the result an always a constructor term?
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5.6 Evaluation Order and Termination
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Evaluation Order in SML

I Remember in the definition of our abstract interpreter:
I choose a subterm s of ai , a rule (l ; r) ∈ R, and a matcher σ, such that σ(l) = s.
I let ai+1 be the result of replacing s in a with σ(r).

Once we have chosen s, the choice of rule and matcher become unique.
I I the rule is unique, if the left-hand sides are non-overlapping (SML enforces this)

I the matcher is unique by Theorem 3.10
I Observation 6.1 sometimes there we can choose more than one subterm s and

rule, and the computation and even the result differ.

I Example 6.2
fun problem n = problem(n)+2;
datatype mybool = true | false;
fun myif(true,a,_) = a | myif(false,_,b) = b;
myif(true,3,problem(1));

Idea: Prescribe the “choice” of subterm

II SML is a call-by-value language (values of arguments are computed first)
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An abstract call-by-value Interpreter (final)

I Definition 6.3 (Call-by-Value Interpreter) Given an abstract program P and
a ground constructor term a, an abstract call-by-value interpreter creates a
computation a1 ; a2 ; . . . with a = a1 by the following process:
I Let s be the leftmost (of the) minimal subterms s of ai , such that there is a rule

l ; r ∈ R and a substitution σ, such that σ(l) = s.
I let ai+1 be the result of replacing s in a with σ(r).

Note: By this paragraph, this is a deterministic process, which can be
implemented, once we understand matching fully (not covered in GenCS)
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Analyzing Termination of Abstract Procedures

II Example 6.4 τ : N1 → N1, where τ(n) ; τ(3n + 1) for n odd and
τ(n) ; τ(n/2) for n even. (does this procedure terminate?)

I Definition 6.5 Let 〈f ::A→ R ; R〉 be an abstract procedure, then we call a
pair 〈a, b〉 a recursion step, iff there is a rule f (x) ; y , and a substitution ρ,
such that ρ(x) = a and ρ(y) contains a subterm f (b).

I Example 6.6 〈4, 3〉 is a recursion step for the abstract procedure

〈σ::N1 → N1 ; {σ(o) ; o, σ(s(n)) ; n + σ(n)}〉

I Definition 6.7 We call an abstract procedure P recursive, iff it has a recursion
step. We call the set of recursion steps of P the recursion relation of P.

I Idea: analyze the recursion relation for termination.
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Termination

I Definition 6.8 Let R ⊆A2 be a binary relation, an infinite chain in R is a
sequence a1, a2, . . . in A, such that 〈an, an+1〉 ∈ R for all n ∈ N.

I Definition 6.9 We say that R terminates (on a ∈ A), iff there is no infinite
chain in R (that begins with a).

I Definition 6.10 P diverges (on a ∈ A), iff it does not terminate on a.
I Theorem 6.11 Let P = 〈f ::A→ R ; R〉 be an abstract procedure and

a ∈ TA(A,Σ;V), then P terminates on a, iff the recursion relation of P does.
I Definition 6.12 Let P = 〈f ::A→ R ; R〉 be an abstract procedure, then we

call the function {〈a, b〉 | a ∈ TA(A,Σ;V) and P terminates for a with b} in
A⇀ B the result function of P.

I Theorem 6.13 Let P = 〈f ::A→ B ; D〉 be a terminating abstract procedure,
then its result function satisfies the equations in D.
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Abstract vs. Concrete Procedures vs. Functions

I An abstract procedure P can be realized as concrete procedure P ′ in a
programming language

I Correctness assumptions (this is the best we can hope for)
I If the P ′ terminates on a, then the P terminates and yields the same result on a.
I If the P diverges, then the P ′ diverges or is aborted (e.g. memory exhaustion or

buffer overflow)

I Procedures are not mathematical functions (differing identity conditions)
I compare σ : N1 → N1 with σ(o) ; o, σ(s(n)) ; n + σ(n)

with σ′ : N1 → N1 with σ′(o) ; 0, σ′(s(n)) ; ns(n) / 2
I these have the same result function, but σ is recursive while σ′ is not!
I Two functions are equal, iff they are equal as sets, iff they give the same results on

all arguments
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Chapter 6 More SML
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6.1 Recursion in the Real World
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Consider the Fibonacci numbers

I Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .
I generally: Fn+1 := Fn + Fn−1 plus start conditions

I easy to program in SML:

fun fib (0) = 0
| fib (1) = 1
| fib (n:int) = fib (n−1) + fib(n−2);

I Let us look at the recursion relation: {(n, n − 1), (n, n − 2) | n ∈ N}(it is a tree!)

1 0
2 1 0

2
1 0

2
1 0

2 1 0
2

3
1

3
1

3
1

4
5 4

6
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A better Fibonacci Function

I Idea: Do not re-compute the values again and again!
I keep them around so that we can re-use them. (e.g. let fib compute the two last

two numbers)

fun fob 0 = (0,1)
| fob 1 = (1,1)
| fob (n:int) =
let

val (a:int, b:int) = fob(n−1)
in

(b,a+b)
end;

fun fib (n) = let val (b:int,_) = fob(n) in b end;

I Works in linear time! (unfortunately, we cannot see it, because SML Int are too
small)
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A better, larger Fibonacci Function

I Idea: Use a type with more Integers (Fortunately, there is IntInf)

val zero = IntInf.fromInt 0;
val one = IntInf.fromInt 1;

fun bigfob (0) = (zero,one)
| bigfob (1) = (one,one)
| bigfob (n:int) =

let val (a, b) = bigfob(n−1)
in (b,IntInf.+(a,b))
end;

fun bigfib (n) = let val (a,_) = bigfob(n)
in IntInf.toString(a)
end;
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Mutual Recursion

I generally, we can make more than one declaration at one time, e.g.

− val pi = 3.14 and e = 2.71;
val pi = 3.14
val e = 2.71

I this is useful mainly for function declarations, consider for instance:

fun even (zero) = true
| even (suc(n)) = odd (n)

and odd (zero) = false
| odd(suc(n)) = even (n)

We trace the computation:

even(4) ; odd(3) ; even(2) ; odd(1) ; even(0) ; true
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6.2 Programming with Effects: Imperative Features in
SML
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Programming with Effects on the Machine State

II Until now, our procedures have been characterized entirely by their values on
their arguments (as a mathematical function behaves)

I This is not enough, therefore SML also considers effects, e.g. for
I input/output: the interesting bit about a print statement is the effect
I mutation: allocation and modification of storage during evaluation
I communication: data may be sent and received over channels
I exceptions: abort evaluation by signaling an exceptional condition

I Idea: An effect is any action resulting from an evaluation that is not returning a
value (formal definition difficult)

I Documentation: should always address arguments, values, and effects!
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6.2.1 Input and Output
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Input and Output in SML I

I Input and Output is handled via
“streams” (think of possibly infinite
strings)

I there are two predefined streams
TextIO.stdIn and TextIO.stdOut (=̂
keyboard input and screen)

Display

Keyboard

Program
stdin

stdout
stderr

I Example 2.1 (Input)
via TextIO.inputLine : TextIO.instream −> string

− TextIO.inputLine(TextIO.stdIn);
sdflkjsdlfkj

val it = "sdflkjsdlfkj" : string

I Example 2.2 (Printing to Standard Output)
TextIO.print prints its argument to stdin (=̂ screen)

print "sdfsfsdf’’
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Input and Output in SML II

The user can also create streams as files: TextIO.openIn and TextIO.openOut.

II Streams should be closed when no longer needed: TextIO.closeIn and
TextIO.closeOut.
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Input and Output in SML

I Problem: How to handle the end of input files?

TextIO.input1 : instream −> char option

attempts to read one char from an input stream (may fail)

I The SML basis library supplies the datatype

datatype ’a option = NONE | SOME of ’a

which can be used in such cases together with lots of useful functions.
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IO Example: Copying a File – Char by Char

I Example 2.3 The following function copies the contents of from one text file,
infile, to another, outfile character by character:

fun copyTextFile(infile: string, outfile: string) =
let
val ins = TextIO.openIn infile
val outs = TextIO.openOut outfile
fun helper(copt: char option) =
case copt of

NONE => (TextIO.closeIn ins; TextIO.closeOut outs)
| SOME(c) => (TextIO.output1(outs,c);

helper(TextIO.input1 ins))
in
helper(TextIO.input1 ins)

end

Note the use of the char option to model the fact that reading may fail (EOF)
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6.2.2 Programming with Exceptions
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Raising Exceptions I

I Idea: Exceptions are generalized error codes
I Definition 2.4 An exception is a special SML object. Raising an exception e in

a function aborts functional computation and returns e to the next level.

I Example 2.5 predefined exceptions (exceptions have names)

− 3 div 0;
uncaught exception divide by zero
raised at: <file stdIn>
− fib(100);
uncaught exception overflow
raised at: <file stdIn>

Exceptions are first-class citizens in SML, in particular they
I I have types, and

I can be defined by the user.
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Raising Exceptions II

I Example 2.6 user-defined exceptions (exceptions are first-class objects)

− exception Empty;
exception Empty
− Empty;
val it = Empty : exn

I Example 2.7 exception constructors (exceptions are just like any other value)

− exception SysError of int;
exception SysError of int;
− SysError
val it = fn : int −> exn
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Programming with Exceptions

I Example 2.8 A factorial function that checks for non-negative arguments (just
to be safe)

exception Factorial;
− fun safe_factorial n =

if n < 0 then raise Factorial
else if n = 0 then 1
else n ∗ safe_factorial (n−1)

val safe_factorial = fn : int −> int
− safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31−28.40

unfortunately, this program checks the argument in every recursive call
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Programming with Exceptions (next attempt)

I Idea: make use of local function definitions that do the real work as in
local
fun fact 0 = 1 | fact n = n ∗ fact (n−1)

in
fun safe_factorial n =
if n >= 0 then fact n else raise Factorial

end

this function only checks once, and the local function makes good use of pattern
matching (; standard programming pattern)

− safe_factorial(~1);
uncaught exception Factorial
raised at: stdIn:28.31−28.40
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Handling Exceptions I

I Definition 2.9 (Idea) Exceptions can be raised (through the evaluation
pattern) and handled somewhere above (throw and catch)

I Consequence: Exceptions are a general mechanism for non-local transfers of
control.

I Definition 2.10 (SML Construct) exception handler: exp handle rules

I Example 2.11 Handling the Factorial expression

fun factorial_driver () =
let val input = read_integer ()

val result = toString (safe_factorial input)
in

print result
end

handle Factorial => print "Out of range."
| NaN => print "Not a Number!"
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Handling Exceptions II

I Example 2.12 the read_integer function (just to be complete)

exception NaN; (∗ Not a Number ∗)
fun read_integer () =

let
val intstring = case TextIO.inputLine(TextIO.stdIn) of

NONE => raise NaN
| SOME(s) => s

in
case Int.fromString intstring of

NONE => raise NaN
| SOME i => i

end
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Using Exceptions for Optimizing Computation

I Example 2.13 (Nonlocal Exit) If we multiply a list of integers, we can stop
when we see the first zero. So
local
exception Zero
fun p [] = 1

| p (0::_) = raise Zero
| p (h::t) = h ∗ p t

in
fun listProdZero ns = p ns

handle Zero => 0
end

is more efficient than just

fun listProd ns = fold op∗ ns 1

and the more clever
fun listProd ns = if member 0 ns then 0 else fold op∗ ns 1
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For more information on SML

RTFM (=̂ “read the fine manuals”)

Kohlhase: 320101 GenCS 168 December 8, 2016



Part II Syntax and Semantics
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Chapter 7 Encoding Programs as Strings
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7.1 Formal Languages
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The Mathematics of Strings

I Definition 1.1 An alphabet A is a finite set; we call each element a ∈ A a
character, and an n-tuple of s ∈ An a string (of length n over A).

I Definition 1.2 Note that A0 = {〈〉}, where 〈〉 is the (unique) 0-tuple. With the
definition above we consider 〈〉 as the string of length 0 and call it the empty
string and denote it with ε

I Note: Sets 6= Strings, e.g. {1, 2, 3} = {3, 2, 1}, but 〈1, 2, 3〉 6= 〈3, 2, 1〉.
I Notation 1.3 We will often write a string 〈c1, . . . , cn〉 as "c1 . . . cn", for

instance "abc" for 〈a, b, c〉

I Example 1.4 Take A = {h, 1, /} as an alphabet. Each of the symbols h, 1, and
/ is a character. The vector 〈/, /, 1, h, 1〉 is a string of length 5 over A.

I Definition 1.5 (String Length) Given a string s we denote its length with |s|.
I Definition 1.6 The concatenation conc(s, t) of two strings s = 〈s1, ..., sn〉 ∈ An

and t = 〈t1, ..., tm〉 ∈ Am is defined as 〈s1, ..., sn, t1, ..., tm〉 ∈ An+m.
We will often write conc(s, t) as s + t or simply st (e.g.
conc("text", "book") = "text" + "book" = "textbook")
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Formal Languages

I Definition 1.7 Let A be an alphabet, then we define the sets A+ :=
⋃

i∈N+ Ai

of nonempty strings and A∗ := A+ ∪{ε} of strings.
I Example 1.8 If A = {a, b, c}, then A∗ = {ε, a, b, c , aa, ab, ac, ba, . . ., aaa, . . .}.
I Definition 1.9 A set L⊆A∗ is called a formal language in A.
I Definition 1.10 We use c [n] for the string that consists of n times c .
I Example 1.11 #[5] = 〈#, #, #, #, #〉
I Example 1.12 The set M = {ba[n] | n ∈ N} of strings that start with character

b followed by an arbitrary numbers of a’s is a formal language in A = {a, b}.
I Definition 1.13 The concatenation conc(L1, L2) of two languages L1 and L2

over the same alphabet is defined as conc(L1, L2) := {s1s2 | s1 ∈ L1 ∧ s2 ∈ L2}.
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Substrings and Prefixes of Strings

I Definition 1.14 Let A be an alphabet, then we say that a string s ∈ A∗ is a
substring of a string t ∈ A∗ (written s⊆t), iff there are strings v ,w ∈ A∗, such
that t = vsw .

