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Preface

Introduction

The ability to represent knowledge about the world and to draw logical inferences is one of the
central components of intelligent behavior. As a consequence, reasoning components of some form
are at the heart of many artificial intelligence systems.
Logic: The field of logic studies representation and inference systems. It dates back and has its
roots in Greek philosophy as presented in the works of Aristotle and others. Since then logic
has grown in richness and diversity over the centuries to finally reach the modern methodological
approach first expressed in the work of Frege. Logical calculi, which capture an important aspect of
human thought, were now amenable to investigation with mathematical rigour and the beginning
of this century saw the influence of these developments in the foundations of mathematics, in the
work of Hilbert, Russell and Whitehead, in the foundations of syntax and semantics of language,
and in philosophical foundations expressed most vividly by the logicians in the Vienna Circle.
Computational Logic: The field of Computational Logic looks at computational aspects of logic.
It is essentially the computer-science perspective of logic. The idea is that logical statements
can be executed on a machine. This has far-reaching consequences that ultimately lead to logic
programming, deduction systems for mathematics and engineering, logical design and verification
of computer software and hardware, deductive databases and software synthesis as well as logical
techniques for analysis in the field of mechanical engineering.
Logic Engineering: As all of these applications require efficient implementations of the underlying
inference systems, computational logic focuses on proof theory much more than on model theory
(which is the focus of mathematical logic, a neighboring field). As the respective applications have
different requirements on the expressivity and structure of the representation language and on the
statements derived or the terms simplified, computational logic focuses on “logic engineering”, i.e.
the development of representation languages, inference systems, and module systems with specific
properties.

Course Concept

Aims: The course 320441 “Computational Logic” (CompLog) is a specialization course offered
to third-year undergraduate students and to first-year graduate students at Jacobs University
Bremen. The course aims to give these students a solid (and somewhat theoretically oriented)
foundation of computational logic and logic engineering techniques.
Prerequisites: The course makes very little assumptions about prior knowledge, but the learning
curve is very steep for students who have no prior exposure to logic. As a consequence, the course
has a prerequisite to the course 320211 Formal Languages and Logic which is a mandatory course
in the Computer Science program at Jacobs University. This prerequisite can be waived by the
instructor for other students.
Course Contents: We carefully recap the foundations of first-order logic and present the tableau
calculus as a computationally inspired inference procedure. Free variable tableaux also introduce
unification, and important computational tool in logics. Finally, we introduce the model existence
method for proving completeness of calculi.

The next part of the course is about enhancing the expressivity of first-order logic to include
functions, predicates, and sets. The intended application is a more adequate representation of
mathematical concepts, where these objects are common. Here we introduce the simply typed
λ calculus as the main representational vehicle, since it casts function comprehension into an
equational theory which we show to be terminating, confluent, and complete. Thus we can build
higher-order inference by extending unification and tableaux.

Finally, we explore the realm of decidable logics used for knowledge representation these days.
These description logics specialize on representing concepts, and their relations and reasoning
about them. Here the game is to add new operators to the language and extend the reasoning
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algorithms for them without losing decidability and tractability. We present the foundations of
knowledge representation starting from semantic networks, over propositional logic with a set-
description semantics to ALC, which achieves feature-parity with semantic networks, but has a
strong formal basis and well-understood, decision procedures. We conclude the course with a quick
walk through the ALC extensions and relate this to the current Semantic Web standards.

This Document

This document contains the course notes for the course Computational Logic held at Jacobs
University Bremen in the fall semesters 2004/07/09/11/13/14.
Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.
Caveat: This document is made available for the students of this course only. It is still an early
draft, and will develop over the course of the course. It will be developed further in coming
academic years.
Licensing: This document is licensed under a Creative Commons license that requires attribution,
forbids commercial use, and allows derivative works as long as these are licensed under the same
license.
Knowledge Representation Experiment:

This document is also an experiment in knowledge representation. Under the hood, it uses
the STEX package [Koh08, Koh15], a TEX/LATEX extension for semantic markup, which allows to
export the contents into the eLearning platform PantaRhei.
Comments and extensions are always welcome, please send them to the author.
Comments: Comments and extensions are always welcome, please send them to the author.
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Recorded Syllabus for Fall 2015

In this document, we record the progress of the course in Fall 2015 in the form of a “recorded
syllabus”, i.e. a syllabus that is created after the fact rather than before.
Recorded Syllabus Fall Semester 2014:
# date until slide page

Here the syllabus of last year’s course for reference, the one should be similar.
Recorded Syllabus Fall Semester 2013:
# date until
1 Sep 3. admin/intro/history
2 Sep 8. more overview
3 Sep 15. First-Order Semantics
4 Sep 17. Capture-Avoiding substitution
5 Sep 22. First-Order ND Calculus
7 Sep 29. Model Existence
8 Oct 1. efficient unification
9 Oct 6. tableau soundness/completeness
10 Oct 8. Higher-Order predicate Logic
11 Oct 13. λ-calculus & Head Reduction
12 Oct 15. Termination of β-reduction
13 Oct 22. αβη-completeness, Simple Type Theory
14 Oct 27 Logical Constants for Math
15 Oct. 29 HOU & General Bindings
16 Nov 3. HOU completeness
17 Nov 5. Andrews’ equality-based HOL
18 Nov 10. Higher-Order Tableaux
19 Nov 12. Recap FO Tableaux and Course Planning
20 Nov 17. Semantic Networks/Semantic Web
20 Nov 19. PL0 set description
21 Nov 24. ALC intro
22 Nov 26. ALC Inference
23 Dec 1. Semantic Web & number restrictions
24 Dec 3. More ALC extensions: Role Operations
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Chapter 1

Outline of the Course

In this course, we want to achieve three things: we want to
1) expose you to various logics from a computational perspective, in particular
2) teach you how to build up logics and and express domain theories modularly, and
3) apply that to the foundations of mathematics and of the Semantic Web.

Outline: From Classical Logic to Specialized Inference Pro-
cedures

� Recap: First-order Logic (cosolidation)

� special attention to substitutions, α-renaming (usually glossed over)

� soundness/completeness (interesting proofs)

� tableau calculi, unification (basis for later)

� Higher-Order Logic (more expressivity for math)

� simply typed λ calculus

� soundness, confluence, termination, completeness

� higher-order unification?

� higher-order tableaux

� Axiomatic Set Theory

� Description Logics (expressivity below)

� propositional logic for concept descriptions

� ALC+ extensions

� tableau calculi

©:Michael Kohlhase 1
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Chapter 2

320411/CompLog Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.
Even though the lecture itself will be the main source of information in the course, there are
various resources from which to study the material.

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Course notes in PDF will be posted at http://old.kwarc.info/teaching/
CompLog.html

� Everything will be posted on PantaRhei (notes+assignments+course forum)

� announcements, contact information, course schedule and calendar

� discussion among your fellow students (careful, we check for academic
integrity!)

� http://panta.kwarc.info (use your Jacobs login)

� if there are problems send e-mail to me.

©:Michael Kohlhase 2

No Textbook: There is no single textbook that covers the course. Instead we have a comprehensive
set of course notes (this document). They are provided in two forms: as a large PDF that is posted
at the course web page and on the PantaRhei system. The latter is actually the preferred method
of interaction with the course materials, since it allows to discuss the material in place, to play
with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the PantaRhei
system, which is still under development, develops problems.
But of course, there is a wealth of literature on the subject of computational logic, and the
references at the end of the lecture notes can serve as a starting point for further reading. We will
try to point out the relevant literature throughout the notes.
Now we come to a topic that is always interesting to the students: the grading scheme.

Prerequisites, Requirements, Grades

2
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� Prerequisites: Motivation, Interest, Curiosity, hard work (mainly,. . . )

� exposure to discrete Math, possibly category theory

� experience in (some) logics

You can do this course if you want! (even without those, but they help)

� Grades: (plan your work involvement carefully)

Attendance and Wakefulness 10%
Homework Assignments 60%
Quizzes 30%
No Midterm Exam –
No Final Exam –

In particular, no midterm, and no final in the Lab, but attendance is mandatory!
(excuses possible)

� Note that for the grades, the percentages of achieved points are added with
the weights above, and only then the resulting percentage is converted to a
grade.

©:Michael Kohlhase 3

Our main motivation in this grading scheme is to entice you to study continuously. This means
that you will have to stay involved, do all your homework assignments, and keep abreast with the
course. This also means that your continued involvement may be higher than other (graduate)
courses, but you are free to concentrate on these during exam week.

Homework assignments

� Goal: Reinforce and apply what is taught in class.

� Homeworks: will be small individual problem/programming/proof assignments
(but take time to solve) group submission if and only if explicitly permitted

� Admin: To keep things running smoothly

� Homeworks will be posted on PantaRhei

� Homeworks are handed in electronically in JGrader(plain text, Postscript,
PDF,. . . )

� go to the tutorials, discuss with your TA (they are there for you!)

� materials: sometimes posted ahead of time; then read before class, prepare
questions, bring printout to class to take notes

� Homework Discipline:

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

3
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Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them. They are usually directly based on concepts covered in
the lecture, so reviewing the course notes often helps getting started.

