Extending MathWebSearch to a
Distributed Environment

Corneliu C. Prodescu,
Supervisor: Michael Kohlhase
Jacobs University Bremen

January 30, 2012

Abstract

MATHWEBSEARCH is an open-source, open-format, content-oriented
search engine for Mathematical formulae. It is a complete system capa-
ble of crawling, indexing and querying expressions based on their func-
tional structure (operator tree) rather than their presentation. MATH-
WEBSEARCH indexes content-rich representation formats (like MATHML)
using substitution tree indexing, a data structure which shows great ad-
vantages in terms of space and time complexity. In this paper, we propose
a distributed implementation of MATHWEBSEARCH, making it feasible for
large scale applications.

1 Introduction

As the world of information technology grows, being able to quickly search data
of interest becomes one of the most important tasks in any kind of environ-
ment, be it academic or not. MATHWEBSEARCH system is a search engine that
addresses the problem of looking up mathematical formulae from a semantic
point of view. Instead of performing a string-based search (as a standard engine
like GOOGLE does), it does Mathematical content matching through unification.
MATHWEBSEARCH harvests the web for Content MATHML, the semantic flavor
of MATHML [ABC™03], which it indexes, storing the structure of each formulae
in its core database.

1.1 History

MATHWEBSEARCH started off in 2006 as Ioan Sucan’s Bachelor Thesis, under
the supervision of Prof. Dr. Michael Kohlhase. The idea was to build a search
engine which would look up Mathematical formulae based on structure, rather
than presentation. After all, users searching for Mathematical formulas are
interested only in semantics. The meaning-oriented goal suggested algorithms
and data structures different from the typical string-oriented search engines. As

such, a technique inspired from Automated Theorem Proving was brought in -
the substitution indexing tree [Gra96]. The initial implementation is described
in [KS06].

Between 2007 and 2010, the system was explored mainly on a theoretical
level, in papers like [KK07]. Unfortunately, none of these concepts were featured
into the system at the time.

In 2010, I re-implemented the system core, based on the same principles,
but following a cleaner and more efficient structure. The main data structure
was optimized, the service was de-coupled into separate components (crawler,
term-indexing core and a RESTful interface) and the APIs were clearly defined.
The current system is described in section 3.

1.2 Importance of Structure Awareness

In a search application, one of the most important features is the ability to
clearly interpret a specified query. This becomes even more outstanding when
the search engine is designed to deal with Mathematical formulae.

One of the issues that structure awareness solves is the inherent ambiguity
in visual representations. Imagine the example of f(a+b). Most search engines
and text processing applications see this as a sequence of 6 characters. However,
MATHWEBSEARCH, as a structure oriented system, sees one of the following:

e Application of function f on argument a + b'
e Multiplication of arguments f and a + b

Another important advantage is the ability to search up to alpha renaming.
Imagine a query of the form
ot 4yt
In a typical text-based representation, this would have little connection with,
for example,
m* + 4n?
However, for MATHWEBSEARCH, the two formulae are equivalent, if we specify

x, y as arbitrary query variables. The same reasoning can be used to search for
Mathematical Theorems which fit a desired pattern.

2 State of the Art

There seem to be two general approaches to searching mathematical formulae.
One generates string representations of mathematical formulae and uses con-
ventional information retrieval methods, and the other leverages the structure
inherent in content representations.

The first approach is utilized for the Digital Library of Mathematical Func-
tions [MYO03] and ACTIVEMATH system [LMO6]: mathematical formulae are

INote that, in turn, a + b is regarded as addition of arguments a and b

converted to text and indexed. The search string is similar to W TEX commands
and is converted to string before performing the search. This allows searching
for normal text, as well as mathematical content simultaneously, but it cannot
provide powerful mathematical search — for example, searching for something
like a2 4+ ¢ = 2a, where a must be the same expression both times, cannot be
performed. On the same topic, there is a system [MGO8] which uses Reverse
Polish Notation as intermediary format. These methods have the important
advantage that they rely on already existing technologies, but they do not fully
provide a mathematical formulae oriented search method.

The second approach is taken by the MBASE system [KFO01], which applies
the pattern matching of the underlying programming language to search for
OMDoc-encoded [Koh06] mathematical documents in the knowledge base. The
search engine for the HELM project indexes structural meta-data gleaned from
Content MATHML representations for efficient retrieval [AS04]. The idea is that
this metadata approximates the formula structure and can serve as a filter for
very large term data bases. However, since the full structure of the formulae is
lost, semantic equivalences like a-equivalence cannot be taken into account.

Another system that takes this second approach is described in [TSPOG].
It uses term indexing for interfacing with Computer Algebra Systems while
determining applicable algorithms in an automatically carried proof. This is
closely related to what we present in this paper, the main difference being that
we provide search for any formula in a predefined index, while in [TSPO06] a
predefined set of formulae characterizing an algorithm is automatically searched
for in a changing index.