I Example 1.15 conc(/, 1, h) is a substring of conc(/, /, 1, h, 1), whereas
conc(/, 1, 1) is not.

I Definition 1.16 A string p is a called a prefix of s (write pEs), iff there is a
string t, such that s = conc(p, t). p is a proper prefix of s (write p / s), iff t 6= ε.

I Example 1.17 text is a prefix of textbook = conc(text, book).

I Note: A string is never a proper prefix of itself.
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Lexical Order

I Definition 1.18 Let A be an alphabet and ≺ a strict partial order on A, Then
we define a relation ≺lex on A∗ by

(s≺lext) :⇔ s / t ∨ (∃ u, v ,w ∈ A∗ ∃ a, b ∈ A s = wau ∧ t = wbv ∧ (a≺b))

for s, t ∈ A∗. We call ≺lex the lexical order induced by ≺ on A∗.
I Theorem 1.19 ≺lex is a strict partial order on A∗. Moreover, if ≺ is linear on

A, then ≺lex is linear on A∗.
I Example 1.20 Roman alphabet with a<b<c· · ·<z ; telephone book order

(computer<lextext, text<lextextbook)
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7.2 Elementary Codes
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Character Codes

I Definition 2.1 Let A and B be alphabets, then we call an injective function
c : A→ B+ a character code. A string c(w) ∈ {c(a) | a ∈ A} is called a
codeword.

I Definition 2.2 A code is a called binary iff B = {0, 1}.
I Example 2.3 Let A = {a, b, c} and B = {0, 1}, then c : A→ B+ with

c(a) = 0011, c(b) = 1101, c(c) = 0110 c is a binary character code and the
strings 0011, 1101, and 0110 are the codewords of c .

I Definition 2.4 The extension of a code (on characters) c : A→ B+ to a
function c ′ : A∗ → B∗ is defined as c ′(〈a1, . . . , an〉 = 〈c(a1), . . . , c(an)〉).

I Example 2.5 The extension c ′ of c from the above example on the string
"bbabc"

c ′("bbabc") = 1101︸︷︷︸
c(b)

, 1101︸︷︷︸
c(b)

, 0011︸︷︷︸
c(a)

, 1101︸︷︷︸
c(b)

, 0110︸︷︷︸
c(c)

I Definition 2.6 A (character) code c : A→ B+ is a prefix code iff none of the
codewords is a proper prefix to an other codeword, i.e.,

∀ x , y ∈ A x 6= y⇒ (c(x)6/ c(y)∧ c(y)6/ c(x))
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Morse Code

I In the early days of telecommunication the “Morse Code” was used to transmit
texts, using long and short pulses of electricity.

I Definition 2.7 (Morse Code) The following table gives the Morse code for the
text characters:
A .− B −... C −.−. D −.. E .
F ..−. G −−. H .... I .. J .−−−
K −.− L .−.. M −− N −. O −−−
P .−−. Q −−.− R .−. S ... T −
U ..− V ...− W .−− X −..− Y −.−−
Z −−..
1 .−−−− 2 ..−−− 3 ...−− 4 ....− 5 .....
6 −.... 7 −−... 8 −−−.. 9 −−−−. 0 −−−−−

Furthermore, the Morse code uses .-.-.- for full stop (sentence termination),
--..-- for comma, and ..--.. for question mark.

I Example 2.8 The Morse Code in the table above induces a character code
µ : R → {., -}.
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Codes on Strings

I Definition 2.9 A function c ′ : A∗ → B∗ is called a code on strings or short
string code if c ′ is an injective function.

I Theorem 2.10 ( ) There are character codes whose extensions are not string
codes.

I Proof: we give an example
P.1 Let A = {a, b, c}, B = {0, 1}, c(a) = 0, c(b) = 1, and c(c) = 01.
P.2 The function c is injective, hence it is a character code.
P.3 But its extension c ′ is not injective as c ′(ab) = 01 = c ′(c).

Question: When is the extension of a character code a string code? (so we can
encode strings)
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Prefix Codes induce Codes on Strings

II Theorem 2.11 The extension c ′ : A∗ → B∗ of a prefix code c : A→ B+ is a
string code.

I Proof: We will prove this theorem via induction over the string length n

P.1 We show that c ′ is injective (decodable) on strings of length n ∈ N.
P.1.1 n = 0 (base case): If |s| = 0 then c ′(ε) = ε, hence c ′ is injective.
P.1.2 n = 1 (another): If |s| = 1 then c ′ = c thus injective, as c is char. code.
P.1.3 Induction step (n to n + 1):

P.1.3.1 Let a = a0, . . ., an, And we only know c ′(a) = c(a0), . . ., c(an).
P.1.3.2 It is easy to find c(a0) in c ′(a): It is the prefix of c ′(a) that is in c(A). This is

uniquely determined, since c is a prefix code. If there were two distinct ones,
one would have to be a prefix of the other, which contradicts our assumption
that c is a prefix code.

P.1.3.3 If we remove c(a0) from c(a), we only have to decode c(a1), . . ., c(an), which
we can do by inductive hypothesis.

P.2 Thus we have considered all the cases, and proven the assertion.
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Sufficient Conditions for Prefix Codes

I Theorem 2.12 If c is a code with |c(a)| = k for all a ∈ A for some k ∈ N, then
c is prefix code.

I Proof: by contradiction.
P.1 If c is not at prefix code, then there are a, b ∈ A with c(a) / c(b).
P.2 clearly |c(a)| < |c(b)|, which contradicts our assumption.

I Theorem 2.13 Let c : A→ B+ be a code and * 6∈ B be a character, then there
is a prefix code c* : A→ (B ∪{*})+, such that c(a) / c*(a), for all a ∈ A.

I Proof: Let c*(a) := c(a) + "*" for all a ∈ A.
P.1 Obviously, c(a) / c*(a).
P.2 If c* is not a prefix code, then there are a, b ∈ A with c*(a) / c*(b).
P.3 So, c*(b) contains the character * not only at the end but also

somewhere in the middle.
P.4 This contradicts our construction c*(b) = c(b) + "*", where c(b) ∈ B+

I Definition 2.14 The new character that makes an arbitrary code a prefix code
in the construction of Theorem 2.13 is often called a stop character.
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7.3 Character Codes in the Real World
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The ASCII Character Code

I Definition 3.1 The American Standard Code for Information Interchange
(ASCII) is a character code that assigns characters to numbers 0-127

Code ···0 ···1 ···2 ···3 ···4 ···5 ···6 ···7 ···8 ···9 ···A ···B ···C ···D ···E ···F
0··· NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1··· DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2··· ! " # $ % & ’ ( ) * + , - . /
3··· 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4··· @ A B C D E F G H I J K L M N O
5··· P Q R S T U V W X Y Z [ \ ] ^ _
6··· ‘ a b c d e f g h i j k l m n o
7··· p q r s t u v w x y z { | } ~ DEL

The first 32 characters are control characters for ASCII devices like printers

II Motivated by punchcards: The character 0 (binary 0000000) carries no
information NUL, (used as dividers)
Character 127 (binary 1111111) can be used for deleting (overwriting) last value

(cannot delete holes)

I The ASCII code was standardized in 1963 and is still prevalent in computers
today (but seen as US-centric)
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A Punchcard

I A punch card is a piece of stiff paper that contains digital information
represented by the presence or absence of holes in predefined positions.

I Example 3.2 This punch card encoded the FORTRAN statement
Z(1) = Y + W(1)
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Problems with ASCII encoding

I Problem: Many of the control characters are obsolete by now (e.g. NUL,BEL, or
DEL)

I Problem: Many European characters are not represented (e.g. è,ñ,ü,ß,. . . )

I European ASCII Variants: Exchange less-used characters for national ones
I Example 3.3 (German ASCII) remap e.g. [ 7→ Ä, ] 7→ Ü in German ASCII

(“Apple ][” comes out as “Apple ÜÄ”)
I Definition 3.4 (ISO-Latin (ISO/IEC 8859)) 16 Extensions of ASCII to 8-bit

(256 characters) ISO-Latin 1 =̂ “Western European”, ISO-Latin 6 =̂ “Arabic”,ISO-Latin 7
=̂ “Greek”. . .

I Problem: No cursive Arabic, Asian, African, Old Icelandic Runes, Math,. . .

I Idea: Do something totally different to include all the world’s scripts: For a
scalable architecture, separate
I what characters are available from the (character set)
I bit string-to-character mapping (character encoding)
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Unicode and the Universal Character Set

I Definition 3.5 (Twin Standards) A scalable Architecture for representing all
the worlds scripts
I The universal character set defined by the ISO/IEC 10646 International Standard, is

a standard set of characters upon which many character encodings are based.
I The unicode Standard defines a set of standard character encodings, rules for

normalization, decomposition, collation, rendering and bidirectional display order

I Definition 3.6 Each UCS character is identified by an unambiguous name and
an integer number called its code point.

I The UCS has 1.1 million code points and nearly 100 000 characters.
I Definition 3.7 Most (non-Chinese) characters have code points in [1, 65536]

(the basic multilingual plane).
I Notation 3.8 For code points in the Basic Multilingual Plane (BMP), four

digits are used, e.g. U+ 0058 for the character LATIN CAPITAL LETTER X;
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Character Encodings in Unicode

I Definition 3.9 A character encoding is a mapping from bit strings to UCS code
points.

I Idea: Unicode supports multiple encodings (but not character sets) for efficiency
I Definition 3.10 (Unicode Transformation Format)

I UTF-8, 8-bit, variable-width encoding, which maximizes compatibility with ASCII.
I UTF-16, 16-bit, variable-width encoding (popular in Asia)
I UTF-32, a 32-bit, fixed-width encoding (for safety)

I Definition 3.11 The UTF-8 encoding follows the following encoding scheme
Unicode Byte1 Byte2 Byte3 Byte4
U+ 000000− U+ 00007F 0xxxxxxx
U+ 000080− U+ 0007FF 110xxxxx 10xxxxxx
U+ 000800− U+ 00FFFF 1110xxxx 10xxxxxx 10xxxxxx
U+ 010000− U+ 10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

I Example 3.12 $ = U+ 0024 is encoded as 00100100 (1 byte)
¢ = U+ 00A2 is encoded as 11000010,10100010 (two bytes)
e = U+ 20AC is encoded as 11100010,10000010,10101100 (three bytes)
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7.4 Formal Languages and Meaning
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A formal Language for Unary Arithmetics

I Idea: Start with something very simple: Unary Arithmetics (i.e. N with addition,
multiplication, subtraction, and integer division)

I Eun is based on the alphabet Σun := Cun ∪V ∪F 2
un ∪B, where

I Cun := {/}∗ is a set of constant names,
I V := {x}×{1, . . . , 9}×{0, . . . , 9}∗ is a set of variable names,
I F 2

un := {add, sub,mul, div,mod} is a set of (binary) function names, and
I B := {(, )}∪ {,} is a set of structural characters. ( “,”,”(“,”)” characters!)

I define strings in stages: Eun :=
⋃

i∈N Eun
i , where

I Eun
1 := Cun ∪V

I Eun
i+1 := {a, add(a ,b ), sub(a ,b ),mul(a ,b ), div(a ,b ),mod(a ,b ) | a, b ∈ Eun

i}
We call a string in Eun an expression of unary arithmetics.
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A formal Language for Unary Arithmetics (Examples)

I Example 4.1 add(//////,mul(x1902,///)) ∈ Eun
I Proof: we proceed according to the definition

P.1 We have ////// ∈ Cun, and x1902 ∈ V , and /// ∈ Cun by definition
P.2 Thus ////// ∈ Eun

1, and x1902 ∈ Eun
1 and /// ∈ Eun

1,
P.3 Hence, ////// ∈ Eun

2 and mul(x1902,///) ∈ Eun
2

P.4 Thus add(//////,mul(x1902,///)) ∈ Eun
3

P.5 And finally add(//////,mul(x1902,///)) ∈ Eun

I other examples:
I div(x201,add(////,x12))
I sub(mul(///,div(x23,///)),///)

I what does it all mean? (nothing, Eun is just a set of strings!)
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Syntax and Semantics (a first glimpse)

I Definition 4.2 A formal language is also called a syntax, since it only concerns
the “form” of strings.

I to give meaning to these strings, we need a semantics, i.e. a way to interpret
these.

I Idea (Tarski Semantics): A semantics is a mapping from strings to objects we
already know and understand (e.g. arithmetics).
I e.g. add(//////,mul(x1902,///)) 7→ 6 + (x1902 · 3) (but what does this mean?)
I looks like we have to give a meaning to the variables as well, e.g. x1902 7→ 3, then

add(//////,mul(x1902,///)) 7→ 6 + (3 · 3) = 15
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Chapter 8 Midterm Analysis
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Mid-Term Results

I Midterm: 9 Problems, 55 Points,
I Grades: Average grade: 3.33 (barely “satisfactory”)

Performance exc. very good good satisfactory sufficient failing
Jacobs Grade 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 ∅
Cardinality 14 2 1 4 2 3 5 8 5 5 4 4 21 6

I simplest problems: Greek letters (avg.77%), function definition (avg. 64%),
I hardest problems: CNF/DNF (avg. 14%), SML (avg. 36%)
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Procedure, Consequences

I Procedure (some order please to minimize this boring but necessary task)
I Go to Exam Inspection (Today! 13:00-14:00 GenCS Lounge (103@R1))
I You will check the grading, points summation, . . .
I We will answer questions, and correct mistakes.
I You will take home the test, when you leave the room the grade is final!

I Consequences (we all want a better result in the final and the final grade)
I try to know actively (just passively understanding is not enough)
I try to write anything at all (so we can give you partial points)
I you will need to take more advantage of tutorials and TAs(we are here to help you!)

