
Name: Matriculation Number:

Final Exam

General CS I (320101)

May 21, 2010

You have two hours(sharp) for the test;
Write the solutions to the sheet.

The estimated time for solving this exam is 0 minutes, leaving you 120 minutes for
revising your exam.

You can reach 0 points if you solve all problems. You will only need 80 points for a
perfect score, i.e. -80 points are bonus points.

Different problems test different skills and knowledge, so do
not get stuck on one problem.

To be used for grading, do not write here

prob. Sum grade
total 0
reached

Please consider the following rules; otherwise you may lose points:

• Always justify your statements. Unless you are explicitly allowed to, do not just
answer “yes” or “no”, but instead prove your statement or refer to an appropriate
definition or theorem from the lecture.

• If you write program code, give comments!

1

1 Circuits and binary number systems

4pt8minProblem 1.1 (Negative Numbers)
Give the definitions (formulas) of the following representations of negative numbers:

1. (〈〈an, . . ., a0〉〉−)

2. 〈〈an, . . ., a0〉〉2sn

What is the shortcoming of the first approach, and what are the advantages of the second
one?

Solution:

1. 〈〈an−1, . . ., a0〉〉 if an = 0 −〈〈an−1, . . ., a0〉〉 if an = 1

2. −an · 2n + 〈〈an−1, . . ., a0〉〉

In the first approach zero is represented twice (10000 and 00000). Second approach represents
zero in an unique way. Can use adders without modifications. (any other advantages?)

2

10pt15minProblem 1.2 (2-bit Address Decoder)
Design a two-bit address decoder using only XOR and AND gates.

3

2 Machines

10pt15minProblem 2.1 (Palindrome check)
Write an assembler program that checks whether a word is a palindrome number (i.e. a
numbers that read the same from left to right and from right to left, e.g. ”101” or ”0110”.)

Assume that D(0) contains n where n is the number of letters in a word from L =
{0, 1}∗. The word itself starts from D(2). Write 1 to D(1) if the word is a palindrome and
0 otherwise.

Solution:

label instruction comment

LOADI 0 beginning
MOVE ACC IN2
LOAD 0 end
MOVE ACC IN1

check if beginning > end
〈loop〉 MOVE IN2 ACC

STORE 1
MOVE IN1 ACC
SUB 1
JUMP< 〈end1〉
LOADIN 2 2
STORE 1
LOADIN 1 1
SUB 1
JUMP! = 〈end0〉
MOVE IN2 ACC
ADDI 1
MOVE ACC IN2
MOVE IN1 ACC
SUBI 1
MOVE ACC IN1
JUMP 〈loop〉

〈end1〉 LOADI 1
STORE 1
JUMP 3

〈end0〉 LOADI 0
STORE 1
STOP 0

4

10pt12minProblem 2.2 (Integral logarithm)
Write down a static L(VM) procedure that computes the integral log of a number to a given
base. The pseudocode of such a function is given below :

ilog(n,b) {
var x = 1,i=0 ;
while(x<=n){

x=x*b;
i = i+1;

}
return i;

}

You can assume that the input is always valid (n, b > 0).Uncommented code will not be
graded.

Hint: Think of modifying the pseudocode to create an alternate function which avoids the
use of local variables given in the pseudocode (Remember that peek and poke are not allowed in
L(VM) static procedure).

Solution: We first create a function iloghelp (n,b,x,i) which contains the two local variables
in it as arguments

//iloghelp(n,b,x,i)
// if (x <= n) then
// iloghelp(n,b,x*b,i+1)
// else return i

//ilog(n,b) = iloghelp(n,b,1,0)

proc 4 27 iloghelp(n,b,x,i)
arg 1 arg 3 leq cjp 7
arg 4 con 1 add

arg 3 arg 2 mul

arg 2 arg 1 call 0 return

arg 4 return

proc 2 13 ilog(n,b)
con 0 con 1 arg 2 arg 1
call 0

5

10pt12minProblem 2.3 (Zeros)
Design a Turing machine that takes an input of the form #w1#w2#, where w1, w2 ∈ {0, 1}∗
and terminates in the state:

• ‘yes’, if the number of zeros in w1 equals the number of ones in w2

• ‘no’, otherwise.

w1 and w2 can have any lengths, including 0. The initial position of the head is on the
first character in w1. All the other tape positions in the input are assumed to be written
with hashes. You can add new symbols to the tape alphabet if you wish.