Homework Submissions, Grading, Tutorials

� Submissions: We use Heinrich Stamerjohanns’ JGrader system

� submit all homework assignments electronically to https://jgrader.de.

� you can login with your Jacobs account and password. (should have one!)

� feedback/grades to your submissions

� get an overview over how you are doing! (do not leave to midterm)

� Tutorials: select a tutorial group and actually go to it regularly

� to discuss the course topics after class (lectures need pre/postparation)

� to discuss your homework after submission (to see what was the problem)

� to find a study group (probably the most determining factor of success)

©:Michael Kohlhase 5

The next topic is very important, you should take this very seriously, even if you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract
among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an academic education and expect that you (as a graduate of Jacobs) will behave
by these rules.

The Code of Academic Integrity

� Jacobs has a “Code of Academic Integrity”

� this is a document passed by the Jacobs community (our law of the
university)

� you have signed it during enrollment (we take this seriously)

� It mandates good behaviors from both faculty and students and penalizes bad
ones:

� honest academic behavior (we don’t cheat/falsify)

� respect and protect the intellectual property of others (no plagiarism)

� treat all Jacobs members equally (no favoritism)

4
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� this is to protect you and build an atmosphere of mutual respect

� academic societies thrive on reputation and respect as primary currency

� The Reasonable Person Principle (one lubricant of academia)

� we treat each other as reasonable persons

� the other’s requests and needs are reasonable until proven otherwise

� but if the other violates our trust, we are deeply disappointed (severe
uncompromising consequences)

©:Michael Kohlhase 6

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the primary
good that is produced and consumed consists in ideas and knowledge, and the primary currency
involved is academic reputation1. Even though academic societies may seem as altruistic —
scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.
Next we come to a special project that is going on in parallel to teaching the course. I am using the
coures materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now server double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with OMDoc/PantaRhei

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the PantaRhei system (http://panta.kwarc.info)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

1Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

5
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� you will help build better course materials (think of next-year’s students)

©:Michael Kohlhase 7
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Chapter 3

What is (Computational) Logic

What is (Computational) Logic?

� The field of logic studies representation languages, inference systems, and their
relation to the world.

� It dates back and has its roots in Greek philosophy (Aristotle et al.)

� Logical calculi capture an important aspect of human thought, and make it
amenable to investigation with mathematical rigour, e.g. in

� foundation of mathematics (Hilbert, Russell and Whitehead)

� foundations of syntax and semantics of language(Creswell, Montague, . . . )

� Logics have many practical applications

� logic/declarative programming (the third programming paradigm)

� program verification: specify conditions in logic, prove program correctness

� program synthesis: prove existence of answers constructively, extract pro-
gram from proof

� proof-carrying code: compiler proves safety conditions, user verifies before
running.

� deductive databases: facts + rules (get more out than you put in)

� semantic web: the Web as a deductive database

� Computational Logic is the study of logic from a computational, proof-theoretic
perspective. (model theory is mostly comprised under “mathematical logic”.)

©:Michael Kohlhase 8

What is Logic?

� formal languages, inference and their relation with the world

� Formal language FL: set of formulae (2 + 3/7, ∀x.x+ y = y + x)

� Formula: sequence/tree of symbols (x, y, f, g, p, 1, π,∈,¬, ∧∀,∃)

7
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� Models: things we understand (e.g. number theory)

� Interpretation: maps formulae into models ([[three plus five]] = 8)

� Validity: M |= A, iff [[A]]
M

= T (five greater three is valid)

� Entailment: A |= B, iffM |= B for allM |= A. (generalize to H |= A)

� Inference: rules to transform (sets of) formulae (A,A⇒B ` B)

� Syntax: formulae, inference (just a bunch of symbols)

� Semantics: models, interpr., validity, entailment (math. structures)

� Important Question: relation between syntax and semantics?

©:Michael Kohlhase 9

So logic is the study of formal representations of objects in the real world, and the formal state-
ments that are true about them. The insistence on a formal language for representation is actually
something that simplifies life for us. Formal languages are something that is actually easier to
understand than e.g. natural languages. For instance it is usually decidable, whether a string is
a member of a formal language. For natural language this is much more difficult: there is still
no program that can reliably say whether a sentence is a grammatical sentence of the English
language.
We have already discussed the meaning mappings (under the monicker “semantics”). Meaning
mappings can be used in two ways, they can be used to understand a formal language, when we
use a mapping into “something we already understand”, or they are the mapping that legitimize a
representation in a formal language. We understand a formula (a member of a formal language)
A to be a representation of an object O, iff [[A]] = O.
However, the game of representation only becomes really interesting, if we can do something with
the representations. For this, we give ourselves a set of syntactic rules of how to manipulate the
formulae to reach new representations or facts about the world.
Consider, for instance, the case of calculating with numbers, a task that has changed from a difficult
job for highly paid specialists in Roman times to a task that is now feasible for young children.
What is the cause of this dramatic change? Of course the formalized reasoning procedures for
arithmetic that we use nowadays. These calculi consist of a set of rules that can be followed
purely syntactically, but nevertheless manipulate arithmetic expressions in a correct and fruitful
way. An essential prerequisite for syntactic manipulation is that the objects are given in a formal
language suitable for the problem. For example, the introduction of the decimal system has been
instrumental to the simplification of arithmetic mentioned above. When the arithmetical calculi
were sufficiently well-understood and in principle a mechanical procedure, and when the art of
clock-making was mature enough to design and build mechanical devices of an appropriate kind,
the invention of calculating machines for arithmetic by Wilhelm Schickard (1623), Blaise Pascal
(1642), and Gottfried Wilhelm Leibniz (1671) was only a natural consequence.

We will see that it is not only possible to calculate with numbers, but also with representations
of statements about the world (propositions). For this, we will use an extremely simple example;
a fragment of propositional logic (we restrict ourselves to only one logical connective) and a small
calculus that gives us a set of rules how to manipulate formulae.

3.1 A History of Ideas in Logic

Before starting with the discussion on particular logics and inference systems, we put things into
perspective by previewing ideas in logic from a historical perspective. Even though the presentation

8
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(in particular syntax and semantics) may have changed over time, the underlying ideas are still
pertinent in today’s formal systems.
Many of the source texts of the ideas summarized in this Section can be found in [vH67].

History of Ideas (abbreviated): Propositional Logic

� General Logic ([ancient Greece, e.g. Aristotle])

+ conceptual separation of syntax and semantics

+ system of inference rules (“Syllogisms”)

– no formal language, no formal semantics

� Propositional Logic [Boole ∼ 1850]

+ functional structure of formal language (propositions + connectives)

+ mathematical semantics (; Boolean Algebra)

– abstraction from internal structure of propositions

©:Michael Kohlhase 10

History of Ideas (continued): Predicate Logic

� Frege’s “Begriffsschrift” [Fre79]

+ functional structure of formal language (terms, atomic formulae,
connectives, quantifiers)

– weird graphical syntax, no mathematical semantics

– paradoxes e.g. Russell’s Paradox [R. 1901] (the set of sets that do not
contain themselves)

� modern form of predicate logic [Peano ∼ 1889]

+ modern notation for predicate logic (∨,∧,⇒,∀,∃)

©:Michael Kohlhase 11

History of Ideas (continued): First-Order Predicate Logic

� Types ([Russell 1908])

– restriction to well-types expression

+ paradoxes cannot be written in the system

+ Principia Mathematica ([Whitehead, Russell 1910])

� Identification of first-order Logic ([Skolem, Herbrand, Gödel ∼ 1920 – ’30])

– quantification only over individual variables (cannot write down induction
principle)

+ correct, complete calculi, semi-decidable

9
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+ set-theoretic semantics ([Tarski 1936])

©:Michael Kohlhase 12

History of Ideas (continued): Foundations of Mathematics

� Hilbert’s Program: find logical system and calculus, ([Hilbert ∼ 1930])

� that formalizes all of mathematics

� that admits sound and complete calculi

� whose consistence is provable in the system itself

� Hilbert’s Program is impossible! ([Gödel 1931])

Let L be a logical system that formalizes arithmetics (〈NaturalNumbers,+, ∗〉),

� then L is incomplete

� then the consistence of L cannot be proven in L.

©:Michael Kohlhase 13

History of Ideas (continued): λ-calculus, set theory

� Simply typed λ-calculus ([Church 1940])

+ simplifies Russel’s types, λ-operator for functions

+ comprehension as β-equality (can be mechanized)

+ simple type-driven semantics (standard semantics ; incompleteness)

� Axiomatic set theory

+– type-less representation (all objects are sets)

+ first-order logic with axioms

+ restricted set comprehension (no set of sets)

– functions and relations are derived objects

©:Michael Kohlhase 14
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Part I

Formal Systems

11



To prepare the ground for the particular developments coming up, let us spend some time on
recapitulating the basic concerns of formal systems.

12



Chapter 4

Logical Systems

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical
system consists of a formal language, a class of models, and a satisfaction relation between models
and expressions of the formal lanugage. The satisfaction relation tells us when an expression is
deemed true in this model.

Logical Systems

� Definition 4.0.1 A logical system is a triple S := 〈L,K, |=〉, where L is a
formal language, K is a set and |=⊆K×L. Members of L are called formulae
of S, members of K models for S, and |= the satisfaction relation.

