General Computer Science
320201 GenCS I & II Problems

Michael Kohlhase

Computer Science
Jacobs University, Bremen Germany
m.kohlhase@jacobs-university.de

September 21, 2016

m.kohlhase@jacobs-university.de

i
Preface

This document contains selected homework and self-study problems for the course General Com-
puter Science I/IT held at Jacobs University Bremen! in the academic years 2003-2016. It is meant
as a supplement to the course notes [Kohlla, Koh11b]. We try to keep the numbering consistent
between the documents.

This document contains practice and homework problems for the material coverd in the lecture
(notes). The problems are tailored for understanding and practicing and should be attempted
without consulting the solutions, which are avaialbe at [Kohlle, Kohllc]

This document is made available for the students of this course only. It is still a draft, and will
develop over the course of the course. It will be developed further in coming academic years.

Acknowledgments: Immanuel Normann, Christoph Lange, Christine Miiller, and Vyacheslav
Zholudev have acted as lead teaching assistants for the course, have contributed many of the initial
problems and organized them consistently. Throughout the time I have tought the course, the
teaching assistants (most of them Jacobs University undergraduates; see below) have contributed
new problems and sample solutions, have commented on existing problems and refined them.

GenCS Teaching Assistants: The following Jacobs University students have contributed prob-
lems while serving as teaching assiatants over the years: Darko Pesikan, Nikolaus Rath, Flo-
rian Rabe, Andrei Aiordachioaie, Dimitar Asenov, Alen Stojanov, Felix Schlesinger, Stefan Anca,
Anca Dragan, Vladislav Perelman, Josip Djolonga, Lucia Ambrosova, Flavia Grosan, Christoph
Lange, Ankur Modi, Gordan Ristovski, Darko Makreshanski, Teodora Chitiboj, Cristina Stancu-
Mara, Alin Iacob, Vladislav Perelman, Victor Savu, Mihai Cotizo Sima, Radu Cimpeanu, Mihai
Crlanaru, Maria Alexandra Alecu, Miroslava Georgieva Slavcheva, Corneliu-Claudiu Prodescu,
Flavia Adelina Grosan, Felix Gabriel Mance, Anton Antonov, Alexandra Zayets, Ivaylo Enchev.

Hnternational University Bremen until Fall 2006

Contents

Preface

1 Getting Started with “General Computer Science”
1.1 Overview over the Course vttt
1.2 Administrativa e
1.3 Motivation and Introduction.

2 Motivation and Introduction

I Representation and Computation

3 Elementary Discrete Math
3.1 Mathematical Foundations: Natural Numbers
3.2 Reasoning about Natural Numbers
3.3 Defining Operations on Natural Numbers
3.4 Naive Set Theory e
3.5 Talking (and writing) about Mathematics
3.6 Relations L
3.7 Functions e e

4 Computing over Inductive Sets
4.1 Standard ML: Functions as First-Class Objects
4.2 Inductively Defined Sets and Computation
4.3 Inductively Defined Sets in SML

5 Abstract Data Types and Term Languages
5.1 Abstract Data Types and Ground Constructor Terms
5.2 A First Abstract Interpreter
5.3 Substitutions
5.4 Terms in Abstract Data Types
5.5 A Second Abstract Interpreter L Lo
5.6 Evaluation Order and Termination

6 More SML
6.1 More SML: Recursion in the Real World
6.2 Programming with Effects: Imperative Features in SML
6.2.1 Input and Output
6.2.2 Even more SML: Exceptions and State in SML

iii

w — = =

ot

15
15
17
18

19
19
20
21
22
23
24

Chapter 1

Getting Started with “General
Computer Science”

1.1 Overview over the Course

This should pose no problems

1.2 Administrativa

Neither should the administrativa

1.3 Motivation and Introduction

Problem 0.1 (Algorithms)

One of the most essential concepts in computer science is the Algorithm.
e What is the intuition behind the term “algorithm”.
e What determines the quality of an algorithm?
e Give an everyday example of an algorithm.

