Final Exam General CS I (320101)

December 13, 2011

You have two hours(sharp) for the test;

Write the solutions to the sheet.
The estimated time for solving this exam is 110 minutes, leaving you 10 minutes for revising your exam.

You can reach 110 points if you solve all problems. You will only need 100 points for a perfect score, i.e. 10 points are bonus points.

Different problems test different skills and knowledge, so do not get stuck on one problem.

	To be used for grading, do not write here											
prob.	1.1	1.2	2.1	2.2	3.1	3.2	4.1	5.1	6.1	6.2	Sum	grade
total	10	10	15	5	10	20	15	10	10	5	110	
reached												

Please consider the following rules; otherwise you may lose points:

- "Prove or refute" means: If you think that the statement is correct, give a formal proof. If not, give a counter-example that makes it fail.
- Always justify your statements. Unless you are explicitly allowed to, do not just answer "yes" or "no", but instead prove your statement or refer to an appropriate definition or theorem from the lecture.
- If you write program code, give comments!

1 Mathematical Foundations

Problem 1.1 (Set properties and induction)
Prove or refute the following relations using induction:
1.

$$
\left(A_{1} \cap A_{2} \cap \ldots A_{n}\right) \cup B=\left(\left(A_{1} \cup B\right)\right) \cap\left(\left(A_{2} \cup B\right)\right) \cap \ldots\left(\left(A_{n} \cup B\right)\right)
$$

2.

$$
\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right) \cap B=A_{1} \cap B \cup A_{2} \cap B \cup \ldots A_{n} \cap B
$$

3.

$$
\left(A_{1} \backslash B\right) \cap\left(A_{2} \backslash B\right) \cap \ldots\left(A_{N} \backslash B\right)=\left(A_{1} \cap A_{2} \cap \ldots A_{N}\right) \backslash B
$$

Hint: You can use the distributivity of intersection over union and of union over intersection. Think whether it also works for set difference.

Hint: Try an induction over the number n of A-sets, whatever these are.

Solution:

1. Proof:
P. 1 Base case: $n=1$

$$
A_{1} \cup B=A_{1} \cup B
$$

P. 2 Base case: $n=2$
$\left(A_{1} \cap A_{2}\right) \cup B=\left(A_{1} \cup B\right) \cap\left(A_{2} \cup B\right) \quad$ (distributivity of union over intersection)
P. 3 Step case:

$$
\begin{aligned}
& \left(A_{1} \cap A_{2} \cap \ldots A_{n} \cap A_{n+1}\right) \cup B \\
= & \left(\left(A_{1} \cap \ldots A_{n}\right) \cup B\right) \cap\left(A_{n+1} \cup B\right) \\
= & \left(\left(A_{1} \cup B\right) \cap\left(A_{2} \cup B\right) \cap \ldots\left(A_{n} \cup B\right)\right) \cap\left(A_{n+1} \cup B\right)
\end{aligned}
$$

Proof:
2. P. 1 Base case: $n=1$

$$
A_{1} \cap B=A_{1} \cap B
$$

(obvious)

Base case: $n=2$
$\left(A_{1} \cup A_{2}\right) \cap B=\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \quad$ (distributivity of intersection over union)
Step case:

$$
\begin{aligned}
& \left(A_{1} \cup A_{2} \cup \ldots A_{n} \cup A_{n+1}\right) \cap B \\
= & \left(\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right) \cup A_{n+1}\right) \cap B \\
= & \left(\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right) \cap B\right) \cup\left(A_{n+1} \cap B\right) \\
= & \left(A_{1} \cap B\right) \cup \ldots \cup\left(A_{n+1} \cap B\right)
\end{aligned}
$$

