The Intuitive Connection between Type and Set Theory

Florian Rabe

Part of the course on Computational Logic by Michael Kohlhase

Fall 2007, Jacobs University Bremen

19.11.2007

The following correspondences provide the semantic intuition behind the syntax of type theory. Or, taking the opposite perspective: They show how type theory provides a formal concrete syntax for set theory. The set theoretic analogue of dependent types shows why we call $\lambda x:A.B$ or more generally anything of kind $\Pi x:A.type$ a type family.

The first and lower second part of the table deal with simple and dependent types respectively. Within one part, the introduced symbols like s, t, A, and B are always typed/kinded the same way. The third part of the table shows how, optionally, simple $(A \times B)$ and dependent $(\Sigma x:A.B)$ products are added. (We have not talked about dependent products yet, and they are not part of LF. But they are the partner of dependent function types ($\Pi x:A.B$) and given here for completeness.)

Type Theory	Set Theory	
A:type	$A \in \mathcal{S}et $	
s:A: t type	$s \in A \in \mathcal{S}et $	
$x:A\vdash t:B$	$t(x) \in B$	
$f = \lambda x {:} A.t ~:~ A \rightarrow B$: type	$f: \begin{cases} A \to B\\ x \mapsto t(x) \end{cases}$	$f = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$
$f \ s = t[s/x] : B$	$f(s) = t(s) \in B$	
$x:A\vdash B:\texttt{type}$	$(B(x))_{x \in A}$ where $B(x) \in \mathcal{S}et $ for all $x \in A$	
$C = \lambda x : A.B$: $\Pi x : A.type$	$C: egin{cases} A o \mathcal{S}\mathrm{et} \ x \mapsto B(x) \end{cases}$	
$x:A\vdash t:B$	$(t(x))_{x \in A}$ where $t(x) \in B(x)$ for all $x \in A$	
$f = \lambda x : A.t$: $\Pi x : A.B$: type	$f: \begin{cases} A \to \bigcup_{x:A} B(x) \\ x \mapsto t(x) \in B(x) \end{cases}$	$f = \{(x, f(x)) \mid x \in A\} \subseteq A \times \bigcup_{x \in A} B$
$f \ s = t[s/x] : B[s/x]$	$f(s) = t(s) \in B(s)$	
if $s : A$ and $s' : B$		
$\langle s,s' angle$: $A imes B$: type	$(s,s') \in A \times B$	
if $s : A$ and $s' : B[s/x]$		
$\langle s,s' angle$: $\Sigma x{:}A.B$: type	$(s,s') \in \{(x,y) \mid x \in A, y \in B(x)\}$	