Assignments for General CS 1 (320201)

Michael Kohlhase
Jacobs University Bremen
For Course Purposes Only

September 16, 2013

Contents

Quiz 1: Algorithms 2
Quiz 2: Relations and Functions 3
Quiz 3: Properties of Functions 4
Quiz 4: SML 5
Quiz 5: Abstract data types 6
Quiz 6: Abstract procedures 7
Quiz 7: Codes 8
Quiz 8: Boolean Algebra 9
Quiz 9: Landau sets 10
Quiz 10: Karnaugh-Veitch Diagrams 11
Quiz 11: Calculi 12

Quiz 1: Algorithms(Given Sep. 10.)

Problem 1.1 (Algorithms)

One of the most essential concepts in computer science is the Algorithm.

- What is the intuition behind the term "algorithm".
- What determines the quality of an algorithm?
- Give an everyday example of an algorithm.

Solution:

- An algorithm is a series of instructions to control a (computation) process.
- Termination, correctness, performance
- e.g. a recipe

Quiz 2: Relations and Functions(Given Sep. 18.)

Problem 2.1 (Relation Properties)

Given a base set $A:=\{a, b, c\}$, for each of the following properties:

1. reflexive
2. symmetric
3. antisymmetric
4. transitive
write down a relation $R_{i} \subseteq A \times A(i=1, \ldots, 4)$ that has property i and contains at least three tuples.

Solution:

1. $R_{1}:=\{\langle a, a\rangle,\langle b, b\rangle,\langle c, c\rangle\}$ (no other possibility)
2. e.g. $R_{2}:=\{\langle a, b\rangle,\langle b, c\rangle,\langle b, a\rangle,\langle c, b\rangle\}$
3. e. g. $R_{3}:=\{\langle a, b\rangle,\langle b, c\rangle,\langle a, c\rangle\}$
4. e. g. $R_{4}:=\{\langle a, b\rangle,\langle b, c\rangle,\langle a, c\rangle\}$

Problem 2.2 (Function Definition)

Let A and B be sets. State the definition of the concept of a partial function with domain A and codomain B. Also state the definition of a total function with domain A and codomain B.

Solution: Let A and B be sets, then a relation $R \subseteq A B$ is called a partial/total function, iff for each $a \in A$, there is at most/exactly one $b \in B$, such that $\langle a, b\rangle \in R$.

Quiz 3: Properties of Functions(Given Sep. 24.)

Problem 3.1: For the functions below determine whether they are injective, surjective, bijective. If they are not, give counter-examples. Give the inverse function for any bijective one.

$f: \mathbb{N} \rightarrow \mathbb{N}$	$x \mapsto 5 x$
$h: \mathbb{N} \rightarrow \mathbb{N}$	$x \mapsto x \bmod 7$
$i:\{2,3,4\} \rightarrow\{1,2,3\}$	$x \mapsto x-1$

Solution:

- f is injective and not surjective (e.g. $4 \notin f(\mathbb{N})$), so f is not bijective
- h is not injective (e.g. $h(10)=h(3)$), not surjective (e.g. $10 \notin f(\mathbb{N})$), and thus not bijective
- i is injective, surjective and bijective; $i^{-1}(x):=x+1$

Quiz 4: SML(Given Oct. 8.)

Problem 4.1: Write down the type (with explicit brackets) of the following expressions $f n$ ($x:$ int) $\stackrel{6 \mathrm{pt}}{\Rightarrow}$ (fn (y) $\Rightarrow x$: 6 pt
Problem 4.2: Define the member relation which checks whether an integer is member of a list of integers. The solution should be a function of type int $*$ int list $->$ bool, which evaluates to true on arguments n and 1 , iff n is an element of the list 1 .

Solution: The simplest solution is the following

```
fun member(n,nil) = false
```

 | member \((\mathrm{n}, \mathrm{h}:: \mathrm{r})=\) if \(\mathrm{n}=\mathrm{h}\) then true else member \((\mathrm{n}, \mathrm{r})\);
 The intuition here is that a is a member of a list l, iff it is the first element, or it is a member of the rest list.