Problem 0.2 (Keywords of General Computer Science)

Our course started with a motivation of “General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Problem 0.3 (Representations)

An essential concept in computer science is the Representation.
e What is the intuition behind the term “representation”?
e Why do we need representations?
e Give an everyday example of a representation.

CHAPTER 1. GETTING STARTED WITH “GENERAL COMPUTER SCIENCE”

Chapter 2

Motivation and Introduction

Problem 0.4 (Algorithms)

One of the most essential concepts in computer science is the Algorithm.
e What is the intuition behind the term “algorithm”.
e What determines the quality of an algorithm?
e Give an everyday example of an algorithm.

Problem 0.5 (Keywords of General Computer Science)

Our course started with a motivation of “General Computer Science” where some fundamental
notions where introduced. Name three of these fundamental notions and give for each of them a
short explanation.

Problem 0.6 (Representations)

An essential concept in computer science is the Representation.
e What is the intuition behind the term “representation”?
e Why do we need representations?
e Give an everyday example of a representation.

CHAPTER 2. MOTIVATION AND INTRODUCTION

Part 1

Representation and Computation

Chapter 3

Elementary Discrete Math

3.1 Mathematical Foundations: Natural Numbers

Problem 0.7 (A wrong induction proof)
What is wrong with the following “proof by induction”? 25pt

Theorem: All students of Jacobs University have the same hair color.

Proof: We prove the assertion by induction over the number n of students at Jacobs
University.

base case: n = 1. If there is only one student at Jacobs University, then the assertion is
obviously true.

step case: n>1. We assume that the assertion is true for all sets of n students and show
that it holds for sets of n + 1 students. So let us take a set S of n + 1 students. As
n>1, we can choose students s € S and t € S with s # t and consider sets S, = S\{s}
and Sy := S\{t}. Clearly, #(Ss) = #(S;) = n, so all students in S; and have the same
hair-color by inductive hypothesis, and the same holds for S;. But .S = S;U.S;, so any
u € S has the same hair color as the students in S, N.S;, which have the same hair color
as s and ¢, and thus all students in S have the same hair color O

Problem 0.8 (Natural numbers)

Prove or refute that s(s(0)) and s(s(s(0))) are unary natural numbers and that their successors
are different.

Problem 0.9 (Peano’s induction axiom)

State Peano’s induction axiom and discuss what it can be used for.

8 CHAPTER 3. ELEMENTARY DISCRETE MATH

3.2 Reasoning about Natural Numbers

Problem 0.10 (Zero is not one)
Prove or refute that s(o) is different from o.

Note: Please use only the Peano Axioms for this proof.

Problem 0.11 (Natural numbers)
Prove or refute that s(s(0)) and s(s(s(0))) are unary natural numbers and that their successors
are different.

3.3. DEFINING OPERATIONS ON NATURAL NUMBERS 9

3.3 Defining Operations on Natural Numbers

Problem 0.12 Figure out the functions on natural numbers for the following defining equations

Problem 0.13 (Commutativity of addition)
Prove by induction or refute the commutativity of addition in the case of natural numbers using
only its definition from the slides. More specifically prove that: n®@m =m®&n

Hint: You might come to a point in the proof where a new subproblem emerges which needs a to be
proven by induction. Better said, you are allowed (and suppose to) use nested induction.

Problem 0.14 (Unary Natural Numbers)
Let @ be the addition operation and ® be the multiplication operation on unary natural numbers
as defined on the slides. Prove or refute that:

1. a®b=0b0Da

2. (a®b)Oc=aGcdboOC

3. a0b=0b0a

25pt

15pt

20pt

10 CHAPTER 3. ELEMENTARY DISCRETE MATH

3.4 Naive Set Theory

Problem 0.15 Let A be a set with n elements (i.e #(A) = n). What is the cardinality of the
power set of A, (i.e. what is #(P(4)))?