� Definition 4.0.2 Let S := 〈L,K, |=〉 be a logical system,M∈ K be a model
and A ∈ L a formula, then we call A

� satisfied byM, iffM |= A

� falsified byM, iffM 6|= A

� satisfiable in K, iffM |= A for some modelM∈ K.
� valid in K (write |=M), iffM |= A for all modelsM∈ K
� falsifiable in K, iffM 6|= A for someM∈ K.
� unsatisfiable in K, iffM 6|= A for allM∈ K.

� Definition 4.0.3 Let S := 〈L,K, |=〉 be a logical system, then we define the
entailment relation |=⊆L×L. We say that A entails B (written A |= B), iff
we haveM |= B for all modelsM∈ K withM |= A.

� Observation 4.0.4 A |= B andM |= A implyM |= B.

©:Michael Kohlhase 15

Example 4.0.5 (First-Order Logic as a Logical System) Let L := wff o(Σ), K be the class
of first-order models, andM |= A :⇔ Iϕ(A) = T, then 〈L,K, |=〉 is a logical system in the sense
of Definition 4.0.1.

Note that central notions like the entailment relation (which is central for understanding reasoning
processes) can be defined independently of the concrete compositional setup we have used for first-
order logic, and only need the general assumptions about logical systems.
Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

13
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Chapter 5

Calculi, Derivations, and Proofs

The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

� Definition 5.0.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
relation `⊆P(L)×L a derivation relation for S, if it

� is proof-reflexive, i.e. H ` A, if A ∈ H;
� is proof-transitive, i.e. if H ` A and H′ ∪{A} ` B, then H∪H′ ` B;

� admits weakening, i.e. H ` A and H⊆H′ imply H′ ` A.

� Definition 5.0.2 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is
a logical system, and ` a derivation relation for S.

� Definition 5.0.3 Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

� Definition 5.0.4 An inference rule without assumptions is called an axiom (schema).

� Definition 5.0.5 Let S := 〈L,K, |=〉 be a logical system, then we call a set
C of inference rules over L a calculus for S.

©:Michael Kohlhase 16

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

14
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Derivations and Proofs

� Definition 5.0.6 Let S := 〈L,K, |=〉 be a logical system and C a calculus
for S, then a C-derivation of a formula C ∈ L from a set H⊆L of hypotheses
(write H `C C) is a sequence A1, . . . ,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1≤i≤m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j≤k. (rule

application)

Observation: We can also see a derivation as a tree, where the Alj are the
children of the node Ak.

��

Example 5.0.7 In the propositional Hilbert
calculus H0 we have the derivation P `H0

Q⇒P : the sequence is P ⇒Q⇒P , P ,Q⇒P
and the corresponding tree on the right.

K
P ⇒Q⇒P P

MP
Q⇒P

� Observation 5.0.8 Let S := 〈L,K, |=〉 be a logical system and C a calcu-
lus for S, then the C-derivation relation `D defined in Definition 5.0.6 is a
derivation relation in the sense of Definition 5.0.1.1

� Definition 5.0.9 We call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉 is
a logical system, and C a calculus for S.

� Definition 5.0.10 A derivation ∅ `C A is called a proof of A and if one
exists (write `C A) then A is called a C-theorem.

� Definition 5.0.11 an inference rule I is called admissible in C, if the exten-
sion of C by I does not yield new theorems.

©:Michael Kohlhase 17

aEdNote: MK: this should become a view!

Inference rules are relations on formulae represented by formula schemata (where boldface, upper-
case letters are used as meta-variables for formulae). For instance, in Example 5.0.7 the inference

rule
A⇒B A

B
was applied in a situation, where the meta-variables A and B were instantiated

by the formulae P and Q⇒P .
As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 5.0.7.

15
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Chapter 6

Properties of Calculi

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 6.0.1 Let S := 〈L,K, |=〉 be a logical system, then we call a
calculus C for S

� sound (or correct), iff H |= A, whenever H `C A, and

� complete, iff H `C A, whenever H |= A.

� Goal: ` A iff |=A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

©:Michael Kohlhase 18

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

16
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Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.
Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.
In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

� Purely formal derivations are true in the real world!

©:Michael Kohlhase 19

If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

17
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Part II

First-Order Logic and Inference
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Chapter 7

First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . . )

©:Michael Kohlhase 20

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non-syntactic, in that they take the
renaming of bound variables (α-equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.
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In this Chapter we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,
use that for a soundness proof of α-renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

7.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).
The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

� Definition 7.1.1 First-order logic (PL1), is a formal logical system exten-
sively used in mathematics, philosophy, linguistics, and computer science. It
combines propositional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values; sometimes annotated by type o (like in PL0)

� individuals; sometimes annotated by type ι(numbers, foxes, Pokémon,. . . )

� Definition 7.1.2 A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σo = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (relations among inds.)

� (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constructors; countably
∞)

� We take the signature Σ to be all of these together: Σ := Σo ∪Σf ∪Σp ∪Σsk,
where Σ∗ :=

⋃
k∈N Σ∗k.

� We assume a set of individual variables: Vι = {Xι, Yι, Z,X
1
ι, X

2} (countably
∞)

©:Michael Kohlhase 21

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.
The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

20
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PL1 Syntax (Formulae)

� Definition 7.1.3 terms: A ∈ wff ι(Σι) (denote individuals: type ι)

� Vι⊆wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i≤k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 7.1.4 propositions: A ∈ wff o(Σ) (denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i≤k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

� if A,B ∈ wff o(Σ), then T ,A∧B,¬A,∀X A ∈ wff o(Σ).

� Definition 7.1.5 We define the connectives F ,∨,⇒,⇔ via the abbreviations
A∨B := ¬ (¬A∧¬B),A⇒B := ¬A∨B, (A⇔B) := (A⇒B)∧ (B⇒A),
and F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 7.1.6 We use ∃X A as an abbreviation for ¬ (∀X ¬A). (exis-
tential quantifier)

� Definition 7.1.7 Call formulae without connectives or quantifiers atomic else
complex.

©:Michael Kohlhase 22

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).
The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 7.1.8 We call an occurrence of a variable X bound in a formula
A, iff it occurs in a sub-formula ∀X B of A. We call a variable occurrence
free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound
(free) variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 7.1.9 We define the set free(A) of free variables of a formula A
inductively:

free(X) := {X}
free(f(A1, . . . ,An)) :=

⋃
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) :=
⋃

1≤i≤n free(Ai)

free(¬A) := free(A)
free(A∧B) := free(A)∪ free(B)
free(∀X A) := free(A)\{X}

� Definition 7.1.10 We call a formula A closed or ground, iff free(A) = ∅.
We call a closed proposition a sentence, and denote the set of all ground terms
with cwff ι(Σι) and the set of sentences with cwff o(Σι).
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We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

� We fix the Universe Do = {T,F} of truth values.

� We assume an arbitrary universe Dι 6= ∅ of individuals (this choice is a
parameter to the semantics)

� Definition 7.1.11 An interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk → F(Dιk;Dι) (interpret function symbols as arbitrary functions)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� Definition 7.1.12 A variable assignment ϕ : Vι → Dι maps variables into
the universe.

� A first-order ModelM = 〈Dι, I〉 consists of a universeDι and an interpretationI.

©:Michael Kohlhase 24

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Given a model 〈D, I〉, the value function Iϕ is recursively defined:(two parts:
terms & propositions)

� Iϕ : wff ι(Σι)→ Dι assigns values to terms.

� Iϕ(X) := ϕ(X) and
� Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

� Iϕ : wff o(Σ)→ Do assigns values to formulae:

� Iϕ(T ) = I(T ) = T, Iϕ(¬A) = I(¬)(Iϕ(A)) Iϕ(A∧B) = I(∧)(Iϕ(A), Iϕ(B))

(just as in PL0)
� Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)

� Iϕ(∀X A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.
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The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope – but with an extended variable assignment. Note
that by passing to the scope A of ∀x A, the occurrences of the variable x in A that were bound
in ∀x A become free and are amenable to evaluation by the variable assignment ψ := ϕ, [a/X].
Note that as an extension of ϕ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.
Note furthermore, that the value Iϕ(∃x A) of ∃x A, which we have defined to be ¬ (∀x ¬A) is
true, iff it is not the case that Iϕ(∀x ¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := ϕ, [a/X]. This
is the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

7.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y ], [Y/X](X), is that Y or Z?

� Folklore: [Z/Y ], [Y/X](X) = Y , but [Z/Y ]([Y/X](X)) = Z of course.
(Parallel application)

� Definition 7.2.1 We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σ(f(A1, . . . ,An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) := {X |σ(X) 6= X} of σ is
finite.

� Observation 7.2.2 Note that a substitution σ is determined by its values on
variables alone, thus we can write σ as σ|Vι = {[σ(X)/X] |X ∈ supp(σ)}.

� Notation 7.2.3 We denote the substitution σ with supp(σ) = {xi | 1≤i≤n}
and σ(xi) = Ai by [A1/x

1], . . ., [An/x
n].

� Example 7.2.4 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 7.2.5 We call intro(σ) :=
⋃
X∈supp(σ) free(σ(X)) the set of

variables introduced by σ.