Note that we cannot just use member ($\mathrm{n}, \mathrm{n}: \mathrm{r}$) to eliminate the conditional, since SML does not allow duplicate variables in matching. But we can simplify the conditional after all: we can make use of SML's orelse function which acts as a logical "or" and get the slightly more elegant program

```
fun member(n,nil) = false
    | member(n,h::r) = (n=h) orelse member(n,r);
```


Quiz 5: Abstract data types(Given Oct. 15.)

Problem 5.1 (SML datatypes vs Abstract Data Types)

Given the SML datatypes

1. datatype $\mathrm{A}=\mathrm{a} \mid \mathrm{f}$ of $\mathrm{A} * \mathrm{~A}$
2. datatype $B=b \mid g$ of $A->B$

Write down one abstract data type in math notation representing both SML datatypes at once.
Solution:

$$
\langle\{\mathbb{A}, \mathbb{B}\},\{[a: \mathbb{A}],[b: \mathbb{B}],[f: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}],[g: \mathbb{A} \rightarrow \mathbb{B} \rightarrow \mathbb{B}]\}\rangle
$$

Problem 5.2 (Substitution)
6 pt
Apply the substitutions $\sigma:=[b / x],[(g(a)) / y],[a / w]$ and $\tau:=[(h(c)) / x],[c / z]$ to the terms $s:=$ $f(g(x, g(a, x, b), y))$ and $t:=g(x, x, h(y))$ (give the 4 result terms $\sigma(s), \sigma(t), \tau(s)$, and $\tau(t))$.

Solution:

$$
\begin{array}{lll}
\sigma(s)=f(g(a, f(b), g(a, a, b))) & \sigma(t)=g(a, f(b), h(a)) \\
\tau(s)=f(g(f(b), y, g(a, f(b), b))) & \tau(t)=g(f(b), y, h(c))
\end{array}
$$

Quiz 6: Abstract procedures(Given Oct. 22.)

Problem 6.1 (Recursion and termination)
Given the following SML function,

```
fun f(0) = true
    |f(1) = false
    | f(2) = false
    | f(n) = f(n-3)
```

1. describe in your own words what this function computes.
2. give the recursion relation of the corresponding abstract procedure \mathcal{P}.
3. Does \mathcal{P} terminate on all natural number inputs? (Please justify your claim!)

Solution: Thanks to Anca Dragan for suggesting this exercise.

1. The function computes whether a given natural number is divisible by 3 .
2. $\langle n, n-3\rangle$
3. Yes, would prove this by induction with the base cases 0,1 , and 2 , and the induction step $n-3 \mapsto n$.

Quiz 7: Codes(Given Nov. 5.)

Problem 7.1: Let $A:=\{\mathrm{a}, \mathrm{h}, /, \#, \mathrm{x}\}$ and \prec be the ordering relation on A with $\mathrm{x} \prec \# \prec / \prec$ $\mathrm{h} \prec \mathrm{a}$. Order the following strings in A^{*} in the lexical order $<_{\text {lex }}$ induced by \prec.

$s_{1}=\# \# \# \#$	$s_{2}=\# \# \mathrm{x} \# \# \mathrm{~h}$	$s_{3}=\epsilon$
$s_{4}=\# \# \mathrm{~h} \# \# \mathrm{x}$	$s_{5}=\mathrm{a} \# \# \# \mathrm{a} \#$	$s_{6}=\# \# \# \# /$

Quiz 8: Boolean Algebra(Given Nov. 12.)

Problem 8.1: Determine the Boolean function f_{e} induced by the Boolean expression $e:=$ $((x 1+x 2) * \overline{x 2 * x 3})$. Moreover determine the CNF and DNF of f_{e}.

Quiz 9: Landau sets(Given Nov. 19.)