P. 2 P3 Proof:

P. 1 Base case: $n=1$

$$
A_{1} \backslash B=A_{1} \backslash B
$$

P. 2 Base case: $n=2$
$\left(A_{1} \backslash B\right) \cap\left(A_{2} \backslash B\right)=\left(A_{1} \cap A_{2}\right) \backslash B \quad$ (theorem of the elementary set theory)
P. 3 Step case:

$$
\begin{aligned}
& \left(A_{1} \backslash B\right) \cap \ldots \cap\left(A_{n} \backslash B\right) \cap\left(A_{n+1} \backslash B\right) \\
= & \left(\left(A_{1} \cap \ldots \cap A_{n}\right) \backslash B\right) \cap\left(A_{n+1} \backslash B\right) \\
= & \left(\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) \cap A_{n+1}\right) \backslash B
\end{aligned}
$$

Problem 1.2 (Properties of Function Composition)

Let $f \subseteq A \times B$ and $g \subseteq B \times C$ be functions. Prove or refute the following statements:

1. $g \circ f$ is a function.
2. if f and g are both injective/surjective/bijective, then so is $g \circ f$.
3. $f \circ g$ is also a function and $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.
4. If $f \circ g=\lambda x . x$, then $f=g^{-1}$.

Note: By "refute" we mean "exhibit a counterexample to this claim". Try to make suggestions how the claim can be salvaged.

Solution:

1. To prove this, we have to show that for all given $a \in A$, there is a unique $c \in C$, such that $(g \circ f)(a)=c$. Now, using that f is a function, there is a unique $b \in B$, such that $f(a)=b$, and since g is a function, there is a unique $c \in C$, such that $f(b)=c$. Thus $(g \circ f)(a)=g(f(a))=g(b)=c$ is unique.
2. To show that $f \circ g$ is injective we choose $(f \circ g)(a)=f(g(a))=f\left(g\left(a^{\prime}\right)\right)=(f \circ g)\left(a^{\prime}\right)$. As f is injective, we have to have $g(a)=g\left(a^{\prime}\right)$ and thus (since g is injective too) $a=a^{\prime}$, which proves the assertion.

To show that $f \circ g$ is surjective choose some $c \in C$ and show that it is a pre-image in A. As f is surjective there is a $b \in B$ with $f(b)=c$, and (as g is surjective too), there is an a with $g(a)=b$, so $c=f(g(a))=(f \circ g)(a)$.
The the case for bijectivity is proven by combining the two assertions above.
3. $f \circ g$ cannot be a function in general, since $A \neq C$. If $A=C$, then functionhood can be shown just like in case 1.

The second conjecture is incorrect. First, even we need $A=C$ for the functions to make sense.

Take for instance $g=\lambda x \in B . c$, where $c \in C$ is arbitrary, then $g \circ f=\lambda x \in A . c$, which is not injective, so it cannot be bijective if $\#(A) \geq 2$. The correct version would be: If $A=C$ and f and g are both bijective, then $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.
4. Note that since $\lambda x \in A . x: A \rightarrow C$, we have $A \subseteq C$. We have to show that for all $a \in A$, $f(a)=g^{-1}(a)$.

2 Abstract Data Types and Abstract Procedures

Problem 2.1 (ADT for binary strings)

15 pt 15 min

1. Design an ADT to represent binary strings (words over the alphabet $\{0,1\}$). Give the representation of the binary strings 1100 and 00 in your ADT.
2. Now design an ADT for lists of binary strings.
3. In addition, create an abstract procedure that, given a list of binary strings, sorts it lexicographically according to the ordering of the alphabet $\{0,1\}$ with $0<1$.

Solution:

1. $\langle\{\mathbb{B}\},\{[1: \mathbb{B}],[0: \mathbb{B}],[$ put: $\mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}]\}\rangle$
$1100:=\operatorname{put}(1, \operatorname{put}(1, \operatorname{put}(0,0)))$
$00:=\operatorname{put}(0,0)$
2. ADT for list of words: $\langle\{L b, \mathbb{B}\},\{[1: \mathbb{B}],[0: \mathbb{B}],[$ put $: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}],[n i l: L b],[$ append $: \mathbb{B} \times L b \rightarrow L b]\}\rangle$ The cmp procedue compares two binary strings, and returns 1 if the first one is smaller or equal to the second one:

