
Name: Matriculation Number:

Final Exam

General CS 1 (320101)

December 20. 2006

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 0 minutes, leaving you 120 minutes for
revising your exam.

You can reach 0 points if you solve all problems. You will only need 52 points for a
perfect score, i.e. -52 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Good luck to all students who take this test

1



1 Mathematical Foundations
3pt

Problem 1.1 (Function Definition)
Let A and B be sets. State the definition of the concept of a partial function with domain A
and codomain B. Also state the definition of a total function with domain A and codomain
B.

Solution: Let A and B be sets, then a relation R ⊆ AB is called a partial/total function,
iff for each a ∈ A, there is at most/exactly one b ∈ B, such that 〈a, b〉 ∈ R.

2



5ptProblem 1.2 (Invariance of Equivalence Relations)
Let A be a set and R, S ∈ A2 be equivalence relations. Prove or refute that R ∪ S is an
equivalence relation too.

Solution: The claim is not valid: R ∪ S is reflexive, symmetric, but not transitive: if we
have 〈a, b〉 ∈ R and 〈b, c〉 ∈ S, then we do not know that 〈a, c〉 ∈ (R ∪ S).

3



2 Standard ML
6pt

Problem 2.1 (SML Function for Coordinate Transformation)
Declare SML datatypes cartesian and polar representing points in two dimensional space
in Cartesian and polar coordinates respectively.

Moreover define an SML function cartesianToPolar : cartesian -> polar which
does the intended coordinate transformation:(

x

y

)
7→
(√

sin(x)2 + cos y2

arctanx/y

)
It should raise an exception for y = 0.

Hint: You can assume sqrt, square, sin, cos, arctan as built-in functions of type real -> real.

Use SML syntax for the whole problem.
Solution:

datatype polar = polar of real * real;
datatype cartesian = cartesian of real * real;

exception Undefined;

cartesianToPolar (cartesian _ 0) = raise Undefined;
cartesianToPolar (cartesian x y) =
polar (sqrt (square (sin x)) (square (cos x))) (arctan (x/y));

4



6ptProblem 2.2 (Higher-Order Functions)
Write three higher-order functions that take a predicate p (a function with result type
bool) and a list l.

• myfilter that returns the list of all members a of l where p(a) evaluates to true.

• myexists that returns true if there is at least one element a in l, such that p(a)
evaluates to true.

• myforall that returns true if p(a) evaluates to true on all elements of l.

Hint: If you are in need of a test predicate, you can work on a list l of ints and use the
“even number” predicate:

fun even n = n mod 2 = 0;

Solution:

fun myfilter p nil = nil
| myfilter p h::t =
if (p h) then h :: myfilter p t else myfilter p t

fun myexists p nil = false
| myexists p h::t =
if (p h) then true else myexists p t

fun myforall p nil = true
| myforall p h::t =
if (p h) then myforall p t else false

For the last two, we can make use of the predefined functions orelse and andalso, which
are useful abbreviations: e1 andalso e2 abbreviates if e1 then e2 else false and e1 orelse e2
abbreviates if e1 then true else e2. Using this, we can write

fun myforall f nil = true
| myforall f (x::xr) = f x andalso myforall f xr

fun myexists f nil = false
| myexists f (x::xr) = f x orelse myexists f xr

5



3 Abstract Data Types and Procedures
6pt

Problem 3.1 (Abstract Procedure for Addition and Multiplication)
Given the abstract data type of unary natural numbers: 〈{N}, {[o : N], [s : N→ N]}〉Write
two abstract procedures plus and mult on this abstract data type which compute the
ordinary addition and multiplication respectively of unary numbers. Trace the evaluation
of mult(s(s(o)), s(s(o))).

Solution:

F := 〈plus::N× N→ N ; {plus(o, n) n, plus(s(m), n) plus(m, s(n))}〉
G := 〈mult::N× N→ N ; {mult(o, n) o,mult(s(m), n) plus(mult(m,n), n)}〉

Trace of evaluation:

mult(s(s(o)), s(s(o))) plus(mult(s(o), s(s(o))), s(s(o))) plus(s(s(o)), s(s(o)))

 plus(s(o), s(s(s(o)))) plus(o, s(s(s(s(o))))) s(s(s(s(o))))

6



4 Formal Languages and Codes
5pt

Problem 4.1 (Minimal Word Length)
Let A and B alphabets with #(A) > #(B). What is the minimal length of the longest
codeword from B+ such that c : A → B+ is a character code?

Hint: Think of how you can use the properties of character codes and the cardinalities of
your alphabets to figure out the answer. Also, it is always a good idea to test your final value for
some simple cases. Consider for example #(A) = 12 and #(B) = 2 or #(A) = 5 and #(B) = 3
as initial values.