Problem 9.1: Determine for the following functions f and g whether $f \in O(g)$, or $f \in \Omega(g)$, or $f \in \Theta(g)$, explain your answers.

f	g	f	g
4572	84	$n^{3}+3 * n$	n^{3}
$\log \left(n^{3}\right)$	$\log (n)$	$n^{2}-2^{2}$	n^{3}
16^{n}	2^{n}	n^{n}	2^{n+1}

Solution: The following table summarizes the results.

Fact	Explanation
$4572 \in \Theta(84)$	For all $n \in \mathbb{N}$ we have $1000 \cdot 84 \leq 4572$ and $0.001 \cdot 4572 \leq$ 84
$n^{3}+3 * n \in \Omega\left(n^{3}\right)$	For all $n:$ If $c=1$ then $n^{3}+3 * n \geq n^{3}$ and if $c=10$ then $n^{3}+3 * n \leq n^{3}$.
$\left(\log n^{3}\right) \in \Theta(\log (n))$	Since $\log \left(n^{3}\right)=3 \cdot \log (n)$
$n^{2}-2^{2} \in \Omega\left(n^{3}\right)$	larger exponents win
$16^{n} \in \Theta\left(2^{n}\right)$	For all c there is an n such that $16^{n} \geq c \cdot 2^{n} ;$ just take n for a given c such that $8^{n} \geq c$.
$n^{n} \in O\left(2^{n+1}\right)$	For $c=2$ and $n>1$ we have $2^{n+1}=2 * 2^{n} \leq c \cdot n^{n}$

Quiz 10: Karnaugh-Veitch Diagrams(Given Nov. 26.)

Problem 10.1 (Karnaugh-Veitch Minimization)
Use a KV map to determine the minimal polynomial of the following function:

$x 1$	$x 2$	$x 3$	$x 4$	f
F	F	F	F	T
F	F	F	T	F
F	F	T	F	T
F	F	T	T	F
F	T	F	F	T
F	T	F	T	T
F	T	T	F	F
F	T	T	T	F
T	F	F	F	T
T	F	F	T	F
T	F	T	F	T
T	F	T	T	F
T	T	F	F	T
T	T	F	T	T
T	T	T	F	F
T	T	T	T	T

Solution: Note that the values in the four corners form one group! To obtain a minimal polynomial, one must also use intersecting groups here.

Quiz 11: Calculi(Given Dec. 3.)

Problem 11.1: We have proven the correctness of the Hilbert calculus \mathcal{H}^{0} in class. The problems of this quiz is about two incorrect calculi \mathcal{C}^{1} and \mathcal{C}^{2} which differ only slightly from \mathcal{H}^{0}.
What makes them incorrect?
Hint: The fact that \mathcal{H}^{0} has two axioms, but each of \mathcal{C}^{1} and \mathcal{C}^{2} only have one is not the point. Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus \mathcal{C}^{1} incorrect?

- \mathcal{C}^{1} Axiom: $P \Rightarrow P \wedge Q$
- \mathcal{C}^{1} Inference Rules: $\frac{\mathbf{A} \Rightarrow \mathbf{B} \quad \mathbf{A}}{\mathbf{B}}$ MP $\quad \frac{\mathbf{A}}{[\mathbf{B} / P] \mathbf{A}}$ Subst

Why is this calculus \mathcal{C}^{2} incorrect?

- \mathcal{C}^{2} Axiom: $P \Rightarrow Q \Rightarrow P$
- \mathcal{C}^{2} Inference Rules: $\frac{\mathbf{A} \vee \mathbf{B} \mathbf{A}}{\mathbf{A} \wedge \mathbf{B}} R 2 \quad \frac{\mathbf{A}}{[\mathbf{B} / P] \mathbf{A}}$ Subst

Solution: A correct calculus requires valid axioms.
However the Axiom of \mathcal{C}^{1} is not valid since the assignment $\varphi=[T / P],[T / Q],[F / R]$ makes it false.

