Quizzes for General CS (320101) Fall 2015

Michael Kohlhase Jacobs University Bremen FOR COURSE PURPOSES ONLY

December 12, 2016

Contents

1	Assignment 1 (Introductory Quiz) – Given Sep. 8. 2015	2
2	Assignment 1 (Unary Natural Numbers & Induction) – Given Sep. 14. 2015	3
3	Assignment 3 (Relations) – Given Sep. 22. 2015	4
4	Assignment 4 (Functions) – Given Sep. 29. 2015	5
5	Assignment 5 (SML Basics) – Given Oct. 6. 2015	6
6	Assignment 6 (SML Datatypes) – Given Oct. 13. 2015	7
7	Assignment 7 (Formal Languages) – Given Nov. 3. 2015	8
8	Assignment 8 (Formal Languages) – Given Nov. 10. 2015	9
9	Assignment 9 (Boolean Logic) – Given Nov. 17. 2015	10
10	Assignment 10 (QMC) – Given Nov. 24. 2015	11
11	Assignment 11 (Propositional Logic) – Given Dec. 1. 2015	12

1 Assignment 1 (Introductory Quiz) – Given Sep. 8. 2015

Problem 1.1 (What is an algorithm?)

What is an algorithm? Give 3 examples of algorithms and explain them (be creative and 9pt make sure that at least two of them are not on the slides!).

Problem 1.2 (GenCS Grading)

State the components of the overall grade of the GenCS course and discuss their intention. 3pt

2 Assignment 1 (Unary Natural Numbers & Induction) – Given Sep. 14. 2015

Problem 1.1 (Three is a unary natural number)

Using only the Peano axioms as discussed in class, prove that s(s(s(o))) is a unary 4pt natural number.

Problem 1.2 (Peano's induction axiom)

State Peano's induction axiom and discuss what it can be used for.

8pt

3 Assignment 3 (Relations) – Given Sep. 22. 2015

Problem 3.1 (Greek Letters)

Fill in the blanks in the following table of Greek letters. Note that capitalized names 2pt denote capital Greek letters.

Symbol		Ξ	η			Λ		ω	Ι	
Name	delta			sigma	Psi		Omega	,		chi

Problem 3.2 (Talking about Sets)

Given the following sets

1. $A = \{a, b, c, d, e\}$

2.
$$B = \{d, f, h\}$$

2.
$$B = \{d, f, n\}$$

3. $C = \{d, f, g, i\}$

Define each of the following operations on sets in math talk and apply it to the given sets:

- 1. intersection: $S \cap T :=$ e.g. $A \cap B =$
- 2. union: $S \cup T :=$ e.g. $B \cup C =$
- 3. set difference: $S \setminus T :=$ e.g. $A \setminus B =$
- 4. *n*-fold Cartesian product: $S_1 \times \ldots \times S_n :=$ e.g. the size $\#(A \times B \times C) =$

Problem 3.3 (Relation Properties)

You are given the set $S := \{a, b, c, d\}$ and the relation

$$R \subseteq S \times S, \quad R := \{(a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (c, d), (d, b), (d, c), (d, d)\}$$

Determine whether R is a) reflexive, b) symmetric, c) transitive, or d) antisymmetric. If the relation does not have a certain property, give a counter-example to show that.

6pt

4pt

4 Assignment 4 (Functions) – Given Sep. 29. 2015

Problem 4.1 (Function properties)

- 1. State in mathtalk the definition of an injective total function (you may take the concept of a function as given).
- 2. Determine whether the function $f \colon \mathbb{N} \to \mathbb{N}$ with f(n) := 2n is injective, surjective or bijective.

Problem 4.2 (Lambda Notation)

Write down the function $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = \sqrt{x}$ using lambda-notation.

 $2 \mathrm{pt}$

5 Assignment 5 (SML Basics) – Given Oct. 6. 2015

Problem 5.1 (Arithmetic Mean)

Write an SML function am = fn: real list -> real that given a list of real numbers returns 12pt the arithmetic mean.

Hint: The arithmetic mean of a sequence $a_1, a_2, \ldots a_n$ is defined as $\frac{1}{n} \sum_{i=1}^n a_i$. For n = 0 your function should return 0.0.

Example: am [1.0, 3.0, 3.0, 2.0] should return 2.25.

