
Name: Matriculation Number:

Midterm Exam

General CS I (320101)

October 31, 2011

You have 70 minutes(sharp) for the test;
Write the solutions to the sheet.
The estimated time for solving this exam is 68 minutes, leaving you 2 minutes for revising
your exam.
You can reach 102 points if you solve all problems. You will only need 90 points for a
perfect score, i.e. 12 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 4.3 Sum grade
total 5 15 10 15 12 10 10 15 10 102
reached

Please consider the following rules; otherwise you may lose points:
• Always justify your statements. Unless you are explicitly allowed to, do not just

answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.
• If you write program code, give comments, so that we can award you partial credits!
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1 GenCS Classics and Induction

5pt2minProblem 1.1 (Greek Letters)
Fill in the blanks in the following table of Greek letters. Note that capitalized names
denote capital Greek letters.

Symbol Ξ η Λ ω I
Name delta sigma Psi Omega chi

Solution:

Symbol δ Ξ η σ Ψ Λ Ω ω I χ
Name delta Xi eta sigma Psi Lambda Omega omega Iota chi
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15pt10minProblem 1.2 (Inductive tuples)
You are given n-tuples 〈x1, x2, . . ., xn〉 in which ∀i.xi = ±1, and the transformation rule

〈x1, x2, . . ., xn〉 7−→ 〈x1x2, x2x3, . . ., xnx1〉.

Prove by induction or refute that if n = 2k and k ≥ 1, then after some finite number of
steps, an n-tuple consisting exclusively of 1’s (〈1, 1, . . ., 1〉) will be obtained.
Hint: For the step case of the proof, look at what is happening to the tuple after applying an
even number of transformations. You may want to write down the first several transformations
in order to observe what is conserved and what changes.

Solution:
Proof : We will prove that for n = 2k, after a certain number of steps the tuple 〈1, 1, . . ., 1〉 will
be obtained.

P.1 For the induction we have to consider the following cases:

P.1.1 k = 1, i.e. n = 2:

P.1.1.1 We have the following possibilities:

• 〈1, 1〉 7−→ 〈1, 1〉
• 〈1,−1〉 7−→ 〈1, 1〉
• 〈−1, 1〉 7−→ 〈1, 1〉
• 〈−1,−1〉 7−→ 〈1, 1〉

Therefore in each case after one application of the transformation we get the desired result.

P.1.2 k > 1:

P.1.2.1 Now, assume that the assertion is true for a certain value of k, and respectively for a
certain value of n, i.e. that taking the tuple 〈x1, x2, . . ., xn〉 after a certain number of steps
we obtain 〈1, 1, . . ., 1〉.

P.1.2.2 Next, we take k + 1 and n = 2k+1.
We observe that since ∀i.xi = ±1, then ∀i.x2i = 1.

If we apply two transformations, we get

〈x1, x2, . . ., xn+1〉 7−→ 〈x1x2, x2x3, . . ., xn+1x1〉
7−→ 〈x1x22x3, x2x23x4, x3x24x5, . . ., xnx2n+1x1, xn+1x

2
1x2〉

= 〈x1x3, x2x4, x3x5, . . ., xnx1, xn+1x2〉

This last tuple can be obtained by alternating the entries of the two n-tuples 〈x1x3, x3x5, . . ., xnx1〉
and 〈x2x4, x4x6, . . ., xn+1x2〉.
We observe that continuing doing the transformations, on each even-numbered transfor-
mation, we have a separation of the entries, i.e. they are taken alternatively from a trans-
formation on the above two tuples. But they are n-tuples, i.e. the inductive assumption
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holds for them. Therefore after a certain number of steps they will contain only 1’s, and
therefore after the whole (n+ 1)-tuple will also contain only 1’s.
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2 Relations and Functions

10pt7minProblem 2.1 (Relation Properties)

• You are given the set A := {1, 2, 3, 4} and the relation

R ⊆ A× A, R := {〈1, 1〉, 〈3, 1〉, 〈2, 4〉, 〈2, 2〉, 〈2, 3〉, 〈4, 4〉, 〈1, 4〉, 〈3, 3〉}

Determine whether R is reflexive, symmetric, transitive or antisymmetric. If the
relation does not have a certain property, give a counter-example to show that.
• How many such relations (with the determined properties of R) are there over the

set A? How many would they be for a set A with #(A) = n?

Solution:
1. The relation is obviously reflexive and antisymmetric according to the definitions.

It is not symmetric since, e.g. it contains 〈3, 1〉, but not 〈1, 3〉.
It is not transitive because, e.g. it has 〈3, 1〉 and 〈1, 4〉, but not 〈3, 4〉.