Problem 0.16 Let A := {5,23,7,17,6} and B := {3, 4, 8,23}. Which of the relations are reflexive,
antireflexive, symmetric, antisymmetric, and transitive?

Note: Please justify the answers.

RICAx AR = {(23,7),(7,23),(5,5),(17,6), (6,17)}
RyCBxB,Ry = {(3,3),(3,23),(4,4), (8, 23) (8,8),(3,4),(23,23), (4,23)}
RsCBxB,Ry = {(3,3),(3,23),(8,3),(4,23), (8,4), (23,23)}

Problem 0.17 Given two relations RC C x B and Q CC x A, we define a relation PCC x BN A
such that for every z € C and every y € (BNA), (z,y) € P& (z,y) € RV (z,y) € Q. Prove or
refute (by giving a counterexample) the following statement: If) and P are total functions, then
P is a partial function.

3.5. TALKING (AND WRITING) ABOUT MATHEMATICS 11

3.5 Talking (and writing) about Mathematics

Problem 0.18 Fill in the blanks in the table of Greek letters. Note that capitalized names denote 3pt

capital Greek letters. 3min

Symbol 5y D) 7r)
Name alpha | eta | lambda | iota

Problem 0.19 (Math Talk)
Write the following statement in mathtalk

“For all mandatory courses, there is a student such that if the student is from the major in
which the course is mandatory then the student is not taking that course.”

12 CHAPTER 3. ELEMENTARY DISCRETE MATH

3.6 Relations

Problem 0.20 (Associativity of Relation Composition)

Let R, S, and T be relations on a set M. Prove or refute that the composition operation for

relations is associative, i.e. that
(ToS)oR=To(SoR)

Problem 0.21 (Meet the Transitive Closure)
The transitive closure R* of a binary relation R on a set S is the smallest transitive relation on .S
that contains R.

Prove or disprove that given two equivalence relations R; and Ry on the set S:

a. R;URs is an equivalence relation.

b. R; URsy™ is an equivalence relation.

Problem 0.22 (Relation Properties)
Given a base set A := {a, b, c}, for each of the following properties:

1. reflexive

2. symmetric

3. antisymmetric

4. transitive

write down a relation R; CAXx A (i =1,...,4) that has property ¢ and contains at least three
tuples.

3.7. FUNCTIONS 13

3.7 Functions

Problem 0.23 Are the following functions total, injective, surjective and/or bijective?
o fR-R, f(z)=22—-32+6
e g:N — N, g(z) represents the number of distinct prime divisors of x
e h: Nt x NT — NT,
(m+n—-2)(m+n-—1)

h(m,n) = 5 +m

Prove your answers.

Problem 0.24 (Function Property)
Prove or refute: if a mapping of a finite set to itself is injective then it is surjective as well. 15pt

Problem 0.25 (Composition of functions and relations)
Prove or refute that the composition of functions, as defined in the lecture, is compatible with the
definition of functions as special relations. That is: Let F C A x B and G C B x C be relations
that are total functions, and let H C A x C be defined as H := Go F, i.e. the composition of the
relations F' and G. Show that

1. the relation H is a total function.

2. for all z € A, we have h(z) = g(f(z)).

Note: Note: F, G and H are written in capital letters here to point out that we are talking about
relations. If we treat them as functions, they would usually be written in lowercase.

14

CHAPTER 3. ELEMENTARY DISCRETE MATH

Chapter 4

Computing with Functions over
Inductively Defined Sets

4.1 Standard ML: Functions as First-Class Objects

Problem 0.26 Define the member relation which checks whether an integer is member of a list of
integers. The solution should be a function of type int * int list —> bool, which evaluates to true
on arguments n and |, iff n is an element of the list I.

Problem 0.27 Define the subset relation. Set T is a subset of S iff all elements of T are also
elements of S. The empty set is subset of any set.