6 Assignment 6 (SML Datatypes) – Given Oct. 13. 2015

Problem 6.1 (Temperatures)

You are given the following SML datatype temp that represents temperatures in Fahrenheit 12pt and Celsius.

datatype temp = Celsius of real | Fahrenheit of real;

Write an SML function find : temp list -> temp that returns the lowest temperature in a list. For instance,

- find([Celsius(12.0), Fahrenheit(52.0), Celsius(32.0)]);
val it = Fahrenheit 52.0 : temp

Note: You can use the following formula for transforming Fahrenheit into Celsius: $t_C = (t_F - 32) \cdot \frac{5}{9}$

7 Assignment 7 (Formal Languages) – Given Nov. 3. 2015

Problem 7.1 (Formal Languages and Lexical Order)

Given the alphabet $A = \{a, b, c\}$ and 2 formal languages in A 12pt a. $L_1 = \{a^{[n]}b \mid n \in \mathbb{N}\}$ and b. $L_2 = \{c^{[n]}bc^{[n]} \mid n \in \mathbb{N}\}$ write down 3 different strings $s_1, s_2, s_3 \in \operatorname{conc}(L_1, L_2)$. What is the lexical order of s_1, s_2, s_3 given that $a \prec^A b \prec^A c$?

8 Assignment 8 (Formal Languages) – Given Nov. 10. 2015

Problem 8.1 (Formal language)

Give the definition of the formal language of the words over $\{0, 1\}$ that are palindromes. 4pt

Note: A palindrome is a word w that is identical to w reversed. For example: "1001" and "0010100".

Problem 8.2 Given the alphabet $A = \{a, b, c\}$ and a $L := \bigcup_{i=1}^{\infty} L_i$, where $L_1 = \{\epsilon\}$ and b_{i+1} contains the strings x, bbx, xac for all $x \in L_i$.

1. Is L a formal language?

2. Which of the following strings are in L? Justify your answer

$s_1 = bbac$	$s_2 = bbacc$	$s_3 = bbbac$
$s_4 = acac$	$s_5 = bbbacac$	$s_6 = bbacac$

9 Assignment 9 (Boolean Logic) – Given Nov. 17. 2015 Problem 9.1 (CNF and DNF)

1. Find the CNF and DNF of the boolean function that corresponds to the expression

12pt

 $\overline{\overline{x_1} \ast x_2 + x_3}$

2. Identify the cost and depth of this expression.

10 Assignment 10 (QMC) – Given Nov. 24. 2015

Problem 10.1 (Quine-McCluskey)

Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the fol- 6pt lowing function:

x1	x2	x3	f
F	F	F	F
F	F	Т	T
F	Т	F	F
F	Т	Т	T
T	F	F	Т
Т	F	Т	Т
Т	Т	F	F
Т	Т	Т	F

Problem 10.2 For each of the following propositional formulae, state (and justify!) 6pt whether they are satisfiable/falsifiable/unsatisfiable/valid.

- 1. $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow p \Rightarrow r$
- 2. $x \land \neg (x \lor y)$
- 3. love(bill, mary) \land love(mary, bill) \Rightarrow love(bill, bill)

Note: You can use whichever method you like: truth tables, boolean algebra, or anything else we introduced in the lecture.

11 Assignment 11 (Propositional Logic) – Given Dec. 1. 2015

Problem 11.1 (Hilbert calculus)

Consider the Hilbert-style calculus given by the axioms

$$K := P \Rightarrow Q \Rightarrow P \qquad S := (P \Rightarrow Q \Rightarrow R) \Rightarrow (P \Rightarrow Q) \Rightarrow P \Rightarrow R$$

and the rules:

$$\frac{\mathbf{A} \Rightarrow \mathbf{B} \quad \mathbf{A}}{\mathbf{B}} \text{MP} \qquad \frac{\mathbf{A}}{[\mathbf{B}/X](\mathbf{A})} \text{Subst}$$

Prove that $(\mathbf{M} \Rightarrow \mathbf{M}) \Rightarrow \mathbf{M} \Rightarrow \mathbf{M}$.

Problem 11.2 (An incorrect calculus)

Why is this calculus C^2 incorrect?

- C^2 Axiom: $P \Rightarrow Q \Rightarrow P$
- C^2 Inference Rules: $\frac{\mathbf{A} \Rightarrow \mathbf{B} \quad \mathbf{B} \Rightarrow \mathbf{C}}{\mathbf{C}} R2 \qquad \frac{\mathbf{A}}{[\mathbf{B}/P]\mathbf{A}}$ Subst

9pt

3pt