
Name: Matriculation Number:

Final Exam

General CS I (320101)

December 14, 2010

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 110 minutes, leaving you 10 minutes for
revising your exam.

You can reach 55 points if you solve all problems. You will only need 48 points for a
perfect score, i.e. 7 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 2.3 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 Sum grade
total 3 3 5 2 6 5 8 2 6 4 5 3 3 55
reached

Please consider the following rules; otherwise you may lose points:

• “Prove or refute” means: If you think that the statement is correct, give a formal
proof. If not, give a counter-example that makes it fail.

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!

1



1 Mathematical Foundations

3pt5minProblem 1.1 (Prime Induction)
Prove or refute that every positive integer n > 1 can be expressed as the product of one
or more primes.

Note: The prime numbers in the final product are not necessarily distinct.

Solution: We will use strong induction to prove this.
Base case for n = 2: 2 is written as the product of one single prime number, 2.
Step case: Suppose that every integer between 2 and k can be written as the product of one

or more primes. Now we show that k + 1 can also be written as a product of primes. There are
two cases:

• k + 1 is prime, hence it is the product of one prime, i.e. itself.

• k + 1 is not prime. Then k + 1 = ab, where a, b are integers s.t. 1 < a, b < k + 1. By
the induction hypothesis, a = p1p2...pi where pl, l ∈ {1, 2, .., i} are prime factors. Similarly
b = q1q2..qj where qk, k ∈ {1, 2, .., j} are prime factors. Then k + 1 can be expressed as
k + 1 = p1p2...piq1q2..qj .

As k + 1 is in the end written as a product of primes in all cases, we are done.

2



3pt6minProblem 1.2 (Function Properties)

Consider the function f : R→ R with f(x) =

{
x if x ∈ Q

−x+ 3 else

1. Prove or refute that function f is bijective on R.

2. Compute f ◦ f and f−1.

Solution:

1. First, we prove injectivity. Suppose f(x) = f(y); we want to prove that this implies x = y.

(a) x, y ∈ Q; f(x) = f(y)⇒ x = y.

(b) x, y ∈ R \Q; f(x) = f(y)⇒ −x+ 3 = −y + 3⇒ x = y.

(c) It cannot happen x ∈ Q and y ∈ R \Q since that would imply equality of a rational
number with an irrational one.

2. For this part, we use the fact that x ∈ Q iff f(x) ∈ Q and x ∈ R \Q iff f(x) ∈ R \Q.

(f ◦ f)(x) =

{
f(x) if f(x) ∈ Q

−f(x) + 3 else

=

{
x if f(x) ∈ Q

−(−x+ 3) + 3 else

=

{
x if f(x) ∈ Q
x else

Thus, (f ◦ f)(x) = x. From this, it follows that f−1 = f .

3



2 Abstract Data Types and Abstract Procedures

5pt10minProblem 2.1 (Real Numbers ADT)
Write an abstract data type for real numbers containing one significant digit (e.g. 2.1, -3.4,
5.0, -0.3 ...) considering the following requirements:

1. there is exactly one digit before and after the dot

2. real numbers can be positive or negative; you can consider 0.0 to be positive

Show the ground constructor terms for the following real numbers: 3.5, -2.6, 0.0, 0.4
Hint:
Consider a special sort for representing digits 0− 9

Solution: Consider sort uR for unsigned real numbers, R for signed real numbers and
D for digits. The simplest way to represent digits is to have constructors for all of them (10
constructors), while another idea would be to have a modified version of unary natural numbers
N:

1.

〈{uR,R,D}, {[0d : D], [1d : D], [2d : D], [3d : D], [4d : D], [5d : D], [6d : D], [7d : D], [8d : D], [9d : D], [neg : uR→ R], [pos : uR→ R], [dot : D× D→ uR]}〉 (1)

2. 3.5 = pos(dot(3d, 5d))

−2.6 = neg(dot(2d, 6d))

0.0 = pos(dot(0d, 0d))

0.4 = pos(dot(0d, 4d))

4



2pt5minProblem 2.2 (Substitutions)

1. Apply the substitutions

σ := [f(a)/x], [g(a, f(a), b)/z], τ := [a/x], [h(b, c)/y], [c/z]

to the terms s := g(x, f(y), z) and t := h(f(x), g(y, z, x))

2. Prove or refute that substitution composition is commutative (i.e. σ1 ◦ σ2 = σ2 ◦ σ1).

Solution:

1. Applying the substitutions:
σ(s) = g(f(a), f(y), g(a, f(a), b))
σ(t) = h(f(f(a)), g(y, g(a, f(a), b), f(a)))
τ(s) = g(a, f(h(b, c)), c)
τ(t) = h(f(a), g(h(b, c), c, a))

2. To check that we apply the two substitutions in diffrent order on the term s:
σ(τ(s)) = g(a, f(h(b, c)), c)
τ(σ(s)) = g(f(a), f(h(b, c)), g(a, f(a), b))
Obviously the two expressions are different. Therefore substitution application is not com-
mutative.