Hint: Use the member function from ?prob.member?

Problem 0.28 Define functions to zip and unzip lists. zip will take two lists as input and
create pairs of elements, one from each list, as follows: zip [1,2,3] [0,2,4] ~ [[1,0],[2,2].[3,4]]. unzip
is the inverse function, taking one list of tuples as argument and outputing two separate lists.
unzip [[1,4],[2,5],[3,6]] ~ [1,2,3] [4,5,6].

Problem 0.29 (Compressing binary lists)

Define a data type of binary digits. Write a function that takes a list of binary digits and returns
an int list that is a compressed version of it and the first binary digit of the list (needed for
reconversion). For example,

ZIPit([zero,zero,zero, one,one,one,one,
zero,zero,zero, one, zero,zero]) —> (0,[3,4,3,1,2]),

because the binary list begins with 3 zeros, followed by 4 ones etc.

Problem 0.30 (Decompressing binary lists)
Write an inverse function UNZIPit of the one written in ?prob.zipbin?.

Problem 0.31 Program the function f with f(z) = 2% on unary natural numbers without using
the multiplication function.

Problem 0.32 (Translating between Integers and Strings)
SML has pre-defined types int and string, write two conversion functions:
e int2string converts an integer to a string, i.e. int2string(“317) ~» " 317" :string
e string2int converts a suitable string to an integer, i.e. string2int("444") ~ 444:int. For
the moment, we do not care what happens, if the input string is unsuitable, i.e does not
correspond to an integer.
do not use any built-in functions except elementary arithmetic (which include mod and div BTW),
explode, and implode.

Problem 0.33 Write a function that takes an odd positive integer and returns a char list list
which represents a triangle of stars with n stars in the last row. For example,

15

20pt

15pt

20pt

16 CHAPTER 4. COMPUTING OVER INDUCTIVE SETS

triangle 5;

val it =

[#° " #E A # T # T,
[#" ", #" ", #"%", #"", 4],
[#”*”, #” *”, #” *”, #”*”, #”*”]

Problem 0.34 Write a non-recursive variant of the member function from ?prob.member? using
the foldl function.

Problem 0.35 (Decimal representations as lists)
15pt The decimal representation of a natural number is the list of its digits (i. e. integers between 0 and
9). Write an SML function decTolnt of type int list —> int that converts the decimal representation
of a natural number to the corresponding number:

— decTolnt [7,8,5,6];
val it = 7856 : int

10min

Hint: Use a suitable built-in higher-order list function of type fn : (int % int —> int) —> int —> int list —> int
that solves a great part of the problem.

Problem 0.36 (List functions via folding)
30pt Write the following procedures using foldl or foldr
1. length which computes the length of a list
2. concat, which gets a list of lists and concatenates them to a list.
3. map, which maps a function over a list
4. myfilter, myexists, and myforall from the previous problem.

Problem 0.37 (Mapping and Appending)
10pt Can the functions mapcan and mapcan2 be written using foldl/foldr?

4.2. INDUCTIVELY DEFINED SETS AND COMPUTATION 17

4.2 Inductively Defined Sets and Computation

Problem 0.38 Figure out the functions on natural numbers for the following defining equations

Problem 0.39 (A function on natural numbers)
Figure out the operation 7 on unary natural numbers defined by the following equations: 15pt

n(0) = o Smin

n(s(0)) = o
n(s(s(n))) = s(n(n))

Problem 0.40 In class, we have been playing with defining equations for functions on the natural 15pt
numbers. Give the defining equations for the function o with o(z) = 2? without using the
multiplication function (you may use the addition function though). Prove from the Peano axioms

or refute by a counterexample that your equations define a function. Indicate in each step which

of the axioms you have used.

8pt

8min

4pt

8min

20pt

18 CHAPTER 4. COMPUTING OVER INDUCTIVE SETS

4.3 Inductively Defined Sets in SML

Problem 0.41 Declare an SML datatype pair representing pairs of integers and define SML
functions fst and snd where fst returns the first- and snd the second component of q the pair.
Moreover write down the type of the constructor of pair as well as of the two procedures fst and
snd.

Use SML syntax for the whole problem.

Problem 0.42 Declare a data type myNat for unary natural numbers and NatList for lists of
natural numbers in SML syntax, and define a function that computes the length of a list (as a
unary natural number in mynat). Furthermore, define a function nms that takes two unary natural
numbers n and m and generates a list of length n which contains only ms, i.e. nms(s(s(zero)),s(zero))
evaluates to construct(s(zero),construct(s(zero),elist)).

Problem 0.43 Given the following SML data type for an arithmetic expressions

datatype arithexp = aec of int (x 0,1,2,... %)
| aeadd of arithexp * arithexp (x addition)
| aemul of arithexp * arithexp (+ multiplication x)
| aesub of arithexp * arithexp (subtraction)
| aediv of arithexp * arithexp (division)
| aemod of arithexp * arithexp (+ modulo *)
| aev of int (x variable)

give the representation of the expression (4x + 5) — 3.
Write a (cascading) function eval : (int —> int) —> arithexp —> int that takes a variable as-
signment ¢ and an arithmetic expresson e and returns its evaluation as a value.

Note: A variable assignment is a function that maps variables to (integer) values, here it is represented
as function ¢ of type int —> int that assigns ¢(n) to the variable aev(n).

Problem 0.44 (Your own lists)
Define a data type mylist of lists of integers with constructors mycons and mynil. Write translators
tosm| and tomy to and from SML lists, respectively.

Problem 0.45 (Unary natural numbers)

Define a datatype nat of unary natural numbers and implement the functions
e add = fn : nat * nat —> nat (adds two numbers)
e mul = fn : nat % nat —> nat (multiplies two numbers)

Problem 0.46 (Nary Multiplication)
By defining a new datatype for n-tuples of unary natural numbers, implement an n-ary multipli-
cations using the function mul from ?prob.natoper?. For n = 1, an n-tuple should be constructed
by using a constructor named first; for n > 1, further elements should be prepended to the first
by using a constructor named next. The multiplication function nmul should return the product
of all elements of a given tuple.

For example,

nmul(next(s(s(zero)),
next(s(s(zero)),

first(s(s(s(zero)))))))
should output s(s(s(s(s(s(s(s(s(s(s(s(zero0)))))))))))) since 2 2 3 = 12.

Chapter 5

Abstract Data Types and Term
Languages

5.1 Abstract Data Types and Ground Constructor Terms

Problem 0.47 Translate the abstract data types given in mathematical notation into SML 5pt
datatypes

B
1. ({S}, {[er: Sl [e2: S = S|, [e3: Sx S = 8], [ea: S = S = §]}) e
2. ({T},{le1: T],[e2: T x (T — T) — T|})

Problem 0.48 Translate the given SML datatype opt

datatype T=0|clof T« T |c2of T —> (T % T) 5min

into abstract data type in mathmatical notation.
Problem 0.49 (Nested lists)
In class, we have defined an abstract data type for lists of natural numbers. Using this intuition, 20pt
construct an abstract data type for lists that contain natural numbers or lists (nested up to
arbitrary depth). Give the constructor term (the trace of the construction rules) for the list
[3,4,[7,[8,2],9],122,[2, 2]].

19

30pt

15pt

6pt

20 CHAPTER 5. ABSTRACT DATA TYPES AND TERM LANGUAGES

5.2 A First Abstract Interpreter

Problem 0.50 Give the defining equations for the maximum function for two numbers. This
function takes two arguments and returns the larger one.

Hint: You may define auxiliary functions with defining equations of their own. You can use ¢ from above.

