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Abstract

Type theory is an important area of Mathematics, foundation of many programming languages
and it has better computational behavior than the same mathematics based on theory of sets.
Towards exploiting the practical computational capabilities of type theories, they are formalized
using logical frameworks. However, these formalizations are often ad-hoc or do not relate different
type theories to each other - in particular, many type theories can be seen as a combination of
certain atomic features; this leads to duplicate formalizations and precludes the reuse of meta
theorems. In the LATIN project, a similar problem has been solved in the realm of logics and
languages for formulas and mathematics, but this method has not yet been applied systematically
to type theories. We thus propose to apply the method of modular formalizations to type theories.
We expect that this way, we will formalize individual atomic features separately and will be
able to recover specific type theories as combinations of features. In particular, meta results
can be established under per-feature basis, and then compose them into making results about
individual type theories. As well, we can create interfaces between type theory and other formalized
mathematics by providing only the views emergent from the base features.

1 Introduction

The last century saw an increasing expansion of mathematical knowledge, which lead to its formaliza-
tion using diverse logical frameworks. With the development of computer science several systems were
developed with the purpose of allowing the representation of mathematical knowledge and mathemat-
ical proofs in a computer environment so that a program can check their correctness or find proofs
automatically. Some of these systems (examples are [Pau94], [BC04], [CAB+86]) were quite successful
and there is a large amount of theorems that were formalized in such a way.

Twelf is one such system, within which several mathematical foundations have ben specified, as
well as an important fragment of logics. The purpose of this thesis is to expand the existing library
with the theories of types formulated by Church and Curry respectively.

This proposal is organized as follows. Subection 2.1 gives a background overview on the theory of
types, including a short history of its appearance. Further on, section 2.2 treats the subject of logical
frameworks and intorduces Twelf, the type system of our focus. Finally for the introductory chapter,
section 2.3 offers an outline of the LATIN project. Section 3 describes the intended work, starting with
3.1, the construction of the base diagram of type theory, continuing with 3.2 and 3.3, which builds the
type theories on top of the already described base signatures, and ending with the translation of type
theories into the foundation based on Zermelo-Fraenkel theory. The proposal ends with a description
of the proposed deliverables in 4 and with further motivation, present in 5.
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2 Preliminaries

2.1 Type Theory

The development of set theories of the 20th century has lead to the discovery of the paradox enunciated
by Russel in 1901 in [Rus01]. Starting from the ambiguity of a predicate is predicated of itself, he saw
the necessity of the theory of types, based on what he called extensional hierarchy, which stands for
the differentiation between objects, predicates, predicates of predicates etc. In type theory, the objects
are situated on either of 2 levels, at the top standing the types and at the bottom, the terms, the
connection between the 2 layers being that each term has a certain type; reversely, a type is defined
as a collection of objects exhibiting a common structure. This concept stands as the bolster of type
systems, within which the statements have the form a : A. From a logical point of view, a is the proof
of the formula A; in the computational world, a is an algorithm in a certain programming language,
and A is the specification of a.

There are 2 main styles of typing within type theory ([Sel08]): Church, in which each abstraction
indicates the type of the term (this is often called domain-full style, or intrinsic type theory), and
Curry, in which no type is given within the declaration of the term (also called domain-free or extrinsic
type theory). The latter style uses typing rules to make the assignment of terms to types and make
judgements over typing.

The Church approach, as described in [Chu40], assembles typed objects from typed components;
i.e., the objects are constructed together with their types. We use type annotations to indicate the
types of basic objects: if N denotes the type of natural numbers, then λx : N.x denotes the identity
function on N , having type N → N . Each typed term has exactly one type.

In the Curry approach, types are assigned to existing untyped objects, using typing rules that refer
to the structure of the objects in question. In this system, it is possible that an object has no type or
it has more than one type. For example, the identity function λx.x, has type N → N , but also type
(N → N)→ (N → N).

Some of the basic features which construct the type theory are further described.

Disjoint Union. A term of type A]B is either of type A or of type B, together with an indication
whether it belongs to type A or B.

Products. The type A × B returns the type containing all possible pairs of elements, the first
element having the first type, A, and the second element, the second type, B.

Option Types. The option type is a polymorphic type which encapsulates an optional value. More
specifically, it offers the possibility to use a term of the original type or the empty constructor, called
None or Nothing.

Partial Functions. As the name suggests, the type A 7→ B is the type of partial functions from
A to B. In a similar fashion, the type A → B of total functions consints of functional terms which
applied to a term of type A returns a term of type B.