5



6pt12minProblem 2.3 (A Reindeer Lottery)
Soon after the last Christmas, Rudolf retired, so Santa has to decide which of his reindeers
will be the navigator of the sledge. To do so, he needs to find the “special number” of each
reindeer based on their names.

Santa first converts every letter of the names to a unary natural number (“A” becomes
o, “B” becomes s(o) and so on) and then asks your help to solve the following algorithm:
start at the first position of the converted word (considered position 0), and then sum up
all the values in the order obtained by jumping from position i to position (i+ 2) mod L
(where L is the length of the name); you should stop only when you have used all the
converted letters of the word.

For example, consider VIXEN the reindeer: his special number will be determined by
suming the corrseponding codes in the order V-X-N-I-E.

1. You are required to write an abstract procedure that returns the special number of
a reindeer, using the following ADT:

〈{N,L}, {[nil : L], [con : N× L→ L], [o : N], [s : N→ N]}〉

The argument word is given as a list of unary natural numbers, each representing
the number associated to the letter (Santa took care of this).

2. Does the procedure always terminate? If not, give an example of such a name for
which the procedure does not terminate!

Hint:

• You can define helper procedures!

• An abstract procedure terminates if all the “helper” procedures it uses also terminate for
any input.

Solution: One can observe that the abstract procedure that goes from i to (i + 2) mod L
and passes through all the L letters terminate only for odd word lengths (odd L). This happens
because for even L, the procedure will pass through positions 0, 2,. . . L− 2 and then cycles back
to 0.

Therefore, we will define a helper procedure for word length, unary number addition, remain-
der for division by 2 (used for determining whether L is odd or even):

• 〈len::L→ N ; {len(nil) o, len(con(xL)) s(len(xL))}〉

• 〈add::〈N,N〉 → N ; {add(xN, o) xN, add(xN, s(yN)) s(add(xN, yN))}〉

• 〈mod2::N→ N ; {mod2(o) o,mod2(s(o)) s(o),mod2(s(s(xN))) mod2(xN)}〉

6



Now, the helper procedure should cycle for even length (in order to properly emulate the
behaviour described in the problem) and return the sum of all the values in the list for odd
length. Suppose that the length of the list (or more precisely the length modulo 2) is already
given as a parameter. Thus we have:

〈h::〈L,N〉 → N ; {h(xL, o) h(xL, o), h(nil, s(o)) o, h(cons(aN, xL), s(o)) add(aN, h(xL, s(o)))}〉

It is obvious that if the second parameter is o, the procedure above will never terminate.
Finally, the special number procedure:

〈special::L→ N ; {special(xL) h(xL,mod2(len(xL)))}〉

7



3 Programming in Standard ML

5pt10minProblem 3.1 (Secret Message cont’d)
Some time ago, a couple of students at GenCS wanted to develop a way to communicate
with each other in text that makes it impossible for others to understand. Thus they
thought of encoding strings as integers or keys (greater or equal than zero and less than
ten): each string from a list (the list of strings has the same length as the list of integers)
gets an integer from the keys list. Since they were very good with SML, they implemented
two functions:
val secretEncodeList = fn : string list ∗ int list −> (string ∗ int) list
val getEncodingStr = fn : int ∗ (string ∗ int) list −> string

The first one (secretEncodeList) creates a list of pairs (string,int) to be used for decoding
and the second one (getEncodingStr) takes an int (key) and gives its string representation
from the encoding list. See below an example of their functionality:

− secretEncodeList([”He”,”o”,”ll”,” w”, ”rl”,”d!”], [4,3,5,1,0,2]);
val it = [(”He”,4),(”o”,3),(”ll”,5),(” w”,1),(”rl”,0),(”d!”,2)]

: (string ∗ int) list
− getEncodingStr(0, it);
val it = ”rl” : string

Your task:
Now the students want you to write a function to decode such a message which actually is
an integer (without leading zeros) whose digits are supposed to be the keys in the encoding.
You are allowed to use their functions (consider them implemented). The function signature
is described below and you can also see an example:
val decodeMessage = fn : int ∗ string list ∗ int list −> string

Example:

− decodeMessage(4531302, [”He”,”o”,”ll”,” w”, ”rl”,”d!”], [4,3,5,1,0,2]);
val it = ”Hello world!” : string

Note: The resulting encoding pair list is a bijective function (strings and integers are dis-
tinct).

