
Name: Matriculation Number:

Midterm Exam

General CS I (320101)

October 12, 2010

You have 70 minutes(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 0 minutes, leaving you 70 minutes for
revising your exam.

You can reach 0 points if you solve all problems. You will only need 30 points for a
perfect score, i.e. -30 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Please consider the following rules; otherwise you may lose points:

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!

1

1 Mathtalk and Induction

2pt2minProblem 1.1 (Greek Alphabet)
Two CS students just noticed a big problem in their Physics Lab Reports which is due in
a couple of minutes. The printer apparently didn’t output all the symbols Greek alphabet
symbols which were represented as

〈symbol〉 = 〈name of symbol〉

but only one of the two parts. Can you help them fill all the missing symbols and symbol
names?

Symbol δ Υ ν ζ
Name gamma mu xi Psi

Solution:

Symbol δ Υ ν ζ γ µ ξ Ψ

Name delta Upsilon nu zeta gamma mu xi Psi

2

2pt2minProblem 1.2 (Function Definition)
Let A and B be sets. State the definition of the concept of a partial function with domain A
and codomain B. Also state the definition of a total function with domain A and codomain
B.

Solution: Let A and B be sets, then a relation R ⊆ AB is called a partial/total function,
iff for each a ∈ A, there is at most/exactly one b ∈ B, such that 〈a, b〉 ∈ R.

3

4pt8minProblem 1.3 (Segment Partition)
Consider a line segment AB and take in its interior some (distinct) points. Denote each of
these points either A or B.

Prove by induction or refute by a counterexample that the number of oriented segments
AB exceeds by 1 the number of oriented segments BA. Note that oriented segments are
minimal, i.e. they do not contain named points.

Consider, for example, the following diagram:

Here, 4 points are taken inside the segment AB and they are denoted B,B,A,B. As one
can see, there are 2 oriented segments AB (1st and 4th) and 1 oriented segment BA (3rd).

Solution:
Proof : We prove the assertion by induction on the number on the segment (not counting its end
points)

P.1 We have two cases

P.1.1 Base case:

P.1.1.1 If we take n = 0 (which means no additional points on the segment), we have just one
oriented segment, AB.

P.1.1.2 Hence the number of ABs is 1 and the number of BAs is 0, so the hypothesis is satisfied.

P.1.2 Step case:

P.1.2.1 Assume we have proven that for any n points on the segment,

#(AB)−#(BA) = 1 (1)

P.1.2.2 Let’s take n points on the segment and an arbitrary point X besides these n. Now we’ll
have n+ 1 points and we want to prove that (??) still holds.

P.1.2.3 Consider our X is denoted A.

P.1.2.4 Then we have 4 cases given by the possible immediate neighbors

P.1.2.4.1 A inserted between A and A:Nothing will change as no new AB or BA segments
are created.

P.1.2.4.2 A inserted between A and B:The old AB segment is destroyed and from it the
segments AA and AB are created, so the number of AB and BA segments remains constant.

P.1.2.4.3 A inserted between B and A:Similarily with case 2, segment BA is destroyed and
segments BA and AA are created, so again the number of AB and BA segments remains
constant.

4

P.1.2.4.4 A inserted between B and B:Here a segment BB is destroyed and instead a seg-
ment BA and a segment AB are created, so the difference between #(AB) and #(BA) is
conserved.

P.1.2.5 If X is B, the proof is analogous.

P.2 Hence we have proven that #(AB)−#(BA) = 1 for all n ∈ N

5

2 Sets and Functions

4pt8minProblem 2.1 (Students and their Problems)
Consider that this year the GenCS course has n students and they have just received a
huge homework of m problems. Let 1 ≤ n,m; let furthermore S be the set of students and
P the set of problems. Also,

R := {〈s, p〉 ∈ (S × P) | “s solves problem p”}

1. What properties we covered in class hold on this relation?

2. How can one form a bijection between sets S and P? Please provide two solutions.

3. What is the maximum number of subsets of the relation R?

Justify your answers.
Solution:

1. Only antisymmetry will work here, due to the construction of the relation.

2. The only way a bijection can be formed is if n = m. The simplest way is to number the
problems and assign each problem pi to the student si. Having that, one can now consider
all rotations, for example students si solve problems pi+2, and of course sn−1 solves p1 and
sn solves p2.