I There is really no need to fail this course (if you do, rethink your major)
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Chapter 9 Boolean Algebra
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9.1 Boolean Expressions and their Meaning
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Let us try again (Boolean Expressions)

I Definition 1.1 (Alphabet) Ebool is based on the alphabet
A := Cbool ∪V ∪F 1

bool ∪F 2
bool ∪B, where Cbool = {0, 1}, F 1

bool = {-} and
F 2
bool = {+, *}. (V and B as in Eun)

I Definition 1.2 (Formal Language) Ebool :=
⋃

i∈N Ebool
i , where

Ebool
1 := Cbool ∪V and

Ebool
i+1 := {a, (-a), (a+b), (a*b) | a, b ∈ Ebool

i}.
I Definition 1.3 Let a ∈ Ebool. The minimal i , such that a ∈ Ebool

i is called the
depth of a.

I e1 := ((-x1)+x3) (depth 3)
I e2 := ((-(x1*x2))+(x3*x4)) (depth 4)
I e3 := ((x1+x2)+((-((-x1)*x2))+(x3*x4))) (depth 6)
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Boolean Expressions as Structured Objects.

I Idea: As strings in in Ebool are built up via the “union-principle”, we can think of
them as constructor terms with variables

I Definition 1.4 The abstract data type

B := 〈{B}, {[1 : B], [0 : B], [- : B→ B], [+ : B× B→ B], [* : B× B→ B]}〉
I via the translation
I Definition 1.5 σ : Ebool → TB(B;V) defined by

σ(1) := 1 σ(0) := 0
σ((-A)) := (-σ(A))
σ((A*B)) := (σ(A)*σ(B)) σ((A+B)) := (σ(A)+σ(B))

I We will use this intuition for our treatment of Boolean expressions and treat the
strings and constructor terms synonymously. (σ is a (hidden) isomorphism)

I Definition 1.6 We will write (-A) as A and (A*B) as A ∗ B (and similarly for
+). Furthermore we will write variables such as x71 as x71 and elide brackets for
sums and products according to their usual precedences.

I Example 1.7 σ(((-(x1*x2))+(x3*x4))) = x1 ∗ x2 + x3 ∗ x4
I : Do not confuse + and * (Boolean sum and product) with their arithmetic

counterparts. (as members of a formal language they have no meaning!)
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Boolean Expressions: Semantics via Models

I Definition 1.8 A model 〈U , I〉 for Ebool is a set U of objects (called the
universe) together with an interpretation function I on A with I(Cbool)⊆U ,
I(F 1

bool)⊆F(U ;U), and I(F 2
bool)⊆F(U2;U).

I Definition 1.9 A function ϕ : V → U is called a variable assignment.
I Definition 1.10 Given a model 〈U , I〉 and a variable assignment ϕ, the

evaluation function Iϕ : Ebool → U is defined recursively: Let c ∈ Cbool,
a, b ∈ Ebool, and x ∈ V , then
I Iϕ(c) = I(c), for c ∈ Cbool
I Iϕ(x) = ϕ(x), for x ∈ V
I Iϕ(a) = I(-)(Iϕ(a))
I Iϕ(a + b) = I(+)(Iϕ(a), Iϕ(b)) and Iϕ(a ∗ b) = I(*)(Iϕ(a), Iϕ(b))

I U = {T,F} with 0 7→ F, 1 7→ T, + 7→ ∨, * 7→ ∧, - 7→ ¬.
I U = Eun with 0 7→ /, 1 7→ //, + 7→ div , * 7→ mod , - 7→ λx .( ///).
I U = {0, 1} with 0 7→ 0, 1 7→ 1, + 7→ min, * 7→ max, - 7→ λx .1− x .
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Evaluating Boolean Expressions

I Example 1.11 Let ϕ := [T/x1], [F/x2], [T/x3], [F/x4], and
I = {0 7→ F, 1 7→ T, + 7→ ∨, * 7→ ∧, - 7→ ¬}, then

Iϕ((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4))
= Iϕ(x1 + x2)∨Iϕ(x1 ∗ x2 + x3 ∗ x4)
= Iϕ(x1)∨Iϕ(x2)∨Iϕ(x1 ∗ x2)∨Iϕ(x3 ∗ x4)
= ϕ(x1)∨ϕ(x2)∨¬(Iϕ(x1 ∗ x2))∨Iϕ(x3 ∗ x4)
= (T∨F)∨ (¬(Iϕ(x1)∧Iϕ(x2))∨ (Iϕ(x3)∧Iϕ(x4)))
= T∨¬(¬(Iϕ(x1))∧ϕ(x2))∨ (ϕ(x3)∧ϕ(x4))
= T∨¬(¬(ϕ(x1))∧F)∨ (T∧F)
= T∨¬(¬(T)∧F)∨F
= T∨¬(F∧F)∨F
= T∨¬(F)∨F = T∨T∨F = T

I What a mess!
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Boolean Algebra

I Definition 1.12 A Boolean algebra is Ebool together with the models
I 〈{T,F}, {0 7→ F, 1 7→ T, + 7→ ∨, * 7→ ∧, - 7→ ¬}〉.
I 〈{0, 1}, {0 7→ 0, 1 7→ 1, + 7→ max, * 7→ min, - 7→ λx .1− x}〉.

I BTW, the models are equivalent (0=̂F, 1=̂T)
I Definition 1.13 We will use B for the universe, which can be either {0, 1} or
{T,F}

I Definition 1.14 We call two expressions e1, e2 ∈ Ebool equivalent (write
e1 ≡ e2), iff Iϕ(e1) = Iϕ(e2) for all ϕ.

I Theorem 1.15 e1 ≡ e2, iff Iϕ((e1 + e2) ∗ (e1 + e2)) = T for all variable
assignments ϕ.
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A better mouse-trap: Truth Tables

I Truth tables to visualize truth functions:

·
T F
F T

∗ T F
T T F
F F F

+ T F
T T T
F T F

I If we are interested in values for all assignments (e.g. of x123 ∗ x4 + x123 ∗ x72)
assignments intermediate results full

x4 x72 x123 e1 := x123 ∗ x72 e2 := e1 e3 := x123 ∗ x4 e3 + e2
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T
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Boolean Equivalences

I Given a, b, c ∈ Ebool, ◦ ∈ {+, *}, let ◦̂ :=

{
+ if ◦ = *
* else

I We have the following equivalences in Boolean Algebra:
I a ◦ b ≡ b ◦ a (commutativity)
I (a ◦ b) ◦ c ≡ a ◦ (b ◦ c) (associativity)
I a ◦ (b◦̂c) ≡ (a ◦ b)◦̂(a ◦ c) (distributivity)
I a ◦ (a◦̂b) ≡ a (covering)
I (a ◦ b)◦̂(a ◦ b) ≡ a (combining)
I (a ◦ b)◦̂((a ◦ c)◦̂(b ◦ c)) ≡ (a ◦ b)◦̂(a ◦ c) (consensus)
I a ◦ b ≡ a◦̂b (De Morgan)
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9.2 Boolean Functions
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Boolean Functions

I Definition 2.1 A Boolean function is a function from Bn to B.
I Definition 2.2 Boolean functions f , g : Bn → B are called equivalent, (write

f ≡ g), iff f (c) = g(c) for all c ∈ Bn. (equal as functions)

I Idea: We can turn any Boolean expression into a Boolean function by ordering
the variables (use the lexical ordering on {X}×{1, . . . , 9}+×{0, . . . , 9}∗)

I Definition 2.3 Let e ∈ Ebool and {x1, . . . , xn} the set of variables in e, then call
VL(e) := 〈x1, . . . , xn〉 the variable list of e, iff xi≺lexxj where i≤j and ≺ is the
“numerical order” on variables.

I Definition 2.4 Let e ∈ Ebool with VL(e) = 〈x1, . . . , xn〉, then we call the
function

fe : Bn → B with fe : c 7→ Iϕc (e)

the Boolean function induced by e, where ϕ〈c1,...,cn〉 : xi 7→ ci . Dually, we say
that e realizes fe .

I Theorem 2.5 e1 ≡ e2, iff fe1 = fe2 .
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Boolean Functions and Truth Tables

I The truth table of a Boolean function is defined in the obvious way:
x1 x2 x3 fx1∗(x2+x3)

T T T T
T T F F
T F T T
T F F T
F T T F
F T F F
F F T F
F F F F

I compute this by assigning values and evaluating

I Question: can we also go the other way? (from function to expression?)

I Idea: read expression of a special form from truth tables (Boolean Polynomials)
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Boolean Polynomials

I special form Boolean Expressions
I a literal is a variable or the negation of a variable
I a monomial or product term is a literal or the product of literals
I a clause or sum term is a literal or the sum of literals
I a Boolean polynomial or sum of products is a product term or the sum of product

terms
I a clause set or product of sums is a sum term or the product of sum terms

For literals xi , write x1i , for xi write x0i .( not exponentials, but intended truth
values)

I Notation 2.6 Write xixj instead of xi ∗ xj . (like in math)

Kohlhase: 320101 GenCS 207 December 8, 2016



Normal Forms of Boolean Functions

I Definition 2.7 Let f : Bn → B be a Boolean function and c ∈ Bn, then
Mc :=

∏n
j=1 x

cj
j and Sc :=

∑n
j=1 x

1−cj
j

I Definition 2.8 The disjunctive normal form (DNF) of f is
∑

c∈f−1(1) Mc (also
called the canonical sum (written as DNF(f )))

I Definition 2.9 The conjunctive normal form (CNF) of f is
∏

c∈f−1(0) Sc (also
called the canonical product (written as CNF(f )))

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x0
2 x0

3
0 0 1 1 x0

1 x0
2 x1

3
0 1 0 0 x1

1 + x0
2 + x1

3
0 1 1 0 x1

1 + x0
2 + x0

3
1 0 0 1 x1

1 x0
2 x0

3
1 0 1 1 x1

1 x0
2 x1

3
1 1 0 0 x0

1 + x0
2 + x1

3
1 1 1 1 x1

1 x1
2 x1

3

I DNF of f : x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3
I CNF of f : (x1 + x2 + x3) (x1 + x2 + x3) (x1 + x2 + x3)
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Costs of Boolean Expressions

I Idea: Complexity Analysis is about the estimation of resource needs
I if we have two expressions for a Boolean function, which one to choose?

I Idea: Let us just measure the size of the expression (after all it needs to be
written down)

I Better Idea: count the number of operators (computation elements)
I Definition 2.10 The cost C (e) of e ∈ Ebool is the number of operators in e.

I Example 2.11 C (x1 + x3) = 2, C (x1 ∗ x2 + x3 ∗ x4) = 4,
C ((x1 + x2) + (x1 ∗ x2 + x3 ∗ x4)) = 7

I Definition 2.12 Let f : Bn → B be a Boolean function, then
C (f ) := min{C (e) | f = fe} is the cost of f .

I Note: We can find expressions of arbitrarily high cost for a given Boolean
function. (e ≡ e ∗ 1)

I but how to find such an e with minimal cost for f ?
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9.3 Complexity Analysis for Boolean Expressions
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9.3.1 The Mathematics of Complexity
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The Landau Notations (aka. “big-O” Notation)

I Definition 3.1 Let f , g : N→ N, we say that f is asymptotically bounded by g ,
written as (f ≤a g), iff there is an n0 ∈ N, such that f (n)≤g(n) for all n>n0.

I Definition 3.2 The three Landau sets O(g),Ω(g),Θ(g) are defined as
I O(g) = {f | ∃ k>0 f ≤a k · g}
I Ω(g) = {f | ∃ k>0 f ≥a k · g}
I Θ(g) = O(g)∩Ω(g)

Intuition: The Landau sets express the “shape of growth” of the graph of a
function.

I I If f ∈ O(g), then f grows at most as fast as g . (“f is in the order of g ”)
I If f ∈ Ω(g), then f grows at least as fast as g . (“f is at least in the order of g ”)
I If f ∈ Θ(g), then f grows as fast as g . (“f is strictly in the order of g ”)

I Notation 3.3 ( ) We often see f = O(g) as a statement of complexity; this
is a funny notation for n ∈ f O(g)!
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Computing with Landau Sets

I Lemma 3.4 We have the following computation rules for Landau sets:
I If k 6= 0 and f ∈ O(g), then (k f ) ∈ O(g).
I If fi ∈ O(gi ), then (f1 + f2) ∈ O(g1 + g2)
I If fi ∈ O(gi ), then (f1 f2) ∈ O(g1 g2)

I Notation 3.5 If e is an expression in n, we write O(e) for O(λn.e) (for Ω/Θ
too)

Idea: the fastest growth function in sum determines the O-class

II Example 3.6 (λn.263748) ∈ O(1)

I Example 3.7 (λn.26n + 372) ∈ O(n)

I Example 3.8 (λn.857n10 + 7342n7 + 26n2 + 902) ∈ O(n10)

I Example 3.9 (λn.3 · 2n + 72) ∈ O(2n)

I Example 3.10 (λn.3 · 2n + 7342n7 + 26n2 + 722) ∈ O(2n)
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Commonly used Landau Sets

I

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

I Theorem 3.11 These Ω-classes establish a ranking (increasing rank ;
increasing growth)

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

where k ′>2 and k>1. The reverse holds for the Ω-classes

Ω(n)1⊃Ω(n)log2(n)⊃Ω(n)n⊃Ω(n)n2⊃Ω(n)nk
′
⊃Ω(n)kn

I Idea: Use O-classes for worst-case complexity analysis and Ω-classes for
best-case.
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9.3.2 Asymptotic Bounds for Costs of Boolean Expressions
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An Upper Bound for the Cost of BF with n variables

I Idea: Every Boolean function has a DNF and CNF, so we compute its cost.
I Example 3.12 Let us look at the size of the DNF or CNF for f : B3 → B.

x1 x2 x3 f monomials clauses
0 0 0 1 x0

1 x0
2 x0

3
0 0 1 1 x0

1 x0
2 x1

3
0 1 0 0 x1

1 + x0
2 + x1

3
0 1 1 0 x1

1 + x0
2 + x0

3
1 0 0 1 x1

1 x0
2 x0

3
1 0 1 1 x1

1 x0
2 x1

3
1 1 0 0 x0

1 + x0
2 + x1

3
1 1 1 1 x1

1 x1
2 x1

3

I Theorem 3.13 Any f : Bn → B is realized by an e ∈ Ebool with
C (e) ∈ O(n · 2n).
Proof: by counting (constructive proof (we exhibit a witness))

I P.1 either en := CNF(f ) has 2n
2 clauses or less or DNF(f ) does monomials

take smaller one, multiply/sum the monomials/clauses at cost 2n−1 − 1
there are n literals per clause/monomial ei , so C (ei )≤2n − 1
so C (en)≤2n−1 − 1 + 2n−1 · (2n − 1) and thus C (en) ∈ O(n · 2n)
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We can do better (if we accept complicated witness)

P.2 P.3 P.4I Theorem 3.14 Let κ(n) := max{C (f ) | f : Bn → B}, then κ ∈ O(2n).
I Proof: we show that κ(n)≤2n+1 by induction on n

P.1.1 base case (n = 1): We count the operators in all members:
B→ B = {f1, f0, fx1 , fx1}, so κ(1) = 1 and thus κ(1)≤22.