Solution:
fun myimplode([], str) = implode(str)
| myimplode(s::strs, str) = myimplode(strs, str@explode(s));

fun decode helper(0, encoding, res) = myimplode(res, [])
| decode helper(x, encoding, res) =

let val digit = x mod 10 in
decode helper(x div 10, encoding, getEncodingStr(digit, encoding)::res)

end;

fun decodeMessage(x:int, alphabet:string list, keys:int list) =
let val encoding = secretEncodeList(alphabet, keys) in

decode helper(x, encoding, [])
end;

8



9



8pt16minProblem 3.2 (Prime Differences)
A list is called a Prime Difference List if and only if the difference (in absolute value)
between any two neighbors (consecutive elements of the list) is a prime number.

1. Write an SML function which generates all the permutations of a list.

val GeneratePermutations = fn : int list −> int list list

2. Write an SML program which takes as input the list of integers and outputs a per-
mutation of that list which is a Prime Difference List. You may use the function
GeneratePermutations even if you have not succeeded in the previous task.

val PrimeDifferenceList = fn : int list −> int list

Example:

PrimeDifferenceList([3,2,5]) = [2,5,3];

This would be one of the valid outputs, as the difference between 2 and 5 is 3 and between
5 and 3 is 2.

Note: You do not need to handle the cases where the input does not have any PDL permu-
tation.

Solution: The idea is pretty straight-forward. First all the permutations are generated then
we test until we find one that is viable. Here is the code for the first task:

fun PrePend(x, [] ) = []
| PrePend(x,h::t) = (x::h)::PrePend(x,t);

fun RemPos(h::t, 0) = t
| RemPos(h::t, x) = h::RemPos(t,x−1);

fun GenAux(h::[], ) = [[h]]
| GenAux(h::t , 0) = PrePend(h, GenAux(t,length(t)−1))
| GenAux(h::t , x) = PrePend(List.nth(h::t, x), GenAux(RemPos(h::t, x),length(t) − 1))

@ GenAux(h::t, x−1)

fun GeneratePermutations(x) = GenAux(x, length(x)−1);

Here is the code for testing if an integer is a prime:

fun IsPrimeAux(x, y) = if Real.fromInt(y) > Math.sqrt(Real.fromInt(x))
then true
else if x mod y = 0

then false
else IsPrimeAux(x, y+1);

fun IsPrime(0) = false
| IsPrime(1) = false
| IsPrime(x) = IsPrimeAux(x,2);

And the main functions:

10



fun IsViable(ls) = if length(ls) < 2
then true
else let

val h1::h2::t = ls
in

IsPrime(abs(h1−h2)) andalso IsViable(h2::t)
end;

fun FindPrimeDiffSet(h::t) = if IsViable(h)
then h
else FindPrimeDiffSet(t);

fun PrimeDifferenceList(ls) = let
val possibilities = GeneratePermutations(ls)

in
FindPrimeDiffSet(possibilities)

end;

11



4 Formal Languages and Codes

2pt4minProblem 4.1 (Greek Codes)
The Greeks developed a very ingenious way of transmitting messages by the use of their
alphabet. The character code that maps the Greek letters to symbols from the ASCII
table is described below (the Greek letters are represented by their names instead of their
symbol)

alpha beta gamma delta epsilon zeta eta theta
hr :) s! ma ris Me ry y

iota kappa lambda mu nu xi omicron pi
ew a ar H Ha s! A !

rho sigma tau upsilon phi chi psi omega
Y pp He ida e y ol Ha

Using the extension of this code encode the following message

νσχµψυχξ

Solution: c(νσχµψυχξ) = Happy Holidays!

12



6pt12minProblem 4.2 (Globes)
Consider that you have g globes, each built by putting together exactly p parts. Also let
there be c colors available in total for constructing these globes. The purpose is to build an
injective function, such that colors are assigned to each part individually, before making
actual globes. Globe gi is composed of parts pij, where i ∈ {1, 2, .., g} and j ∈ {1, 2, .., p}.
Here is an example:

Let g = 2, p = 2, c = 3. Consider the map f : p 7→ c+ as follows: f(p11) = c1,
f(p12) = c1c2, f(p21) = c1c3, f(p22) = c2c1c3. So here we have four parts that will compose
in the end two globes and for example globe g1 will have the colors c1 and c2. Also, note
that the total number of painted colors is 1 + 2 + 2 + 3 = 8.

1. For the case g = 3, p = 2, c = 3, what is the minimum number of total painted
colors (the equivalent of the 8 above) on the parts, such that we are sure that each
constructed globe has all colors on it? A globe is made here by putting 2 random
parts together, since p = 2.

2. Provide a general formula for the same minimal number for the case in which g < b c2
2
c.

Hint: this is to help you, not to complicate the problem.

3. Are the above constructions character codes? Are their extensions string codes? You
can only consider the first part if you have not solved the second.