It is enough to explain precisely what each state does, taking care of all the possible
cases. No transition table required.

Example:

• input: # 0010︸︷︷︸
3 zeros

1101000︸ ︷︷ ︸
3 ones

. . . TM terminates in state ‘yes’

• input: # 11︸︷︷︸
0 zeros

0000︸︷︷︸
0 ones

. . . TM terminates in state ‘yes’

• input: # 1001︸︷︷︸
2 zeros

100︸︷︷︸
1 ones

. . . TM terminates in state ‘no’

Solution: Systematically write *s over pairs of 0 from w1 and 1 from w2. If at the end there
are still 0s in w1 or 1s in w2, the TM halts with ‘no’, otherwise with ‘yes’.

• State 1 skips over w1 and jumps to state 2 on the last position before the middle #.

• State 2 goes left until it finds ‘0’, writes * and jumps to state 3. If it doesn’t find any ‘0’
(all ‘0’s have a pair), it jumps to state 6.

• State 3 is a transit state that goes right until it finds # and switches to state 4.

• State 4 goes right until it finds ‘1’, writes * and jumps to state 5. If it doesn’t find any, the
TM halts with ‘no’.

• State 5 is a transit state that goes left until it finds # and switches to state 2.

• State 6 is a transit state that goes right until it finds # and switches to state 7.

• State 7 is used when pairs have been found for all ‘0’s from w1, and checks whether there
is any ‘1’ left without a pair. If it finds one, the TM halts with ‘no’, otherwise with ‘yes’.

1, #, 2, #, < 1, _ , 1, _, >

2, 1, 2, 1, < 2, *, 2, *, < 2, 0, 3, *, > 2, #, 6, #, >

3, #, 4, #, > 3, _, 3, _, >

6

4, 0, 4, 0, > 4, *, 4, *, > 4, 1, 5, *, < 4, #, no

5, #, 2, #, < 5, _, 5, _, <

6, #, 7, #, > 6, _, 6, _, >

7, 0, 7, 0, > 7, 1, no 7, *, 7, *, > 7, #, yes

Note: matches against any (remaining) character, and it implies that the same character is
written to the tape.

7

3 Problem Solving and Search

12pt15minProblem 3.1 (Robots)
You are designing a new software package to coordinate a pair of robots transporting items
around a building. Each robot has a transmitter used to communicate with the other robot.
When the two robots are too far apart, they lose the signal and stop functioning. You have
to plan a path such that both robots get to their respective destinations in minimum
number of moves, while keeping close enough to each other.

Hint: The building plan can be given as a graph, where every node denotes a particular
position in the building (discretized of course). Consider all edges bidirectional and having cost
1, for simplicity.

Your tasks are the following:

1. Formulate the problem precisely. Please spend some time on considering this as it
has to be done rigurously and it shapes the way in which the following tasks will be
solved. Also consider that you have to clearly describe how to construct the states
for your state space and the successor function in your state space.

2. Suppose you want to use A∗ but need to decide on a heuristic function h. What
heuristic would you use? Describe the best possible heuristic you can think of, and
argue why it is good.

Solution:

1. For robot A you are given a start and destination node (a, b); similarly, for robot B you
are given a start and destination node (c, d). The two initial nodes, a and c, are at most
t edges apart. The two destination nodes, b and d, are at most t edges apart. We require
that robot A and robot B at any point in time must be at most t edges apart from each
other. At any particular point in time, only one robot is allowed to move across an edge.
Use two-tuples (x, y) to denote the state where x is the node robot A is in and y is the
node robot B is in, of the building graph. State (x, y) and (y, x) are different unless x = y.
A state is valid if and only if the shortest distance between x and y is at most t edges.
The shortest distance between x and y is the number of edges they are apart. Hence,
the shortest distance between x and x is 0. By this notation, if there are n nodes in the
building graph, well have at most 2n states in the state space. The start state is hence
(a, c) and the goal state will be (b, d). A greedy way to construct the state space would
be to run a depth-rst-search with depth bound t for every node n. For each child c of
node n, create a state (n, c). The depth bound will ensure that all created states are valid.
The successor function would be constructed by enumerating the neighbors of both of x
and y. A valid move is that either A or B moves across one edge and the new locations
of A and B are still less than or equal to t edges apart. (x, y)− > (xnew, y) such that
D(xnew, y) <= tand(x, y)− > (x, ynew) such that D(x, ynew) <= t where D(x, y) is the
number of edges of the shortest path between x and y.