Image types. From an intuitive point of view, the image types converts the image of a function into
a type: given a function F , the type formed by the image of F is a subtype of the codomain of F .

Predicate Types. As well as for the function image types, given a predicate, the predicate type is a
subset of the predicate domain, consisting of terms which satisfy the predicate.
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Big Union. From a type theoretical perspective, the type
⋃
F reasons about functions which take

as argument a term and return a type. More precisely, let F be a function that takes as argument a
term of type A and returns the type B; if a term x has the type B, it subsequently has type

⋃
F .

Big Intersection. Big intersection follows the point of view described above for big union: consider
F to be a function that takes as argument a term of type A and returns the type B; if a term x has
the type

⋂
F , it follows that x has type B.

Dependent Products. A term x of type A × B consists of a pair (a, b), where a is in type A and b
is of type B(a).

Dependent Functions. A term x of type A→ B is a function λx.b, where for all a of type A, b has
type B(a).

These and other properties can be combined to express other features and theorems within type
theory; for simplicity however, we will remain on the description of this small fragment of features.

2.2 LF and Twelf

LF [HHP93] has been designed as a meta-logical framework to represent logics, and has become a
standard tool for studying properties of logics. It is based on first order dependent type theory corre-
sponding to the corner of the lambda cube which extends simple typed theory with dependent types.

Following the Curry-Howard correspondence [How80], LF represents all judgments as types and
proofs as terms. To represent a proof theory in LF, appropriate type constructors have to be declared
for the desired judgments. For example, for FOL, we need a judgment for the truth of propositions;
for this, we first need the type for sentences, and then a judgement type:

prop : type .
ded : prop → type .

ded is called a type family: it is not a type itself, only after applying it true to a formula, it returns
a type. For example, if a has type prop, ded a is a type. Thus, types may depend on terms, hence we
speak of dependent types. All proofs are represented as terms. If a proof p proves the judgement J ,
then LF represents this as p : J ([SP96]). With this intuition, we can already represent theories in
LF and reason about them: we add constants to represent axioms.

The entities of LF are ordered on 3 levels:

• the top one, the level of kinds, are used to classify types; in particular, the kind type classifies
the types

• the level of types and family of types represent syntactic classes, judgement forms or assertion
forms

• the base level consists of objects, standing for syntactic entities, proofs, or inference rules.

Therefore, the objects are categorized by type families, classified on their turn by kinds.

Twelf [PS99] is an implementation of the LF framework and its module system [RS09b], based on
signatures and signature morphisms (called views) [RS09a]. Within the signatures, all the declaration
and definitions are made. In the Twelf module system, the views translate the symbols declared in
the first signature into expressions of the second signature, preserving the typing; the axioms and
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inference rules from the first signature are mapped, via the view, to proofs or derived inference rules,
respectively. Their specification is done in the following manner:

%sig S = {Σ}
%view v : S → S ’ = {σ}

A specific syntax for Twelf is also held by the usual binding operators lambda and Pi, used in the
following form:

• Πx : A B(x) is declared as x : A B x

• λx : A t(x) is declared as [x] t x

Following the Twelf module system based on theory morphisms and LF entity hierarchy, we can
specify the used grammar of LF (the following grammar only represents the fragment of Twelf which
will serve to later use):

Signatures Σ ::= . | Σ, sig T = σ | Σ, view v : S → T = σ | Σ, include S |
Σ, struct s : S = σ | Σ, c : A[= t] | Σ, a : K[=A]

Instantiations σ ::= . | σ, c := t | σ, a : A
Kinds K ::= type | A → K
Type families A ::= A t | x : A A
Terms t ::= x | [x : A] t | tt

The method for representing the syntax of a language is inspired by Church and Martin-Löf. The
general approach is to associate an LF type to each syntactic category, and to declare a constant
corresponding to each expression-forming construct of the object language, in such a way that a
bijective correspondence between expressions of the object language and canonical forms of a suitable
type is established. As an example, we demonstrate below the syntax of FOL in Twelf:

%sig FOL = {
i : type .
prop : type .
ded : prop → type .
t rue : prop .
f a l s e : prop .
not : prop → prop .
imp : prop → prop → prop .
equiv : prop → prop → prop

= [ a ] [ b ] ( a imp b) and (b imp a ) .
and : prop → prop → prop .
or : prop → prop → prop .
f o r a l l : ( i → prop ) → prop .
e x i s t s : ( i → prop ) → prop .
eq : i → i → prop .

} .