3 MathWebSearch-0.5 System

HTTP __MWS S
POST Query LibXML 2
R Xm
HTTP o MWS LibMicroHTTPD | \
Response Answer Set
22 D

S | f BerekleyDB
%’ || Substitution -
ot | Indexing Tree

Figure 1: MWS-0.5 System Structure

In this section, we present an overview of the MATHWEBSEARCH System,
as far as it is necessary to make this material self-contained. For a complete
picture, as well as detailed benchmarks, see [PK11].

The MATHWEBSEARCH system consists of the three components pictured
in Figure 1. The crawler subsystem collects data from MATHML rich cor-
pora, transforms the mathematical formulae into M WS Harvests and feeds them
into the core system. The core system (the MATHWEBSEARCH daemon mwsd)

builds the search index and processes search queries: it accepts the MATHWEB-
SEARCH input formats (MWS Harvest and MWS Query) and generates the
MATHWEBSEARCH output format (MWS Answer Set). These are communi-
cated through the RESTful interface restd which provides a public HTTP API
conforming to the REST paradigm [FT02].

These components have been implemented using POSIX-compliant [POS88]
C*t*. We use the MicroHTTPd library [Mic] API for handling HTTP, and
LibXML2 [Vei] API for XML parsing. The meta-data accompanying the internal
index is stored using an external database system. As we are dealing mainly
with key-value pairs retrieval, the BerkeleyDB [Ber09] API was preferred.

For the purpose of this proposal, we will focus on the core application, the
indexing structure and the current workload capabilities.

@0

f(x.y) .oe

Figure 2: Depth-First Substitution Indexing Tree

As previously mentioned, the main data structure is a substitution indexing
tree (see figure 3). The root consists of the most generic term (denoted @0) and,
as we traverse the tree, each parent-child link specifies a substitution. To avoid
having multiple paths for the same instantiated expression, the substitutions
are always represented in depth-first order.

This model allows structural awareness, as well as great retrieval perfor-
mance. On the downside, subterms? cannot be easily fetched, so indexing a
term implies indexing all its (distinct) subterms.

The current system is capable of handling harvests of around 20 million
expressions, with acceptable query times (under 100 ms). Of course, these
statistics depend on the run-time environment.

2Subterms of a term are the terms described by subtrees of the main operator tree. For
example, the subterms of f(g(x),y) are g(z), and y.

4 Proposal Outline

4.1 Objective and Challenges

One of the envisioned use cases of MATHWEBSEARCH is indexing the Cornell
ePrint archive (See http://www.arXiv.org). The MATHML extracted from the
700,000 TEX /IXTEX articles is estimated to contain an order of 108 Mathematical
formulae. Including subterms, this number of terms to be indexed will reach at
least 10°.

Assuming the average term can be encoded using only 64 bytes, we would
still need 64 Gbytes of RAM to index all the formulae. As this seems unfeasible
for a single machine, the distributed approach idea emerged.

A distributed environment implies a distribution framework (communication
architecture, data marshaling, caching, etc) and a distribution policy. In most
applications, a simple hashing policy performs reasonably well, as it scatters the
data uniformly. However, such approaches are problematic with MATHWEB-
SEARCH:

e Node-scattering: breaking the index tree across machines is very ineffi-
cient, as cross-machine indirection® implies huge overheads (memory read
vs network access).

e Expression-scattering: breaking the harvests and building multiple trees,
one on each machine. While hashing the harvests and diving the data
uniformly is possible, hashing the queries is irrelevant. Hence, queries
would have to be sent to every machines and the results should be merged
constantly.

4.2 Proposed Design

LibxXmML 2

"

/ e
/

Figure 3: Distributed System Architecture

HTTP ___MWS
POST Query » LibXML 2

B LibMicroHTTPD | ‘\"'\'_ N

Responsa . Anawer Set
core] ——
Wi

BerelleyDB
Substitution
Indexing Tree

3When a parent node is on machine A and a child node is on machine B

We will start with a simple distribution framework, supporting master-slave
architecture, as presented in figure 3.

We propose a hybrid distribution pattern; we will partition the main tree
into subtrees and scatter these across multiple machines. For reasonable size
subtrees (in the Gb range), the cross-machine indirection problem is fixed, as
queries will make very few jumps. Also, it is important that the design remains
simple and generic, as each subtree is a substitution indexing tree with a different
initial instantiation. An example subtree partitioning is given in figure 4

@0

l

f(@2,@3)

Figure 4: Subtree partitioning

This approach has a great scalability potential, as subtrees can be dynami-
cally created and migrated across machines. Hence, automatic space and load
balancing can be implemented. The exact thresholds will be determined as
the features are implemented, the trade-off being between temporary migration
overhead vs slightly uneven utilization.

5 Conclusions and Timeline

Following the ideas presented here, implementing a distributed MATHWEB-
SEARCH System seems feasible.

The system will be evaluated on a computer cluster, in configurations ranging
from 3 to 6 machines and index sizes of up to 10% expressions. The end result
will be successful if the query times will remain under 100ms and the system
will scale at most linearly* in the tested configurations.