P.1.2 step case (n>1):
P.1.2.1 given f : Bn → B, then f (a1, . . . , an) = 1, iff either

I an = 0 and f (a1, . . . , an−1, 0) = 1 or
I an = 1 and f (a1, . . . , an−1, 1) = 1

P.1.2.2 Let fi (a1, . . . , an−1) := f (a1, . . . , an−1, i) for i ∈ {0, 1},
P.1.2.3 then there are ei ∈ Ebool, such that fi = fei and C (ei ) = 2n. (IH)
P.1.2.4 thus f = fe , where e := xn ∗ e0 + xn ∗ e1 and κ(n)=2 · 2n + 4≤2n+1 as

2≤n.
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A Lower Bound for the Cost of BF with n Variables

I Theorem 3.15 κ ∈ Ω( 2n
log2(n) )

I Proof: Sketch (counting again!)

P.1 the cost of a function is based on the cost of expressions.
P.2 consider the set En of expressions with n variables of cost no more than

κ(n).
P.3 find an upper and lower bound for #(En): Φ(n)≤#(En)≤Ψ(κ(n))
P.4 in particular: Φ(n)≤Ψ(κ(n))
P.5 solving for κ(n) yields κ(n)≥Ξ(n) so κ ∈ Ω( 2n

log2(n) )

I We will expand P.3 and P.5 in the next slides
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A Lower Bound For κ(n)-Cost Expressions

I Definition 3.16 En := {e ∈ Ebool | e has n variables and C (e)≤κ(n)}
I Lemma 3.17 #(En)≥#(Bn → B)

I Proof:
P.1 For all fn ∈ Bn → B we have C (fn)≤κ(n)
P.2 C (fn) = min{C (e) | fe = fn} choose efn with C (efn) = C (fn)
P.3 all distinct: if eg ≡ eh, then feg = feh and thus g = h.

I Corollary 3.18 #(En)≥22n

Proof: consider the n dimensional truth tables
I P.1 2n entries that can be either 0 or 1, so 22

n

possibilities
so #(Bn → B) = 22

n
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An Upper Bound For κ(n)-cost Expressions

P.2I Idea: Estimate the number of Ebool strings that can be formed at a given cost by
looking at the length and alphabet size.

I Definition 3.19 Given a cost c let Λ(e) be the length of e considering variables
as single characters. We define

σ(c) := max{Λ(e) | e ∈ Ebool ∧ (C (e)≤c)}

I Lemma 3.20 σ(n)≤5n for n > 0.
I Proof: by induction on n

P.1.1 base case: The cost 1 expressions are of the form (v◦w) and (-v),
where v and w are variables. So the length is at most 5.

P.1.2 step case: σ(n) = Λ((e1◦e2)) = Λ(e1) + Λ(e2) + 3, where
C(e1) + C(e2)≤n − 1. so
σ(n) ≤ σ(i) +σ(j) + 3 ≤ 5 · C(e1) + 5 · C(e2) + 3 ≤ 5 · n − 1+ 5 = 5n

I Corollary 3.21 max{Λ(e) | e ∈ En}≤5 · κ(n)
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An Upper Bound For κ(n)-cost Expressions

I Idea: e ∈ En has at most n variables by definition.

I Let An := {x1, . . ., xn, 0, 1, *, +, -, (, )}, then #(An) = n+ 7

I Corollary 3.22 En⊆
⋃5κ(n)

i=0 An
i and #(En)≤ (n + 7)5κ(n)+1−1

n + 7
I Proof Sketch: Note that the Aj are disjoint for distinct n, so

#(

5κ(n)⋃
i=0

An
i

) =

5κ(n)∑
i=0

#(An
i ) =

5κ(n)∑
i=0

#(An
i ) =

5κ(n)∑
i=0

(n + 7)i =
(n + 7)5κ(n)+1 − 1

n + 6
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Solving for κ(n)

I (n + 7)5κ(n)+1−1
n + 6 ≥22n

I (n+ 7)5
κ(n)+1≥22n (as (n+ 7)5

κ(n)+1≥ (n + 7)5κ(n)+1−1
n + 6 )

I 5κ(n) + 1 · log2(n+ 7)≥2n (as loga(x) = logb(x) · loga(b))

I 5κ(n) + 1≥ 2n
log2(n + 7)

I κ(n)≥1/5 · 2n
log2(n + 7) − 1

I κ(n) ∈ Ω( 2n
log2(n) )
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9.4 The Quine-McCluskey Algorithm
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Constructing Minimal Polynomials: Prime Implicants

I Definition 4.1 We will use the following ordering on B: F ≤ T(remember 0≤1)
and say that that a monomial M ′ dominates a monomial M, iff fM(c) ≤ fM′(c)
for all c ∈ Bn. (write M ≤ M ′)

I Definition 4.2 A monomial M implies a Boolean function f : Bn → B (M is an
implicant of f ; write M � f ), iff fM(c) ≤ f (c) for all c ∈ Bn.

I Definition 4.3 Let M = L1 · · · Ln and M ′ = L′1 · · · L′n′ be monomials, then M ′ is
called a sub-monomial of M (write M ′ ⊂ M), iff M ′ = 1 or
I for all j≤n′, there is an i≤n, such that L′j = Li and
I there is an i≤n, such that Li 6= L′j for all j≤n

In other words: M is a sub-monomial of M ′, iff the literals of M are a proper
subset of the literals of M ′.
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Constructing Minimal Polynomials: Prime Implicants

II Lemma 4.4 If M ′ ⊂ M, then M ′ dominates M.
I Proof:

P.1 Given c ∈ Bn with fM(c) = T, we have, fLi (c) = T for all literals in M.
P.2 As M ′ is a sub-monomial of M, then fL′j (c) = T for each literal L′j of M

′.
P.3 Therefore, fM′(c) = T.

I Definition 4.5 An implicant M of f is a prime implicant of f iff no
sub-monomial of M is an implicant of f .
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Prime Implicants and Costs

I Theorem 4.6 Given a Boolean function f 6= λx .F and a Boolean polynomial
fp ≡ f with minimal cost, i.e., there is no other polynomial p′ ≡ p such that
C (p′) < C (p). Then, p solely consists of prime implicants of f .

I Proof: The theorem obviously holds for f = λx .T.
P.1 For other f , we have f ≡ fp where p :=

∑n
i=1Mi for some n≥1

monomials Mi .
P.2 Now, suppose that Mi is not a prime implicant of f , i.e., M ′ � f for

some M ′ ⊂ Mk with k<i .
P.3 Let us substitute Mk by M ′: p′ :=

∑k−1
i=1 Mi + M ′ +

∑n
i=k+1Mi

P.4 We have C (M ′) < C (Mk) and thus C (p′) < C (p)(def of sub-monomial)
P.5 Furthermore Mk ≤ M ′ and hence that p ≤ p′ by Lemma 4.4.
P.6 In addition, M ′ ≤ p as M ′ � f and f = p.
P.7 similarly: Mi ≤ p for all Mi . Hence, p′ ≤ p.
P.8 So p′ ≡ p and fp ≡ f . Therefore, p is not a minimal polynomial.
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The Quine/McCluskey Algorithm (Idea)

I Idea: use Theorem 4.6 to search for minimal-cost polynomials
I Determine all prime implicants (sub-algorithm QMC1)
I choose the minimal subset that covers f (sub-algorithm QMC2)

I Idea: To obtain prime implicants,
I start with the DNF monomials (they are implicants by construction)
I find submonomials that are still implicants of f .

I Idea: Look at polynomials of the form p := mxi + mxi (note: p ≡ m)
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The algorithm QMC1, for determining Prime Implicants

I Definition 4.7 Let M be a set of monomials, then
I R(M) := {m | (mx) ∈ M ∧ (mx) ∈ M} is called the set of resolvents of M
I R̂(M) := {m ∈ M |m has a partner in M} (n xi and n xi are partners)

I Definition 4.8 (Algorithm) Given f : Bn → B
I let M0 := DNF(f ) and for all j > 0 compute (DNF as set of monomials)

I Mj := R(Mj−1) (resolve to get sub-monomials)
I Pj := Mj−1\R̂(Mj−1) (get rid of redundant resolution partners)

I terminate when Mj = ∅, return Pprime :=
⋃n

j=1 Pj
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Example for QMC1

x1 x2 x3 f monomials
F F F T x10 x20 x30

F F T T x10 x20 x31

F T F F
F T T F
T F F T x11 x20 x30

T F T T x11 x20 x31

T T F F
T T T T x11 x21 x31

Pprime =
3⋃

j=1

Pj = {x1 x3, x2}

M0 = {x1 x2 x3︸ ︷︷ ︸
= : e01

, x1 x2 x3︸ ︷︷ ︸
= : e02

, x1 x2 x3︸ ︷︷ ︸
= : e03

, x1 x2 x3︸ ︷︷ ︸
= : e04

, x1 x2 x3︸ ︷︷ ︸
= : e05

}

M1 = { x1 x2︸ ︷︷ ︸
R(e01 ,e

0
2 )

= : e11

, x2 x3︸ ︷︷ ︸
R(e01 ,e

0
3 )

= : e12

, x2 x3︸ ︷︷ ︸
R(e02 ,e

0
4 )

= : e13

, x1 x2︸ ︷︷ ︸
R(e03 ,e

0
4 )

= : e14

, x1 x3︸ ︷︷ ︸
R(e04 ,e

0
5 )

= : e15

}

P1 = ∅

M2 = { x2︸︷︷︸
R(e11 ,e

1
4 )

, x2︸︷︷︸
R(e12 ,e

1
3 )

}

P2 = {x1 x3}

M3 = ∅

P3 = {x2}

I But: even though the minimal polynomial only consists of prime implicants, it
need not contain all of them
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Properties of QMC1

I Lemma 4.9 (proof by simple (mutual) induction)

1) all monomials in Mj have exactly n − j literals.
2) Mj contains the implicants of f with n − j literals.
3) Pj contains the prime implicants of f with n − j + 1 for j > 0 . literals

I Corollary 4.10 QMC1 terminates after at most n rounds.
I Corollary 4.11 Pprime is the set of all prime implicants of f .
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Algorithm QMC2: Minimize Prime Implicants Polynomial

I Definition 4.12 (Algorithm) Generate and test!
I enumerate Sp ⊆Pprime , i.e., all possible combinations of prime implicants of f ,
I form a polynomial ep as the sum over Sp and test whether fep = f and the cost of ep

is minimal
I Example 4.13 Pprime = {x1 x3, x2}, so ep ∈ {1, x1 x3, x2, x1 x3 + x2}.
I Only fx1 x3+x2 ≡ f , so x1 x3 + x2 is the minimal polynomial

I Complaint: The set of combinations (power set) grows exponentially
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A better Mouse-trap for QMC2: The Prime Implicant Table

I Definition 4.14 Let f : Bn → B be a Boolean function, then the PIT consists of

I a left hand column with all prime implicants pi of f
I a top row with all vectors x ∈ Bn with f (x) = T
I a central matrix of all fpi (x)

I Example 4.15
FFF FFT TFF TFT TTT

x1 x3 F F F T T
x2 T T T T F

I Definition 4.16 A prime implicant p is essential for f iff
I there is a c ∈ Bn such that fp(c) = T and
I fq(c) = F for all other prime implicants q.

Note: A prime implicant is essential, iff there is a column in the PIT, where it
has a T and all others have F.
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Essential Prime Implicants and Minimal Polynomials

II Theorem 4.17 Let f : Bn → B be a Boolean function, p an essential prime
implicant for f , and pmin a minimal polynomial for f , then p ∈ pmin.

I Proof: by contradiction: let p /∈ pmin

P.1 We know that f = fpmin and pmin =
∑n

j=1 pj for some n ∈ N and prime
implicants pj .