©:Michael Kohlhase 26

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ, [A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.
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Substitution Extension

� Notation 7.2.6 (Substitution Extension) Let σ be a substitution, then
we denote with σ, [A/X] the function {(Y,A) ∈ σ |Y 6= X}∪ {(X,A)}.

(σ, [A/X] coincides with σ of X, and gives the result A there.)

� Note: If σ is a substitution, then σ, [A/X] is also a substitution.

� Definition 7.2.7 If σ is a substitution, then we call σ, [A/X] the extension
of σ by [A/X].

� We also need the dual operation: removing a variable from the support

� Definition 7.2.8 We can discharge a variable X from a substitution σ by
σ−X := σ, [X/X].

©:Michael Kohlhase 27

Note that the use of the comma notation for substitutions defined in Notation 7.2.3 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.
For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)

� Definition 7.2.9 σ(∀X A) := (∀X σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y ](∀X p(X,Y )) would
evaluate to ∀X p(X, f(X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

� Definition 7.2.10 Let B ∈ wff ι(Σι) and A ∈ wff o(Σ), then we call B
substitutable for X in A, iff A has no occurrence of X in a subterm ∀Y C
with Y ∈ free(B).

� Solution: Forbid substitution [B/X]A, when B is not substitutable for X in
A.

� Better Solution: Rename away the bound variable X in ∀X p(X,Y ) before
applying the substitution. (see alphabetic renaming later.)

©:Michael Kohlhase 28

Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be capture-avoiding by stipulating that bound variables are renamed in
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the to ensure subsitutability. But at this time, we have not even defined alphabetic renaming
yet, and cannot formally do that without having a notion of substitution. So we will refrain from
introducing capture-avoiding substitutions until we have done our homework.
We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will
be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions, where we have to take special care of substi-
tutability.

Substitution Value Lemma for Terms

� Lemma 7.2.11 Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where
ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y ), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) =
ψ(X) = Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) =
ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X](A)) = I(f)(Iϕ([B/X](A1)), . . . , Iϕ([B/X](An)))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion
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We now come to the case of propositions. Note that we have the additional assumption of substi-
tutability here.

Substitution Value Lemma for Propositions

� Lemma 7.2.12 Let B ∈ wff ι(Σι) be substitutable for X in A ∈ wff o(Σ),
then Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A
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P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the
inductive case of the substitution value lemma for terms.

P.1.2 n>0 and A = ¬B or A = C ◦D: Here we argue like in the inductive
case of the term lemma as well.

P.1.3 n>0 andA = ∀X C: then Iψ(A) = Iψ(∀X C) = T, iff Iψ,[a/X](C) =
Iϕ,[a/X](C) = T, for all a ∈ Dι, which is the case, iff Iϕ(∀X C) =
Iϕ([B/X](A)) = T.

P.1.4 n>0 and A = ∀Y C where X 6= Y : then Iψ(A) = Iψ(∀Y C) = T,
iff Iψ,[a/Y ](C) = Iϕ,[a/Y ]([B/X](C)) = T, by inductive hypothesis. So
Iψ(A) = Iϕ(∀Y [B/X](C)) = Iϕ([B/X](∀Y C)) = Iϕ([B/X](A))
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To understand the proof full, you should look out where the substitutability is actually used.
Armed with the substitution value lemma, we can now define alphabetic renaming and show it to
be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.

7.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
without changing the meaning of a formula.

Alphabetic Renaming

� Lemma 7.3.1 Bound variables can be renamed: If Y is substitutable for X
in A, then Iϕ(∀X A) = Iϕ(∀Y [Y/X](A))

� Proof: by the definitions:

P.1 Iϕ(∀X A) = T, iff

P.2 Iϕ,[a/X](A) = T for all a ∈ Dι, iff
P.3 Iϕ,[a/Y ]([Y/X](A)) = T for all a ∈ Dι, iff (by substitution value lemma)

P.4 Iϕ(∀Y [Y/X](A)) = T.

� Definition 7.3.2 We call two formulae A and B alphabetical variants (or
α-equal; write A =α B), iff A = ∀X C and B = ∀Y [Y/X](C) for some
variables X and Y .
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We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instantiations respect a substitutability condition, which is quite
tedious. We will now come up with an improved definition of substitution application for first-
order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming
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� Idea: Given alphabetic renaming, we will consider alphabetical variants as
identical

� So: Bound variable names in formulae are just a representational device (we
rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old)
modulo =α. (formulae as syntactic representatives of equivalence classes)

� Definition 7.3.3 (Capture-Avoiding Substitution Application) Let σ
be a substitution, A a formula, and A′ an alphabetical variant of A, such
that intro(σ)∩BVar(A) = ∅. Then [A]=α = [A′]=α and we can define
σ([A]=α) := [σ(A′)]=α .

� Notation 7.3.4 After we have understood the quotient construction, we will
neglect making it explicit and write formulae and substitutions with the under-
standing that they act on quotients.
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Chapter 8

Inference in First-Order Logic

In this Chapter we will introduce inference systems (calculi) for first-order logic and study their
properties, in particular soundness and completeness.

8.1 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert-style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction cal-
culus that makes certain meta-proofs simpler to push through2. EdN:2

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.

8.1.1 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.
Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an infer-
ence rule that derives a formula with that symbol at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gen35])

2EdNote: say something about cut elimination/analytical calculi somewhere
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� Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)

� Definition 8.1.1 The propositional natural deduction calculus ND0 has rules
for the introduction and elimination of connectives

Introduction Elimination Axiom
A B

A∧B
∧I A∧B

A
∧El

A∧B
B
∧Er

A∨¬A
TND

[A]1

B

A⇒B
⇒I1 A⇒B A

B
⇒E

� TND is used only in classical logic (otherwise constructive/intuitionistic)
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The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds to
the mathematical way of proving an implication A⇒B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).
Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

� Inference with local hypotheses

[A∧B]1

∧Er
B

[A∧B]1

∧El
A
∧I

B∧A
⇒I1

A∧B⇒B∧A

[A]
1

[B]
2

A
⇒I2

B⇒A
⇒I1

A⇒B⇒A
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One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 8.1.2 H,A `ND0 B, iff H `ND0 A⇒B.
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� Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒B by ⇒I , and
P.2 If H `ND0 A⇒B, then H,A `ND0 A⇒B by weakening and H,A `ND0

B by ⇒E.
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Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 8.1.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

� Definition 8.1.3 ND0 has the following additional rules for the remaining
connectives.

A

A∨B
∨Il

B

A∨B
∨Ir

A∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
F
¬A

¬I1 ¬¬A
A
¬E

¬A A

F
FI

F

A
FE
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To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gen35])

� Rules for propositional connectives just as always

� Definition 8.1.4 (New Quantifier Rules) The first-order natural deduc-
tion calculus ND1 extends ND0 by the following four rules

A

∀X A
∀I∗ ∀X A

[B/X](A)
∀E

[B/X](A)

∃X A
∃I

∃X A

[[c/X](A)]
1

...
C

C
∃E1
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∗ means that A does not depend on any hypothesis in which X is free.
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The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized
to ∀X A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about
X. The ∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in
A. The ∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A
true), then we can existentially close A. The ∃E rule corresponds to the common mathematical
practice, where we give objects we know exist a new name c and continue the proof by reasoning
about this concrete object c. Anything we can prove from the assumption [c/X](A) we can prove
outright if ∃X A is known.
One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 8.1.5 H,A `ND0 B, iff H `ND0 A⇒B.

� Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒B by ⇒I , and
P.2 If H `ND0 A⇒B, then H,A `ND0 A⇒B by weakening and H,A `ND0

B by ⇒E.
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This is the classical formulation of the calculus of natural deduction. To prepare the things we
want to do later (and to get around the somewhat un-licensed extension by hypothetical reasoning
in the calculus), we will reformulate the calculus by lifting it to the “judgements level”. Instead
of postulating rules that make statements about the validity of propositions, we postulate rules
that make state about derivability. This move allows us to make the respective local hypotheses
in ND derivations into syntactic parts of the objects (we call them “sequents”) manipulated by the
inference rules.

Natural Deduction in Sequent Calculus Formulation

� Idea: Explicit representation of hypotheses (lift calculus to judgments)

� Definition 8.1.6 A judgment is a meta-statement about the provability of
propositions

� Definition 8.1.7 A sequent is a judgment of the form H ` A about the
provability of the formula A from the set H of hypotheses.

