Assignments for General CS 1 (320101)

Michael Kohlhase Jacobs University Bremen For Course Purposes Only

September 16, 2013

Contents

Quiz 1: Fundamental Notions(Given Sep. 11.)

Problem 1.1 (Keywords of General Computer Science)

Our course started with a motivation of "General Computer Science" where some fundamental notions where introduced. Name three of these fundamental notions and give for each of them a short explanation.

- Algorithms are abstract representations of computation instructions
- Data are representations of the objects the computations act on
- Machines are representations of the devices the computations run on

Quiz 2: Basic Math(Given Sep. 18.)

Problem 2.1: Given $A := \{1, 7, 9, 6\}, B := \{5, 4, 8\}$ and following relations:

$$R_1 \subseteq A \times A, \quad R_1 := \{ \langle 7, 9 \rangle, \langle 9, 7 \rangle, \langle 1, 1 \rangle, \langle 1, 6 \rangle, \langle 6, 1 \rangle \}$$

 $R_2 \subseteq B \times B, \quad R_2 := \{ \langle 8, 4 \rangle, \langle 5, 5 \rangle, \langle 4, 4 \rangle, \langle 8, 8 \rangle, \langle 8, 5 \rangle, \langle 5, 4 \rangle \}$

Determine for these relations whether they are reflexive, symmetric, and transitive. If they are not, give counterexamples (i.e. examples, where the given property is violated).

	reflexive	symmetric	transitive
R_1	N $(\langle 7,7 \rangle \notin R_1)$	Y	N $\langle 7, 9 \rangle, \langle 9, 7 \rangle \in R_1$, but $\langle 7, 7 \rangle \notin R_1$
R_2	Y	N ($\langle 4, 8 \rangle \in R_1$, but $\langle 8, 4 \rangle \notin R_2$)	Y

Quiz 3: ML basics(Given Sep. 25.)

What is the type of the following function and what does it compute? Use example arguments for your explanation.

Quiz 4: ML Types(Given Oct. 2.)

Problem 4.1: Write down the type (with explicit brackets) of the following expressions

1. ([2,2],(op*,op+))

Hint: op+ and op* are the arithmetic functions "plus" and "times".

2. fn (x:int) => (fn (y) => x::y)

Problem 4.2: Write down for each of the following types an appropriate SML expression

- 1. ((int list) * int)-> (int list)
- 2. (int -> int) -> (int -> int)

Quiz 6: Abstract Procedure(Given Oct. 16.)

Problem 6.1: Consider the following abstract procedure on the abstract data type of natural numbers:

 $\mathcal{P} := \langle f :: \mathbb{N} \to \mathbb{N} \, ; \, \{ f(o) \leadsto o, f(s(o)) \leadsto o, f(s(s(n_{\mathbb{N}}))) \leadsto s(f(n_{\mathbb{N}})) \} \rangle$

- 1. Show the computation process for \mathcal{P} on the arguments s(s(s(o))) and s(s(s(s(s(o)))))).
- 2. Give the recursion relation of \mathcal{P} .
- 3. Does \mathcal{P} terminate on all inputs?
- 4. What function is computed by \mathcal{P} ?

- 2. The recursion relation is $\{\langle s(s(n)), n \rangle \in (\mathbb{N} \times \mathbb{N}) \mid n \in \mathbb{N}\}$ (or $\langle n+2, n \rangle$)
- 3. the abstract procedure terminates on all inputs.
- 4. the abstract procedure computes the function $f \colon \mathbb{N} \to \mathbb{N}$ with $2n \mapsto n$ and $2n 1 \mapsto n$.

Quiz 7: Formal Language(Given Oct. 30.)

Problem 7.1 (Language of Unary Arithmetic)

For each of the expressions below explain why they belong to or do not belong to E_{un} .

- 1. div(x201, add/, x12))
- 2. mod(x201,x01(///,x12))
- 3. sub(mul(//,div(x21,//)),//)
- 4. add(x//,div(2//,//)),//)

Quiz 8: Induced Boolean Function(Given Nov. 6.)

Problem 8.1 (Induced Boolean Function)

Determine the Boolean function f_e induced by the Boolean expression $e := ((x1 + x2) * \overline{x1 * x3})$. Moreover determine the CNF and DNF of f_e .

Solution:

argument	value	argument	value
$\langle F, F, F \rangle$	Т	$\langle T,F,F\rangle$	Т
$\langle F, F, T \rangle$	Т	$\langle T, F, T \rangle$	Т
$\langle F, T, F \rangle$	Т	$\langle T, T, F \rangle$	F
$\langle F, T, T \rangle$	Т	$\langle T,T,T\rangle$	Т

10pt