$$
\begin{aligned}
& c m p(0, x) \rightsquigarrow 1 \\
& \operatorname{cmp}(1,0) \rightsquigarrow 0 \\
& \operatorname{cmp}(1,1) \rightsquigarrow 1 \\
& \operatorname{cmp}(1, \operatorname{put}(0, x)) \rightsquigarrow 0 \\
& \langle c m p:: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} ;\{\operatorname{cmp}(1, \operatorname{put}(1, x)) \rightsquigarrow 1\}\rangle \\
& c m p(p u t(0, x), p u t(0, y)) \rightsquigarrow c m p(x, y) \\
& \operatorname{cmp}(p u t(0, x), p u t(1, y)) \rightsquigarrow 1 \\
& \operatorname{cmp}(p u t(1, x), \operatorname{put}(1, y)) \rightsquigarrow c m p(x, y) \\
& c m p(p u t(1, x), p u t(0, y)) \rightsquigarrow 0
\end{aligned}
$$

(below m stands for merge, and a - for append)

$$
\operatorname{merge}(n i l, x) \rightsquigarrow x
$$

\langle merge: $: L b \times L b \rightarrow L b ;\{\operatorname{merge}(x$, nil $) \rightsquigarrow x$

$$
m(a(x, x s), a(y, y s)) \rightsquigarrow i f(c m p(x, y), a(x, m(x s, a(y, y s))), a(y, m(a(x, x s), y s)))
$$

The split procedure started with tsecond parameter 0 returns the binary strings at odd positions, when started with second parameter 1 - gives the binary strings at even positions.
\langle split::Lb $\times \mathbb{B} \rightarrow L b ;\{\operatorname{split}(n i l, x) \rightsquigarrow \operatorname{nil}$, split(append $(x, x s), 0) \rightsquigarrow$ append $(x, \operatorname{split}(x s, 1))$, split(append $(x, x$ \langle sort: :Lb \rightarrow Lb; \{sort(nil) $\rightsquigarrow n i l, \operatorname{sort}($ appendx, nil $) \rightsquigarrow \operatorname{append}(x, \operatorname{nil}), \operatorname{sort}(x) \rightsquigarrow \operatorname{merge}(\operatorname{sort}(\operatorname{split}(x, 0)), s$

Problem 2.2 (Substitutions)
Given the $\operatorname{ADT}\langle\{\mathbb{A}\},\{[a: \mathbb{A}],[b: \mathbb{A}],[f: \mathbb{A} \rightarrow \mathbb{A}],[g: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}],[h: \mathbb{A} \times \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}]\}\rangle$ and the following constructor terms of sort \mathbb{A} :

- $s:=h(f(f(g(a, b))), a, h(a, b, g(a, b)))$
- $t:=h\left(f\left(f\left(z_{\mathbb{A}}\right)\right), x_{\mathbb{A}}, h\left(x_{\mathbb{A}}, y_{\mathbb{A}}, z_{\mathbb{A}}\right)\right)$
your tasks are:

1. Find a substitution σ such that $\sigma(t)=s$.
2. Let $u:=g\left(f\left(y_{\mathbb{A}}\right), h\left(f\left(x_{\mathbb{A}}\right), y_{\mathbb{A}}, z_{\mathbb{A}}\right)\right)$. Evaluate $\sigma(u)$.

Solution:

1. $\sigma:=\left[a / x_{\mathbb{A}}\right],\left[b / y_{\mathbb{A}}\right],\left[(g(a, b)) / z_{\mathbb{A}}\right]$
2. $\sigma(u)=g(f(b), h(f(a), b, g(a, b)))$

3 Programming in Standard ML

Problem 3.1 (Mutual Recursion)

1. Implement the following functions in SML. Do not forget to raise exceptions when needed.
(a)

$$
\begin{aligned}
& f(x)=\left\{\begin{aligned}
5 \cdot g(x-1) & \text { if } x>0 \\
0 & \text { if } x=0
\end{aligned}\right. \\
& g(x)=\left\{\begin{aligned}
f(x)+1 & \text { if } x>0 \\
0 & \text { if } x=0
\end{aligned}\right.
\end{aligned}
$$

