Quizzes for General CS I (320101) Fall 2012

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

January 3, 2013

Contents

Quiz 1: Introductory Quiz	2
Quiz 2: Math Talk and Peano Axioms	3
Quiz 3: Relations and functions	4
Quiz 4: SML	5
Quiz 5: SML	6
Quiz 6: Substitutions and Abstract Procedures	7
Quiz 7: Formal Languages and Codes	8

Quiz 1: Introductory Quiz(Given Sep. 10. 2012)

Problem 1.1 (GenCS Grading)

State the components of the overall grade of the GenCS course and discuss their intention.

Problem 1.2 (What is an algorithm?)

What is an algorithm? Give 3 examples of algorithms and explain them (be creative and make sure that at least two of them are not on the slides!).

$4 \mathrm{pt}$

Quiz 2: Math Talk and Peano Axioms(Given Sep. 17. 2012)

Problem 2.1 (Math Talk)

Transliterate (turn into natural language) $\forall x. \exists S. x \in S \Leftrightarrow \neg(x \notin S)$

3pt

9pt

Problem 2.2 (Natural numbers)

Prove or refute that s(s(o)) and s(s(s(o))) are unary natural numbers and that their successors are different.

Quiz 3: Relations and functions(Given Sep. 24. 2012)

Problem 3.1: Given $A := \{1, 7, 9, 6\}, B := \{5, 4, 8\}$ and following relations:

$$R_1 \subseteq A \times A, \quad R_1 := \{ \langle 7, 9 \rangle, \langle 9, 7 \rangle, \langle 1, 1 \rangle, \langle 1, 6 \rangle, \langle 6, 1 \rangle \}$$

 $R_2 \subseteq B \times B, \quad R_2 := \{ \langle 8, 4 \rangle, \langle 5, 5 \rangle, \langle 4, 4 \rangle, \langle 8, 8 \rangle, \langle 8, 5 \rangle, \langle 5, 4 \rangle \}$

Determine for these relations whether they are reflexive, symmetric, and transitive. If they are not, give counterexamples (i.e. examples, where the given property is violated). 6pt

Problem 3.2 (Function Properties)

Consider the function
$$f \colon \mathbb{R} \to \mathbb{R}$$
 with $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ -x+3 & \text{else} \end{cases}$

Prove or refute that function f is bijective on \mathbb{R} .

Quiz 4: SML(Given Oct. 1. 2012)

Problem 4.1 (Square the list)

Write an SML function squareList that takes an int list and returns the list with every element squared.

Example:

 $\begin{array}{l} - \mbox{ squareList } [1,\,4,\,3,\,10]; \\ {\bf val } \mbox{it} = [1,\,16,\,9,\,100]: \mbox{int list}; \end{array}$

Note: $x^2 = x * x$

Problem 4.2 (Add elements of list)

Implement a function that given an int list outputs the sum of its elements with the following signature and example:

val sum = fn : int list -> int - sum[0,3,2,5]; val it = 10 : int $6 \mathrm{pt}$

Quiz 5: SML(Given Oct. 1. 2012)

Problem 5.1 (SML and ADTs)

You are given the following SML datatype which describes an ADT for a molecule:

datatype num = zero | suc of num; datatype elt = el of num; datatype mol = one of elt*num | add of elt*num*mol;

- 1. Write down the formal ADT definition that describes this SML datatype.
- 2. Given the SML expression below, determine whether it represents a valid ground constructor term for a molecule or not and give a short explanation of your answer: add(el(suc(zero)),suc(suc(zero)),one(suc(suc(zero)),suc(zero)))

Quiz 6: Substitutions and Abstract Procedures(Given Oct. 15. 2012)

Problem 6.1 (Substitutions)

You are given the ADT

 $\langle \{\mathbb{A}, \mathbb{B}, \mathbb{C}\}, \{[a:\mathbb{A}], [b:\mathbb{B}], [c:\mathbb{C}], [f:\mathbb{A} \to \mathbb{A}], [g:\mathbb{A} \times \mathbb{B} \to \mathbb{A}], [h:\mathbb{B} \times \mathbb{B} \to \mathbb{A}] \} \rangle$

Which of the following mappings are valid substitutions?

$$\begin{split} &\sigma_1 := [(f(x_{\mathbb{A}}))/x_{\mathbb{A}}], [c/y_{\mathbb{C}}], [(g(x_{\mathbb{A}}, b))/Z_{\mathbb{A}}] \\ &\sigma_2 := [(h(a, b))/x_{\mathbb{A}}], [(g(a, b))/y_{\mathbb{A}}] \\ &\sigma_3 := [(f(a, c))/x_{\mathbb{A}}], [(g(a, b))/y_{\mathbb{A}}] \\ &\sigma_4 := [f^{i+1}(x_{\mathbb{A}})/f^i(x_{\mathbb{A}})], i \in \mathbb{N} \text{ with } f^0(x_{\mathbb{A}}) = x_{\mathbb{A}} \text{ and } f^{i+1}(x_{\mathbb{A}}) = f(f^i(x_{\mathbb{A}})) \\ & \text{Justify your answers.} \end{split}$$

Quiz 7: Formal Languages and Codes(Given Nov. 05. 2012)

Problem 7.1 (Codes)

You are given the alphabets $A := \{x, y, z, t\}$ and $B := \{:, ;,), (\}$, and the function $c : A \to B^+$, with:

$$c(x) =:)$$

 $c(y) =;)$
 $c(z) = (: ($
 $c(t) =;))$

- 1. Please encode the string "xyxytzxz" using c.
- 2. Is c a character code? Please state why or give a counter-example.
- 3. Check whether c is a prefix code. If not, explain why, and modify the codewords of c such that it becomes a prefix code.
- 4. Check whether the extension of the original code c given above is a string code. Briefly explain your reasoning (no formal proof needed).