Problem 0.51 Using the abstract data type of truth functions from ?prob.truth-values?, give the
defining equations for a function ¢ that takes three arguments, such that (g, an, by) behaves like
“if ¢ then a, else b”, where a and b are natural numbers.

Problem 0.52 Consider the following abstract data type:
A:={AB,C}H{[f: C—DB|,[g: AxB — C],[h: C— Al],[a: A, [b: B],[c: C]})

Which of the following expressions are constructor terms (with variables), which ones are ground.
Give the sorts for the terms.

| Answer with Yes or No or /. and give the sort (if term) |

’ expression \ term? \ ground? \ Sort ‘

5.3. SUBSTITUTIONS 21

5.3 Substitutions

Problem 0.53 (Substitution)
Apply the substitutions o := [b/z],[g(a)/y],[a/w] and T := [h(c)/x],[c/z] to the terms s :=
flg(z,g(a,z,b),y)) and t := g(x, z, h(y)) (give the 4 result terms o(s), o(t), 7(s), and 7(¢)).

Definition 5.3.1 We call a substitution ¢ idempotent, iff 6(c(A)) = o(A) for all terms A.

Definition 5.3.2 For a substitution o = [Ay/z1],- -, [An/xs], we call the set intro(oc) :=
Ui <icn free(A;) the set of variables introduced by o, and the set supp(0) := {z;|1<i<n}

Problem 0.54 Prove or refute that o is idempotent, if intro(c) Nsupp(c) = 0.

Problem 0.55 (Substitution Application)
Consider the following SML data type of terms:

datatype term = const of string
| var of string
| pair of term x term
| appl of string * term

Constants and variables are represented by a constructor taking their name string, whereas ap-
plications of the form f(t) are constructed from the name string and the argument. Remember
that we use f(a,b) as an abbreviation for f({a,b)). Thus a term f(a,g(z)) is represented as

appl("f",pair(const("a"), appl("g", var("x")))).
With this, we can represent substitutions as lists of elementary substitutions, which are pairs

of type term x string. Thus we can set

type subst = term x string list

and represent a substitution o = [f(a)/z], [b/y] as [(appl("f", const("a")), "x"), (const("b"), "y")].
Of course we may not allow ambiguous substitutions which contain duplicate strings.

Write an SML function substApply for the substitution application operation, i.e. substApply
takes a substitution o and a term A as arguments and returns the term o(A) if o is unambiguous
and raises an exception otherwise.

Make sure that your function applies substitutions in a parallel way, i.e. that [y/z], [/2](f(2)) =

f ().

4pt

Smin

30pt

30pt

22 CHAPTER 5. ABSTRACT DATA TYPES AND TERM LANGUAGES

5.4 Terms in Abstract Data Types

5.5. A SECOND ABSTRACT INTERPRETER 23

5.5 A Second Abstract Interpreter

Problem 0.56 Consider the following abstract procedure on the abstract data type of natural 20pt
numbers:

P = (f:N = N; {f(0) ~ 0, f(5(0)) ~ 0, f(s(s(nn))) ~ s(f(nn))})

. Show the computation process for P on the arguments s(s(s(0))) and s(s(s(s(s(s(0)))))).
. Give the recursion relation of P.

. Does P terminate on all inputs?

. What function is computed by P?

NI NI

4pt

10min

2pt

5min

15pt

24 CHAPTER 5. ABSTRACT DATA TYPES AND TERM LANGUAGES

5.6 Evaluation Order and Termination

Problem 0.57 Explain the concept of a “call-by-value” programming language in terms of eval-
uation order. Give an example program where this effects evaluation and termination, explain
it.

Note: One point each for the definition, the program and the explanation.

Problem 0.58 Give an example of an abstract procedure that diverges on all arguments, and an-
other one that terminates on some and diverges on others, each example with a short explanation.

Problem 0.59 Give the recursion relation of the abstract procedures in ?prob.square?, ?prob.truth-
values?, ?prob.if?, and ?prob.max? and discuss termination.

