Matriculation Number:

Name:

Midterm Exam General CS (320101)

October 27, 2015

You have 75 minutes(sharp) for the test;

Write the solutions to the sheet.

The estimated time for solving this exam is 62 minutes, leaving you 13 minutes for revising your exam.

You can reach 56 points if you solve all problems. You will only need 50 points for a perfect score, i.e. 6 points are bonus points.

Different problems test different skills and knowledge, so do not get stuck on one problem.

	To be used for grading, do not write here								
prob.	0.1	0.2	0.3	0.4	0.5	0.6	0.7	Sum	grade
total	2	8	8	7	12	7	12	56	
reached									

Please consider the following rules; otherwise you may lose points:

- Always justify your statements. Unless you are explicitly allowed to, do not just answer "yes" or "no", but instead prove your statement or refer to an appropriate definition or theorem from the lecture.
- If you write program code, give comments, so that we can award you partial credits!

2

1 GenCS Classics and Induction

Problem 0.1 (Greek Letters)

Fill in the blanks in the table of Greek letters. Note that capitalized names denote capital 2pt Greek letters. 2min

Symbol	Σ	ρ	ξ	δ				
Name					sigma	Phi	omega	psi

Solution:

Symbol	Σ	ρ	ξ	δ	σ	Φ	ω	ψ
Name	Sigma	rho	xi	delta	sigma	Phi	omega	psi

Problem 0.2 (Induction)

Prove by induction or refute the following equation

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}$$

for all $n \ge 2$.

Solution:

Proof: Proof by induction

P.1.1 Base Case: Clearly the equation holds for n = 2.

P.1.2 Step Case:

P.1.2.1 Assume for some *n* we have $\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}$

P.1.2.2 Proof for n + 1: $\prod_{i=2}^{n+1} \left(1 - \frac{1}{i^2}\right) = \left(1 - \frac{1}{(n+1)^2}\right) \cdot \prod_{i=2}^{1} \left(1 - \frac{1}{i^2}\right) = \frac{(n+1)^2 - 1}{(n+1)^2} \cdot \frac{n+1}{2n} = \frac{(n+1)^2 - 1}{(n+1)^2n} = \frac{n^2 + 2n}{2n(n+1)} = \frac{n+2}{2(n+1)}$

2 MathTalk

Problem 0.3 (Mathtalk)

- 1. Write down the set of even numbers between 1 and 999 using mathtalk. 8min
- 2. Give a definition of the set of prime numbers using mathtalk
- 3. Prove from the definition of \cap or refute by giving a counter example

$$A \cap (B \cup C) = (A \cup B) \cap C$$

 $8 \mathrm{pt}$

 $8 \mathrm{pt}$

4. Let $A = \{1, 2, 3, 4, 5\}$. Which elements are in the set $\{x \in A \mid x \leq 4 \Rightarrow x^2 < \#(A)\}$ Solution:

- 1. $\{x \in \mathbb{N} \mid 1 \le x \le 999 \land (\exists y \in \mathbb{N} \cdot x = 2y)\}$
- 2. $\{x \in \mathbb{N} \mid x > 1 \land (\not\exists a \in \mathbb{N} . \exists b \in \mathbb{N} . 1 < a < x \land 1 < b < x \land x = ab)\}$
- 3. Counter example: Let $A = \emptyset$, $B = \{1\}$, $C = \{1\}$. Then $A \cap (B \cup C) = \emptyset$, while $(A \cup B) \cap C = \{1\}$.
- 4. $\{1, 2, 5\}$

3 Relations and Functions

Problem 0.4 (Relations)

Let $A = \{a, b, c\}.$

- 1. Is the empty relation \emptyset symmetric on A?
- 2. Write down three transitive relations on A containing 2, 3, and 4 elements respectively.
- 3. What is the maximal size of a partial order on A?

Solution:

- 1. Yes, of course
- 2. Possible choices would be
 - $\{(a, a), (b, b)\}$
 - $\{(a,b), (b,c), (a,c)\}$
 - $\{(a, a), (a, b), (b, a), (b, b)\}$
- 3. It's 6. We have $\#(A \times A) = 9$. Six of those pairs are of the form (x, y), where $x \neq y$. Since we have to be antisymmetric, at most 3 of them can be in the relation. It's easy to find such a relation containing 6 elements.

4 Abstract Data Types and Abstract Procedures

Problem 0.5 (ADT for family tree)

12pt

Design an abstract data type to represent a family tree. Restrict the tree to parent relationships, i.e. if you have a person A, the tree could contain A's parents, the parents of A's parents, and so on. Keep in mind that we won't know all the ancestors, so you should find a way to denote that someone's parents are unknown.

Every person shall be associated with an age. You may assume that an abstract data type for natural numbers and a procedure for adding them are given.

Provide an example term for a tree with at least 4 persons.

Define an abstract procedure that returns the total age of all persons in a tree.

Solution:

7pt

7min

5 Programming in Standard ML

Problem 0.6 (Collatz Sequence)

Let

$$f(n) := \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ 3n+1 & \text{else} \end{cases}$$
7pt
7min

The sequence $x, f(x), f(f(x)), \ldots$ is called the Collatz sequence; It eventually reaches 1. Write an SML function **collatz** that takes an integer x and returns a list with the elements of the corresponding Collatz sequence before the first 1.

Hint: In SML an integer x is even iff $x \mod 2 = 0$.

Solution:

```
local
fun f(n) = if n mod 2 = 0 then n div 2 else 3*n + 1;
in
fun collatz(1) = nil
| collatz(n) = n::collatz(f(n));
end
```

Problem 0.7 (Permutations)

Write an SML function is_permutation that takes two lists and returns true if and only 12ptif one list is a permutation of the other one. A permutation is a reordering.13minExample:

```
is_permutation([15, 32, 1], [13, 3]) = false;
is_permutation([15, 32, 1], [1, 32, 15]) = true;
is_permutation([#"a", #"b"], [#"b", #"c"]) = false;
is_permutation([#"a", #"b", #"c"], [#"a", #"c", #"b"]) = true;
```

Solution: