
Name: Matriculation Number:

Final Exam

General CS 1 (320101)

December 15, 2008

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 141 minutes, leaving you -21 minutes for
revising your exam.

You can reach 57 points if you solve all problems. You will only need 49 points for a
perfect score, i.e. 8 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 2.3 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 6.3 Sum grade
total 3 3 3 2 6 5 8 4 2 5 6 2 3 5 57
reached

Please consider the following rules; otherwise you may lose points:

• “Prove or refute” means: If you think that the statement is correct, give a formal
proof. If not, give a counter-example that makes it fail.

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!
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1 Mathematical Foundations
3pt

Problem 1.1: Consider the following statement.
Given two sets A and B. Prove that if there is a subset A′ of A which is isomorphic to B,
and there is a subset B′ of B which is isomorphic to A, then set A and B are isomorphic.

1. Write the statement using MathTalk.

2. Prove or refute it.

Note: Two sets are called isomorphic iff there is a bijection between them. You write A ∼ B.

Solution: We have the following situation:

A B

A′ B′
ia ib

j k

The mappings ia and ib are the identity mappings on their respective domains, thus they are
injective. Thus the functions l := ia ◦ k−1 and m := ib ◦ j−1 are injective by construction and are
inverses. This gives us a bijection between A and B.
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3ptProblem 1.2 (Division by 6)
Prove by induction or refute that for all natural numbers n the following assertion holds:
n(2n2 − 3n+ 1) is divisible by 6.

Solution:

Assertion: ∀n ∈ N.n(2n2 − 3n+ 1) = 6k, k ∈ N

Induction:
Base case: n = 0 0

6 = 0

Step case: n 6= 0
Induction hypothesis ∀n.Nn(2n2 − 3n+ 1) = 6k, k ∈ N
Induction assertion ∀n.N(n+ 1)(2n+ 12 − 3(n+ 1) + 1) = 6m, m ∈ N

(n+ 1)(2n+ 12 − 3(n+ 1) + 1) = 2n3 + 3n2 + n = 2n3 − 3n2 + n︸ ︷︷ ︸
I.H.

+6n2 =

6k + 6n2 = 6(k + n2︸ ︷︷ ︸
m

)

�
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2 Abstract Data Types and Abstract Procedures
3pt

Problem 2.1 (Constructor Terms)
Consider the following abstract data type:

A := 〈{A,B}, {[g : A→ B], [e : A× B→ A], [n : B→ B], [c : A], [s : A→ A], [I : A× A→ B]}〉

Fill in the table below by entering Yes or No or / (if not applicable) and give the sort
(if term). If an expression is not a term, alter one constructor declaration in order to make
the expression a term or explain why this is not possible (use the space below the table).

expression term? ground? sort alternative declaration

1 n(g(c))
2 I(c,g(s(c)))
3 g(e(xA,g(c)))

Solution:

expression term? ground? sort alternative declaration

1 n(g(c)) Y Y B /

2 I(c,g(s(c))) N / / [I : A× B→ B]

3 g(e(xA,g(c))) Y N B /

4 s(n(g(s(g(c))))) N / / [s : B→ A]

5 c(s(c)) N / / *

Expression 5 contains the constructor c twice, once with arguments and once without. No ADT
can accomodate such expression.
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2ptProblem 2.2 (Applying substitutions)
Given an ADT

〈{A,B,C}, {[a : A], [b : B], [c : C], [f : A× C→ B], [g : C→ A], [h : B× B→ C]}〉

and a term s = g(h(xB, f(yA, zC))) check whether each of the following substitutions is
valid, apply it if it is or explain why it is not valid.

σ1 := [b/xB], [(g(xC))/yA], [(h(b, f(a, c)))/zC]
σ2 := [(f(a, g(c)))/xB], [(h(b, xB))/zC]
σ3 := [(f(yA, c))/xB], [(g(h(xB, b)))/yA]
σ4 := [(f(yA, zC))/xB], [b/(f(yA, zC))]
Solution: σ1 is valid since all sorts correspond. After applying the substitution we get

g(h(b, f(g(xC), h(b, f(a, c)))))
σ2 is not valid since f(a, g(c)) is not a proper term (sorts don’t match: A×A instead of A×C
σ3 is valid, after applying the substitution we get g(h(f(yA, c), f(g(h(xB, b)), zC)))
σ4 is invalid, since we are trying to substitute a term and not a variable.
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6ptProblem 2.3 (Abstract Procedures)
Given the ADT for binary numbers (think of them as lists of 0 and 1 digits):

〈{D,B}, {[0 : D], [1 : D], [bit : D→ B], [addBit : B× D→ B]}〉

and the binary operator XOR

XOR 1 0
1 0 1
0 1 0

The bitwise XOR (written as ⊕) of two binary numbers performs the logical XOR
operation on each pair of corresponding digits (bits). Example:

0110
⊕ 1010

1100

1. Write down an abstract procedure ⊕ that

• computes the bitwise XOR of two binary numbers if they have equal lengths
(leading zeros are accepted)

• does not terminate otherwise

2. Represent the two numbers 101 and 011 using the ADT above and show the compu-
tation process of ⊕ on these two numbers.

Solution:

1. the following procedures are one possible solution:

〈χ::D× D→ D ; {χ(0, 0) 0, χ(0, 1) 1, χ(1, 0) 1, χ(1, 1) 0}〉

〈⊕::B× B→ B ; {

⊕(bit(x),bit(y)) bit(χ(x, y))
⊕(bit(x), addBit(Y, y)) ⊕(bit(x), addBit(addBit(Y, y), 1))
⊕(addBit(X,x),bit(y)) ⊕(addBit(addBit(X,x), 1), bit(y))
⊕(addBit(X,x), addBit(Y, y)) addBit(⊕(X,Y ), χ(x, y))

}〉

2. The numbers are represented as addBit(addBit(bit(1), 0), 1) and addBit(addBit(bit(0), 1), 1):

⊕(addBit(addBit(bit(1), 0), 1), addBit(addBit(bit(0), 1), 1))
 addBit(⊕(addBit(bit(1), 0), addBit(bit(0), 1)), χ(1, 1))
 addBit(addBit(⊕(bit(1), bit(0)), χ(0, 1)), 0)
 addBit(addBit(bit(χ(1, 0)), 1), 0)
 addBit(addBit(bit(1), 1), 0)
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3 Programming in Standard ML
5pt

Problem 3.1 (Function intersection)

1. Write an SML function that numerically computes all intersections of two math
functions and returns a list of the x coordinate of each intersection. Your function
should take as input two functions of the form fn : real -> real and three more
real numbers a,b and ε. The result is a list of all values in the interval [a, b] for which
the input functions give the same result. The interval should be sampled in steps of
size ε. In this problem two real numbers are considered equal if their difference is
less or equal to 0.001.

2. Using the above write a new function that finds the roots of a math function. The
input should be one function of the type fn : real -> real and the three additional
values defined above. The result should be a list of all points in the interval [a, b]
(sampled with a step size of ε) for which the input function evaluates to 0.

For example we have

fun f (x:real) = x;
fun g (x:real) = 2.0;
intersect f g 0.1 0.0 5.0;
-> [2.0]

Solution:

fun intersect f g (e:real) (a:real) (b:real) =
if a > b
then []
else
(
if abs(f(a) - g(a)) < 0.001
then a::(intersect f g e (a+e) b)
else (intersect f g e (a+e) b)

)

fun roots f e a b = intersect f (fn x => 0.0) e a b;

Solution:

(* TEST CASES *)
fun eq nil nil = true
| eq nil _ = false
| eq _ nil = false
| eq ((a:real)::l) ((b:real)::m) = if abs(a-b) < 0.001 then (eq l m) else false;

fun f (x:real) = x;
fun g (x:real) = ~x + 2.0;

val test1 = eq ( intersect f g 0.1 6.0 5.0) [];
val test2 = eq ( intersect f g 0.1 0.0 0.8) [];
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val test2 = eq ( intersect f g 0.1 3.0 5.0) [];
val test4 = eq ( intersect f g 0.1 0.0 5.0) [1.0];
val test5 = eq ( intersect f g 0.1 ~10.0 5.0) [1.0];

fun f (x:real) = Math.cos x;
fun g (x:real) = Math.sin x;

val test6 = eq ( intersect f g 0.0005 0.0 7.0) [0.785,0.7855,0.786,3.9265,3.927,3.9275];
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8ptProblem 3.2 (Jacobs Path Planner)
Write an SML function findMyPath that given a knowledge base of nodes in the form of
directed paths, initial position and the destination, returns a possible route to reach the
destination via the nodes. The route returned is simply a list of tuples representing the
node connections in the path. In case of no path between the required nodes, raise an
exception CantWalkAhead. You do not have to worry about coming up with the optimal
solution.

