
Name: Matriculation Number:

Midterm Exam 2

General CS I (320101)

November 12, 2013

You have 75 minutes(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 0 minutes, leaving you 75 minutes for
revising your exam.

You can reach 0 points if you solve all problems. You will only need 70 points for a
perfect score, i.e. -70 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Please consider the following rules; otherwise you may lose points:

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments, so that we can award you partial credits!

1

1 GenCS Classics and Induction

Problem 1.1 (Greek Letters)
Fill in the blanks in the following table of Greek letters. Note that capitalized names 5pt

2mindenote capital Greek letters.

Symbol ψ ν Λ ω Ψ
Name Delta sigma delta Xi chi

Solution:

Symbol ∆ ψ ν σ δ Λ Ξ ω Ψ χ
Name Delta psi nu sigma delta Lambda Xi omega Psi chi

Problem 1.2 (Giving a Prize in an Odd-Numbered Group)
The professor decides he is going to give a prize to a student. He heard about the following 10pt

8minsituation that works for an odd number of students:
Take the students to the campus green, each of them with a ball. Let them walk around

for 5 minutes. When this time is over each student will throw the ball to the student that
is nearest to him. One student does not get a ball, this student receives the prize.

Prove by induction that this procedure always determines a unique winner if the number
of student is odd and the distances between the students are all different.

Solution: Base Case: n = 3
Lets have people a, b, c. Since all the distances are different then we can order them without

lost of generality as: dab < dbc < dac then since dab < dbc, b will hit a and since dab < dac then a
will hit b and c will not be hit.

Step case: n = k → n = k + 2
Since we have a finite number of positive numbers we can find the minimum of the set of

distances. By the same logic used in the base case suppose dp1p2 is the minimum. Then p1 is
closest than anyone else to p2 so he gets hit by him. Similarly for p2. These two people are hit
by each other so they do not influence the rest of the hitting distribution so we can ignore them.
Now we are left with k people. Since we supposed the property held for k people then we know
that there will be a person that does not get hit.

2 Relations and Functions

Problem 2.1 (Relation Properties)
10pt

8min1. You are given the set A := {1, 2, 3, 4} and the relation

R ⊆ A× A, R := {〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈3, 2〉}

Determine whether R is a) reflexive, b) symmetric, c) transitive, or d) antisymmetric.
If the relation does not have a certain property, give a counter-example to show that.

2

2. How many relations are there over a set B with #(B) = n that are symmetric but
not reflexive?

Solution:

1. a) The relation is obviously reflexive according to the definitions.
b) and transitive as well
c) It is not symmetric, because it doesn’t contain 〈2, 1〉.
d) It is not antisymmetric because, e.g. it has 〈2, 3〉 and 〈3, 2〉.

2. For the relation not to be reflexive, it has to not contain all the pairs 〈x, x〉.x ∈ B, but it
can contain some of them. There are 2n possibilities to choose from those pairs, from those
in 2n − 1 cases it won’t be reflexive. Since #(B ×B) = n2, there are n2 − n other pairs
that we can choose to be in the relation. If we choose a pair, we have to also include its
symmetric part for the relation to be symmetric. So the possibilities here are n2−n

2 . We

now combine the 2 properties and we get that the asnwer is (2n − 1)× 2
n2−n

2 .

Problem 2.2 (Function properties)
10pt

10min1. State in mathtalk the definition of an injective total function (you may not take the
concept of a function as given; so your definition will have two steps).

2. Determine whether each of the following functions is injective, surjective or bijective:

(a) f : N→ N with f(n) := 2n

(b) g : N→ N with g(n) := bn
2
c (integer division)

(c) h : R→ R with h(x) :=

{
x3 if (x ≥ 1)

(2)x if (x < 1)

Solution:

3 Abstract Data Types and Abstract Procedures

Problem 3.1 (Solarsystems)
6pt

6min1. Construct an ADT with a sort S for solar systems. A solar system consists of a sun,
an arbitrary number of planets (either gas giants or terestrial planets) that each can
have an arbitrary number of moons.

Hint: Feel free to use as many sorts as you need.

3

2. Now represent our solar system using this ADT:

Our solar system consists of the sun, the terestrial planets Mercury (no moon),
Venus (no moon), Earth (1 moon) and Mars (2 moons) and the gas giants Jupiter
(67 moons!), Saturn (47 moons), Uranus (27 moons) and Neptune (13 moons). Sadly,
Pluto is not classified as a planet anymore, so in our solar system ADT it does not
exist.

Solution: First the ADT:

〈{M,P,S}, {[m : M], [g : P], [t : P], [sun : S], [addMoon : M× P→ P], [addP lanet : P× S→ S]}〉

And now the term:

addP lanet(addMoon13(m, g), addP lanet(addMoon27(m, g), addP lanet(addMoon47(m, g),

addP lanet(addMoon63(m, g), addP lanet(addMoon(m, addMoon(m, t)),

addP lanet(addMoon(m, t), addP lanet(t,

addP lanet(t, sun))))))))

Problem 3.2 (ADTs and Substitutions)
Consider the following ADT A 10pt

6min〈{A,B,C,D}, {[a : A], [b : B], [c : C], [d : D], [f : A× B× C→ C], [g : D→ A], [h : C× B→ B], [i : B→ D]}〉

1. Which of the following expressions are terms over A? what sorts are they (if they
are terms)?

expression term(Y/N) sort
1 g(i(b))
2 f(g(d), h(c, h(d, b)), c)
3 h(f(a, b, i(b)), b)
4 i(h(f(a, b, c), h(c, b)))

If the expressions are not terms, give a reason.