Intuitively, in the above signature, i represents the type of individuals, prop is the type of propositions
(true and false, declared within the signature) and ded A stand for proofs of A; the logical connec-
tives and quantifiers have the usual meaning. For equivalence, the definition in provided in terms of
implication and conjunction; in the shown definition, [a][b] (a imp b) and (b imp a), the arguments, a
and b will have the type prop.

A view from S to T instantiates all the symbols from S with T -expressions, with the obligation to
preserve the typing. As an example, we show the specification of two simple signatures, S and T , and
provide the view σ from one to enother:

%sig S = {
a : type .
b : a → type .
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c : b .
} .

%sig T = {
a ’ : type .
b ’ : a ’ → type .

} .

view \ sigma : S \ r i ghtar row T = {
a := a ’ .
b := b ’ .

} .

2.3 LATIN

The Logic Atlas and Integrator [KMR09] is intended to provide the tools for interoperability between
multiple logics, languages and proof systems. From a foundational perspective, the LATIN library is
already equipped with formalizations of logics, including both proof and model theory [Rab09], and
mathematical foundations, which hold as the bolster of the logics model theory.

The atlas of logics can serve as bolster for automated reasoning, mathematics and software engi-
neering, and its growth brings along more expressivity and more power. The actual encodings count
over 1000 theories and morphisms [CHK+11b]. The folder structure of the atlas spans logic encod-
ings, including first order logic, modal logic, description logic; translations between the existent logics;
foundations, which contains the formalization of Zermelo-Fraenkel set theory, as well as HOL and
other mathematical foundations; type theory, which comprises the formalization of the lambda cube
[CHK+11a]. Extensibility is a constituent of main focus within the LATIN project - new logics can be
added easily, including the reuse of already formalized logic features.

Organizing the content of the library is of crucial importance, as well as a challenge in itself. For
insuring a systematic approach and development, the adopted conceptual model for representing the
library is that of a graph of mathematical relations, in which the theories are the nodes and the trans-
lations between them are the edges. More precisely, the nodes consist of the specified signatures and
the edges are the existing views between the signatures. In particular, the formalized logics are repre-
sented as theories and the translations between logics, as theory morphisms. A representation of a logic
consists of specifying its syntax, and both its proof and model theory [Rab10]. The semantics of a logic
is given by providing views into a specified foundation. The most used foundation consists of set theory.

The current library contains a formalization of ZF [?] which, starting from the Zermelo-Fraenkel
axioms and FOL, defines all notions of set theories, even the natural numbers. Further on, the encod-
ing reconstructs the typing from sets by defining the type family Elem : set → type, which raises a
set to the level of types. Thus, declaring an object X which contains an element x of type A will be
encoded as X : Elem A. Although this encoding formalizes the notion of types, it has as a primitive
the type set of sets and the connective ∈: set→ set. What we intend to have is a formalization of the
type theory which follow the two main theories concerning types, the one of Church and the one pro-
posed by Curry. Furthermore, by constructing morphisms between the exisent signatures of set theories
and our specification of type theories, we will create an interface between typed and untyped reasoning.
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3 Modular Formalization

3.1 Base theories

Our intention is to develop a mathematical foundation on the base of the two theories which define the
Church and the Curry logic [Sel08], respectively. Our formalization of the type theory has at its base
the signatures of Church and Curry respectively, which are additionally equipped with the type prop
for formulas and the type family ded for the truth judgement over the formulas, in order to represent
the type theoretical logic. The equality of terms and types have to be defined separately, as they
represent entities of distinct levels. Universal and existential quantifiers, as well as logical connectives,
are defined in separate signatures which respectively include the signatures shown below.

The signatures of the Church and Curry type theories are provided below, as well as the signature
of universal quantifier, which serves as example:

%sig Church = {
tp : type .
ttm : tp → type .

prop : type .
ded : prop → type .

== : ttm A → ttm A → prop .
=tp= : tp → tp → prop .

} .

In this signature, the types are represented by tp and the terms, by ttm, which take types as arguments:
a term of type A would be written then ttmA. prop and ded are the logical constructors described
above. == stands for equality between two terms and = tp =, for equality between types.

%sig Curry = {
tp : type .
tm : type .

prop : type .
ded : prop type .

# : tm → tp → prop .
=tm= : tm → tm → prop .
=tp= : tp → tp → prop .

< : tp → tp → prop .
<I : ( {x} ded x # A → ded x # B) → ded A < B.
<E : ded A < B → {x} ded x # A → ded x # B.