Solution:

1. We can construct the following function: f(p11) = c1c2, f(p12) = c2c3, f(p21) = c1c3,
f(p22) = c1c2c3, f(p31) = c2c1c3, f(p32) = c3c2c1.

We used colors 15 times. Also notice that in whatever way we choose pij and plk, where
{i, j, k, l} ∈ {1, 2, 3}, their concatenation will definitely contain all three colors.

2. The point of the restriction is that it allows us to choose c as maximum length of each color
string. Thus we will have g parts that can be colored like in the example above in c − 1
long color strings and the rest of g · (p−1) can have colors of length c each. Hence the final
formula is g · (c− 1) + g · c · (p− 1) = g · (cp− 1).

3. Due to injectivity of the function, f is a character code, however since by this construction
we encounter prefixes, the extension will not be a string code.

13



5 Boolean Algebra

4pt8minProblem 5.1 (Playing with Distributivities)
Prove the following equivalences, using the laws of Boolean Algebra:

1. a+ a ∗ b = a+ b

2. (a ∗ b+ b ∗ c) + c ∗ a = ((a+ b) ∗ (b+ c)) ∗ (c+ a)

Solution: Each equivalence makes use in the proof of the distributivity of multiplication
with respect to addition: a+b*c=(a+b)*(a+c).

1.

a+ ¬a ∗ b = (a+ ¬a) ∗ (a+ b)

= 1 ∗ (a+ b) = a+ b.

2.

a ∗ b+ b ∗ c+ c ∗ a = a ∗ b+ (b ∗ c+ c ∗ a) = (a+ b ∗ c+ c ∗ a) ∗ (b+ b ∗ c+ c ∗ a)

= (a ∗ (1 + c) + b ∗ c) ∗ (b ∗ (1 + c) + c ∗ a)

= (a+ b ∗ c) ∗ (b+ c ∗ a) = (a+ b) ∗ (a+ c) ∗ (b+ c) ∗ (b+ a)

= (a+ b) ∗ (b+ c) ∗ (c+ a).

14



5pt10minProblem 5.2 (QMC application)
Execute Quine-McCluskey algorithm to get the minimum polynomial for the function with
the provided truth table:

x1 x2 x3 x4 f
T T T T T
T T T F F
T T F T T
T T F F F
T F T T T
T F T F F
T F F T T
T F F F F
F T T T T
F T T F F
F T F T F
F T F F F
F F T T T
F F T F F
F F F T F
F F F F F

Solution:

QMC1 :
x1 x2 x3 x4
T T T T
T T F T
T F T T
T F F T
F T T T
F F T T

x1 x2 x3 x4
T T X T
T X T T
X T T T
T X F T
T F X T
X F T T
F X T T

x1 x2 x3 x4
T X X T
X X T T

15



Therefore the prime implicants are x1 x4 and x3 x4

QMC2 :
TTTT TTFT TFTT TFFT FTTT FFTT

x1 x4 T T T T F F
x3 x4 T F T F T T

Therefore both prime implicants are essential.

Final result: f = x1 x4 + x3 x4

16



6 Propositional Logic

3pt6minProblem 6.1 (Tableau Calculus)

1. Explain when we call a formula unsatisfiable and give an example.

2. Use the tableau refutation method to prove the validity of the formula

(X ⇒ Y )⇒ (¬Y ⇒ ¬X)

Solution:

1. A Boolean expression E is called unsatisfiable iff it evaluates to F for all variable assignments
ϕ, i.e. Iϕ(E) = F .

An example for such an expression is x ∧ ¬x (many other possibilities here)

2. Applying the tableau method:

((X ⇒ Y )⇒ (¬Y ⇒ ¬X))F

(X ⇒ Y )T

(¬Y ⇒ ¬X)F

XF ∨ Y T

Y F

XT

XF | Y T

⊥ | ⊥

Therefore there is no model. Thus the initial expression is unsatisfiable.

Therefore the expression (X ⇒ Y )⇒ (¬Y ⇒ ¬X) is valid.

17



3pt6minProblem 6.2 (Hilbert Calculus)
Consider a calculus given by the axioms

1. K := P ⇒ Q⇒ P ,

2. S := (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R

and the following rules:

A⇒ B A
MP

B

A
Subst

[B/X](A)

Prove that (M ⇒ N)⇒ (M ⇒M)
Solution:

1. Applying the substitutions [M/P ], [N/Q], [M/R] in axiom S
(M ⇒ N ⇒M)⇒ (M ⇒ N)⇒M ⇒M

2. Applying the substitutions [M/P ], [N/Q] in axiom K
M ⇒ N ⇒M

3. Applying MP on 1. and 2.
(M ⇒ N)⇒M ⇒M
This is equivalent to the expression we wanted to prove because of the right-associativity
of bracketing here.

18