P.2 so for all c ∈ Bn with f (c) = T there is a j≤n with fpj (c) = T.
P.3 so p cannot be essential
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A complex Example for QMC (Function and DNF)

x1 x2 x3 x4 f monomials
F F F F T x10 x20 x30 x40

F F F T T x10 x20 x30 x41

F F T F T x10 x20 x31 x40

F F T T F
F T F F F
F T F T T x10 x21 x30 x41

F T T F F
F T T T F
T F F F F
T F F T F
T F T F T x11 x20 x31 x40

T F T T T x11 x20 x31 x41

T T F F F
T T F T F
T T T F T x11 x21 x31 x40

T T T T T x11 x21 x31 x41
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A complex Example for QMC (QMC1)

M0 = {x10 x20 x30 x40, x10 x20 x30 x41, x10 x20 x31 x40,
x10 x21 x30 x41, x11 x20 x31 x40, x11 x20 x31 x41,
x11 x21 x31 x40, x11 x21 x31 x41}

M1 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x11 x20 x31,
x11 x21 x31, x11 x31 x41, x20 x31 x40, x11 x31 x40}

P1 = ∅

M2 = {x11 x31}
P2 = {x10 x20 x30, x10 x20 x40, x10 x30 x41, x20 x31 x40}

M3 = ∅
P3 = {x11 x31}

Pprime = {x1 x2 x3, x1 x2 x4, x1 x3 x4, x2 x3 x4, x1 x3}
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A better Mouse-trap for QMC1: optimizing the data
structure

I Idea: Do the calculations directly on the DNF table
x1 x2 x3 x4 monomials
F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41

I Note: the monomials on the right hand side are only for illustration

I Idea: do the resolution directly on the left hand side

I Find rows that differ only by a single entry. (first two rows)
I resolve: replace them by one, where that entry has an X (canceled literal)

I Example 4.18 〈F,F,F,F〉 and 〈F,F,F,T〉 resolve to 〈F,F,F,X 〉.
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A better Mouse-trap for QMC1: optimizing the data
structure

I One step resolution on the table
x1 x2 x3 x4 monomials
F F F F x10 x20 x30 x40

F F F T x10 x20 x30 x41

F F T F x10 x20 x31 x40

F T F T x10 x21 x30 x41

T F T F x11 x20 x31 x40

T F T T x11 x20 x31 x41

T T T F x11 x21 x31 x40

T T T T x11 x21 x31 x41

;

x1 x2 x3 x4 monomials
F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T F T X x11 x20 x31

T T T X x11 x21 x31

T X T T x11 x31 x41

X F T F x20 x31 x40

T X T F x11 x31 x40

I Repeat the process until no more progress can be made
x1 x2 x3 x4 monomials
F F F X x10 x20 x30

F F X F x10 x20 x40

F X F T x10 x30 x41

T X T X x11 x31

X F T F x20 x31 x40

I This table represents the prime implicants of f
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A complex Example for QMC1

I The PIT:
F F F F F F FT F FTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x3 T T F F F F F F
x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

I x1 x2 x3 is not essential, so we are left with
F F F F F F FT F FTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x2 x3 x4 F F T F T F F F
x1 x3 F F F F T T T T

I here x2, x3, x4 is not essential, so we are left with
F F F F F F FT F FTF FTFT TFTF TFTT TTTF TTTT

x1 x2 x4 T F T F F F F F
x1 x3 x4 F T F T F F F F
x1 x3 F F F F T T T T

I all the remaining ones (x1 x2 x4, x1 x3 x4, and x1 x3) are essential
I So, the minimal polynomial of f is x1 x2 x4 + x1 x3 x4 + x1 x3.
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The Quine-McCluskey Algorithm (final version)

I We started from a simple idea suggested by Theorem 4.6
I Determine all prime implicants (sub-algorithm QMC1)
I choose the minimal subset that covers f (sub-algorithm QMC2)

and optimized the parts (data structures and partial algorithms) considerably.
I Definition 4.19 The Quine-McCluskey algorihtm ()computes minimal

polynomials for a given Boolean function f by computing the set of prime
implicants and choosing a covering subset.

I Observation: Good algorithms are often based on mathematical insights
(theorems), but math is not enough, considerable work goes into finding good
representations (data structures) and clever sub-algorithms.
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Chapter 10 Propositional Logic
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10.1 Boolean Expressions and Propositional Logic
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Still another Notation for Boolean Expressions

I Idea: get closer to MathTalk
I Use ∨, ∧, ¬, ⇒, and ⇔ directly (after all, we do in MathTalk)
I construct more complex names (propositions) for variables (Use ground terms of sort

B in an ADT)
I Definition 1.1 Let Σ = 〈S,D〉 be an abstract data type, such that B ∈ S and

[¬ : B→ B], [∨ : B×B→ B] ∈ D

then we call the set T g
B (Σ) of ground Σ-terms of sort B a formulation of

Propositional Logic.
I We will also call this formulation Predicate Logic without Quantifiers and denote

it with PLNQ.
I Definition 1.2 Call terms in T g

B (Σ) without ∨, ∧, ¬, ⇒, and ⇔ atoms. (write
A(Σ))

I Note: Formulae of propositional logic “are” Boolean Expressions
I replace A⇔B by (A⇒B)∧ (B⇒A) and A⇒B by ¬A∨B. . .
I Build print routine ·̂ with Â∧B = Â ∗ B̂, and ¬̂A = Â and that turns atoms into

variable names. (variables and atoms are countable)
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Conventions for Brackets in Propositional Logic

I we leave out outer brackets: A⇒B abbreviates (A⇒B).
I implications are right associative: A1⇒· · ·⇒An⇒C abbreviates

A1⇒· · ·⇒ · · ·⇒An⇒C
I a stands for a left bracket whose partner is as far right as is consistent with

existing brackets (A⇒ C∧D = A⇒ (C∧D))
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Semantic Properties of Boolean Expressions

I Definition 1.3 LetM := 〈U , I〉 be our model, then we call e
I true under ϕ inM, iff Iϕ(e) = T (writeM |=ϕ e)
I false under ϕ inM, iff Iϕ(e) = F (writeM 6|=ϕ e)
I satisfiable inM, iff Iϕ(e) = T for some assignment ϕ
I valid inM, iffM |=ϕ e for all assignments ϕ (writeM |= e)
I falsifiable inM, iff Iϕ(e) = F for some assignments ϕ
I unsatisfiable inM, iff Iϕ(e) = F for all assignments ϕ

I Example 1.4 x ∨ x is satisfiable and falsifiable.

I Example 1.5 x ∨¬ x is valid and x ∧¬ x is unsatisfiable.
I Notation 1.6 (alternative) Write [[e]]Mϕ for Iϕ(e), ifM = 〈U , I〉. (and [[e]]M, if

e is ground, and [[e]], ifM is clear)
I Definition 1.7 (Entailment) (aka. logical consequence)

We say that e entails f (e |= f ), iff Iϕ(f ) = T for all ϕ with Iϕ(e) = T (i.e. all
assignments that make e true also make f true)
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Example: Propositional Logic with ADT variables

I Idea: We use propositional logic to express things about the world (PLNQ =̂
Predicate Logic without Quantifiers)

I Example 1.8 A := 〈{B, I}, {. . ., [love : I× I→ B], [bill : I], [mary : I], . . .}〉
The abstract data type A has the ground terms:
I g1 := love(bill,mary) (how nice)
I g2 := love(mary, bill)∧¬ love(bill,mary) (how sad)
I g3 := love(bill,mary)∧ love(mary, john)⇒ hate(bill, john) (how natural)

I Semantics: by mapping into known stuff, (e.g. I to persons B to {T,F})

I Idea: Import semantics from Boolean Algebra (atoms “are” variables)
I only need variable assignment ϕ : A(Σ)→ {T,F}

I Example 1.9 Iϕ(love(bill,mary)∧ (love(mary, john)⇒ hate(bill, john))) = T if
ϕ(love(bill,mary)) = T, ϕ(love(mary, john)) = F, and ϕ(hate(bill, john)) = T

I Example 1.10 g1 ∧ g3 ∧ love(mary, john) |= hate(bill, john)
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What is Logic?

I formal languages, inference and their relation with the world
I Formal language FL: set of formulae (2 + 3/7, ∀x .x + y = y + x)
I Formula: sequence/tree of symbols (x , y , f , g , p, 1, π,∈,¬, ∧∀, ∃)
I Models: things we understand (e.g. number theory)
I Interpretation: maps formulae into models ([[three plus five]] = 8)
I Validity: M |= A, iff [[A]]M = T (five greater three is valid)
I Entailment: A |= B, iffM |= B for allM |= A. (generalize to H |= A)
I Inference: rules to transform (sets of) formulae (A,A⇒B ` B)

I Syntax: formulae, inference (just a bunch of symbols)
I Semantics: models, interpr., validity, entailment (math. structures)

I Important Question: relation between syntax and semantics?
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A simple System: Prop. Logic with Hilbert-Calculus

I Formulae: built from prop. variables: P,Q,R, . . . and implication: ⇒
I Semantics: Iϕ(P) = ϕ(P) and Iϕ(A⇒B) = T, iff Iϕ(A) = F or Iϕ(B) = T.
I K := P⇒Q⇒P, S := (P⇒Q⇒R)⇒ (P⇒Q)⇒P⇒R

I A⇒B A
B

MP
A

[B/X ](A)
Subst

I Let us look at a H0 theorem (with a proof)
I C⇒C (Tertium non datur)
I Proof:

P.1 (C⇒ (C⇒C)⇒C)⇒ (C⇒C⇒C)⇒C⇒C (S with
[C/P], [C⇒C/Q], [C/R])

P.2 C⇒ (C⇒C)⇒C (K with [C/P], [C⇒C/Q])
P.3 (C⇒C⇒C)⇒C⇒C (MP on P.1 and P.2)
P.4 C⇒C⇒C (K with [C/P], [C/Q])
P.5 C⇒C (MP on P.3 and P.4)
P.6 We have shown that ∅ `H0 C⇒C (i.e. C⇒C is a theorem) (is is also

valid?)
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10.2 Calculi for Propositional Logic
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Derivation Systems and Inference Rules

I Definition 2.1 Let S := 〈L,K, |=〉 be a logical system, then we call a relation
`⊆P(L)×L a derivation relation for S, if it
I is proof-reflexive, i.e. H ` A, if A ∈ H;
I is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;
I admits weakening, i.e. H ` A and H⊆H′ imply H′ ` A.

I Definition 2.2 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is a
logical system, and ` a derivation relation for S.

I Definition 2.3 Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

I Definition 2.4 An inference rule without assumptions is called an axiom (schema).
I Definition 2.5 Let S := 〈L,K, |=〉 be a logical system, then we call a set C of

inference rules over L a calculus for S.
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Derivations and Proofs I

I Definition 2.6 Let S := 〈L,K, |=〉 be a logical system and C a calculus for S,
then a C-derivation of a formula C ∈ L from a set H⊆L of hypotheses (write
H `C C) is a sequence A1, . . . ,Am of L-formulae, such that
I Am = C, (derivation culminates in C)
I for all 1≤i≤m, either Ai ∈ H, or (hypothesis)

I there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k. (rule application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak .

II Example 2.7 In the propositional Hilbert
calculus H0 we have the derivation
P `H0 Q⇒P: the sequence is
P⇒Q⇒P,P,Q⇒P and the corresponding
tree on the right.

K
P⇒Q⇒P P

MP
Q⇒P

I Observation 2.8 Let S := 〈L,K, |=〉 be a logical system and C a calculus for S,
then the C-derivation relation `D defined in Definition 2.6 is a derivation
relation in the sense of Definition 2.1.1
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Derivations and Proofs II

I Definition 2.9 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉 is a
logical system, and C a calculus for S.

I Definition 2.10 A derivation ∅ `C A is called a proof of A and if one exists
(write `C A) then A is called a C-theorem.

I Definition 2.11 an inference rule I is called admissible in C, if the extension of
C by I does not yield new theorems.

1EdNote: MK: this should become a view!
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Soundness and Completeness

I Definition 2.12 Let S := 〈L,K, |=〉 be a logical system, then we call a calculus
C for S
I sound (or correct), iff H |= A, whenever H `C A, and
I complete, iff H `C A, whenever H |= A.

I Goal: ` A iff |=A (provability and validity coincide)
I To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

Kohlhase: 320101 GenCS 252 December 8, 2016



The miracle of logics

I Purely formal derivations are true in the real world!
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10.3 Proof Theory for the Hilbert Calculus
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H0 is sound (first version)

I Theorem 3.1 ` A implies |=A for all propositions A.
I Proof: show by induction over proof length

P.1 Axioms are valid (we already know how to do this!)
P.2 inference rules preserve validity (let’s think)

P.2.1 Subst: complicated, see next slide
P.2.2 MP:

P.2.2.1 Let A⇒B be valid, and ϕ : Vo → {T,F} arbitrary
P.2.2.2 then Iϕ(A) = F or Iϕ(B) = T (by definition of ⇒).
P.2.2.3 Since A is valid, Iϕ(A) = T 6= F, so Iϕ(B) = T.
P.2.2.4 As ϕ was arbitrary, B is valid.
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H0 axioms are valid

I Lemma 3.2 The H0 axioms are valid.
I Proof: We simply check the truth tables

P.1

P Q Q⇒P P⇒Q⇒P
F F T T
F T F T
T F T T
T T T T

P.2

P Q R A := P⇒Q⇒R B := P⇒Q C := P⇒R A⇒B⇒C
F F F T T T T
F F T T T T T
F T F T T T T
F T T T T T T
T F F T F F T
T F T T F T T
T T F F T F T
T T T T T T T
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Substitution Value Lemma and Soundness

I Lemma 3.3 Let A and B be formulae, then Iϕ([B/X ](A)) = Iψ(A), where
ψ = ϕ, [Iϕ(B)/X ]

I Proof: by induction on the depth of A (number of nested ⇒ symbols)
P.1 We have to consider two cases

P.1.1 depth=0, then A is a variable, say Y .:
P.1.1.1 We have two cases
P.1.1.1.1 X = Y : then

Iϕ([B/X ](A)) = Iϕ([B/X ](X )) = Iϕ(B) = ψ(X ) = Iψ(X ) = Iψ(A).
P.1.1.1.2 X 6= Y : then Iϕ([B/X ](A)) = Iϕ([B/X ](Y )) = Iϕ(Y ) = ϕ(Y ) = ψ(Y ) =

Iψ(Y ) = Iψ(A).
P.1.2 depth> 0, then A = C⇒D:

P.1.2.1 We have Iϕ([B/X ](A)) = T, iff Iϕ([B/X ](C)) = F or Iϕ([B/X ](D)) = T.
P.1.2.2 This is the case, iff Iψ(C) = F or Iψ(D) = T by IH (C and D have smaller

depth than A).
P.1.2.3 In other words, Iψ(A) = Iψ(C⇒D) = T, iff Iϕ([B/X ](A)) = T by definition.

P.2 We have considered all the cases and proven the assertion.
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Soundness of Substitution

I Lemma 3.4 Subst preserves validity.
I Proof: We have to show that [B/X ](A) is valid, if A is.

P.1 Let A be valid, B a formula, ϕ : Vo → {T,F} a variable assignment, and
ψ := ϕ, [Iϕ(B)/X ].