(b) Functions even and odd that determine whether the input x is even or odd.
(c)

$$
\begin{aligned}
h(x, y) & =\left\{\begin{aligned}
a(x) \cdot b(y) & \text { if } x \text { is even, } y>0 \\
a(x)-b(y) & \text { if } x \text { is odd, } y>0 \\
c(x+1) & \text { if } x=0
\end{aligned}\right. \\
a(x) & =\left\{\begin{array}{rr}
1 & \text { if } x=0 \\
h(x \operatorname{div} 2, x \text { div } 2) & \text { if } x>0
\end{array}\right. \\
b(x) & =\left\{\begin{array}{rr}
33 & \text { if } x=0 \\
h(x \bmod 2, x \operatorname{div} 2) & \text { if } x>0
\end{array}\right. \\
c(x) & =\left\{\begin{array}{r}
h(x \operatorname{div} 2, x \bmod 2) \\
\text { if } x>0 \\
x+3
\end{array} \text { if } x=0\right.
\end{aligned}
$$

2. What do the functions $f(x)$ and $g(x)$ compute?
3. Does the function $a(x)$ terminate for all inputs?

Solution:

1. exception negative;

$$
\begin{aligned}
& \text { fun } f(0)=0 \\
& \mid f(n)=\text { if } n<0 \text { then raise negative else } 5 * g(n-1) \\
& \text { and } g(0)=0 \\
& \mid g(n)=\text { if } n<0 \text { then raise negative else } 1+f(n) ; \\
& \text { fun even }(0)=\text { true } \\
& \mid \operatorname{even}(1)=\text { false } \\
& \mid \operatorname{even}(n)=\operatorname{odd}(n-1) \\
& \text { and } \operatorname{odd}(1)=\operatorname{true} \\
& \mid \operatorname{odd}(0)=\text { false } \\
& \mid \operatorname{odd}(n)=\operatorname{even}(n-1) ;
\end{aligned}
$$

fun $h(0, y)=c(0+1)$
$h(x, y)=$ if $y<=0$ then raise negative else if $x<0$ then raise negative
else if even (x) then $a(x) * b(x)$ else $a(x)-b(x)$
and $a(0)=1$
$a(x)=$ if $x<0$ then raise negative else $h(x \operatorname{div} 2, x \operatorname{div} 2)$
and $b(0)=33$
$b(x)=$ if $x<0$ then raise negative else $h(x \bmod 2, x \operatorname{div} 2)$
and $c(0)=3$
$c(x)=$ if $\mathrm{x}<0$ then raise negative else $\mathrm{h}(\mathrm{x}$ div $2, \mathrm{x} \bmod 2)$;
2. $f(x)=5 \cdot g(x-1)=5 \cdot(f(x-1)+1)=25 \cdot(f(x-2)+1)+5=\cdots=5^{x}+5^{x-1}+\cdots+5=$ $5 \cdot \frac{5^{x}-1}{5-1}=5 \cdot \frac{5^{x}-1}{4} g(x)=1+f(x)=1+5 \cdot \frac{5^{x}-1}{4}$ if $x<0$.
3. $h(0, y)$ would not terminate, since $h(0, y)=c(1)=h(\bmod 2,1)=h(0,1)=c(1)=\ldots$

Problem 3.2 (Partitions and Sums)

1. Design an SML function that takes a list L and returns a list containing all the sublists of L (i.e. the power set of L interpreted as a set). Signature and example:
val powerSet $=\mathbf{f n}$: 'a list $->$ 'a list list

- powerSet [1,2,3];
val it $=[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]$: int list list

2. Now design an SML function which takes as argument a list L containing only positive, distinct integers. The function returns the largest element in L which can be written as the sum of some other (distinct) elements in L. If no such number is found, return 0 . Signature and example:
```
val largest = fn : int list -> int
    - largest [3,1,15,7,5,40];
val it = 15 : int
```

Explanation: 15 is the largest number in the list which can be written as a sum of some other distinct numbers in the list: $3+7+5$.

Hint: You can use the powerSet function that you defined under 1.