The signature of the function is:
(string * string * int) list * string * string -> ((string * string) * int) list

Furthermore make two other SMLlanguage functions namely:

1. NetDistance that takes all the parameters that findMyPath takes and calculates the
net distance travelled in the journey returned.

2. TimeTaken that takes all the parameters that findMyPath takes plus an additional
parameter speed and returns the net time taken for the journey at the given speed.
For this part you may use the operator real which converts an integer into a real
number. e.g.

real 4; val it = 4.0 :real;

Note: You can use functions from previous parts in subsequent parts without defining them.

For example we have

val x = [("Research 1","Research 2",20),("Research 2","Research 3",20),
("Research 3","Research 4",20),("Research 2","East Hall",40),
("East  Hall","College IV",30)];

findMyPath (x,"Research 1", "College IV");
val it = [(("Research 1","Research 2"),20),(("Research 2","East Hall"),40),

(("East Hall","College IV"),30)] : ((string * string) * int) list

findMyPath (x,"Research 1", "RLH");
uncaught exception CantWalkAhead

Solution:

(* point distribution should be around 6/5 + 2+2 or similar *)

exception CantWalkAhead;

fun map (nil,a,b,c) = raise CantWalkAhead
| map ((a:string,b:string,c1:int)::l,s,d,x) =

if s=a andalso d=b
then [((a,b),c1)]
else
if b=d
then ((a,b),c1)::map(x,s,a,x)
else map(l,s,d,x);
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fun final (x,a,b) = rev(map (x,a,b,x));

(* The net distance calculator*)

fun finddistance(nil) = 0
| finddistance(((a:string,b:string),c1:int)::l)=c1+finddistance(l);

fun NetDistance (x,s,d) = finddistance(final(x,s,d));

(*Time Taken Calculator*)
fun TimeTaken(x,s,d,t) = real (NetDistance(x,s,d))/real (t);
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4 Formal Languages and Codes
4pt

Problem 4.1 (Codes)
Given the alphabets P = {A, B, C, D, E, F, G, H} and Q = {:, ), (, X} and the function c : P →
Q+:

p ∈ P c(p)
A :)
B (:
C :(
D ):
E :))
F ((:
G X(
H :X

1. Is c a character code? (explain or give a counter example)

2. Prove or refute that the extension of c is a string code.

3. Check if c is a prefix code. If not, modify the codewords of c such that it becomes a
prefix code.

Solution:

1. c is a string code because the mapping is injective.

2. c′ is not a string code. Counter-example: EHF = ADGB = :)):X((:

Note: The “justification” that it’s not a string code because it’s not a prefix code (.− /
.−−−) is invalid, because the respective theorem only yields “prefix code” ⇒ “string
code”, not the opposite direction.

3. One of the possible modification is to make c into a prefix code, e.g.

p ∈ P c(p)

A ):(
B (:)
C :()
D ():
E :))
F ((:
G X((
H :X)
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2ptProblem 4.2 (Greek Codes)
Consider the follwing character code that maps the Greek letters to symbols from the
ASCII table. The Greek letters are represented by their names instead of their symbol:

alpha beta gamma delta epsilon zeta eta theta
hr :P s! ma pp Me ry y

iota kappa lambda mu nu xi omicron pi
ew a ar N st A !

rho sigma tau upsilon phi chi psi omega
Y C He nd e r i Ha

Using the extension of this code encode the string ζχησαψνδγ

Solution: c(ζχησαψνδγ) = Merry Christmas!
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5 Boolean Algebra
5pt

Problem 5.1 (CNF with Quine-McCluskey)

In class you have learned how to derive the optimal formula for a given function in DNF
form using the Quine-McCluskey algorithm. It appears that the same algorithm could be
applied to find the optimal formula in CNF form. Think of how this can be done and apply
it on the function defined by the following table:

x1 x2 x3 f
F F F T
F F T T
F T F T
F T T F
T F F T
T F T T
T T F F
T T T F

Hint:
The basic rule used in the QMC algorithm: a x+ a x = a also applies for formulas in CNF:

