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The following correspondences provide the semantic intuition behind the syntax of type theory. Or, taking the opposite perspective: They show
how type theory provides a formal concrete syntax for set theory. The set theoretic analogue of dependent types shows why we call λx :A.B or
more generally anything of kind Πx :A.type a type family.

The first and lower second part of the table deal with simple and dependent types respectively. Within one part, the introduced symbols
like s, t, A, and B are always typed/kinded the same way. The third part of the table shows how, optionally, simple (A × B) and dependent
(Σx :A.B) products are added. (We have not talked about dependent products yet, and they are not part of LF. But they are the partner of
dependent function types (Πx :A.B) and given here for completeness.)

Type Theory Set Theory
A : type A ∈ |Set|
s : A : type s ∈ A ∈ |Set|
x : A ` t : B t(x) ∈ B

f = λx :A.t : A→ B : type f :

{
A→ B

x 7→ t(x)
f = {(x, f(x)) | x ∈ A} ⊆ A×B

f s = t[s/x] : B f(s) = t(s) ∈ B
x : A ` B : type (B(x))x∈A where B(x) ∈ |Set| for all x ∈ A

C = λx :A.B : Πx :A.type C :

{
A→ |Set|
x 7→ B(x)

x : A ` t : B (t(x))x∈A where t(x) ∈ B(x) for all x ∈ A

f = λx :A.t : Πx :A.B : type f :

A→
⋃
x:A

B(x)

x 7→ t(x) ∈ B(x)
f = {(x, f(x)) | x ∈ A} ⊆ A×

⋃
x∈A

B

f s = t[s/x] : B[s/x] f(s) = t(s) ∈ B(s)
if s : A and s′ : B
〈s, s′〉 : A×B : type (s, s′) ∈ A×B
if s : A and s′ : B[s/x]
〈s, s′〉 : Σx :A.B : type (s, s′) ∈ {(x, y) | x ∈ A, y ∈ B(x)}
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