2. Thus the relations we are looking for have to be reflexive and antisymmetric.
For A, since it has to be reflexive, there are 16 − 4 = 12 pairs to choose from. If we
choose one of those pairs, then we must not choose its symmetric part, so we are left with
6 options. Every subset of them will give a relation that is reflexive and antisymmetric. So
in total there are 26 relations.

Following the same logic for a set with cardinality n, we get 2
n2−n

2 relations.

5



15pt10minProblem 2.2 (Function classics and injective functions)

• Let A and B be sets. State the definition of the concept of a partial function
with domain A and codomain B. Also state the definition of a total function with
domain A and codomain B.
• Let n ≥ 1 be a natural number and let f : {1, 2, . . ., 2n} → {1, 2, . . ., 2n} be an

injective function such that:
f(1) + f(3) + · · ·+ f(2n− 1) = f(2) + f(4) + · · ·+ f(2n)

1. Give an example of such a function f for n = 4.
2. Prove that n is divisible by 2.

Solution:
• Let A and B be sets, then a relation R ⊆ AB is called a partial/total function, iff for

each a ∈ A, there is at most/exactly one b ∈ B, such that 〈a, b〉 ∈ R.
• As f is injective, it means that the values of f are a permutation of the set {1, 2, . . ., 2n}.

Denote by S the sum on both sides of the equation given in the problem formulation. Then
we have S+S = f(1) + f(2) + · · ·+ f(2n) = 1 + 2 + · · ·+ 2n = n(2n+ 1), so 2 must divide
n.
An example function would be f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, f(5) = 6, f(6) = 5,
f(7) = 8 and f(8) = 7.
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3 Abstract Data Types and Abstract Procedures

12pt8minProblem 3.1 (Rowing Boats)

1. Design an abstract data type with sort B for rowing boats. There are two variations
of a rowing boat:
• Sculling boat – In this boat, there is an arbitrary (n ≥ 1) number of rowers,

each of which has two oars, one on each side.
• Sweeping boat – In this boat, there is always an even (2n ≥ 2) number of

rowers, each of which rows with one oar on either left or right of them in an
alternating manner.

Note that every rowing boat can optionally have one coxswain – a person who sits
in the boat without rowing and just steers it.
Make sure to use four different sorts for every possible function of a person in the
boat (two oars, one oar on left, one oar on right, coxswain).
Also, feel free to define additional sorts as needed.

2. Now represent the following boats using your ADT:
(a) a sculling boat with two rowers and without a coxwain
(b) a sweeping boat with four rowers and with a coxwain

Solution:
1.

〈{E,L,R,C, Sc, Sw,B},


[each : E], [left : L], [right : R], [coxswain : C],
[sc : E→ Sc], [addSc : Sc × E→ Sc], [coxSc : Sc × C→ B],
[finSc : Sc → B], [sw : L× R→ Sw], [addSw : Sw × L× R→ Sw],
[coxSw : Sw × C→ B], [finSw : Sw → B]

〉
2. (a) finSc(addSc(sc(each), each))

(b) coxSw(addSw(sw(left, right), left, right), coxswain)
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10pt7minProblem 3.2 (Subset)
Consider the following ADT: A := 〈S0,Σ〉, where S0 := {N, S,B} (N for unary natural
numbers, B for truth values, and S for sets over N) and

Σ := {[o : N], [s : N→ N], [Φ: S], [i : N→ S], [u : S× S→ S], [T : B], [F : B]}

Given the abstract procedures corresponding to:
• the logical operator “and”:

〈∧::B× B→ B ; {∧(T, T ) T ,∧(T, F ) F ,∧(F, T ) F ,∧(F, F ) F}〉

• the logical operator “or”:

〈∨::B× B→ B ; {∨(T, T ) T ,∨(T, F ) T ,∨(F, T ) T ,∨(F, F ) F}〉

• the equality of unary natural numbers:

〈=::N→ N ; {=(o, o) T ,=(o, s(x)) F ,=(s(x), o) F ,=(s(x), s(y)) =(x, y)}〉

Write the abstract procedure for the “subset of” (“⊆”) operator for sets of unary natural
numbers.
Solution: First, we define the the “element of” operator as a helper abstract procedure:

〈∈::N× S→ B ; {∈(x,Φ) F ,∈(x, i(x)) =(x, y),∈(x, u(a, b)) ∨(∈(x, a),∈(x, b))}〉

Now, we can define the “subset of”:

〈⊆::S× S→ B ; {⊆(Φ, x) T ,⊆(i(x), y) ∈(x, y),⊆(u(x, y), z) ∧(⊆(x, z),⊆(y, z))}〉
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4 Programming in Standard ML