3. Of course, the students have to realize here that they are asked to provide the cardinality
of the powerset of elements in R, hence we are looking for 2n·m.

6

4pt8minProblem 2.2 (Testing for injectivity)
Check whether the following functions are injective or not :

1. f : R→ R with f(f(f(x))) = f(f(x)) + x

2. g : R→ R with g(2x) + g(3x) = 1

Solution:

1. Proof : We prove that ∀x, y ∈ <.f(x) = f(y)⇒ x = y.

P.1 Take x, y arbitrary, f(x) = f(y)⇒ f(f(x)) = f(f(y))⇒ f(f(f(x))) = f(f(f(y)))⇒
f(f(f(x)))− f(f(x)) = f(f(f(y)))− f(f(y) (*)

P.2 However, from the problem we know that f(f(f(x)))− f(f(x)) = x.

P.3 Thus, from (*) we get x = y, which concludes our proof.

Proof : We prove that the function is not injective by a counterexample.

2. P.1 Take x = y = 1⇒ f(2) + f(3) = 1⇒ f(3) = 1− f(2)

Then, consider x = y = log32⇒ 2x = 2log32 ∧ 3x = 2⇒ f(2log32) + f(2) = 1⇒

f(2log32) = 1− f(2) (2)

From (1) and (2), f(3) = f(2log32), but 3 6= 2log32, which concludes our proof.

7

3 Inductively Defined Functions

5pt10minProblem 3.1 (Greatest Common Divisor)
Provide a definition for the function that finds the greatest common divisor of two unary
natural numbers, considering the following inductive definitions of addition and multipli-
cation on unary natural numbers. You may also create any other functions you may wish
to use.

P.21. addition: α(n, o) = n and α(n, s(o)) = s(α(n,m))

2. multiplication: µ(n, o) = o and µ(n, s(m)) = α(n, µ(n,m))

Hint: It is handy to use the Euclidean algorithm here. Recall:

• gcd(n, 0) = n

• gcd(n,m) = gcd(m,n mod m)

Create your own auxiliary functions on unary natural numbers and, using them, convert this
definition of the greatest common divisor algorithm on the natural numbers into one on the
unary natural numbers.

Solution: To convert the formulas for gcd to formulas on UNN, we need the definition of
modulus.

The modulus n mod m equals (n −m) mod m in case that n ≥ m and returns n otherwise.
The subtraction function always returns o if n < m, so we can make use of this fact. We will
do that by applying a boolean function. Since the modulus function can return a value when it
has reached a state when n < m, we can set the boolean function to true (s(o)), and return n.
Before that, while we are still in a state when the boolean function returns false (o), we can just
calculate (n − m) mod m. To include the effects of the boolean and the subtraction function,
without influencing the output, we will be adding their product to (n −m) mod m. This does
not change the output, because in case n < m, we add (n −m) to zero (which is the remainder
of zero divided by anything), and otherwise we add zero (because the boolean evaluates to zero)
to (n−m) mod m.

For subtraction we will use the previous number function, i.e. which does the opposite of the
successor function.

This is sufficient to convert the whole greatest common divisor formula to one that works on
the unary natural numbers.

Here are the inductive definitions:

1. previous element:

• π(o) = o

• π(s(n)) = n

2. subtraction (which returns o if the m > n in m− n):

• δ(o,m) = o

• δ(n, o) = n

8

• δ(n, s(m)) = π(δ(n,m))

3. boolean:

• β(o) = o

• β(s(n)) = s(o)

4. modulus:

• ϕ(o,m) = o

• ϕ(n,m) = α(ϕ(α(n,m),m), µ(α(n,m), β(δ(m,n))))

5. greatest common divisor:

• γ(n, o) = n

• γ(n,m) = γ(m,ϕ(n,m))

9

4 Programming in Standard ML

5pt10minProblem 4.1 (Secret Message)

A couple of GenCS students wanted to develop a way to communicate with each other
in text that makes it impossible for others to understand. Thus they thought of encoding
characters as integers (greater than zero): each character from a list (they don’t want
the whole list of possible characters, just a few) gets an integer from another list. Since
they just learned about SML, they considered writing some functions using it to ease their
encoding and decoding of characters.

