# Quizzes for General CS II (320102) Fall 2014 <br> Michael Kohlhase <br> Jacobs University Bremen <br> For Course Purposes Only 

December 12, 2016

## Contents

1 Assignment 1 (Introductory Quiz) - Given Sep. 8. 2014
2 Assignment 2 (Unary Natural Numbers) - Given Sep. 15. 2014
3 Assignment 3 (Relations and functions) - Given Sep. 22. 20144
4 Assignment 4 (SML Language) - Given Sep. 29. 2014
5 Assignment 6 (Abstract Data Types) - Given Oct. 13. 2014
6 Assignment 7 (Character Codes) - Given Nov. 3. 2014
7 Assignment 8 (Boolean expressions) - Given Nov. 10. 2014
8 Assignment 9 (Quine-McCluskey Algorithm) - Given Nov. 17. 2014
9 Assignment 10 (Hilbert Calculus) - Given Nov. 24. 2014
10 Assignment 11 (Hilbert Calculus) - Given Dec. 1. 2014

## 1 Assignment 1 (Introductory Quiz) - Given Sep. 8. 2014

Problem 1.1 (Keywords of General Computer Science)
Our course started with a motivation of "General Computer Science" where some funda- 8pt mental notions where introduced. Name three of these fundamental notions and give for each of them a short explanation.
Problem 1.2 (GenCS Grading)
State the components of the overall grade of the GenCS course and discuss their intention. 4pt

## 2 Assignment 2 (Unary Natural Numbers) - Given Sep.

 15. 2014Problem 2.1 (UNN Powers)
Give the defining equations for the the power operation $\pi: \mathbb{N}_{1} \times \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ on unary natural 8pt numbers. Assume the addition $\alpha: \mathbb{N}_{1} \times \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ and multiplication $\mu: \mathbb{N}_{1} \times \mathbb{N}_{1} \rightarrow \mathbb{N}_{1}$ operations are already given.
Problem 2.2 (Peano's induction axiom)
State Peano's induction axiom and discuss what it can be used for.

## 3 Assignment 3 (Relations and functions) - Given Sep.

 22. 2014Problem 3.1 Given set $A=\{a, b, c, d, e, f, g\}$ determine whether the following relations 6 pt $R \subseteq A \times A$, are reflexive, symmetric and/or transitive and briefly justify your answer:

- $R=\{\langle a, a\rangle,\langle c, d\rangle,\langle a, c\rangle,\langle b, d\rangle\}$
- $R=\{\langle a, a\rangle,\langle g, g\rangle,\langle e, e\rangle,\langle d, d\rangle\langle a, c\rangle\langle c, c\rangle\langle c, a\rangle\langle c, d\rangle\langle f, f\rangle\langle b, b\rangle\}$
- $R=\{\langle b, e\rangle\langle e, b\rangle\langle d, d\rangle\langle d, f\rangle\langle c, g\rangle\langle f, d\rangle\langle g, c\rangle\}$

Give an example of a relation on the given set $A$ which is a strict partial order and which has at least three elements.

## Problem 3.2 (Function Definition)

Let $A$ and $B$ be sets. State the definition of the concept of a partial function with domain $A \quad 6 \mathrm{pt}$ and codomain $B$. Also state the definition of a total function with domain $A$ and codomain $B$.

## 4 Assignment 4 (SML Language) - Given Sep. 29. 2014

Problem 4.188 pt
val merge $=\mathbf{f n}$ : 'a list $*$ 'a list $->$ 'a list

- merge([1,3,5],[2,4,6]);
val it $=[1,2,3,4,5,6]$ : int list
Write an SML function merge that takes two sorted lists and merges them into another sorted list.
Hint: Recall that we call a list $\left[l_{1}, l_{2}, \ldots, l_{n}\right]$ sorted, iff it is empty, a singleton list, or $l_{i} \leq l_{i+1}$ for all $1 \leq i \leq n-1$.
Problem 4.2 (Add elements of list)
Implement a function that given an int list outputs the sum of its elements with the 4 pt following signature and example:
val sum $=\mathbf{f n}$ : int list $->$ int
- sum[0,3,2,5];
val it $=10:$ int


## 5 Assignment 6 (Abstract Data Types) - Given Oct.

 13. 2014Problem 6.1 A binary tree is a tree in which each node has either 2 or no children. A 12 pt node that has no children is called a leaf. Construct an abstract data type for binary trees. Each node needs to store a natural number as well. Give a ground constructor term that represents a binary tree with at least four nodes for your ADT.

## 6 Assignment 7 (Character Codes) - Given Nov. 3. 2014

Problem 7.1 (Character Encodings)
Briefly introduce and discuss the relative merits of

1. the ASCII code,
2. the ISO-Latin codes,
3. the Universal Character Set, and
4. the Unicode encodings UTF-8, UTF-16, and UTF-32

## 7 Assignment 8 (Boolean expressions) - Given Nov. 10. 2014

Problem 8.1 (Evaluating Expressions)
Given the expression $E:=\left(x_{0}+x_{1}\right) *\left(\overline{x_{1}}+x_{0} * x_{2}\right) \quad 12 \mathrm{pt}$
Your tasks are:

1. If $\varphi:=\left[\mathrm{F} / x_{0}\right],\left[\mathrm{T} / x_{1}\right],\left[\mathrm{F} / x_{2}\right]$, evaluate the expression using the evaluation function $\mathcal{I}_{\varphi}(E)$ and showing the whole computation.
2. Write down the truth table for the expression.
3. What is the depth of the expression?

## 8 Assignment 9 (Quine-McCluskey Algorithm) - Given

 Nov. 17. 2014Problem 9.1 (Quine-McCluskey)
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the fol- 12 pt lowing function:

| $x 1$ | $x 2$ | $x 3$ | $f$ |
| :---: | :---: | :---: | :---: |
| F | F | F | F |
| F | F | T | T |
| F | T | F | F |
| F | T | T | T |
| T | F | F | T |
| T | F | T | T |
| T | T | F | F |
| T | T | T | F |

## 9 Assignment 10 (Hilbert Calculus) - Given Nov. 24. 2014

## Problem 10.1 (A Hilbert Calculus)

Consider the Hilbert-style calculus given by the axioms

1. $K:=P \Rightarrow Q \Rightarrow P$
2. $S:=(P \Rightarrow Q \Rightarrow R) \Rightarrow(P \Rightarrow Q) \Rightarrow P \Rightarrow R$
and the rules:
3. $\frac{\mathbf{A} \Rightarrow \mathbf{B} \quad \mathbf{A}}{\mathbf{B}} \mathrm{MP}$
4. $\frac{\mathbf{A}}{[\mathbf{B} / X](\mathbf{A})}$ Subst

Prove that $((\mathbf{A} \Rightarrow \mathbf{B} \Rightarrow \mathbf{C}) \Rightarrow(\mathbf{A} \Rightarrow \mathbf{B})) \Rightarrow(\mathbf{A} \Rightarrow \mathbf{B} \Rightarrow \mathbf{C}) \Rightarrow \mathbf{A} \Rightarrow \mathbf{C}$.
Hint: Look at the given rules and find out which one is better suited for starting the proof.

## 10 Assignment 11 (Hilbert Calculus) - Given Dec. 1. 2014

Problem 11.1 (Natural Deduction)
Given the following inference rules for $\mathcal{N} \mathcal{D}^{0}$ :


Prove that $\mathbf{A} \wedge(\mathbf{B} \wedge \mathbf{C}) \Rightarrow \mathbf{C} \wedge \mathbf{A}$. Specify the rules applied at each step.