2. Dene: n is a state (x, y). Let h(n) = D(x, b)+D(y, d) h(n) is good because it is admissible.
h(n) accommodates the shortest distance from each robot from its goal. Without the ’less

8

than t edges apart’ constraint, the actual cost for robot A to move from x to b will be
larger than D(x, b), that is, D(x, b) will not overestimate the actual cost. Same for robot
B. Moreover, with the ’less than t edges apart’ constraint, the total cost for robot A and
B to their respective destinations will be larger than that without the constraint. Hence,
h(n) will not overestimate the actual cost. Also, the smaller h(n) is, the closer the robots
to the goal, hence the better. It gives us a way to evaluate how close the robots are to their
goals.

9

8pt8minProblem 3.2 (Search in a graph)

Look at the following graph and complete the tables bellow. S is the start state and G
is the goal state, the step costs are given as labels on the edges.

In the table below, enter the labels of the nodes in the order they are visited by the
respective search strategy. Remember that the search ends once the goal state is visited.
If two nodes have equal chances to be visited, take the leftmost one first.

Search method Sequence of nodes
BFS
DFS
Uniform cost
Iterative deepening (step size 2)

In the table below, complete the table with Yes or No for the respective search strategies
and properties.

Property BFS DFS Uniform Cost Iterative Deepening
Optimal
Complete

Solution:

Search method Sequence of nodes

BFS S A B C D E F G

DFS S A C F G

Uniform cost S B A C D E F H G

Iterative deepening (step size 2) S A C B D E S A C F G

Property BFS DFS Uniform Cost Iterative Deepening

Optimal N N Y N

Complete Y Y Y Y

10

4 Prolog

15pt15minProblem 4.1 (Ini Mini Miny Moe)
You all probably used some sort of counting rhyme when you were small, in order to decide
who takes a certain role in your childhood games. The way it usually works is that for each
word in the counting rhyme, you count one person, while everyone stays in a circle. When
the rhyme is over, the last person counted is out and you continue the same procedure
starting from the next person. When there is only one person left, then that person is ’it’.

Write a ProLog predicate count(N, List, It) that given N — the number of words
in the rhyme and List — a list of names, decides who is ’It’, the last person remaining.
For instance

?- count(9,[ana, mihai, stefan, gloria],It).
It = stefan ;
false.

Solution:

#!/usr/bin/swipl -s

count(N, List, Sol):-drop1(N, 1, [], List, Sol).

notbasecase(Prev, Next):-append(Prev, Next, All),
not(length(All, 1)).

drop1(_, _, [], [X], X).
drop1(N, N, Prev, [X|Next], Sol):-notbasecase(Prev, [X|Next]),

drop1(N, 1, Prev, Next, Sol).
drop1(N, Current, List, [], Sol):-drop1(N, Current, [], List, Sol).
drop1(N, Current, Prev, [X|Next], Sol):-notbasecase(Prev, [X|Next]),

not(N=Current),
NewCurrent is Current+1,
append(Prev, [X], NewPrev),

drop1(N, NewCurrent, NewPrev, Next, Sol).

11

5 Internet

8pt12minProblem 5.1 (Transfer time)
While thinking about the final, 2 of your friendly GenCS TAs were sending drafts of the
problems to each other over the Jacobs network. Given that:

• the Maximum Transmission Unit (MTU) on the network is 1500bytes (in other words
packets sent can not exceed this size)

• the total size of the headers in each packet is 54bytes (leaving the rest to the actual
data)

• the Round-Trip Time (RTT) - time for a packet to make a round-trip between a
host and a destination - 10ms

calculate how much time it will take to receive a file of size 100kb in each of the following
scenarios. Consider that no network errors (bad packets, lost packets, etc.) occurred unless
stated otherwise:

1. We want to make sure that the data has been transferred successfully, therefore after
sending a packet of data, we are waiting for an acknowledgment (ACK) from the
destination that the packet has been received. The time between receiving a packet
and sending ACK and the time between receiving ACK and sending the next packet
can be neglected.

2. Same as in 1 however this time 10 packets got lost on the way to the destination
and therefore have to be retransmitted. Sender retransmits a packet if no ACK was
received after 15ms.

12