� Idea: Reformulate ND rules so that they act on sequents
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� Example 8.1.8

A∧B ` A∧B ∧Er
A∧B ` B

A∧B ` A∧B ∧El
A∧B ` A

∧I
A∧B ` B∧A

⇒I
∅ ` A∧B⇒B∧A

� Note: Even though the antecedent of a sequent is written like a sequence, it
is actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

� Definition 8.1.9 The following inference rules make up the sequent calculus

Γ,A ` A
Ax

Γ ` B

Γ,A ` B
weaken

Γ ` A∨¬A
TND

Γ ` A Γ ` B

Γ ` A∧B
∧I

Γ ` A∧B
Γ ` A

∧El
Γ ` A∧B

Γ ` B
∧Er

Γ ` A

Γ ` A∨B
∨Il

Γ ` B

Γ ` A∨B
∨Ir

Γ ` A∨B Γ,A ` C Γ,B ` C

Γ ` C
∨E

Γ,A ` B

Γ ` A⇒B
⇒I

Γ ` A⇒B Γ ` A

Γ ` B
⇒E

Γ,A ` F

Γ ` ¬A
¬I

Γ ` ¬¬A
A

¬E

Γ ` ¬A Γ ` A

Γ ` F
FI

Γ ` F

Γ ` A
FE
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First-Order Natural Deduction in Sequent Formulation

� Rules for propositional connectives just as always

� Definition 8.1.10 (New Quantifier Rules)

Γ ` A X 6∈ free(Γ)

Γ ` ∀X A
∀I Γ ` ∀X A

Γ ` [B/X](A)
∀E

Γ ` [B/X](A)

Γ ` ∃X A
∃I Γ ` ∃X A Γ, [c/X](A) ` C c ∈ Σsk0 new

Γ ` C
∃E
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We leave the soundness result for the first-order natural deduction calculus to the reader and turn
to the complenesss result, which is much more involved and interesting.

32

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


8.2 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before.3 EdN:3
The basic intuition for this method is the following: typically, a logical system S = 〈L,K, |=〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka
set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract
consistent.

� Corollary: C is complete.
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The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.

3EdNote: cite the original papers!
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To carry out the “model-existence”/”abstract consistency” method, we will first have to look at the
notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition 8.2.1 Φ is called C-refutable, if there is a formula B, such that
Φ `C B and Φ `C ¬B.

� Definition 8.2.2 We call a pair A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition 8.2.3 Φ is called C-consistent, iff there is a formula B, that is
not derivable from Φ in C.

� Definition 8.2.4 We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A∧¬A⇒B is a C-
theorem.

� Theorem 8.2.5 C-inconsistency and C-refutability coincide for reasonable
calculi
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It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |=〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.
The notion of an “abstract consistency class” provides the a calculus-independent notion of “con-
sistency”: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member of
an abstract consistency class ∇.

Abstract Consistency

� Definition 8.2.6 Let ∇ be a family of sets. We call ∇ closed under subsets,
iff for each Φ ∈ ∇, all subsets Ψ⊆Φ are elements of ∇.

� Notation 8.2.7 We will use Φ ∗A for Φ∪{A}.

� Definition 8.2.8 A family ∇⊆wff o(Σ) of sets of formulae is called a (first-
order) abstract consistency class, iff it is closed under subsets, and for each
Φ ∈ ∇

∇c) A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∧) (A∧B) ∈ Φ implies (Φ∪{A,B}) ∈ ∇
∇∨) ¬ (A∧B) ∈ Φ implies Φ ∗¬A ∈ ∇ or Φ ∗¬B ∈ ∇
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∇∀) If (∀X A) ∈ Φ, then Φ ∗ [B/X](A) ∈ ∇ for each closed term B.

∇∃) If ¬ (∀X A) ∈ Φ and c is an individual constant that does not occur in
Φ, then Φ ∗¬ [c/X](A) ∈ ∇

©:Michael Kohlhase 44

The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we
should be able to extend it by A without losing this property; in other words, a complete calculus
should be able to recognize A and ¬¬A to be equivalent.
We will carry out the proof here, since it gives us practice in dealing with the abstract consistency
properties.
Actually we are after abstract consistency classes that have an even stronger property than just
being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

� Definition 8.2.9 We call a collection ∇ of sets compact, iff for any set Φ
we have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 8.2.10 If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S⊆T and T ∈ ∇.
P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.
P.4 Thus S ∈ ∇.
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The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).
The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).

Compact Abstract Consistency Classes

� Lemma 8.2.11 Any first-order abstract consistency class can be extended to
a compact one.

� Proof:

P.1 We choose ∇′ := {Φ⊆ cwff o(Σι) | every finite subset of Φis in ∇}.
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P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset
of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇⊆∇′.

P.3 Let us now show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

P.5 Next we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that

{A,¬A}⊆Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.
P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗¬¬A.

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.
P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get

Θ ∗A ∈ ∇ by ∇¬.
P.5.2.4 We know that Ψ⊆Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition

Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.
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Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

� Definition 8.2.12 Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇
we already have A ∈ H.

� Theorem 8.2.13 (Hintikka Properties) Let ∇ be an abstract consis-
tency class and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σ) we have A 6∈ H or ¬A 6∈ H.
H¬) If ¬¬A ∈ H then A ∈ H.
H∧) If (A∧B) ∈ H then A,B ∈ H.
H∨) If ¬ (A∧B) ∈ H then ¬A ∈ H or ¬B ∈ H.
H∀) If (∀X A) ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬ (∀X A) ∈ H then ¬ [B/X](A) ∈ H for some term closed term B.

Proof:
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� P.1 We prove the properties in turn

Hc goes by induction on the structure of A

P.2P.2.1 A atomic: Then A 6∈ H or ¬A 6∈ H by ∇c.
P.2.2 A = ¬B:

P.2.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,
P.2.2.2 then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.2.2.3 So {B,¬B}⊆H, which contradicts the inductive hypothesis.

P.2.3 A = B∨C: similar to the previous case

We prove H¬ by maximality of H in ∇.
P.3P.3.1 If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
P.3.2 The maximality of H now gives us that A ∈ H.

The other H∗ are similar
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The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

P.4 Extension Theorem

� Theorem 8.2.14 If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then
there is a ∇-Hintikka set H with Φ⊆H.

� Proof: Wlog. assume that ∇ compact (else use compact extension)

P.1 Choose an enumeration A1,A2, . . . of cwff o(Σι) and c1, c2, . . . of Σsk0 .

P.2 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn ∗An 6∈ ∇
Hn ∪{An,¬ [cn/X](B)} if Hn ∗An ∈ ∇ and An = ¬ (∀X B)

Hn ∗An else

P.3 Note that all Hi ∈ ∇, choose H :=
⋃
i∈NH

i

P.4 Ψ⊆H finite implies there is a j ∈ N such that Ψ⊆Hj ,

P.5 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.6 Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1

and Hj+1⊆H
P.7 Thus H is ∇-maximal
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Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
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∇-consistent4 with Φ, then depending on which one is first in the enumeration H, will contain EdN:4
that one; with all the consequences for subsequent choices in the construction process.

Valuation

� Definition 8.2.15 A function ν : cwff o(Σι) → Do is called a (first-order)
valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A∧B) = T, iff ν(A) = T and ν(B) = T

� ν(∀X A) = T, iff ν([B/X](A)) = T for all closed terms B.

� Lemma 8.2.16 If ϕ : Vι → D is a variable assignment, then Iϕ : cwff o(Σι)→
Do is a valuation.

� Proof Sketch: Immediate from the definitions
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Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.5 EdN:5

Valuation and Satisfiability

� Lemma 8.2.17 If ν : cwff o(Σι)→ Do is a valuation and Φ⊆ cwff o(Σι) with
ν(Φ) = {T}, then Φ is satisfiable.

� Proof: We construct a model for Φ.

P.1 Let Dι := cwff ι(Σι), and

� I(f) : Dιk → Dι ; 〈A1, . . . ,Ak〉 7→ f(A1, . . . ,Ak) for f ∈ Σf

� I(p) : Dιk → Do; 〈A1, . . . ,Ak〉 7→ ν(p(A1, . . . ,An)) for p ∈ Σp.

P.2 Then variable assignments into Dι are ground substitutions.

P.3 We show Iϕ(A) = ϕ(A) for A ∈ wff ι(Σι) by induction on A

P.3.1 A = X: then Iϕ(A) = ϕ(X) by definition.

P.3.2 A = f(A1, . . . ,An): then Iϕ(A) = I(f)(Iϕ(A1), . . . , Iϕ(An)) =

I(f)(ϕ(A1), . . . , ϕ(An)) = f(ϕ(A1), . . . , ϕ(An)) = ϕ(f(A1, . . . ,An)) =
ϕ(A)

P.4 We show Iϕ(A) = ν(ϕ(A)) for A ∈ wff o(Σ) by induction on A

P.4.1 A = p(A1, . . . ,An): then Iϕ(A) = I(p)(Iϕ(A1), . . . , Iϕ(An)) =

I(p)(ϕ(A1), . . . , ϕ(An)) = ν(p(ϕ(A1), . . . , ϕ(An))) = ν(ϕ(p(A1, . . . ,An))) =
ν(ϕ(A))

P.4.2 A = ¬B: then Iϕ(A) = T, iff Iϕ(B) = ν(ϕ(B)) = F, iff ν(ϕ(A)) =

T.

P.4.3 A = B∧C: similar

4EdNote: introduce this above
5EdNote: I think that we only get a semivaluation, look it up in Andrews.
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P.4.4 A = ∀X B: then Iϕ(A) = T, iff Iψ(B) = ν(ψ(B)) = T, for all
C ∈ Dι, where ψ = ϕ, [C/X]. This is the case, iff ν(ϕ(A)) = T.

P.5 Thus Iϕ(A) = ν(ϕ(A)) = ν(A) = T for all A ∈ Φ.