The expected timeline for the project is outlined next. The detailed Gantt
chart is presented in figure 5.

e 1st Feb 2012 - 15th Feb 2012: Design

e 16th Feb 2012 - 21st Apr 2012: Implementation

4This refers to the index size vs number of machines graph.

e 22nd Apr 2012 - 6th May: Configuration and Testing

e 1st Apr 2012 - 18th May: Thesis writeup and Presentation

project

March 2012

February 2012

lapril 2012 May 2012

B ‘a ‘7 |s ‘a 10 |11 |12 ‘13

14 |15 ‘16 ‘17 |1a ‘19 ‘20 |

Design —_—
Framework and cross-machine interface design | —
Implementation
Single-machine subtree support (create, merge)

Master-slave framework, cross-machine communication

Full subtree support (migration)

Configuration and testing

Distributed system testing

Local system vs Distributed system benchmarking

Thesis writeup and presentation

Thesis draft writeup

|
—
[
[]

 E—

Thesis final writeup

Thesis presentation

Figure 5: Proposed Timeline

References

[ABCT03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dalmas,

[AS04]

[Ber09]

[FTO02]

[Gra96]

[KFO1]

[KKO7]

[Koh06]

[K506]

Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter, Patrick
Ton, Michael Kohlhase, Robert Miner, Nico Poppelier, Bruce Smith,
Neil Soiffer, Robert Sutor, and Stephen Watt. Mathematical Markup
Language (MathML) version 2.0 (second edition). W3C recommen-
dation, World Wide Web Consortium (W3C), 2003.

Andrea Asperti and Matteo Selmi. Efficient retrieval of mathemati-
cal statements. In Andrea Asperti, Grzegorz Bancerek, and Andrej
Trybulec, editors, Mathematical Knowledge Management, MKM’04,
number 3119 in LNAI, pages 1-4. Springer Verlag, 2004.

Berkeley DB. available at http://www.oracle.com/technology/
products/berkeley-db/, 2009. seen January.

Roy T. Fielding and Richard N. Taylor. Principled design of the
modern web architecture. ACM Transactions on Internet Technol-
ogy, 2, May 2002.

Peter Graf. Term Indexing. Number 1053 in LNCS. Springer Verlag,
1996.

Michael Kohlhase and Andreas Franke. MBase: Representing knowl-
edge and context for the integration of mathematical software sys-
tems. Journal of Symbolic Computation; Special Issue on the Inte-
gration of Computer Algebra and Deduction Systems, 32(4):365-402,
2001.

Andrea Kohlhase and Michael Kohlhase. Reexamining the MKM
Value Proposition: From Math Web Search to Math Web ReSearch.
In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang
Windsteiger, editors, Towards Mechanized Mathematical Assistants.
MKM/Calculemus, number 4573 in LNAI, pages 266-279. Springer
Verlag, 2007.

Michael Kohlhase. OMDoC - An open markup format for mathe-
matical documents [Version 1.2]. Number 4180 in LNAI Springer
Verlag, August 2006.

Michael Kohlhase and Ioan Sucan. A search engine for mathemati-
cal formulae. In Tetsuo Ida, Jacques Calmet, and Dongming Wang,
editors, Proceedings of Artificial Intelligence and Symbolic Compu-
tation, AISC’2006, number 4120 in LNAI, pages 241-253. Springer
Verlag, 2006.

[LM06] Paul Libbrecht and Erica Melis. Methods for Ac-
cess and Retrieval of Mathematical Content in Active-
Math. In N. Takayama and A. Iglesias, editors, Proceed-
ings of ICMS-2006, number 4151 in LNAI. Springer Ver-

lag, 2006. http://www.activemath.org/publications/
Libbrecht-Melis-Access—and-Retrieval-ActiveMath-ICMS-2006.
pdf.

[MGO08] J. Misutka and L. Galambos. Mathematical extension of full text
search engine indexer. In Information and Communication Tech-
nologies: From Theory to Applications, 2008. ICTTA 2008. 3rd In-
ternational Conference on, pages 1 —6, april 2008.

[Mic] GNU MicroHTTPd library. http://www.gnu.org/software/
libmicrohttpd/. seen Jul 2011.

[MY03] Bruce R. Miller and Abdou Youssef. Technical aspects of the dig-
ital library of mathematical functions. Annals of Mathematics and
Artificial Intelligence, 38(1-3):121-136, 2003.

[PK11] Corneliu C. Prodescu and Michael Kohlhase. MathWebSearch 0.5 -
Open Formula Search Engine. sep 2011.

[POS88] IEEE POSIX, 1988. ISO/IEC 9945.

[TSP06] Frank Theif, Volker Sorge, and Martin Pollet. Interfacing to com-
puter algebra via term indexing. In Silvio Ranise and Roberto Sebas-
tiani, editors, Proceedings of the 13" Symposium on the Integration

of Symbolic Computation and Mechanized Reasoning (Calculemus-
2006), 2006.

[Vei] Daniel Veillard. The XML c¢ parser and toolkit of gnome; libxml.
System Home page at http://xmlsoft.org.