2. Now apply the substitutions σ := ([d/xB], [f(a, h(c, b), c)/yC]) and
ρ := ([i(h(c, b))/xD], [a/zA], [g(i(h(c, b)))/wA]) to the following terms.

expression σ instance ρ instance
1 g(i(xB))
2 f(g(xD), f(a, b, yC), g(xD))
3 i(h(xC, yB))

Solution:

4

1.

expression term(Y/N) sort

1 g(i(b)) Y A
2 f(g(d), h(c, h(d, b)), c) N -

3 h(f(a, b, i(b)), b) N -

4 i(h(f(a, b, c), h(c, b))) Y D

2.

expression σ instance ρ instance

1 g(i(xB)) g(i(d)) g(i(h(c, b)))

2 f(g(xD), f(a, b, yC), g(xD)) f(g(d), i(f(a, h(c, b), c), g(w)) f(g(i(h(c, b))), i(y), g(g(i(h(c, b))))

3 i(h(xC, yB)) i(h(d, f(a, h(c, b), c)) i(h(i(h(c, b)), y))

Problem 3.3 (Abstract Procedures)
6pt

6minYou are given the following abstract procedures over the ADT of unary natural numbers:

1. 〈f::N× N→ N ; {f(n, o) ; n, f(n, s(m)) ; s(f(n,m))}〉

2. 〈g::N× N→ N ; {g(n, o) ; s(o), g(n, n) ; s(o), g(s(n), s(m)) ; f(g(n, s(m)), g(n,m))}〉

Write down the mathematical definition of each of these functions (e.g. f(x) = x2 for the
square function). What are their names? On what arguments does g return a meaningful
result?

Solution:

1. addition.

2. combinations.

g(n,m) gives a meaningful result whenever n ≥ m.

4 Programming in Standard ML

Problem 4.1 (Chess mutual recursion)
10pt

8minThe Masters of chess have gotten ”board” of playing simple chess all the time. They are
inventing a 3D chess but for this they have to create a board. Since it is 3D they can’t see
inside of this new board and know if it is correctly painted or not. Write a pair of mutually
recursive SML functions black and white that given a list of tuples of (int ∗ int ∗ int) ∗ bool

where the first one is the position of the cell 〈x, y, z〉 and the second one is true for black
and false for white and returns true if it is a valid combination and false otherwise. Check
that the input list has the right format, if not raise exceptions

Hint: Try to simplify the input to only have a bool list that models the chessboard in a way
that you can call the mutually recursive functions

Solution:

5

fun black [] = true
| black (a::b) = if not a then false else white(b)

and white [] = true
| white (a::b) = if a then false else black(b)

Problem 4.2 (Atom energy levels)
Quantum physics has showed that every atom can only be found on a discrete array of 15pt

12minstates (levels). Each of these states is characterized by the energy that the atom possesses
while on that level. It has been observed that each atom tries to reach the state with the
lowest possible energy by doing successive transitions (“jumps”) between states. This kind
of transitions can be performed from any higher energy state to a lower one, not necessarily
consecutive. Also, it is known that during a transition, the atom cannot lose more than
half the energy it had before the “jump”.

Write a SML function level that takes as argument a list of integers, representing the
energies of each level and returns the number of all possible transitions (through arbitrarily
many intermediate states) between the highest and lowest energy state. It is known that
initially the atom is found in the state with the highest energy. Also, you can assume the
list of the energies is given in ascending order.

Note: The accuracy of the actual physical process described in this problem was partially
neglected in order to provide a simpler coding task.

val level = fn : int list −> int

level ([10,15,25,29,45,76,90]) = 6;

The 6 possible transition chains are:
90 - 76 - 45 - 29 - 25 - 15 - 10
90 - 76 - 45 - 29 - 15 - 10
90 - 45 - 29 - 25 - 15 - 10
90 - 76 - 45 - 25 - 15 - 10
90 - 45 - 25 - 15 - 10
90 - 45 - 29 - 15 - 10

Solution:

fun find (n, []) = []
| find (n , x::xs) = if 2∗x>=n andalso x<n
then x::find(n,xs)
else find(n,xs);

fun replace (l, []) = []
| replace (l, L::LS) = if L<>hd(l)
then find(L,l) @ replace(l,LS)

else L::replace(l,LS);

fun check (n,[]) = false
| check (n,x::xs) = if n<>x then true
else check(n,xs);

6

fun repeat(min,L,l) = if check(min,L)
then repeat(min,replace(l,L),l)
else List.length(L);

fun level(l) = let
val min=hd(l)
val L = hd(rev(l))::[]

in
repeat(min,L,l)

end;

7