Solution:

```
Control.Print.printLength :=1000;
fun append \(x \mathrm{II}=\operatorname{map}(\mathbf{f n} \mathrm{ls}=>x:: \mathrm{Is}) \mathrm{II}\)
fun powerSet [] = [[]]
    \(\mid\) powerSet \((\mathrm{h}:: \mathrm{t})=\) let val \(\mathrm{ps}=\) powerSet t in append h ps @ ps end
fun find \(\times[]=\) false
    \(\mid\) find \(\mathrm{x}(\mathrm{h}:: \mathrm{t})=\) if \(\mathrm{x}=\mathrm{h}\) then true else find x t
fun sum \(\mathrm{ls}=\) fold op +0 ls
fun getMax [] Is max \(=\) max
    \(\mid\) getMax (h :: t ) Is max =
        let val \(s=s u m h\)
        in if find \(s\) ls andalso not (find \(s h\) ) andalso \(s>\max\)
            then getMax \(t\) Is s
            else getMax t Is max
        end
```

fun largest Is = getMax (powerSet Is) Is 0

4 Formal Languages and Codes

Problem 4.1 (Formal Languages)
You are given the alphabet $A=\{a, b, c\}$ and a formal language $L:=\bigcup_{i=0}^{\infty} L_{i}$, where $L_{0}=\{\epsilon\}$ and $L_{i+1}=\left\{a b x, x c a, x a a x, x b b y \mid x, y \in L_{i}\right\}$.

1. For each of the strings below, determine whether it is in L. Explain why or why not!

- $s_{1}=a b c$
- $s_{2}=a a a a$
- $s_{3}=$ aaaaaa
- $s_{4}=a b b b a a$
- $s_{5}=a a a a b b b b a a a a$

2. Find the cardinality of L_{2}. Please pay special attention not to count multiple occurrences of a string more than once.

Solution:

1. First we note that the number of characters in each string is always an even number.

- s_{1} is not in L, because its length is an odd number.
- s_{2} is not in L, because the strings with 4 characters come from $a b x$ and $x c a$, i.e. it is impossible to have $a a$ inside.
- s_{3} is in L : starting from the empty string, in L_{1} we get $a a$ via $x a a x$, and then we get aaaaaa via xaax in L_{2}.
- s_{4} is in L : starting from the empty string, $a b$ and $a a$ are obtained in L_{1}, and then in L_{2} aaaaaaa is constructed via $x b b y$.
- s_{5} is not in L, because the only possible way to construct it would have been via $x b b y$, but then the x and y strings should have been aaaa and bbaaaa, or aaaabb and aaaa, but we already saw that aaaa is not in L.

2. $L_{1}=\{a b, c a, a a, b b\}$, i.e. it has cardinality 4 .

From $a b x$ we will get 4 strings. From $x c a$ - also 4 . From $x a a x$ - also 4 , since x is the same. From $x b b y$ we will get $4 \cdot 4=16$ strings, since x and y can be the same or different.
However, $a b x$ and $x c a$ will give the same string $a b c a$, so we have one repetition.
Thus the final answer is $4+4+4+16-1=27$.

5 Boolean Algebra

Problem 5.1 (QMC application)
Execute the Quine-McCluskey algorithm to get the minimum polynomial for the Boolean function with the following truth table:

x_{1}	x_{2}	x_{3}	x_{4}	f
F	F	F	F	F
F	F	F	T	T
F	F	T	F	F
F	F	T	T	T
F	T	F	F	F
F	T	F	T	T
F	T	T	F	F
F	T	T	T	T
T	F	F	F	F
T	F	F	T	F
T	F	T	F	F
T	F	T	T	T
T	T	F	F	F
T	T	F	T	F
T	T	T	F	F
T	T	T	T	T

Make sure to write down explicitly your set of prime implicants and set of essential monomials.