P.2 then Iϕ([B/X ](A)) = Iϕ,[Iϕ(B)/X ](A) = T, since A is valid.
P.3 As the argumentation did not depend on the choice of ϕ, [B/X ](A)

valid and we have proven the assertion.
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The Entailment Theorem

I Theorem 3.5 If H,A |= B, then H |= (A⇒B).
I Proof: We show that Iϕ(A⇒B) = T for all assignments ϕ with Iϕ(H) = T

whenever H,A |= B
P.1 Let us assume there is an assignment ϕ, such that Iϕ(A⇒B) = F.
P.2 Then Iϕ(A) = T and Iϕ(B) = F by definition.
P.3 But we also know that Iϕ(H) = T and thus Iϕ(B) = T, since
H,A |= B.

P.4 This contradicts our assumption Iϕ(B) = T from above.
P.5 So there cannot be an assignment ϕ that Iϕ(A⇒B) = F; in other

words, A⇒B is valid.
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The Entailment Theorem (continued)

I Corollary 3.6 H,A |= B, iff H |= (A⇒B)

I Proof: In the light of the previous result, we only need to prove that H,A |= B,
whenever H |= (A⇒B)

P.1 To prove that H,A |= B we assume that Iϕ(H,A) = T.
P.2 In particular, Iϕ(A⇒B) = T since H |= (A⇒B).
P.3 Thus we have Iϕ(A) = F or Iϕ(B) = T.
P.4 The first cannot hold, so the second does, thus H,A |= B.
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The Deduction Theorem I

I Theorem 3.7 If H,A ` B, then H ` A⇒B
I Proof: By induction on the proof length

P.1 Let C1, . . . ,Cm be a proof of B from the hypotheses H.
P.2 We generalize the induction hypothesis: For all l 1≤i≤m we construct

proofs H ` A⇒Ci . (get A⇒B for i = m)
P.3 We have to consider three cases

P.3.12 Case 1: Ci axiom or Ci ∈ H:
P.3.12.1 Then H ` Ci by construction and H ` Ci⇒A⇒Ci by Subst from

Axiom 1.
P.3.12.2 So H ` A⇒Ci by MP.
P.3.13 Case 2: Ci = A:
P.3.13.1 We have already proven ∅ ` A⇒A, so in particular H ` A⇒Ci .(more

hypotheses do not hurt)
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The Deduction Theorem II

P.3.14 Case 3: everything else:
P.3.14.1 Ci is inferred by MP from Cj and Ck = Cj⇒Ci for j , k<i
P.3.14.2 We have H ` A⇒Cj and H ` A⇒Cj⇒Ci by IH
P.3.14.3 Furthermore, (A⇒Cj⇒Ci )⇒ (A⇒Cj)⇒A⇒Ci by Axiom 2 and

Subst
P.3.14.4 and thus H ` A⇒Ci by MP (twice).

P.4 We have treated all cases, and thus proven H ` A⇒Ci for 1≤i≤m.
P.5 Note that Cm = B, so we have in particular proven H ` A⇒B.
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The missing Subst case

I Oooops: The proof of the deduction theorem was incomplete (we did not treat
the Subst case)

I Let’s try:
I Proof: Ci is inferred by Subst from Cj for j<i with [B/X ].

P.1 So Ci = [B/X ](Cj); we have H ` A⇒Cj by IH
P.2 so by Subst we have H ` [B/X ](A⇒Cj). (Oooops! 6= A⇒Ci )

Kohlhase: 320101 GenCS 263 December 8, 2016



Repairing the Subst case by repairing the calculus

I Idea: Apply Subst only to axioms (this was sufficient in our example)
I H1 Axiom Schemata: (infinitely many axioms)

A⇒B⇒A, (A⇒B⇒C)⇒ (A⇒B)⇒A⇒C
Only one inference rule: MP.

I Definition 3.8 H1 introduces a (potentially) different derivability relation than
H0 we call them `H0 and `H1
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Deduction Theorem Redone

I Theorem 3.9 If H,A `H1 B, then H `H1 A⇒B
I Proof: Let C1, . . . ,Cm be a proof of B from the hypotheses H.

P.1 We construct proofs H `H1 A⇒Ci for all 1≤i≤n by induction on i .
P.2 We have to consider three cases

P.2.1 Ci is an axiom or hypothesis:
P.2.1.1 Then H `H1 Ci by construction and H `H1 Ci⇒A⇒Ci by Ax1.
P.2.1.2 So H `H1 Ci by MP
P.2.2 Ci = A:

P.2.2.1 We have proven ∅ `H0 A⇒A, (check proof in H1)
We have ∅ `H1 A⇒Ci , so in particular H `H1 A⇒Ci

P.2.3 else:
P.2.3.1 Ci is inferred by MP from Cj and Ck = Cj⇒Ci for j , k<i
P.2.3.2 We have H `H1 A⇒Cj and H `H1 A⇒Cj⇒Ci by IH
P.2.3.3 Furthermore, (A⇒Cj⇒Ci )⇒ (A⇒Cj)⇒A⇒Ci by Axiom 2
P.2.3.4 and thus H `H1 A⇒Ci by MP (twice). (no Subst)
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The Deduction Theorem for H0

I Lemma 3.10 `H1 = `H0

I Proof:
P.1 All H1 axioms are H0 theorems. (by Subst)
P.2 For the other direction, we need a proof transformation argument:
P.3 We can replace an application of MP followed by Subst by two Subst

applications followed by one MP.
P.4 . . .A⇒B . . .A . . .B . . . [C/X ](B) . . . is replaced by

. . .A⇒B . . . [C/X ](A)⇒ [C/X ](B) . . .A . . . [C/X ](A) . . . [C/X ](B) . . .

P.5 Thus we can push later Subst applications to the axioms, transforming a
H0 proof into a H1 proof.

I Corollary 3.11 H,A `H0 B, iff H `H0 A⇒B.
I Proof Sketch: by MP and `H1 = `H0
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H0 is sound (full version)

I Theorem 3.12 For all propositions A, B, we have A `H0 B implies A |= B.
I Proof:

P.1 By deduction theorem A `H0 B, iff ` A⇒C,
P.2 by the first soundness theorem this is the case, iff |=A⇒B,
P.3 by the entailment theorem this holds, iff A |= C.

Kohlhase: 320101 GenCS 267 December 8, 2016



Properties of Calculi (Theoretical Logic)

I Correctness: (provable implies valid)
I H ` B implies H |= B (equivalent: ` A implies |=A)

I Completeness: (valid implies provable)
I H |= B implies H ` B (equivalent: |=A implies ` A)

I Goal: ` A iff |=A (provability and validity coincide)
I To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])
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10.4 A Calculus for Mathtalk
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10.4.1 Propositional Natural Deduction Calculus
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Calculi: Natural Deduction (ND0; Gentzen [Gen35])

I Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)
I Definition 4.1 The propositional natural deduction calculus ND0 has rules for

the introduction and elimination of connectives
Introduction Elimination Axiom
A B
A∧B

∧I A∧B
A
∧El

A∧B
B
∧Er

A∨¬A
TND

[A]1

B
A⇒B

⇒I 1
A⇒B A

B
⇒E

I TND is used only in classical logic (otherwise constructive/intuitionistic)
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Natural Deduction: Examples

I Inference with local hypotheses

[A∧B]1

∧Er
B

[A∧B]1

∧El
A
∧I

B∧A
⇒I 1

A∧B⇒B∧A

[A]1

[B]2

A
⇒I 2

B⇒A
⇒I 1

A⇒B⇒A
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A Deduction Theorem for ND0

I Theorem 4.2 H,A `ND0 B, iff H `ND0 A⇒B.
I Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒B by ⇒I , and
P.2 If H `ND0 A⇒B, then H,A `ND0 A⇒B by weakening and
H,A `ND0 B by ⇒E .
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More Rules for Natural Deduction

I Definition 4.3 ND0 has the following additional rules for the remaining
connectives.

A
A∨B

∨Il
B

A∨B
∨Ir

A∨B

[A]1

...
C

[B]1

...
C

C
∨E 1

[A]1

...
F
¬A

¬I 1
¬¬A
A
¬E

¬A A
F

FI
F

A
FE
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First-Order Natural Deduction (ND1; Gentzen [Gen35])

I Rules for propositional connectives just as always
I Definition 4.4 (New Quantifier Rules) The first-order natural deduction

calculus ND1 extends ND0 by the following four rules
A
∀X A

∀I ∗ ∀X A
[B/X ](A)

∀E

[B/X ](A)

∃X A
∃I

∃X A

[[c/X ](A)]1

...
C

C
∃E 1

∗ means that A does not depend on any hypothesis in which X is free.
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Natural Deduction with Equality

I Definition 4.5 (First-Order Logic with Equality) We extend PL1 with a new
logical symbol for equality = ∈ Σp

2 and fix its semantics to
I(=) := {(x , x) | x ∈ Dι}. We call the extended logic first-order logic with
equality (PL1=)

I We now extend natural deduction as well.
I Definition 4.6 For the calculus of natural deduction with equality ND1

= we add
the following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the
result of replacing that subterm with B.
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Chapter 11 Machine-Oriented Calculi
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11.1 Calculi for Automated Theorem Proving: Analytical
Tableaux
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11.1.1 Analytical Tableaux
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Recap: Atoms and Literals

I Definition 1.1 We call a formula atomic, or an atom, iff it does not contain
connectives. We call a formula complex, iff it is not atomic.

I Definition 1.2 We call a pair Aα a labeled formula, if α ∈ {T,F}. A labeled
atom is called literal.

I Definition 1.3 Let Φ be a set of formulae, then we use Φα := {Aα |A ∈ Φ}.
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Test Calculi: Tableaux and Model Generation

I Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)
I Example 1.4 Tableau Calculi try to construct models.

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒Q ∧P |=P ∧ (Q ∨¬R)∧¬Q

P ∧Q⇒Q ∧PF

P ∧QT

Q ∧PF

PT

QT

PF

⊥
QF

⊥

P ∧ (Q ∨¬R)∧¬QT

P ∧ (Q ∨¬R)T

¬QT

QF

PT

Q ∨¬RT

QT

⊥
¬RT

RF

No Model Herbrand Model {PT,QF,RF}
ϕ := {P 7→ T,Q 7→ F,R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)
I I Satisfiable, iff there are open branches (correspond to models)
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Analytical Tableaux (Formal Treatment of T0)

I formula is analyzed in a tree to determine satisfiability
I branches correspond to valuations (models)
I one per connective

A∧BT

AT

BT

T0∧
A∧BF

AF
∣∣∣ BF
T0∨

¬AT

AF
T0

T¬ ¬AF

AT
T0

F¬

Aα

Aβ α 6= β

⊥ T0cut

I Use rules exhaustively as long as they contribute new material
I Definition 1.5 Call a tableau saturated, iff no rule applies, and a branch closed,

iff it ends in ⊥, else open. (open branches in saturated tableaux yield models)
I Definition 1.6 (T0-Theorem/Derivability) A is a T0-theorem (`T0 A), iff

there is a closed tableau with AF at the root.
Φ⊆wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.
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A Valid Real-World Example

I Example 1.7 If Mary loves Bill and John loves Mary, then John loves Mary

love(mary, bill)∧ love(john,mary)⇒ love(john,mary)F

¬ (¬¬ (love(mary, bill)∧ love(john,mary))∧¬ love(john,mary))F

¬¬ (love(mary, bill)∧ love(john,mary))∧¬ love(john,mary)T

¬¬ (love(mary, bill)∧ love(john,mary))T

¬ (love(mary, bill)∧ love(john,mary))F

love(mary, bill)∧ love(john,mary)T

¬ love(john,mary)T

love(mary, bill)T

love(john,mary)T

love(john,mary)F

⊥

This is a closed tableau, so the
love(mary, bill)∧ love(john,mary)⇒ love(john,mary) is a T0-theorem.
As we will see, T0 is sound and complete, so
love(mary, bill)∧ love(john,mary)⇒ love(john,mary) is valid.
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Deriving Entailment in T0

I Example 1.8 Mary loves Bill and John loves Mary together entail that John
loves Mary

love(mary, bill)T

love(john,mary)T

love(john,mary)F

⊥

This is a closed tableau, so the
{love(mary, bill), love(john,mary)} `T0 love(john,mary), again, as T0 is sound
and complete we have {love(mary, bill), love(john,mary)} |= love(john,mary)
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A Falsifiable Real-World Example

I Example 1.9 *If Mary loves Bill or John loves Mary, then John loves Mary
Try proving the implication (this fails)

(love(mary, bill)∨ love(john,mary))⇒ love(john,mary)F

¬ (¬¬ (love(mary, bill)∨ love(john,mary))∧¬ love(john,mary))F

¬¬ (love(mary, bill)∨ love(john,mary))∧¬ love(john,mary)T

¬ love(john,mary)T

love(john,mary)F

¬¬ (love(mary, bill)∨ love(john,mary))T

¬ (love(mary, bill)∨ love(john,mary))F

love(mary, bill)∨ love(john,mary)T

love(mary, bill)T love(john,mary)T

⊥

Indeed we can make Iϕ(love(mary, bill)) = T but Iϕ(love(john,mary)) = F.

Kohlhase: 320101 GenCS 285 December 8, 2016



Testing for Entailment in T0

I Example 1.10 Does Mary loves Bill or John loves Mary entail that John loves
Mary?

love(mary, bill)∨ love(john,mary)T

love(john,mary)F

love(mary, bill)T love(john,mary)T

⊥

This saturated tableau has an open branch that shows that the interpretation
with Iϕ(love(mary, bill)) = T but Iϕ(love(john,mary)) = F falsifies the
derivability/entailment conjecture.
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11.1.2 Practical Enhancements for Tableaux
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Propositional Identities

I Definition 1.11 Let T and F be new logical constants with I(T ) = T and
I(F ) = F for all assignments ϕ.

I We have to following identities:
Name for ∧ for ∨
Idenpotence ϕ∧ϕ = ϕ ϕ∨ϕ = ϕ
Identity ϕ∧T = ϕ ϕ∨ F = ϕ
Absorption I ϕ∧ F = F ϕ∨T = T
Commutativity ϕ∧ψ = ψ ∧ϕ ϕ∨ψ = ψ ∨ϕ
Associativity ϕ∧ (ψ ∧ θ) = (ϕ∧ψ)∧ θ ϕ∨ (ψ ∨ θ) = (ϕ∨ψ)∨ θ
Distributivity ϕ∧ (ψ ∨ θ) = ϕ∧ψ ∨ϕ∧ θ ϕ∨ψ ∧ θ = (ϕ∨ψ)∧ (ϕ∨ θ)
Absorption II ϕ∧ (ϕ∨ θ) = ϕ ϕ∨ϕ∧ θ = ϕ
De Morgan’s Laws ¬ (ϕ∧ψ) = ¬ϕ∨¬ψ ¬ (ϕ∨ψ) = ¬ϕ∧¬ψ
Double negation ¬¬ϕ = ϕ
Definitions ϕ⇒ψ = ¬ϕ∨ψ ϕ⇔ψ = (ϕ⇒ψ)∧ (ψ⇒ϕ)
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Derived Rules of Inference

I Definition 1.12 Let C be a calculus, a rule of inference
A1 · · · An

C
is called a

derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.
I Definition 1.13 We have the following derived rules of inference

A⇒BT

AF
∣∣∣ BT

A⇒BF

AT

BF

AT

A⇒BT

BT

A∨BT

AT
∣∣∣ BT

A∨BF

AF

BF

A⇔BT

AT

BT

∣∣∣∣ AF

BF

A⇔BF

AT

BF

∣∣∣∣ AF

BT

AT

A⇒BT

¬A∨BT

¬ (¬¬A∧¬B)T

¬¬A∧¬BF

¬¬AF

¬AT

AF

⊥

¬BF

BT
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Tableaux with derived Rules (example)

Example 1.14

love(mary, bill)∧ love(john,mary)⇒ love(john,mary)F

love(mary, bill)∧ love(john,mary)T

love(john,mary)F

love(mary, bill)T

love(john,mary)T

⊥
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11.1.3 Soundness and Termination of Tableaux
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Soundness (Tableau)

I Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

I Definition 1.15 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.
I Definition 1.16 A tableau T is satisfiable, iff there is a satisfiable branch P in
T , i.e. if the set of formulae in P is satisfiable.

I Lemma 1.17 Tableau rules transform satisfiable tableaux into satisfiable ones.
I Theorem 1.18 (Soundness) A set Φ of propositional formulae is valid, if there

is a closed tableau T for ΦF.
I Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (ΦF satisfiable)
P.2 so T is satisfiable, by Lemma 1.17.
P.3 there is a satisfiable branch (by definition)
P.4 but all branches are closed (T closed)
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Termination for Tableaux

I Lemma 1.19 The tableau procedure terminates, i.e. after a finite set of rule
applications, it reaches a tableau, so that applying the tableau rules will only
add labeled formulae that are already present on the branch.

I Let us call a labeled formulae Aα worked off in a tableau T , if a tableau rule has
already been applied to it.

I Proof:
P.1 It is easy to see that applying rules to worked off formulae will only add

formulae that are already present in its branch.
P.2 Let µ(T ) be the number of connectives in labeled formulae in T that

are not worked off.
P.3 Then each rule application to a labeled formula in T that is not worked

off reduces µ(T ) by at least one. (inspect the rules)
P.4 At some point the tableau only contains worked off formulae and literals.
P.5 Since there are only finitely many literals in T , so we can only apply the

tableau cut rule a finite number of times.
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11.2 Resolution for Propositional Logic
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Another Test Calculus: Resolution

I Definition 2.1 A clause is a disjunction of literals. We will use 2 for the empty
disjunction (no disjuncts) and call it the empty clause.

I Definition 2.2 (Resolution Calculus) The resolution calculus operates a
clause sets via a single inference rule:

PT ∨ A PF ∨ B
A ∨ B

This rule allows to add the clause below the line to a clause set which contains
the two clauses above.

I Definition 2.3 (Resolution Refutation) Let S be a clause set, and
D : S `R T a R derivation then we call D resolution refutation, iff 2 ∈ T .

Kohlhase: 320101 GenCS 295 December 8, 2016



A calculus for CNF Transformation

I Definition 2.4 (Transformation into Conjunctive Normal Form) The CNF
transformation calculus CNF consists of the following four inference rules on
clause sets.

C ∨ (A∨B)T

C ∨ AT ∨ BT

C ∨ (A∨B)F

C ∨ AF;C ∨ BF

C ∨ ¬AT

C ∨ AF

C ∨ ¬AF

C ∨ AT

I Definition 2.5 We write CNF (A) for the set of all clauses derivable from AF via
the rules above.

I Definition 2.6 (Resolution Proof) We call a resolution refutation
P : CNF (A) `R T a resolution sproof for A ∈ wff o(Vo).
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Derived Rules of Inference

I Definition 2.7 Let C be a calculus, a rule of inference
A1 . . . An

C
is called a

derived inference rule in C, iff there is a C-proof of A1, . . . ,An ` C.

I Example 2.8

C ∨ (A⇒B)T

C ∨ (¬A∨B)T

C ∨ ¬AT ∨ BT

C ∨ AF ∨ BT

7→ C ∨ (A⇒B)T

C ∨ AF ∨ BT

I Others:

C ∨ (A⇒B)T

C ∨ AF ∨ BT

C ∨ (A⇒B)F

C ∨ AT;C ∨ BF

C ∨ A∧BT

C ∨ AT;C ∨ BT

C ∨ A∧BF

C ∨ AF ∨ BF
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Example: Proving Axiom S

I Example 2.9 Clause Normal Form transformation
(P⇒Q⇒R)⇒ (P⇒Q)⇒P⇒RF

P⇒Q⇒RT; (P⇒Q)⇒P⇒RF

PF ∨ (Q⇒R)T;P⇒QT;P⇒RF

PF ∨ QF ∨ RT;PF ∨ QT;PT;RF

CNF = {PF ∨ QF ∨ RT , PF ∨ QT , PT , RF}
I Example 2.10 Resolution Proof

1 PF ∨ QF ∨ RT initial
2 PF ∨ QT initial
3 PT initial
4 RF initial
5 PF ∨ QF resolve 1.3 with 4.1
6 QF resolve 5.1 with 3.1
7 PF resolve 2.2 with 6.1
8 2 resolve 7.1 with 3.1
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11.3 Completenes Proofs (Optional Material, not
Exam-Relevant)

Kohlhase: 320101 GenCS 299 December 8, 2016



11.3.1 Abstract Consistency and Model Existence
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Model Existence (Overview)

I Definition: Abstract consistency

I Definition: Hintikka set (maximally abstract consistent)

I Theorem: Hintikka sets are satisfiable

I Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

I Corollary: If Φ is abstract consistent, then Φ is satisfiable

I Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract
consistent.

I Corollary: C is complete.
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Consistency

I Let C be a calculus
I Definition 3.1 Φ is called C-refutable, if there is a formula B, such that

Φ `C B and Φ `C ¬B.
I Definition 3.2 We call a pair A and ¬A a contradiction.

I So a set Φ is C-refutable, if C can derive a contradiction from it.
I Definition 3.3 Φ is called C-consistent, iff there is a formula B, that is not

derivable from Φ in C.
I Definition 3.4 We call a calculus C reasonable, iff implication elimination and

conjunction introduction are admissible in C and A∧¬A⇒B is a C-theorem.
I Theorem 3.5 C-inconsistency and C-refutability coincide for reasonable calculi.
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Abstract Consistency

I Definition 3.6 Let ∇ be a family of sets. We call ∇ closed under subset s, iff
for each Φ ∈ ∇, all subsets Ψ⊆Φ are elements of ∇.

I Notation 3.7 We will use Φ ∗A for Φ∪{A}.
I Definition 3.8 A family ∇ of sets of propositional formulae is called an abstract

consistency class, iff it is closed under subsets, and for each Φ ∈ ∇
∇c) P 6∈ Φ or ¬P 6∈ Φ for P ∈ Vo
∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∨) (A∨B) ∈ Φ implies Φ ∗A ∈ ∇ or Φ ∗B ∈ ∇
∇∧) ¬ (A∨B) ∈ Φ implies (Φ∪{¬A,¬B}) ∈ ∇

I Example 3.9 The empty set is an abstract consistency class

I Example 3.10 The set {∅, {Q}, {P ∨Q}, {P ∨Q,Q}} is an abstract
consistency class

I Example 3.11 The family of satisfiable sets is an abstract consistency class.
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Compact Collections

I Definition 3.12 We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

I Lemma 3.13 If ∇ is compact, then ∇ is closed under subsets.
I Proof:

P.1 Suppose S ⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .
P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.
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Compact Collections

I Definition 3.14 We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

I Lemma 3.15 If ∇ is compact, then ∇ is closed under subsets.
I Proof:

P.1 Suppose S ⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .
P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.
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Compact Abstract Consistency Classes I

I Lemma 3.16 Any abstract consistency class can be extended to a compact one.
I Proof:

P.1 We choose ∇′ := {Φ⊆wff o(Vo) | every finite subset of Φ is in ∇}.
P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite

subset of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇⊆∇′.
P.3 Next let us show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.
P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.
P.4 Note that ∇′ is closed under subsets by the Lemma above.
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Compact Abstract Consistency Classes II

P.5 Now we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c , let Φ ∈ ∇′ and suppose there is an atom A, such that

{A,¬A}⊆Φ. Then {A,¬A} ∈ ∇ contradicting ∇c .
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.

P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗¬¬A.
P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.
P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get

Θ ∗A ∈ ∇ by ∇¬.
P.5.2.4 We know that Ψ⊆Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition

Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.
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∇-Hintikka Set I

I Definition 3.17 Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇
we already have A ∈ H.

I Theorem 3.18 (Hintikka Properties) Let ∇ be an abstract consistency class
and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Vo) we have A 6∈ H or ¬A 6∈ H
H¬) If ¬¬A ∈ H then A ∈ H
H∨) If (A∨B) ∈ H then A ∈ H or B ∈ H
H∧) If ¬ (A∨B) ∈ H then ¬A,¬B ∈ H
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∇-Hintikka Set II

I Proof:
P.1 We prove the properties in turn

P.1.1 Hc : by induction on the structure of A
P.1.1.1.1 A ∈ Vo : Then A 6∈ H or ¬A 6∈ H by ∇c .
P.1.1.1.2 A = ¬B:
P.1.1.1.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,
P.1.1.1.2.2 then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.
P.1.1.1.2.3 So both B and ¬B are in H, which contradicts the inductive

hypothesis.

P.1.1.1.3 A = B∨C: similar to the previous case:

P.1.2 We prove H¬ by maximality of H in ∇.:
P.1.2.1 If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
P.1.2.2 The maximality of H now gives us that A ∈ H.
P.1.3 other H∗ are similar:
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Extension Theorem

I Theorem 3.19 If ∇ is an abstract consistency class and Φ ∈ ∇, then there is a
∇-Hintikka set H with Φ⊆H.

I Proof:
P.1 Wlog. we assume that ∇ is compact (otherwise pass to compact

extension)
P.2 We choose an enumeration A1,A2, . . . of the set wff o(Vo)
P.3 and construct a sequence of sets H i with H0 := Φ and

Hn+1 :=

{
Hn if Hn ∗An 6∈ ∇

Hn ∗An if Hn ∗An ∈ ∇

P.4 Note that all H i ∈ ∇, choose H :=
⋃

i∈N H i

P.5 Ψ⊆H finite implies there is a j ∈ N such that Ψ⊆H j ,
P.6 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.
P.7 Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ H j+1

and H j+1⊆H
P.8 Thus H is ∇-maximal
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Valuation

I Definition 3.20 A function ν : wff o(Vo)→ Do is called a valuation, iff
I ν(¬A) = T, iff ν(A) = F
I ν(A∨B) = T, iff ν(A) = T or ν(B) = T

I Lemma 3.21 If ν : wff o(Vo)→ Do is a valuation and Φ⊆wff o(Vo) with
ν(Φ) = {T}, then Φ is satisfiable.

I Proof Sketch: ν|Vo : Vo → Do is a satisfying variable assignment.

I Lemma 3.22 If ϕ : Vo → Do is a variable assignment, then Iϕ : wff o(Vo)→ Do

is a valuation.
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Model Existence

I Lemma 3.23 (Hintikka-Lemma) If ∇ is an abstract consistency class and H a
∇-Hintikka set, then H is satisfiable.

I Proof:
P.1 We define ν(A) := T, iff A ∈ H
P.2 then ν is a valuation by the Hintikka properties
P.3 and thus ν|Vo is a satisfying assignment.

I Theorem 3.24 (Model Existence) If ∇ is an abstract consistency class and
Φ ∈ ∇, then Φ is satisfiable.
Proof:

I P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)
We know that H is satisfiable. (Hintikka-Lemma)
In particular, Φ⊆H is satisfiable.
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11.3.2 A Completeness Proof for Propositional Tableaux

Kohlhase: 320101 GenCS 313 December 8, 2016



Abstract Completeness for T0 I

P.2 P.3I Lemma 3.25 {Φ |ΦT has no closed Tableau} is an abstract consistency class.
I Proof: Let’s call the set above ∇

P.1 We have to convince ourselves of the abstract consistency properties
P.1.1 ∇c : P,¬P ∈ Φ implies PF,PT ∈ ΦT.
P.1.2 ∇¬: Let ¬¬A ∈ Φ.

