Assignments for General CS 1 (320201)

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

September 16, 2013

Contents

Quiz 1: Algorithms	2
Quiz 2: Relations and Functions	3
Quiz 3: Properties of Functions	4
Quiz 4: SML	5
Quiz 5: Abstract data types	6
Quiz 6: Abstract procedures	7
Quiz 7: Codes	8
Quiz 8: Boolean Algebra	9
Quiz 9: Landau sets	10
Quiz 10: Karnaugh-Veitch Diagrams	11
Quiz 11: Calculi	12

Quiz 1: Algorithms(Given Sep. 10.)

Problem 1.1 (Algorithms)

One of the most essential concepts in computer science is the Algorithm.

- What is the intuition behind the term "algorithm".
- What determines the quality of an algorithm?
- Give an everyday example of an algorithm.

Solution:

- An algorithm is a series of instructions to control a (computation) process.
- Termination, correctness, performance
- e.g. a recipe

Quiz 2: Relations and Functions(Given Sep. 18.)

Problem 2.1 (Relation Properties)

Given a base set $A := \{a, b, c\}$, for each of the following properties:

- 1. reflexive
- 2. symmetric
- 3. antisymmetric
- 4. transitive

write down a relation $R_i \subseteq A \times A$ (i = 1, ..., 4) that has property *i* and contains at least three tuples.

Solution:

1. $R_1 := \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$ (no other possibility)

- 2. e.g. $R_2 := \{ \langle a, b \rangle, \langle b, c \rangle, \langle b, a \rangle, \langle c, b \rangle \}$
- 3. e.g. $R_3 := \{ \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle \}$
- 4. e.g. $R_4 := \{ \langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle \}$

Problem 2.2 (Function Definition)

Let A and B be sets. State the definition of the concept of a partial function with domain A and codomain B. Also state the definition of a total function with domain A and codomain B. Solution: Let A and B be sets, then a relation $R \subseteq AB$ is called a partial/total function, iff for each $a \in A$, there is at most/exactly one $b \in B$, such that $\langle a, b \rangle \in R$.

 $6 \mathrm{pt}$

Quiz 3: Properties of Functions(Given Sep. 24.)

Problem 3.1: For the functions below determine whether they are injective, surjective, bijective. If they are not, give counter-examples. Give the inverse function for any bijective one.

$f\colon \mathbb{N} \to \mathbb{N}$	$x \mapsto 5x$
$h:\mathbb{N}\to\mathbb{N}$	$x \mapsto x \mod 7$
$i: \{2, 3, 4\} \to \{1, 2, 3\}$	$x \mapsto x - 1$

Solution:

- f is injective and not surjective (e.g. $4 \notin f(\mathbb{N})$), so f is not bijective
- h is not injective (e.g. h(10) = h(3)), not surjective (e.g. $10 \notin f(\mathbb{N})$), and thus not bijective
- *i* is injective, surjective and bijective; $i^{-1}(x) := x + 1$

 $12 \mathrm{pt}$

Quiz 4: SML(Given Oct. 8.)

Problem 4.1: Write down the type (with explicit brackets) of the following expressions fn $(x:int) \Rightarrow (fn (y) \Rightarrow x)$

6pt

Problem 4.2: Define the member relation which checks whether an integer is member of a list of integers. The solution should be a function of type int * int list -> bool, which evaluates to true on arguments n and 1, iff n is an element of the list 1.

Solution: The simplest solution is the following

The intuition here is that a is a member of a list l, iff it is the first element, or it is a member of the rest list.

Note that we cannot just use member(n,n::r) to eliminate the conditional, since SML does not allow duplicate variables in matching. But we can simplify the conditional after all: we can make use of SML's orelse function which acts as a logical "or" and get the slightly more elegant program

Quiz 5: Abstract data types(Given Oct. 15.)

Problem 5.1 (SML datatypes vs Abstract Data Types)

Given the SML datatypes

- 1. datatype A = a | f of A * A
- 2. datatype $B = b \mid g \text{ of } A \rightarrow B$

Write down one abstract data type in math notation representing both SML datatypes at once.

Solution: $\langle \{\mathbb{A}, \mathbb{B}\}, \{[a: \mathbb{A}], [b: \mathbb{B}], [f: \mathbb{A} \times \mathbb{A} \to \mathbb{A}], [g: \mathbb{A} \to \mathbb{B} \to \mathbb{B}] \} \rangle$

Problem 5.2 (Substitution)

Apply the substitutions $\sigma := [b/x], [(g(a))/y], [a/w] \text{ and } \tau := [(h(c))/x], [c/z] \text{ to the terms } s := \frac{f(g(x, g(a, x, b), y)) \text{ and } t := g(x, x, h(y)) \text{ (give the 4 result terms } \sigma(s), \sigma(t), \tau(s), \text{ and } \tau(t)).}$ Solution: $\sigma(s) = f(g(a, f(b), g(a, a, b))) \qquad \sigma(t) = g(a, f(b), h(a))$ $\tau(s) = f(g(f(b), y, g(a, f(b), b))) \qquad \tau(t) = g(f(b), y, h(c))$

6pt

Quiz 6: Abstract procedures(Given Oct. 22.)

Problem 6.1 (Recursion and termination)

Given the following SML function,

fun f(0) = true
| f(1) = false
| f(2) = false
| f(n) = f(n-3)

- 1. describe in your own words what this function computes.
- 2. give the recursion relation of the corresponding abstract procedure \mathcal{P} .
- 3. Does \mathcal{P} terminate on all natural number inputs? (Please justify your claim!)