Chapter 6

More SML

6.1 More SML: Recursion in the Real World

No problems supplied yet.

6.2 Programming with Effects: Imperative Features in SML

6.2.1 Input and Output

nothing here yet.

6.2.2 Even more SML: Exceptions and State in SML

Problem 0.60 (Integer Intervals)

Declare an SML data type for natural numbers and one for lists of natural numbers in SML. Write
an SML function that given two natural number n and m (as a constructor term) creates the list
[n,n+1\ldots,m—1,m] if n<m and raises an exception otherwise.

Problem 0.61 (Operations with Exceptions)
Add to the functions from ?prob.natoper? functions for subtraction and division that raise excep-
tions where necessary.

e function sub: natxnat —> nat (subtracts two numbers)

e function div: natxnat —> nat (divides two numbers)

Problem 0.62 (List Functions with Exceptions)
Write three SML functions nth, take, drop that take a list and an integer as arguments, such that
1. nth(xs,n) gives the n-th element of the list xs.
2. take(xs,n) returns the list of the first n elements of the list xs.
3. drop(xs,n) returns the list that is obtained from xs by deleting the first n elements.
In all cases, the functions should raise the exception Subscript, if n < 0 or the list xs has less than
n elements. We assume that list elements are numbered beginning with 0.

Problem 0.63 (Transformations with Errors)

Extend the function from 7prob.ML-int2string? by an error flag, i.e. the value of the function
should be a pair consisting of a string, and the boolean value true, if the string was suitable, and
false if it was not.

Problem 0.64 (Simple SML data conversion)

Write an SML function char_to_int = fn : char —> int that given a single character in the range
[0 — 9] returns the corresponding integer. Do not use the built-in function Int.fromString but do
the character parsing yourself. If the supplied character does not represent a valid digit raise

25

opt

10min

6pt

20min

10pt

10pt

10pt

10pt

10pt

10pt

26 CHAPTER 6. MORE SML

an InvalidDigit exception. The exception should have one parameter that contains the invalid
character, i.e. it is defined as exception InvalidDigit of char

Problem 0.65 (Strings and numbers)
Write two SML functions

1. str_to.int = fn : string —> int

2. str_to_real = fn : string —> real
that given a string convert it to an integer or a real respectively. Do not use the built-in functions
Int.fromString and Real.fromString but do the string parsing yourself. You may however use the
char_to_int from above.

e Negative numbers begin with a '™ character (not ’-’).

e If the string does not represent a valid integer raise an exception as in the previous exercise.

Use the same definition and indicate which character is invalid.
e If the input string is empty raise an exception.
e Examples of valid inputs for the second function are: “1, "1.5, 4.63, 0.0, 0, .123

Problem 0.66 (Recursive evaluation)
Write an SML function evaluate = fn : expression —> real that takes an expression of the following
datatype and computes its value:

datatype expression = add of expressionsexpression (+ add)
| sub of expressionsexpression (: subtract)
| dvd of expressionxexpression (divide *)
| mul of expressionxexpression (x multiply =)
| num of real;

For example we have

evaluate(num(1.3)) —> 1.3
evaluate(div(num(2.2),num(1.0))) —> 2.2
1),

evaluate(add(num(4.2),sub(mul(num(2.1),num(2.0)),num(1.4)))) —> 7.0

Problem 0.67 (List evaluation)

Write a new function evaluate_list = fn : expression list —> real list that evaluates a list of expres-
sions and returns a list with the corresponding results. Extend the expression datatype from the
previous exercise by the additional constructor: var of int.

The variables here are the final results of previosly evaluated expressions. I.e. the first expres-
sion from the list should not contain any variables. The second can contain the term var(0) which
should evaluate to the result from the first expression and so on ...If an expression contains an
invalid variable term raise: exception InvalidVariable of int that indicates what identifier was used
for the variable.