Solution: Old version:
Let c be a character code, i.e. an injective function c : #(A) → B+. Then the cardinality of

the image of c must be greater than that of its domain A. In terms of word length n we have the
constraint #(Bn) ≥ #(A). This can be transformed to n ≥ #(A)

#(B) .
New version:
The constraint used for c being a character code can be formulated as

#(A) ≤ #(B) + #(B)2 + ... + #(B)min

We can now use the formula for geometric progressions and find the inequality:

#(A) ≤ #(B)min+1 − 1

#(B)− 1
− 1

By taking to the common denominator we get

#(A) ≤ #(B)min+1 −#(B)

#(B)− 1

From this point on standard mathematical operations are used to deduce the value of min.

#(A) · (#(B)− 1) ≤ #(B)min+1 −#(B)

#(A) · (#(B)− 1) + #(B) ≤ #(B)min+1

log#(B)(#(A) · (#(B)− 1) + #(B)) ≤ log#(B)(#(B)min+1)

log#(B)(#(A) · (#(B)− 1) + #(B)) ≤ min + 1

log#(B)(#(A) · (#(B)− 1) + #(B))− 1 ≤ min

So in conclusion, since we need an integer (actually natural) number for this purpose, the final
answer will be of the form:

min ≥ dlog#(B)(#(A) · (#(B)− 1) + #(B))− 1e

7



3ptProblem 4.2 (Lexical Ordering)
Let A := {x, :,+, R, a} and ≺ be the ordering relation on A with a ≺ R ≺ + ≺:≺ x. Order
the following strings in A∗ in the lexical ordering ≺lex induced by ≺.

s1 =RRRR s2 =RR +RRx s3 = ε
s4 =RR : RRa s5 =xRRRxR s6 =RRRR :

Solution: s3 ≺lex s1 ≺lex s6 ≺lex s2 ≺lex s4 ≺lex s5

8



3ptProblem 4.3 (Character Code)
Consider the character code

c := {l 7→ wi, s 7→ y, ä 7→ w, t 7→ ou, a 7→ sh, T 7→ e }

and the mapping

d := ish 7→ hol, ou 7→ ys!, we 7→ hap, y 7→ ida, w 7→ py .

Let c′ be the extension of c. Write down the values of c′(äT last) and d(c′(äT last))
Solution:

• c′(äT last) = we wish you

• d(c′(äT last)) = happy holidays

9



5 Boolean Expressions
4pt

Problem 5.1 (Example for Validity and (Un-)Satisfiability)
Given the schema (x1 ∨ e1) ∧ e2 of a Boolean expression, where e1 and e2 stand for arbitrary
other Boolean expressions. Generate three different Boolean expressions by instantiation
of e1 and e2 such that the result expression becomes

1. valid,

2. unsatisfiable,

3. satisfiable and falsifiable at the same time.

For the last case provide two assignments, one satisfying your expression and the other
falsifying it.

Solution:

1. valid: (x1 ∨ ¬x1) ∧ (x1 ∨ ¬x1)

2. unsatisfiable: (x1 ∨ x1) ∧ ¬x1

3. satisfiable and falsifiable: (x1 ∨ x2) ∧ x1

The last expression can be

• satisfied by x1 7→ T and

• falsified by x1 7→ F

independently how x2 is assigned.

10



6 Complexity
3pt

Problem 6.1 (Sorting Landau Sets)
For two functions f and g let us define f ∼ g iff f ∈ Θ(g) and f ≺ g iff f ∈ O(g). Write
down in terms of these two ordering relations how the following functions are related to
each other.

Hint: Since these relations induce a total ordering, it is not necessary to write down explicitly
every relation for each pair of functions. Instead you can determine the whole ordering in one
line; e.g. in the form of . . . ≺ f ∼ g ≺ h ≺ . . ..

1. f1(n) := 2n+3

2. f2(n) := log(n2)

3. f3(n) := n4

4. f4(n) := 2n

5. f5(n) := log(n/2)

6. f6(n) := 3n

7. f7(n) := n+ 24

Solution: f2 ∼ f5 ≺ f3 ∼ f7 ≺ f4 ∼ f1 ≺ f6

11



7 The Quine-McCluskey Algorithm
6pt

Problem 7.1 (Quine-McCluskey Algorithm)
Use the algorithm of Quine-McCluskey to determine the minimal polynomial of the fol-
lowing function:

x1 x2 x3 f
F F F T
F F T F
F T F F
F T T T
T F F F
T F T F
T T F T
T T T T

12



8 Machine-Oriented Calculi
5pt

Problem 8.1 (Basics of Resolution)
What are the principal steps when you try to prove the validity of a propositional formula
by means of resolution calculus? In case you succeed deriving the empty clause, why does
this mean you have found a proof for the validity of the initial formula?

13