P.6 HenceM |= A forM := 〈Dι, I〉.
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Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Theorem 8.2.18 (Hintikka-Lemma) If ∇ is an abstract consistency class
and H a ∇-Hintikka set, then H is satisfiable.

� Proof:

P.1 we define ν(A) := T, iff A ∈ H,
P.2 then ν is a valuation by the Hintikka set properties.

P.3 We have ν(H) = {T}, so H is satisfiable.

� Theorem 8.2.19 (Model Existence) If ∇ is an abstract consistency class
and Φ ∈ ∇, then Φ is satisfiable.

Proof:

� P.1 There is a ∇-Hintikka set H with Φ⊆H (Extension Theorem)

We know that H is satisfiable. (Hintikka-Lemma)

In particular, Φ⊆H is satisfiable.
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8.3 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that ND-consistency is an
abstract consistency property.

P.2 P.3 Consistency, Refutability and Abstract Consistency

� Theorem 8.3.1 (Non-Refutability is an Abstract Consistency Property)
Γ := {Φ⊆ cwff o(Σι) |Φ not ND1−refutable} is an abstract consistency class.

� Proof: We check the properties of an ACC

P.1 If Φ is non-refutable, then any subset is as well, so Γ is closed under
subsets.

P.2 We show the abstract consistency conditions ∇∗ for Φ ∈ Γ.

P.2.1 ∇c: We have to show that A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).
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P.2.1.2 Equivalently, we show the contrapositive: If {A,¬A}⊆Φ, then Φ 6∈
Γ.

P.2.1.3 So let {A,¬A}⊆Φ, then Φ is ND1-refutable by construction.

P.2.1.4 So Φ 6∈ Γ.

P.2.2 ∇¬: We show the contrapositive again

P.2.2.2 Let ¬¬A ∈ Φ and Φ ∗A 6∈ Γ

P.2.2.3 Then we have a refutation D : Φ ∗A `ND1 F

P.2.2.4 By prepending an application of ¬E for ¬¬A to D, we obtain a
refutation D′ : Φ `ND1 F .

P.2.2.5 Thus Φ 6∈ Γ.

P.2.3 other ∇∗ similar:
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This directly yields two important results that we will use for the completeness analysis.

Henkin’s Theorem

� Corollary 8.3.2 (Henkin’s Theorem) Every ND1-consistent set of sen-
tences has a model.

� Proof:

P.1 Let Φ be a ND1-consistent set of sentences.

P.2 The class of sets of ND1-consistent propositions constitute an abstract
consistency class

P.3 Thus the model existence theorem guarantees a model for Φ.

� Corollary 8.3.3 (Löwenheim&Skolem Theorem) Satisfiable set Φ of
first-order sentences has a countable model.

� Proof Sketch: The model we constructed is countable, since the set of ground
terms is.
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Now, the completeness result for first-order natural deduction is just a simple argument away. We
also get a compactness theorem (almost) for free: logical systems with a complete calculus are
always compact.

Completeness and Compactness

� Theorem 8.3.4 (Completeness Theorem for ND1) If Φ |= A, then
Φ `ND1 A.

� Proof: We prove the result by playing with negations.

P.1 If A is valid in all models of Φ, then Φ ∗¬A has no model

P.2 Thus Φ ∗¬A is inconsistent by (the contrapositive of) Henkins Theorem.
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P.3 So Φ `ND1 ¬¬A by ¬I and thus Φ `ND1 A by ¬E.

� Theorem 8.3.5 (Compactness Theorem for first-order logic) If Φ |=
A, then there is already a finite set Ψ⊆Φ with Ψ |= A.

Proof: This is a direct consequence of the completeness theorem

� P.1 We have Φ |= A, iff Φ `ND1 A.

As a proof is a finite object, only a finite subset Ψ⊆Φ can appear as
leaves in the proof.

©:Michael Kohlhase 54

8.4 Limits of First-Order Logic

We will now come to the limits of first-order Logic.6 EdN:6

P.2 Gödel’s Incompleteness Theorem

� Theorem 8.4.1 No logical system that can represent Peano-Arithmetic (N, s, 0,+, ∗)
admits complete calculi.

� Proof: (Sketch)

P.1 Let L := 〈S, C〉 be such a system. We show that there is a valid S-sentence
AC , that is no C-theorem.

P.2 Encode the syntax of S and the C in Peano-arithmetic

P.3 We can now talk about S and C in S itself.

P.4 E.g. there is a S-sentence B with the meaning: A is a C-theorem.

P.5 Choose AC as “AC is no C-theorem” (cf. Russell’s set)

P.6 Obviously: AC ist valid in all standard models.

P.7 So C is either not correct or cannot derive AC .
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6EdNote: MK: also present the theorem (whose name I forgot) that show that FOL is the “strongest logic” for
first-order models. Maybe also the interpolation theorem.
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Chapter 9

First-Order Inference with Tableaux

9.1 First-Order Tableaux

Test Calculi: Tableaux and Model Generation

� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 9.1.1 Tableau Calculi try to construct models.

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒Q∧P |=P ∧ (Q∨¬R)∧¬Q

P ∧Q⇒Q∧P f

P ∧Qt

Q∧P f

P t

Qt

P f

⊥
Qf

⊥

P ∧ (Q∨¬R)∧¬Qt

P ∧ (Q∨¬R)t

¬Qt

Qf

P t

Q∨¬Rt

Qt

⊥
¬Rt

Rf

No Model Herbrand Model {P t, Qf , Rf}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� � Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.
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Analytical Tableaux (Formal Treatment of T0)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� one per connective

A∧Bt

At

Bt

T0∧
A∧Bf

Af

∣∣∣ Bf
T0∨

¬At

Af
T0

T¬ ¬Af

At
T0

F¬

Aα

Aβ α 6= β

⊥ T0cut

� Use rules exhaustively as long as they contribute new material

� Definition 9.1.2 Call a tableau saturated, iff no rule applies, and a branch
closed, iff it ends in ⊥, else open. (open branches in saturated tableaux yield
models)

� Definition 9.1.3 (T0-Theorem/Derivability) A is a T0-theorem (`T0
A), iff there is a closed tableau with AF at the root.

Φ⊆wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting
with AF and ΦT.
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These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 9.1.4 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 9.1.5 We will call a tableau refutation for Af a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?sec.hilbert? it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A∨B as ¬ (¬A∧¬B), and A⇒B as ¬A∨B,. . . .)
We will now extend the propositional tableau techiques to first-order logic. We only have to add
two new rules for the universal quantifiers (in positive and negative polarity).
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First-Order Standard Tableaux (T1)

� Refutation calculus based on trees of labeled formulae

� Tableau-Rules: T0 (propositional tableau rules) plus

∀X At C ∈ cwff ι(Σι)

[C/X](A)
t T1:∀

∀X Af c ∈ (Σsk0 \H)

[c/X](A)
f

T1:∃

©:Michael Kohlhase 58

The rule T1:∀ rule operationalizes the intuition that a universally quantified formula is true, iff
all of the instances of the scope are. To understand the T1:∃ rule, we have to keep in mind that
∃X A abbreviates ¬ (∀X ¬A), so that we have to read ∀X AF existentially — i.e. as ∃X ¬AT,
stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
[c/X](¬A)T = [c/X](A)F holds, and this is just the conclusion of the T1:∃ rule.
Note that the T1:∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C ∈ wff ι(Σι) for X. This makes the rule
infinitely branching.

9.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the T1:∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f1 )

� Refutation calculus based on trees of labeled formulae

� T0 (propositional tableau rules) plus
� Quantifier rules:

∀X At Y new

[Y/X](A)t
T f1 :∀ ∀X Af free(∀X A) = {X1, . . . , Xk} f ∈ Σskk

[f(X1, . . . , Xk)/X](A)f
T f1 :∃

� Generalized cut rule T f1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σ(A) = σ(B)

⊥
T f1 :⊥

Advantage: no guessing necessary in T f1 :∀-rule

�� New: find suitable substitution (most general unifier)
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Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in
the T1:∀ rule, T f1 :∀ instantiates it with a new meta-variable Y , which will be instantiated by need
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in the course of the derivation.
Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the
treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 :∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 :∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.
Instantiating Metavariables: Finally, the T f1 :⊥ rule completes the treatment of meta-variables, it
allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

Multiplicity in Tableaux

� Observation 9.2.1 All T f1 rules except T f1 :∀ only need to be applied once.

� Example 9.2.2 A tableau proof for (p(a)∨ p(b))⇒ (∃x p(x)).

Start, close branch use T f1 :∀ again

(p(a)∨ p(b))⇒ (∃x p(x))
f

p(a)∨ p(b)t
∃x p(x)

f

∀x ¬ p(x)
t

¬ p(y)
t

p(y)
f

p(a)
t

⊥ : [a/x]
p(b)

t

(p(a)∨ p(b))⇒ (∃x p(x))
f

p(a)∨ p(b)t
∃x p(x)

f

∀x ¬ p(x)
t

¬ p(a)
t

p(a)
f

p(a)
t

⊥
p(b)

t

¬ p(z)t

p(z)
f

⊥ : [b/z]

� Definition 9.2.3 Let T be a tableau for A, and a positive occurrence of
∀x B in A, then we call the number of applications of T f1 :∀ to ∀x B its
multiplicity.