For example we have

evaluate_list [num(3.0), num(2.5), mul(var(0),var(1))] —> [3.0,2.5,7.5]

Problem 0.68 (String parsing)
Write an SML function evaluate_str = fn : string list —> real list that given a list of arithmetic
expressions represented as strings returns their values. The strings follow the following conventions:
e strict bracketing: every expression consists of 2 operands joined by an operator and has to
be enclosed in brackets, i.e. 1+ 2+ 3 would be represented as ((1+2)43) (or (14+(2+3)))
e no spaces: the string contains no empty characters
The value of each of the expressions is stored in a variable named vn with n the position of the
expression in the list. These variables can be used in subsequent expressions.
Raise an exception InvalidSyntax if any of the strings does not follow the conventions.
For example we have

evaluate_str ["((4%.5)—(142.5))"] —> ["1.5]

evaluate_str ["((4*.5)—(1+2.5))"," (v0%~2)"] —> ["1.5,3.0]
evaluate_str [(1.8/2)"," (1—"3)"," (vO-+v1)'] —> [0.9,4.0,4.9]

6.2. PROGRAMMING WITH EFFECTS: IMPERATIVE FEATURES IN SML 27

Problem 0.69 (SML File I0)
Write an SML function evaluate_file = fn : string —> string —> unit that performs file IO opera- 10pt
tions. The first argument is an input file name and the second is an output file name. The input
file contains lines which are arithmetic expressions. evaluate_file reads all the expressions, evaluates
them, and writes the corresponding results to the output file, one result per line.

For example we have

evaluate_list "input.txt” "output.txt”;

Contents of input.txt:

28

CHAPTER 6. MORE SML

Bibliography

[Kohlla]

[Koh11b)

[Kohllc]

[Koh11d]
[Kohlle]

Michael Kohlhase. General Computer Science; 320101: GenCS I Lecture Notes. Online
course notes at http://kwarc.info/teaching/GenCS1/notes.pdf, 2011.

Michael Kohlhase. General Computer Science: 320201 GenCS II Lecture Notes. Online
course notes at http://kwarc.info/teaching/GenCS2/notes.pdf, 2011.

Michael Kohlhase. General Computer Science: 320201 GenCS II Lecture Notes.
Online practice problems with solutions at http://kwarc.info/teaching/GenCS2/
solutions.pdf, 2011.

Michael Kohlhase. General Computer Science: 320201 GenCS II Lecture Notes, 2011.

Michael Kohlhase. General Computer Science; Problems and Solutions for 320101
GenCS I. Online practice problems with solutions at http://kwarc.info/teaching/
GenCS1/solutions.pdf, 2011.

29

http://kwarc.info/teaching/GenCS1/notes.pdf
http://kwarc.info/teaching/GenCS2/notes.pdf
http://kwarc.info/teaching/GenCS2/solutions.pdf
http://kwarc.info/teaching/GenCS2/solutions.pdf
http://kwarc.info/teaching/GenCS1/solutions.pdf
http://kwarc.info/teaching/GenCS1/solutions.pdf

	Preface
	Getting Started with ``General Computer Science''
	Overview over the Course
	Administrativa
	Motivation and Introduction

	Motivation and Introduction
	I Representation and Computation
	Elementary Discrete Math
	Mathematical Foundations: Natural Numbers
	Reasoning about Natural Numbers
	Defining Operations on Natural Numbers
	Naive Set Theory
	Talking (and writing) about Mathematics
	Relations
	Functions

	Computing over Inductive Sets
	Standard ML: Functions as First-Class Objects
	Inductively Defined Sets and Computation

	Abstract Data Types and Term Languages
	Abstract Data Types and Ground Constructor Terms
	A First Abstract Interpreter
	Substitutions
	Terms in Abstract Data Types
	A Second Abstract Interpreter
	Evaluation Order and Termination

	More SML
	Programming with Effects: Imperative Features in SML
	Input and Output