10pt7minProblem 4.1 (Cars)
Bob, the policemen in a certain coastal town, has his own unique (though perhaps not very
efficient) way of recording the number and the arrangement of parked cars on a street. He
uses a string in which the substring "car" represents a car on the street and each character
between two "car"s represents one meter of space between the cars. So in Bob’s notation
"car a car treecar " represents a street with 3 parked cars with 3m between the first
two, 5m between the second and third and 1m after the third. Your tasks are:

1. Write an SML function that given a string counts the number of cars in it:

val number_of_cars = fn : string -> int
- number_of_cars("car tree car car_ car ");
val it = 4 : int

2. Write an SML function that given a “street” returns a list consisting of of 0s and 1s
with 1 representing a car on the street and 0 representing 1 meter of space between
the cars:

val cars = fn : string -> int list
- cars("car_car_space_car ");
val it = [1,0,1,0,0,0,0,0,0,0,1,0] : int list

Solution:

fun street([]) = ([],0)
| street((#"c")::(#"a")::(#"r")::l) = let val (m,a) = street(l) in (1::m,a+1)

end
| street(a::l) = let val (m,a) = street(l) in (0::m,a) end;

fun number_of_cars(l) = let val (m,a) = street(explode(l)) in a end;
fun cars(l) = let val (m,a) = street(explode(l)) in m end;
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15pt10minProblem 4.2 (Fibonacci)
Let n ≥ 1 be a natural number. We say that a sequence of integers a1, . . . , an satisfies the
“Fibonacci property” if either n ≤ 2 or ak = ak−1 + ak−2, for all k with (3 ≤ k ≤ n). Do
not confuse this concept with the well-known sequence of “Fibonacci numbers” which does
have the Fibonacci property, but other sequences also do.
Write an SML function longestFibonacci which takes a list [x1, x2, x3, . . . , xn] of integers as
argument, and returns the longest sublist [xi, xi+1, xi+2, . . . , xj] that satisfies the Fibonacci
property.
Examples:

- longestFibonacci [1,2,3,5,8,15,16,2,18,20,38,58,3,4,5];
bval it = [16,2,18,20,38,58] : int list
- longestFibonacci [1,2,4];
val it = [1,2] : int list

Note: If there are more of these longest sequences, you can return any of them, whichever you
want. You may use the function length: ‘a list -> int without defining it.

Hint: To find the longest subsequence with a property p, recursively compare the longest
subsequence of a list with that of its tail.

Solution:

fun firstFibonacci ls =
if length ls < 3 then ls
else let val (a :: b :: c :: t) = ls

in if a + b = c
then a :: firstFibonacci (b :: c :: t)
else [a,b]

end

fun longestFibonacci ls =
if length ls < 3 then ls
else let val h :: t = ls

val l = longestFibonacci t
val nl = firstFibonacci (h :: t)

in if length l < length nl then nl else l
end
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10pt7minProblem 4.3 (Angry Birds)
Your new favorite game is Angry Birds, and, after a lazy afternoon when you have played
the game, you observed the following rules for deducing the score:
• the red bird will always add 5000 points to your score (no matter what it hits)
• the blue bird always is split into 3 smaller birds, and every bird adds 1000 points if

it hits an object
• the yellow bird will add 2500 birds only if it hits a green pig
• the white bird is considered peaceful and will add no points to your score

Your version of Angry Birds permits you to choose K from a list of birds which you will
fire. Therefore, you design the following SML datatype:

datatype angrybird = white | red | blue of int | yellow of bool;

The int parameter of the blue bird tells you how many birds hit an object, and the bool

parameter of the yellow bird tells you if the bird hits a pig or not.
You are required to write an SML function getScore which takes a list of Angry Birds and
the number K of birds you can fire and returns the maximum score you can get by firing
your choice of K birds:

val getScore = fn : angrybird list * int -> int;
- getScore( [white, white, red, blue(3)], 3 );
val it = 8000 : int; (* red, blue and one of the whites are chosen *)
- getScore( [red, yellow(false), yellow(true), blue(2)], 2);
val it = 7500 : int; (* red and yellow(true) are chosen *)

Hint: For sorting a list of ints in descending order, you can use the following SML snippet:

- ListMergeSort.sort (op<) [1,5,1,2];
val it = [5,2,1,1] : int list;

Solution:

datatype angrybird = white | red | blue of int | yellow of bool;

fun convert(white) = 0
| convert(red) = 5000
| convert(blue(x)) = x*1000
| convert(yellow(x)) = if x then 2500 else 0;

fun getScore(l,k)=
let

val l1 = map convert l
val l2 = ListMergeSort.sort (op<) l1

in
foldl (op+) 0 (List.take(l2, k))

end;
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