} .

Again, tp stands for types; however, the terms, represented by tm, are well formed by themselves,
without depending on types. For typing, we introduce the family #, which applied to term a and type
A, stands for a has type A. We add to the base signature of Curry theory the operator for subtyping,
<, and the introductory and elimination rule for it, < I and < E respectively. porp, ded, = tm =
(equality over terms) and = tp = have the same purpose as for the Church signature.

%sig U n i v e r s a l Q u a n t i f i e r = {
%include Church .
t f o r a l l : ( ttm A → prop ) → prop .
t f o r a l l I : ( {a : ttm A} ded F a ) → ded t f o r a l l F .
t f o r a l l E : ded t f o r a l l F → {a : ttm A} ded F a .

} .
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The universal quantifier is specified by extending the signature Church. The quantifier is specified
with its introductory and elimination rules. The introduction rule, tforallI bounds the free variable
a in (a : ttm Aded F a), and the eliminaton rule takes as argument a proof that for the predicate F ,
all terms make it true, and a term x of appropriate type, returning the proof that x satisfies F .

An important part of the development graph is the translation between Church and Curry theo-
ries. The relation between the two styles of typing is well known [?]; however, our encodings will only
comprise a mapping from Churhc to Curry. The reason for this has at its base the formalization of
subtyping. As shown, the Curry signature contains rules for subtyping. However, the formalization of
subtyping in Church is not desirable because the encoding would loose the adequacy. Therefore, the
Curry logic becomes more expressive than the Church logic - an aftermath is that only Church will be
translated into Curry. For the other direction, the translation of Church into Curry, the signature of
the extrinsic type theory is extended with declarations which describe the Church style, and therefore
we can map the Church assertion into the respective declarations within Curry:

%sig Curry = {
. . .
ttm : tp → type .
! : { t : tm} ded t # A → ttm A.
which : ttm A → tm .
why : { t : ttm A} ded which t # A.
eq which : ded which (X ! P) =tm= X.

} .

The declarations for Church style within the Curry signature are equipped with rules which adequately
identify the Church types. ! takes as argument a term together with the proof that it belongs to a
certain type, and returns the Church typed term; in the inverse direction, which only discards the
type and returns the term taken as argument without its type. why and eq which represent the proofs
that the conversions made with ! and which maintain the same term. All declarations in the Church
signature have their correspondent in the Curry signature with the same nomenclature. For example,
ttm in Church signature has the same semantics as ttm in Curry signature. The view from Church to
Curry becomes thus clear:

%view µ : Church → Curry = {
tp := tp .
ttm := ttm .

prop := prop .
ded := ded .

== := ==.
=tp= := =tp=.

} .

We are also interested in the translations of the emergent theories into the boolean logic, within
which boolean is considered a type and the two truth values are terms of type boolean. The signature
of the booleans have to include the notions of type and term, and therefore has to include the signature
of a type theory:

%sig Bool = {
%include Church .
bool : tp .
1 : ttm bool .
0 : ttm bool .

} .

bool is the type of booleans, and the terms it comprises are 1 and 0. By translating the type theoreti-
cal logic into the boolean logic, we will obtain the interface between internal and external propositions.
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%view ω : Church → Bool = {
tp := tp .
ttm := ttm .

prop := ttm bool .
ded := [ x ] ded x == 1 .

== := ==.
=tp= := =tp=.

} .

Having these theories as primitives, as well as the views from Church to Curry type theory, and
form Church to boolean logic, we also want to formalize the pushouts of the diagram created by the
present signatures and the currently described views between them. The figure 1 presents the diagram
which stands at the base of our encoding of type theory.

Church Bool

Univ

Exist

ω(Univ)

ω(Exist)

Curry µ(Bool)

ω

µ

Figure 1: Base Type Theory Diagram

The arrow style as the one from Church to Univ portrays inclusion, whereas the one from Church
to Curry is a morphism betewwn the two nodes.

3.2 Modular Type Theory

The above diagram will serve as the base structure on which the entire type theory will be built upon.
Wherever possible, every signature based on type theory will make use of the signature of Church.
This precept will be applied in the formalization of type theory features: wherever possible, we will
declare the feature and its rules using the Church style, and only when more expressiveness is needed
(for example, subtyping, which was not formalized for Church), base the feature upon Curry type
theory. The reason for this is that within Church style, the terms are intrisically types, and therefore
type checking is reduced to the one performed by LF; the Curry style however, reasons about typing
using rules of inference, reducing the type checking to proofs, which renders the process slower. Thus,
formalizing the type theory features described in Sect. 2.1, the diagram from figure 2 emerges.