� Observation 9.2.4 Given a prescribed multiplicity for each positive ∀, satu-
ration with T f1 terminates.

� Proof Sketch: All T f1 rules reduce the number of connectives and negative ∀
or the multiplicity of positive ∀.

� Theorem 9.2.5 T f1 is only complete with unbounded multiplicities.

� Proof Sketch: Otherwise validity in PL1 would be decidable.
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Treating T f1 :⊥

� The T f1 :⊥ rule instantiates the whole tableau.

� There may be more than one T f1 :⊥ opportunity on a branch
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� Example 9.2.6 Choosing which matters – this tableau does not close!

∃x (p(a)∧ p(b)⇒ p(x))∧ (q(b)⇒ q(x))
f

(p(a)∧ p(b)⇒ p(y))∧ (q(b)⇒ q(y))f

p(a)⇒ p(b)⇒ p(y)
f

p(a)
t

p(b)
t

p(y)
f

⊥ : [a/y]

q(b)⇒ q(y)
f

q(b)
t

q(y)
f

choosing the other T f1 :⊥ in the left branch allows closure.

� Two ways of systematic proof search in T f1 :

� backtracking search over T f1 :⊥ opportunities

� saturate without T f1 :⊥ and find spanning matings (later)
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Spanning Matings for T f1 :⊥

� Observation 9.2.7 T f1 without T f1 :⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 :⊥ and treat all cuts at the same time.

� Definition 9.2.8 Let T be a T f1 tableau, then we call a unification problem
E := (A1 =? A1 ∧ . . .∧An =? Bn) a mating for T , iff At

i and Bf
i occur in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains At

i and Bf
i for some i.

� Theorem 9.2.9 A T f1 -tableau with a spanning mating induces a closed T1-
tableau.

� Proof Sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier

� Implementation: Saturate without T f1 :⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.
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9.3 First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theoret-
ical computer science.
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A transformation-based view of algorithms: The “transformation-based” view of algorithms divides
two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan7 EdN:7

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.
In fact we will only concern ourselves with the “logical” analysis of unification here.
The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

� Problem: For given terms A and B find a substitution σ, such that σ(A) =
σ(B).

� Notation 9.3.1 We write term pairs as A=? B e.g. f(X) =? f(g(Y ))

� Solutions (e.g. [g(a)/X], [a/Y ], [g(g(a))/X], [g(a)/Y ], or [g(Z)/X], [Z/Y ])
are called unifiers, U(A=? B) := {σ |σ(A) = σ(B)}

� Idea: find representatives in U(A=? B), that generate the set of solutions

� Definition 9.3.2 Let σ and θ be substitutions and W ⊆Vι, we say that a
substitution σ is more general than θ (on W write σ ≤ θ[W ]), iff there is a
substitution ρ, such that θ = ρ ◦σ[W ], where σ = ρ[W ], iff σ(X) = ρ(X) for
all X ∈W .

� Definition 9.3.3 σ is called a most general unifier of A and B, iff it is
minimal in U(A=? B) wrt. ≤ [free(A)∪ free(B)].
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The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.
Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not
have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).

7EdNote: find the reference, and see what he really said
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Now that we have defined the problem, we can turn to the unification algorithm itself. We will
define it in a way that is very similar to logic programming: we first define a calculus that generates
“solved forms” (formulae from which we can read off the solution) and reason about control later.
In this case we will reason that control does not matter.

Unification (Equational Systems)

� Idea: Unification is equation solving.

� Definition 9.3.4 We call a formula A1 =? B1 ∧ . . .∧An =? Bn an equa-
tional system iff Ai,Bi ∈ wff ι(Σι,Vι).

� We consider equational systems as sets of equations (∧ is ACI), and equations
as two-element multisets (=? is C).
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In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

Solved forms and Most General Unifiers

� Definition 9.3.5 We call a pair A=? B solved in a unification problem E , iff
A = X, E = X =? A∧E , and X 6∈ (free(A)∪ free(E)). We call an unification
problem E a solved form, iff all its pairs are solved.

� Lemma 9.3.6 Solved forms are of the formX1 =? B1 ∧ . . .∧Xn =? Bn where
the Xi are distinct and Xi 6∈ free(Bj).

� Definition 9.3.7 Any substitution σ = [B1/X1], . . ., [Bn/Xn] induces a
solved unification problem Eσ := (X1 =? B1 ∧ . . .∧Xn =? Bn).

� Lemma 9.3.8 If E = X1 =? B1 ∧ . . .∧Xn =? Bn is a solved form, then E
has the unique most general unifier σE := [B1/X1], . . ., [Bn/Xn].

� Proof: Let θ ∈ U(E)

P.1 then θ(Xi) = θ(Bi) = θ ◦σE(Xi)

P.2 and thus θ = θ ◦σE [supp(σ)].

Note: we can rename the introduced variables in most general unifiers!
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It is essential to our “logical” analysis of the unification algorithm that we arrive at equational prob-
lems whose unifiers we can read off easily. Solved forms serve that need perfectly as Lemma 9.3.8
shows.
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Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

� Unification Algorithm

� Definition 9.3.9 Inference system U

E ∧ f(A1, . . . ,An) =? f(B1, . . . ,Bn)

E ∧A1 =? B1 ∧ . . .∧An =? Bn
U dec

E ∧A=? A

E
U triv

E ∧X =? A X 6∈ free(A) X ∈ free(E)

[A/X](E)∧X =? A
U elim

� Lemma 9.3.10 U is correct: E `U F implies U(F)⊆U(E)

� Lemma 9.3.11 U is complete: E `U F implies U(E)⊆U(F)

� Lemma 9.3.12 U is confluent: the order of derivations does not matter

� Corollary 9.3.13 First-Order Unification is unitary: i.e. most general uni-
fiers are unique up to renaming of introduced variables.

� Proof Sketch: the inference system U is trivially branching
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The decomposition rule U dec is completely straightforward, but note that it transforms one unifi-
cation pair into multiple argument pairs; this is the reason, why we have to directly use unification
problems with multiple pairs in U .

Note furthermore, that we could have restricted the U triv rule to variable-variable pairs, since
for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the U dec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in U elim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the
second one is a termination condition that prevents the rule to be applied twice.
The notion of completeness and correctness is a bit different than that for calculi that we compare
to the entailment relation. We can think of the “logical system of unifiability” with the model
class of sets of substitutions, where a set satisfies an equational problem E , iff all of its members
are unifiers. This view induces the soundness and completeness notions presented above.
The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we leave
the proofs as an exercise to the reader.
We now fortify our intuition about the unification calculus by two examples. Note that we only
need to pursue one possible U derivation since we have confluence.

Unification Examples

Example 9.3.14 Two similar unification problems:
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f(g(x, x), h(a)) =? f(g(a, z), h(z))
U dec

g(x, x) =? g(a, z)∧h(a) =? h(z)
U dec

x=? a∧x=? z ∧h(a) =? h(z)
U dec

x=? a∧x=? z ∧ a=? z
U elim

x=? a∧ a=? z ∧ a=? z
U elim

x=? a∧ z =? a∧ a=? a
U triv

x=? a∧ z =? a

f(g(x, x), h(a)) =? f(g(b, z), h(z))
U dec

g(x, x) =? g(b, z)∧h(a) =? h(z)
U dec

x=? b∧x=? z ∧h(a) =? h(z)
U dec

x=? b∧x=? z ∧ a=? z
U elim

x=? b∧ b=? z ∧ a=? z
U elim

x=? a∧ z =? a∧ a=? b

MGU: [a/x], [a/z] a=? b not unifiable
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We will now convince ourselves that there cannot be any infinite sequences of transformations in
U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set 〈S,≺〉 where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there
were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of 〈S,≺〉.

The crucial step in in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that 〈N, <〉 is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite-dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

Unification (Termination)

� Definition 9.3.15 Let S and T be multisets and ≺ a partial ordering on
S ∪T . Then we define (S ≺m T ), iff S = C ] T ′ and T = C ] {t}, where
s ≺ t for all s ∈ S′. We call ≺m the multiset ordering induced by ≺.

� Lemma 9.3.16 If ≺ is total/terminating on S, then ≺m is total/terminating
on P(S).

� Lemma 9.3.17 U is terminating (any U-derivation is finite)

� Proof: We prove termination by mapping U transformation into a Noetherian
space.

P.1 Let µ(E) := 〈n,N〉, where
� m is the number of unsolved variables in E
� N is the multiset of term depths in E

P.2 The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.

P.2.1 U dec and U triv decrease the multiset of term depths without increasing
the unsolved variables
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P.2.2 U elim decreases the number of unsolved variables (by one), but may
increase term depths.
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But it is very simple to create terminating calculi, e.g. by having no inference rules. So there is
one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

Unification (decidable)

� Definition 9.3.18 We call an equational problem E U-reducible, iff there is
a U-step E `U F from E .

� Lemma 9.3.19 If E is unifiable but not solved, then it is U-reducible

� Proof: We assume that E is unifiable but unsolved and show the U rule that
applies.

P.1 There is an unsolved pair A=? B in E = E ′ ∧A=? B.