Solution: Thanks to Anca Dragan for suggesting this exercise.

- 1. The function computes whether a given natural number is divisible by 3.
- 2. $\langle n, n-3 \rangle$
- 3. Yes, would prove this by induction with the base cases 0, 1, and 2, and the induction step $n-3 \mapsto n$.

Quiz 7: Codes(Given Nov. 5.)

Problem 7.1: Let $A := \{a, h, /, \#, x\}$ and \prec be the ordering relation on A with $x \prec \# \prec / \prec$ $h \prec a$. Order the following strings in A^* in the lexical order $<_{lex}$ induced by \prec .

$s_1 = \# \# \# \# \#$	$s_2 = \# \# \mathtt{x} \# \# \mathtt{h}$	$s_3 = \epsilon$
$s_4 = \#\#\mathtt{h}\#\#\mathtt{x}$	$s_5 = \mathtt{a} \# \# \# \mathtt{a} \#$	$s_6 = \# \# \# \# \# /$

Quiz 8: Boolean Algebra(Given Nov. 12.)

Problem 8.1: Determine the Boolean function f_e induced by the Boolean expression $e := ((x1 + x2) * \overline{x2 * x3})$. Moreover determine the CNF and DNF of f_e .

Quiz 9: Landau sets(Given Nov. 19.)

_

Problem 9.1: Determine for the following functions f and g whether $f \in O(g)$, or $f \in \Omega(g)$, or $f \in \Theta(g)$, explain your answers.

f	g	f	g
4572	84	$n^3 + 3 * n$	n^3
$\log(n^3)$	$\log(n)$	$n^2 - 2^2$	n^3
16^n	2^n	n^n	2^{n+1}

Solution: The follow	ving table summarizes the results.
Fact	Explanation
$4572 \in \Theta(84)$	For all $n \in \mathbb{N}$ we have $1000 \cdot 84 \le 4572$ and $0.001 \cdot 4572 \le$
	84
$n^3 + 3 * n \in \Omega(n^3)$	For all n: If $c = 1$ then $n^3 + 3 * n \ge n^3$ and if $c = 10$
	then $n^3 + 3 * n \le n^3$.
$(logn^3) \in \Theta(log(n))$	Since $log(n^3) = 3 \cdot log(n)$
$n^2 - 2^2 \in \Omega(n^3)$	larger exponents win
$16^n \in \Theta(2^n)$	For all c there is an n such that $16^n \ge c \cdot 2^n$; just take n
	for a given c such that $8^n \ge c$.
$n^n \in O(2^{n+1})$	For $c = 2$ and $n > 1$ we have $2^{n+1} = 2 * 2^n \le c \cdot n^n$

Quiz 10: Karnaugh-Veitch Diagrams(Given Nov. 26.)

Problem 10.1 (Karnaugh-Veitch Minimization)

Use a KV map to determine the minimal polynomial of the following function:

x1	x2	x3	x4	f
F	F	F	F	Т
F	F	F	Т	F
F	F	Т	F	Т
F	F	Т	Т	F
F	Т	F	F	Т
F	Т	F	Т	T F T T
F	Т	Т	F	F
F	Т	Т	Т	F
Т	F	F	F	T F
Т	F	F	Т	F
Т	F	Т	F	T F T T
Т	F	Т	Т	F
Т	Т	F	F	Т
Т	Т	F	Т	Т
Т	Т	Т	F	F
Т	Т	Т	Т	Т

Solution: Note that the values in the four corners form one group! To obtain a *minimal* polynomial, one must also use intersecting groups here.

 $12 \mathrm{pt}$

Quiz 11: Calculi(Given Dec. 3.)

Problem 11.1: We have proven the correctness of the Hilbert calculus \mathcal{H}^0 in class. The problems of this quiz is about two incorrect calculi \mathcal{C}^1 and \mathcal{C}^2 which differ only slightly from \mathcal{H}^0 .

What makes them incorrect?

Hint: The fact that \mathcal{H}^0 has two axioms, but each of \mathcal{C}^1 and \mathcal{C}^2 only have one is not the point. Remember the properties of axioms and inference rules which are preconditions for a correct calculus.

Why is this calculus \mathcal{C}^1 incorrect?

- \mathcal{C}^1 Axiom: $P \Rightarrow P \land Q$
- C^1 Inference Rules: $\frac{\mathbf{A} \Rightarrow \mathbf{B} \quad \mathbf{A}}{\mathbf{B}} \text{MP} \qquad \qquad \frac{\mathbf{A}}{[\mathbf{B}/P]\mathbf{A}} \text{Subst}$

Why is this calculus C^2 incorrect?

• \mathcal{C}^2 Axiom: $P \Rightarrow Q \Rightarrow P$

•
$$C^2$$
 Inference Rules: $\frac{\mathbf{A} \vee \mathbf{B} \cdot \mathbf{A}}{\mathbf{A} \wedge \mathbf{B}} R^2 \qquad \frac{\mathbf{A}}{[\mathbf{B}/P]\mathbf{A}}$ Subst

Solution: A correct calculus requires valid axioms. However the Axiom of C^1 is not valid since the assignment $\varphi = [T/P], [T/Q], [F/R]$ makes it false. 12pt