In the specification of each feature, usually the operators are declared, as well as their introduction
and elimination rules, which will adequately encode the feature. As an example, we provide the
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Church Curry

DisjointUnion

Products

OptionTypes

PartialFunctions

TotalFunctions

PredicateTypes

DependentFunctions

ImageTypes

BigUnion

BigIntersection

DependentProducts

Figure 2: Type Theoretical Features

specifications of 2 of the features, one for each typing style, dependent functions (based on Church)
and dependent products (based on Curry).

%sig DependentFunctions = {
%include Church .
p i : ( ttm A → tp ) → tp .
Pi : ( ttm A → tp ) → type = [A] [B] ttm ( p i [ x : ttm A] B x ) .
lambda : ( {a : ttm A} ttm (B a ) ) → pi [ x : ttm A] B x . .
apply : ttm pi [ x : ttm A] B x → {a : ttm A} ttm (B a ) .

} .

%sig DependentProducts = {
%include Curry .
s i g : ( ttm A → tp ) → tp .
S ig : ( ttm A → tp ) → type = [A] [B] ttm (depSum A B) .

pa i r : {a : ttm A} ttm (B a ) → s i g [ x : ttm A] B x .
p i1 : s i g [ x : ttm A] B x → ttm A.
pi2 : {u : s i g [ x : ttm A] B x} ttm (B ( pi1 u) ) .

} .

3.3 Composing and relating features

One of the purposes of having the modular encodings is being able to combine the individual features
and obtain other (possibly more complicated) theorems and features.

A research question is the manner of constructing and correlating the content such that in the end,
as many dependencies as possible are established and the resulting views between the signatures are
established.
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Therefore, the final graph of the specifications will additionally contain functors which will translate
features between them. For example, the signature for partial functions can be expressed in terms of
total functions and option types, which will induce a view from the signature PartialFunction to the
signatures Functions and OptionTypes. However, the ability to construct the described views and
obtain the desired graph also pertains to the implemented features of the Twelf system; analyzing
the necessity of implementing other features within the type system will be subject of further work -
taking the example above, we want to know if it is necessary for the system to support views to or
from multiple signatures:

%view v : Par t i a lFunc t i ons → Functions + OptionTypes = { . . . } .

where the operator + composes the signatures Functions and OptionTypes, instead of declaring an
additional signature to include the codomains of the view, which is the only fashion at the moment
for declaring the desired view.

3.4 Modular semantics

A main advantage in the modular specification of type theory will be importing theorems from other
mathematical foundations, by only formalizing the mapping of the basic features into the respective
foundation. Particularly, it is desirable to have an interface between typed and untyped reasoning, as
well as specifying the semantics of the type theoretical modules in terms of set theory.

Towards obtainig the mentioned interface, we provide the mapping from the type theories to the
foundation based on Zermelo-Fraenkel theory, already formalized within the LATIN project. Further-
more, as bescribed by [?], the formalization comprises typed set theories, which will serve as the basis
of our mapping. The diagram in figure 3 depicts a small sample of the mapping between the proposed
type theoretical encodings and the typed set theoretical encodings - for the simplicity of the diagram,
we will only show the morphim from one feature based on Church logic and one feature based on Curry
logic, each having its correspondent in the ZF formalization.

Church Curry

Function ZF

Image

µ ν

ν ◦ µ

Figure 3: Mapping between Type Theory and Set Theory

4 Proposed work

The proposed work can be split into two deliverables.

For the first package, which consists of formalized type theories, the first research question which
arises is what are the features that need to be specified - these will represent the nodes of the theory
graph we will obtain in the end. Once the signatures are established, it remains to research how each
of them can be specified with a minimum number of dependencies. As well, composing features can
lead to other interesing results from a type theoretical perspective.
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After specifying the nodes of the graph, the question of how can they relate follows. The second
deliverable consists thus of establishing and formalizing views between the specified theories. This
part can, however, pose questions about the first part of the proposed work: researching the question
of views can bring the necessity of new signatures or change of the old ones. This second deliverable
also includes the functor between type theories and the existing ZFC foundation.

5 Conclusion

Following the goal described above, we expect to formalize the type theories of Church and Curry,
together with their features, making use of the modular system of Twelf. Additionally, beyond having
a formalization of type theory, the main result consists of the graph of interlinked theories and the
possibility to transfer theories and theorems from one foundation to another by only having morphisms
between base features.
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