Your task is to implement two functions:

1. a function secretEncode that takes as arguments two lists of equal length: a list of
characters and a list of integers and gives a list of pairs of the form (character, integer)

and

2. a function getEncoding, that takes an character and the list of pairs (character,integer)

and returns the integer encoding of that int (if no encoding found it return −1)

So we have the following signature:

val secretEncode = fn : char list ∗ int list −> (char ∗ int) list
val getEncoding = fn : char ∗ (char ∗ int) list −> int

Example:

− val encoding = secretEncode([#”a”,#”b”,#”c”], [4,1,7]);
val encoding = [(#”a”,4),(#”b”,1),(#”c”,7)] : (char ∗ int) list
− getEncoding(#”b”, encoding);
val it = 1 : int

Solution:

fun secretEncode([]: char list, lsa: int list) = []
| secretEncode(ch::chs, a::lsa) = (ch, a)::secretEncode(chs,lsa);

fun getEncoding(ch: char, []) = ˜1
| getEncoding(ch, (c, x)::encods) =

if ch=c then x
else getEncoding(ch, encods);

10

7pt14minProblem 4.2 (Pearls)
Ariel, the Little Mermaid, was asked by Ursula to give all her beautiful colored pearls in
exchange for getting transformed into a real girl. Ariel wanted very much to meet prince
Eric in person, but wouldn’t give away all her pearls, so she made a deal with Ursula: she
were to keep the k most shiny pearls and give away all the others.

We know that Ariel’s pearls were of four types: the carved pearls are not shiny at all
and have a “shininess” multiplier of 0; opal-pearls have a multiplier of 2; the faceted pearls
have a multiplier of 4; the akoya pearls have the highest multiplier, namely 10. Each pearl
also has an intrinsic “shininess” that gets multiplied by the multiplier.

You are given the following SML datatype and function signature and you are asked to
return the total value of the “shininess” that Ariel can get:

datatype pearl = carved of int | opal of int | faceted of int | akoya of int;
val shiny = fn : pearl list ∗ int −> int;

For instance to compute

− shiny([carved(2), opal(3), faceted(1), faceted(5), akoya(2), opal(20)], 3);
val it = 80 : int;

we first compute the shininess of the five pearls: [0,6,4,20,20,40], and then add up the
shininess of the k = 3 shiniest ones.

Solution: First idea: sort the pearls, get the k largest and add up their values.

fun len([]) = 0 | len (x::L) = 1+len(L);
fun take(L, 0) = [] | take([],) = [] | take(x::L, n) = x::take(L,n−1);
fun drop(L, 0) = L | drop([],) = [] | drop(x::L, n) = drop(L, n−1);

datatype pearl=carved of int | opal of int | faceted of int | akoya of int;

fun value(carved(X)) = 0
| value(opal(X)) = 2∗X
| value(faceted(X)) = 4∗X
| value(akoya(X)) = 10∗X;

fun cmp(A, B) = value(A) > value(B);

fun merge([],p,) = p
| merge(p,[],) = p
| merge(a::p1, b::p2, compare) = if compare(a,b) then a::merge(p1,b::p2,compare) else b::merge(a::p1,p2,compare);

fun sort([],) = []
| sort([a],) = [a]
| sort(L,cmp) = let val l1 = len(L) val p1 = sort(take(L,l1 div 2),cmp) val p2 = sort(drop(L,l1 div 2),cmp)

in merge(p1,p2,cmp) end;

fun sum([]) = 0
| sum(a::L) = value(a) + sum(L);

fun shiny(X,k) = sum(take(sort(X,cmp),k));

A nice variant would be to use function intsort that sorts lists of integers and then

11

fun shiny(X,k) = foldl op+ 0 (take(intsort(map value X),k));

Third idea: we can obtain the result for a list a :: L and k pearls left by either taking the
a element into account: value(a) + shiny(L, k − 1) or dropping a: shiny(L, k). The following
(shorter) implementation uses the idea:

datatype pearl=carved of int | opal of int | faceted of int | akoya of int;

fun value(carved(X)) = 0
| value(opal(X)) = 2∗X
| value(faceted(X)) = 4∗X
| value(akoya(X)) = 10∗X;

fun max(a, b) = if a>b then a else b;

fun shiny([],) = 0
| shiny(, 0) = 0
| shiny(a::L, k) = max(value(a)+shiny(L,k−1), shiny(L,k));

12