P.1.2.1 For the proof of the contrapositive we assume that Φ ∗A has a closed
tableau T and show that already Φ has one:

P.1.2.2 applying T0¬ twice allows to extend any tableau with ¬¬Bα by Bα.
P.1.2.3 any path in T that is closed with ¬¬Aα, can be closed by Aα.
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Abstract Completeness for T0 II

P.1.3 ∇∨: Suppose (A∨B) ∈ Φ and both Φ ∗A and Φ ∗B have closed
tableaux

P.1.3.1 consider the tableaux:

ΦT

AT

Rest1

ΦT

BT

Rest2

ΨT

A∨BT

AT

Rest1
BT

Rest2

P.1.4 ∇∧: suppose, ¬ (A∨B) ∈ Φ and Φ{¬A,¬B} have closed tableau T .
P.1.4.1 We consider

ΦT

AF

BF

Rest

ΨT

A∨BF

AF

BF

Rest

where Φ = Ψ ∗¬ (A∨B).
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Completeness of T0

I Corollary 3.26 T0 is complete.
I Proof: by contradiction

P.1 We assume that A ∈ wff o(Vo) is valid, but there is no closed tableau for
AF.

P.2 We have {¬A} ∈ ∇ as ¬AT = AF.
P.3 so ¬A is satisfiable by the model existence theorem (which is applicable

as ∇ is an abstract consistency class by our Lemma above)
P.4 this contradicts our assumption that A is valid.
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Part III Legal Foundations of Information Technology
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Chapter 12 Intellectual Property, Copyright, and Licensing
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Intellectual Property: Concept

I Question: Intellectual labour creates (intangible) objects, can they be owned?

I Answer: Yes: in certain circumstances they are property like tangible objects.
I Definition 0.1 The concept of intellectual property motivates a set of laws that

regulate property rights on intangible objects, in particular
I Patents grant exploitation rights on original ideas.
I Copyrights grant personal and exploitation rights on expressions of ideas.
I Industrial Design Rights protect the visual design of objects beyond their function.
I Trademarks protect the signs that identify a legal entity or its products to establish

brand recognition.

I Intent: Property-like treatment of intangibles will foster innovation by giving
individuals and organizations material incentives.
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Intellectual Property: Problems

I Delineation Problems: How can we distinguish the product of human work, from
“discoveries”, of e.g. algorithms, facts, genome, algorithms. (not property)

I Philosophical Problems: The implied analogy with physical property (like land or
an automobile) fails because physical property is generally rivalrous while
intellectual works are non-rivalrous (the enjoyment of the copy does not prevent
enjoyment of the original).

I Practical Problems: There is widespread criticism of the concept of intellectual
property in general and the respective laws in particular.
I (software) patents are often used to stifle innovation in practice. (patent trolls)
I copyright is seen to help big corporations and to hurt the innovating individuals
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Legal Traditions

I The various legal systems of the world can be grouped into “traditions”.
I Definition 0.2 Legal systems in the common law tradition are usually based on

case law, they are often derived from the British system.
I Definition 0.3 Legal systems in the civil law tradition are usually based on

explicitly codified laws (civil codes).

I As a rule of thumb all English-speaking countries have systems in the common
law tradition, whereas the rest of the world follows a civil law tradition.
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Historic/International Aspects of Intellectual Property Law

I Early History: In late antiquity and the middle ages IP matters were regulated by
royal privileges

I History of Patent Laws: First in Venice 1474, Statutes of Monopolies in England
1624, US/France 1790/1. . .

I History of Copyright Laws: Statue of Anne 1762, France: 1793, . . .
I Problem: In an increasingly globalized world, national IP laws are not enough.
I Definition 0.4 The Berne convention process is a series of international treaties

that try to harmonize international IP laws. It started with the original Berne
convention 1886 and went through revision in 1896, 1908, 1914, 1928, 1948,
1967, 1971, and 1979.

I The World Intellectual Property Organization Copyright Treaty was adopted in
1996 to address the issues raised by information technology and the Internet,
which were not addressed by the Berne Convention.

I Definition 0.5 The Anti-Counterfeiting Trade Agreement (ACTA) is a
multinational treaty on international standards for intellectual property rights
enforcement.

I With its focus on enforcement ACTA is seen my many to break fundamental
human information rights, criminalize FLOSS
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12.1 Copyright
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Copyrightable Works

I Definition 1.1 A copyrightable work is any artefact of human labor that fits
into one of the following eight categories:
I Literary works: Any work expressed in letters, numbers, or symbols, regardless of

medium. (Computer source code is also considered to be a literary work.)
I Musical works: Original musical compositions.
I Sound recording s of musical works. (different licensing)
I Dramatic works: literary works that direct a performance through written

instructions.
I Choreographic works must be âĂĲfixed,âĂİ either through notation or video

recording.
I Pictorial, Graphic and Sculptural works (PGS works): Any two-dimensional or

three-dimensional art work
I Audiovisual works: work that combines audio and visual components. (e.g. films,

television programs)
I Architectural works (copyright only extends to aesthetics)

I The categories are interpreted quite liberally (e.g. for computer code).
I There are various requirements to make a work copyrightable: it has to

I exhibit a certain originality (Schöpfungshöhe)
I require a certain amount of labor and diligence (“sweat of the brow” doctrine)
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Limitations of Copyrightabilitiy: The Public Domain

I Definition 1.2 A work is said to be in the public domain, if no copyright
applies, otherwise it is called copyrighted.

I Example 1.3 Works made by US government employees (in their work time)
are in the public domain directly (Rationale: taxpayer already payed for them)

I Copyright expires: usually 70 years after the death of the creator
I Example 1.4 (US Copyright Terms) Some people claim that US copyright

terms are extended, whenever Disney’s Mickey Mouse would become public
domain.
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Copyright Holder

I Definition 1.5 The copyright holder is the legal entity that holds the copyright
to a copyrighted work.

I By default, the original creator of a copyrightable work holds the copyright.
I In most jurisdictions, no registration or declaration is necessary (but copyright

ownership may be difficult to prove)
I copyright is considered intellectual property, and can be transferred to others

(e.g. sold to a publisher or bequeathed)
I Definition 1.6 (Work for Hire) A work made for hire is a work created by an

employee as part of his or her job, or under the explicit guidance or under the
terms of a contract.

I In jurisdictions from the common law tradition, the copyright holder of a work
for hires the employer, in jurisdictions from the civil law tradition, the author,
unless the respective contract regulates it otherwise.

Kohlhase: 320101 GenCS 326 December 8, 2016



Rights under Copyright Law

I Definition 1.7 The copyright is a collection of rights on a copyrighted work;
I personal rights: the copyright holder may

I determine whether and how the work is published (right to publish)
I determine whether and how her authorship is acknowledged. (right of attribution)
I to object to any distortion, mutilation or other modification of the work, which would be

prejudicial to his honor or reputation (droit de respect)
I exploitation rights: the owner of a copyright has the exclusive right to do, or

authorize to do any of the following:
I to reproduce the copyrighted work in copies (or phonorecords);
I to prepare derivative works based upon the copyrighted work;
I to distribute copies of the work to the public by sale, rental, lease, or lending;
I to perform the copyrighted work publicly;
I to display the copyrighted work publicly; and
I to perform the copyrighted work publicly by means of a digital-audio transmission.

I Definition 1.8 The use of a copyrighted material, by anyone other than the
owner of the copyright, amounts to copyright infringement only when the use is
such that it conflicts with any one or more of the exclusive rights conferred to
the owner of the copyright.
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Limitations of Copyright (Citation/Fair Use)

I There are limitations to the exclusivity of rights of the copyright holder (some
things cannot be forbidden)

I Citation Rights: Civil law jurisdictions allow citations of (extracts of)
copyrighted works for scientific or artistic discussions. (note that the right of
attribution still applies)

I In the civil law tradition, there are similar rights:
I Definition 1.9 (Fair Use/Fair Dealing Doctrines) Case law in common law

jurisdictions has established a fair use doctrine, which allows e.g.
I making safety copies of software and audiovisual data
I lending of books in public libraries
I citing for scientific and educational purposes
I excerpts in search engine

Fair use is established in court on a case-by-case taking into account the
purpose (commercial/educational), the nature of the work the amount of the
excerpt, the effect on the marketability of the work.
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12.2 Licensing
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Licensing: the Transfer of Rights

I Remember: the copyright holder has exclusive rights to a copyrighted work.

I In particular: all others have only fair-use rights (but we can transfer rights)
I Definition 2.1 A license is an authorization (by the licensor) to use the licensed

material (by the licensee).

I Note: a license is a regular contract (about intellectual property) that is handled
just like any other contract. (it can stipulate anything the licensor and licensees
agree on) in particular a license may
I involve term, territory, or renewal provisions
I require paying a fee and/or proving a capability.
I require to keep the licensor informed on a type of activity, and to give them the

opportunity to set conditions and limitations.

I Mass Licensing of Computer Software: Software vendors usually license software
under extensive end-user license agreement (EULA) entered into upon the
installation of that software on a computer. The license authorizes the user to
install the software on a limited number of computers.
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Free/Open Source Licenses

I Recall: Software is treated as literary works wrt. copyright law.
I But: Software is different from literary works wrt. distribution channels(and that

is what copyright law regulates)
I In particular: When literary works are distributed, you get all there is, software is

usually distributed in binary format, you cannot understand/cite/modify/fix it.
I So: Compilation can be seen as a technical means to enforce copyright. (seen as

an impediment to freedom of fair use)
I Recall: IP laws (in particular patent law) was introduced explicitly for two things

I incentivize innovation (by granting exclusive exploitation rights)
I spread innovation (by publishing ideas and processes)
Compilation breaks the second tenet (and may thus stifle innovation)

I Idea: We should create a public domain of source code
I Definition 2.2 Free/Libre/Open-Source Software (FLOSS) is software that is

and licensed via licenses that ensure that its source is available.
I Almost all of the Internet infrastructure is (now) FLOSS; so are the Linux and

Android operating systems and applications like OpenOffice and The GIMP.
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GPL/Copyleft: Creating a FLOSS Public Domain?

I Problem: How do we get people to contribute source code to the FLOSS public
domain?

I Idea: Use special licenses to:
I allow others to use/fix/modify our source code (derivative works)
I require them to release their modifications to the FLOSS public domain if they do.

I Definition 2.3 A copyleft license is a license which requires that allows
derivative works, but requires that they be licensed with the same license.

I Definition 2.4 The General Public License (GPL) is a copyleft license for
FLOSS software originally written by Richard Stallman in 1989. It requires that
the source code of GPL-licensed software be made available.

I The GPL was the first copyleft license to see extensive use, and continues to
dominate the licensing of FLOSS software.

I FLOSS based development can reduce development and testing costs (but
community involvement must be managed)

I Various software companies have developed successful business models based on
FLOSS licensing models. (e.g. Red Hat, Mozilla, IBM, . . . )
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Open Content via Open Content Licenses

I Recall: FLOSS licenses have created a vibrant public domain for software.

I How about: other copyrightable works: music, video, literature, technical
documents

I Definition 2.5 The Creative Commons licenses are
I a common legal vocabulary for sharing content
I to create a kind of “public domain” using licensing
I presented in three layers

(human/lawyer/machine)-readable

I Creative Commons license provisions (http://www.creativecommons.org)
I author retains copyright on each module/course
I author licenses material to the world with requirements
+/- attribuition (must reference the author)
+/- commercial use (can be restricted)
+/- derivative works (can allow modification)
+/- share alike (copyleft) (modifications must be donated back)
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Chapter 13 Information Privacy
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Information/Data Privacy

I Definition 0.1 The principle of information privacy comprises the idea that
humans have the right to control who can access their personal data when.

I Information privacy concerns exist wherever personally identifiable information is
collected and stored – in digital form or otherwise. In particular in the following
contexts
I Healthcare records
I Criminal justice investigations and proceedings
I Financial institutions and transactions
I Biological traits, such as ethnicity or genetic material
I Residence and geographic records

I Information privacy is becoming a growing concern with the advent of the
Internet and search engines that make access to information easy and efficient.

I The “reasonable expectation of privacy” is regulated by special laws.
I These laws differ considerably by jurisdiction; Germany has particularly stringent

regulations (and you are subject to these.)
Acquisition and storage of personal data is only legal for the purposes of the
respective transaction, must be minimized, and distribution of personal data is
generally forbidden with few exceptions. Users have to be informed about
collection of personal data.
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Organizational Measures or Information Privacy (under
German Law)

I Physical Access Control: Unauthorized persons may not be granted physical
access to data processing equipment that process personal data.(; locks, access
control systems)

I System Access Control: Unauthorized users may not use systems that process
personal data (; passwords, firewalls, . . . )

I Information Access Control: Users may only access those data they are
authorized to access. (; access control lists, safe boxes for storage media,
encryption)

I Data Transfer Control: Personal data may not be copied during transmission
between systems (; encryption)

I Input Control: It must be possible to review retroactively who entered, changed,
or deleted personal data. (; authentification, journaling)

I Availability Control: Personal data have to be protected against loss and
accidental destruction (; physical/building safety, backups)

I Obligation of Separation: Personal data that was acquired for separate purposes
has to be processed separately.
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Part IV A look back; What have we learned?
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Let’s hack! ; 2am in the CLAMV cluster
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no, let’s think

I GIGO: Garbage In, Garbage Out (– ca. 1967)
I Applets, Not Crapletstm (– ca. 1997)
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What have we thought about in this year?

We talked about various forms of

Machines Models
Algorithms, Languages and Programs
Information/Data/Representations

and their relation to each other

(and of course Math!)
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Machine Models

I Abstract Interpreters (mind games)
I The SML interpreter/compiler (didn’t we love recursive programming?)
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Algorithms Languages and Programs

I Abstract data types (defining equations as recursive programs)
I standard ML (SML) (concrete ADTs with strong types, HO functions)
I elementary complexity analysis (Oooooh, how fast this class grows)
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Information, Data, and Representations

I term representations and substitutions (constants,variables, function application)
I Codes as transformations on formal languages. (programs as a special case)
I Boolean Expressions and Boolean functions (syntax and semantics)
I Hilbert, Resolution, Tableau, calculi (correct, complete)
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The (Discrete) Math involved

I sets, relations, functions,
I natural numbers and proof by induction (such a lot of talk about something so

simple)
I the axiomatic/deductive method in Math (play the math game by the rules)
I formal languages and codes (are just sets of strings and injective mappings)
I Boolean algebra, axioms, deduction, prime implicants
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