Solution:

$Q M C_{1}$:

x_{1}	x_{2}	x_{3}	x_{4}
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T
T	F	T	T
T	T	T	T

x_{1}	x_{2}	x_{3}	x_{4}
F	F	X	T
F	X	F	T
F	X	T	T
X	F	T	T
F	T	X	T
X	T	T	T
T	X	T	T

x_{1}	x_{2}	x_{3}	x_{4}
F	X	X	T
X	X	T	T

The prime implicants are $\overline{x_{1}} x_{4}$ and $x_{3} x_{4}$
$Q M C_{2}$:

	FFFT	FTFF	FTFT	FTTT	FTFF	TTTT
$\bar{x}_{1} x_{4}$	T	T	T	T	F	F
$x_{3} x_{4}$	F	T	F	T	T	T

Both prime implicants are essential.
Final result: $f=\overline{x_{1}} x_{4}+x_{3} x_{4}$

6 Propositional Logic

Problem 6.1 (Hilbert Calculus)
Consider the Hilbert-style calculus given by the axioms and inference rules:

1. $K:=P \Rightarrow Q \Rightarrow P$
2. $S:=(P \Rightarrow Q \Rightarrow R) \Rightarrow(P \Rightarrow Q) \Rightarrow P \Rightarrow R$
3. $\frac{\mathbf{A} \Rightarrow \mathbf{B} \mathbf{A}}{\mathbf{B}} \mathrm{MP}$
4. $\frac{\mathbf{A}}{[\mathbf{B} / X](\mathbf{A})}$ Subst

Prove the formula $\mathbf{A} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C})$ in this calculus.

Solution:

Proof:
P. $1(\mathbf{C} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C}) \Rightarrow \mathbf{C}) \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C} \Rightarrow \mathbf{C}) \Rightarrow \mathbf{C} \Rightarrow \mathbf{C} \quad(\mathbf{S}$ with $[\mathbf{C} / P],[\mathbf{C} \Rightarrow \mathbf{C} / Q],[\mathbf{C} / R])$
P. $2 \mathrm{C} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C}) \Rightarrow \mathbf{C}$
P. $3(\mathrm{C} \Rightarrow \mathrm{C} \Rightarrow \mathrm{C}) \Rightarrow \mathrm{C} \Rightarrow \mathrm{C}$
$(\mathbf{K}$ with $[\mathbf{C} / P],[\mathbf{C} \Rightarrow \mathbf{C} / Q])$
P. $4 \mathrm{C} \Rightarrow \mathrm{C} \Rightarrow \mathrm{C}$
(MP on P. 1 and P.2)
P. $5 \mathrm{C} \Rightarrow \mathrm{C}$
$(\mathbf{K}$ with $[\mathbf{C} / P],[\mathbf{C} / Q])$
(MP on P. 3 and P.4)
P. $6(\mathbf{C} \Rightarrow \mathbf{C}) \Rightarrow(\mathbf{A} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C}))$
$(\mathbf{K}$ with $[\mathbf{C} \Rightarrow \mathbf{C} / P],[\mathbf{A} / Q])$
P. $7 \mathrm{~A} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C})$
(MP on P. 6 and P.5)

Problem 6.2 (Tableau Calculu)
Prove that (show the validity of):

$$
\mathbf{A} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C})
$$

using the tableau calculus for PL^{0}. Fully expand all the possible tableaux.
Hint: You can use the derived rules $\begin{gathered}\mathbf{A} \Rightarrow \mathbf{C}^{\top} \\ \mathbf{A}^{\mathrm{F}} \mid \mathbf{C}^{\top}\end{gathered}$ and $\begin{gathered}\mathbf{A} \Rightarrow \mathbf{C}^{\mathrm{F}} \\ \mathbf{A}^{\top} \\ \mathbf{C}^{\mathrm{F}}\end{gathered}$ in your proof.
Solution: Here is the solution using tableau:

$$
\begin{gathered}
\mathbf{A} \Rightarrow(\mathbf{C} \Rightarrow \mathbf{C})^{\mathrm{F}} \\
\mathbf{A}^{\mathrm{T}} \\
\mathbf{C} \Rightarrow \mathbf{C}^{\mathrm{F}} \\
\mathbf{C}^{\mathrm{T}} \\
\mathbf{C}^{\mathrm{F}} \\
\perp
\end{gathered}
$$