(a+ x) (a+ x) = (a)

Solution:

QMC1 :
C0 = {x1 + x2 + x3, x1 + x2 + x3, x1 + x2 + x3}
P1 = ∅
C1 = {x2 + x3, x1 + x2}
P2 = {x2 + x3, x1 + x2}

QMC2 :
FTT TTF TTT

x2 + x3 F T F
x1 + x2 T F F

Final result:
f = (x2 + x3) (x1 + x2)
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6ptProblem 5.2 (Karnaugh-Veitch Diagrams)

1. Use a KV map to determine all possible minimal polynomials for the function defined
by the following truth table:

A B C D f
F F F F F
F F F T T
F F T F T
F F T T F
F T F F T
F T F T F
F T T F T
F T T T T
T F F F T
T F F T T
T F T F F
T F T T T
T T F F T
T T F T T
T T T F F
T T T T T

2. How would you use a KV map to find a minimal polynomial for a function with 5
variables? What does your map look like? Which borders in the map are virtually
connected? (A simple but clear explanation suffices.)

Solution:

1. The resulting KV Map is:

AB AB AB AB

CD F T T T

CD T F F T

CD F T T T

CD T T T F

The two possible minimal polynomials are:

(a) AD +AC +BC D +AC D +BC D +BC D

(b) AD +AC +BC D +AC D +BC D +ABD

2. The picture below should be self explanatory:
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6 Propositional Logic
2pt

Problem 6.1 (Boolean expressions)

1. What does it mean for an expression e to be falsifiable in a universe M := 〈U , I〉?

2. If e is falsifiable what can you say about ¬e? Justify your answer!

Solution:

1. e is falsifiable in M, iff Iϕ(e) = F for some assignment ϕ.

2. e is falsifiable iff ∃ϕ.Iϕ(e) = F. Therefore ¬e is satisfiable since (∃ϕ.Iϕ(e) = F)⇔ (∃ϕ.Iϕ(¬e) = T)
in M.
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3ptProblem 6.2 (A Hilbert Calculus)

Consider the Hilbert-style calculus given by the following axioms

1. P ⇒ Q⇒ P

2. (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R

and the rules:

A⇒ B A
MP

B

A
Subst

[B/X](A)

A⇒ B
IMP

¬A ∨B

Prove that ¬P ∨ P .
Solution:

Proof :

P.1 (P⇒ (Q⇒ P))⇒ ((P⇒ Q)⇒ (P⇒ P)) (ax.2 with [P/R])

P.2 (P⇒ Q)⇒ (P⇒ P) (MP on P.1 and A.1)

P.3 (P⇒ (Q⇒ P))⇒ (P⇒ P) (P.2 with [Q⇒ P/Q])

P.4 P⇒ P (MP on P.3 and A.1)

P.5 ¬P ∨P (IMP on P.4)
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5ptProblem 6.3 (Tableau Calculus)

1. Explain the difference between tableau proof of validity and model generation.

2. Derive a tableau inference rule for A⇔ BT. Show the derivation.

3. Generate all models of the following expression: ¬Q ∧ P ⇔ Q ∧ ¬P

Solution:

1. Tableau proof of validity is done by assuming the expression to be false and then refuting the
assumption by showing that all branches get closed. On the other hand, model generation
starts from the assumption that the expression is true and proceeds until all branches are
saturated. All open saturated branches lead to models.

2. A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A), then:

(A⇒ B) ∧ (B ⇒ A)T

A⇒ BT

B ⇒ AT

AF

BF AT

⊥

BT

BF

⊥
AT

Thus the rule is:

A⇔ BT

AT

BT

∣∣∣∣ AF

BF

3. We generate models by assuming the expression to be true:

¬Q ∧ P ⇔ Q ∧ ¬PT

¬Q ∧ PT

Q ∧ ¬PT

¬QT

PT

QT

¬PT

QF

P F

⊥

¬Q ∧ P F

Q ∧ ¬P F

¬QF

P F

QF

¬P F

QT

PT

⊥

Clearly, the expression ¬Q ∧ P ⇔ Q ∧ ¬P has no model. It is unsatisfiable.
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