P.2 we have two cases

P.2.1 A,B 6∈ Vι: then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus
U dec is applicable

P.2.2 A = X ∈ free(E): then U elim (if B 6= X) or U triv (if B = X) is
applicable.

� Corollary 9.3.20 Unification is decidable in PL1.

� Proof Idea: U-irreducible sets of equations can be obtained in finite time by
Lemma 9.3.17 and are either solved or unsolvable by Lemma 9.3.19, so they
provide the answer.
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9.4 Efficient Unification

Complexity of Unification

� Observation: Naive unification is exponential in time and space.

� consider the terms

sn = f(f(x0, x0), f(f(x1, x1), f(. . . , f(xn−1, xn−1)) . . .))

tn = f(x1, f(x2, f(x3, f(. . . , xn) . . .)))

� The most general unifier of sn and tn is

[f(x0, x0)/x1], [f(f(x0, x0), f(x0, x0))/x2], [f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0)))/x3], . . .

� it contains
∑n
i=1 2i = 2n+1 − 2 occurrences of the variable x0. (exponential)
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� Problem: the variable x0 has been copied too often

� Idea: Find a term representation that re-uses subterms

©:Michael Kohlhase 70

Directed Acyclic Graphs (DAGs)

� use directed acyclic graphs for the term representation

� variables my only occur once in the DAG

� subterms can be referenced multiply

� Observation 9.4.1 Terms can be transformed into DAGs in linear time

� Example 9.4.2 s3, t3, σ3(s3)

x1 x2 x3

x0 f f

ff

f f

f

s3 t3

x0

f

f

f

f

f

σ3(t3)
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DAG Unification Algorithm

� Definition 9.4.3 We say that X1 =? B1 ∧ . . .∧Xn =? Bn is a DAG solved
form, iff the Xi are distinct and Xi 6∈ free(Bj) for i≤j

� Definition 9.4.4 The inference system DU contains rules U dec and U triv
from U plus the following:

E ∧X =? A∧X =? B A,B 6∈ Vι |A|≤|B|
E ∧X =? A∧A=? B

DU merge

E ∧X =? Y X 6= Y X, Y ∈ free(E)

[Y/X](E)∧X =? Y
DU evar

where |A| is the number of symbols in A.
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Unification by DAG-chase
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� Idea: Extend the Input-DAGs by edges that represent unifiers.

� write n.a, if a is the symbol of node n.

� auxiliary procedures: (all linear or constant time)

� find(n) follows the path from n and returns the end node

� union(n,m) adds an edge between n and m.

� occur(n,m) determines whether n.x occurs in the DAG with root m.
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Algorithm unify

� Input: symmetric pairs of nodes in DAGs
fun unify(n,n) = true

| unify(n.x,m) = if occur(n,m) then true else union(n,m)
| unify(n.f,m.g) = if g!=f then false

else forall (i,j) => unify(find(i),find(j)) (chld m,chld n)
end

� linear in space, since no new nodes are created, and at most one link per
variable.

� consider terms f(sn, f(t′n, xn)), f(tn, f(s′n, yn))), where s′n = [yi/xi](sn) und
t′n = [yi/xi](tn).

� unify needs exponentially many recursive calls to unify the nodes xn and yn.
(they are unified after n calls, but checking needs the time)

� Idea: Also bind the function nodes, if the arguments are unified.
unify(n.f,m.g) = if g!=f then false

else union(n,m);
forall (i,j) => unify(find(i),find(j)) (chld m,chld n)

end

� this only needs linearly many recursive calls as it directly returns with true or
makes a node inaccessible for find.

� linearly many calls to linear procedures give quadratic runtime.
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Spanning Matings for T f1 :⊥

� Observation 9.4.5 T f1 without T f1 :⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 :⊥ and treat all cuts at the same time.

� Definition 9.4.6 Let T be a T f1 tableau, then we call a unification problem
E := (A1 =? A1 ∧ . . .∧An =? Bn) a mating for T , iff At

i and Bf
i occur in T .
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We say that E is a spanning mating, if E is unifiable and every branch B of T
contains At

i and Bf
i for some i.

� Theorem 9.4.7 A T f1 -tableau with a spanning mating induces a closed T1-
tableau.

� Proof Sketch: Just apply the unifier of the spanning mating.

� Idea: Existence is sufficient, we do not need to compute the unifier

� Implementation: Saturate without T f1 :⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.
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Now that we understand basic unification theory, we can come to the meta-theoretical properties
of the tableau calculus, which we now discuss to make the understanding of first-order inference
complete.

9.5 Soundness and Completeness of First-Order Tableaux

For the soundness result, we recap the definition of soundness for test calculi from the propositional
case.

Soundness (Tableau)

� Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae
are unsatisfiable.

� Definition 9.5.1 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

� Definition 9.5.2 A tableau T is satisfiable, iff there is a satisfiable branch
P in T , i.e. if the set of formulae in P is satisfiable.

� Lemma 9.5.3 Tableau rules transform satisfiable tableaux into satisfiable
ones.

� Theorem 9.5.4 (Soundness) A set Φ of propositional formulae is valid, if
there is a closed tableau T for Φf .

� Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (Φf satisfiable)

P.2 so T is satisfiable, by Lemma 9.5.3.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)
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Thus we only have to prove Lemma 9.5.3, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains A∧Bt and is satisfiable, then it must have a satisfiable
branch. If A∧Bt is not on this branch, the tableau extension will not change satisfiability, so we
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can assue that it is on the satisfiable branch and thus Iϕ(A∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae At and Bt

to the branch), the branch is still satisfiable. The cases for the other rules are similar.
The soundness of the first-order free-variable tableaux calculus can be established a simple induc-
tion over the size of the tableau.

Soundness of T f1
� Lemma 9.5.5 Tableau rules transform satisfiable tableaux into satisfiable
ones.

� Proof:

P.1 we examine the tableau rules in turn

P.1.1 propositional rules: as in propositional tableaux

P.1.2 T f1 :∃: by Lemma 9.5.7

P.1.3 T f1 :⊥: by Lemma 7.2.12 (substitution value lemma)

P.1.4 T f1 :∀:
P.1.4.1 Iϕ(∀X A) = T, iff Iψ(A) = T for all a ∈ Dι
P.1.4.2 so in particular for some a ∈ Dι 6= ∅.

� Corollary 9.5.6 T f1 is correct.
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The only interesting steps are the cut rule, which can be directly handled by the substitution value
lemma, and the rule for the existential quantifier, which we do in a separate lemma.

Soundness of T f1 :∃

� Lemma 9.5.7 T f1 :∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 :∃ to ∀X Af in T , extending it with
[f(X1, . . . , Xn)/X](A)

f , where W := free(∀X A) = {X1, . . . , Xk}

P.1 Let T be satisfiable inM := 〈D, I〉, then Iϕ(∀X A) = F.

P.2 We need to find a modelM′ that satisfies T ′ (find interpretation for f)

P.3 By definition Iϕ,[a/X](A) = F for some a ∈ D (depends on ϕ|W )

P.4 Let g : Dk → D be defined by g(a1, . . . , ak) := a, if ϕ(Xi) = ai

P.5 chooseM′ = 〈D, I ′〉 with I ′ := I, [g/f ], then by subst. value lemma

I ′ϕ([f(X1, . . . , Xk)/X](A)) = I ′ϕ,[I′ϕ(f(X1,...,Xk))/X](A)

= I ′ϕ,[a/X](A) = F

P.6 So [f(X1, . . . , Xk)/X](A)
f satisfiable inM′
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This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the axiom
of choice at the meta-level to choose a meaning for the Skolem function symbol.
Armed with the Model Existence Theorem for first-order logic (Theorem 8.2.19), the complete-
ness of first-order tableaux is similarly straightforward. We just have to show that the collec-
tion of tableau-irrefutable sentences is an abstract consistency class, which is a simple proof-
transformation exercise in all but the universal quantifier case, which we postpone to its own
Lemma.

Completeness of (T f1 )

� Theorem 9.5.8 T f1 is refutation complete.

� Proof: We show that ∇ := {Φ |ΦT has no closed Tableau} is an abstract
consistency class

P.1 (∇c, ∇¬, ∇∨, and ∇∧)as for propositional case.
P.2 (∇∀)by the lifting lemma below

P.3 (∇∃)Let T be a closed tableau for ¬ (∀X A) ∈ Φ and ΦT ∗ [c/X](A)F ∈
∇.

ΨT

∀X Af

[c/X](A)
f

Rest

ΨT

∀X Af

[f(X1, . . . , Xk)/X](A)
f

[f(X1, . . . , Xk)/c](Rest)
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So we only have to treat the case for the universal quantifier. This is what we usually call a “lifting
argument”, since we have to transform (“lift”) a proof for a formula θ(A) to one for A. In the
case of tableaux we do that by an induction on the tableau refutation for θ(A) which creates a
tableau-isomorphism to a tableau refutation for A.

Tableau-Lifting

� Theorem 9.5.9 If Tθ is a closed tableau for a st θ(Φ) of formulae, then there
is a closed tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau
T , and a tableau-isomorphism ω : T → Tθ, such that ω(A) = θ(A).

P.1 only the tableau-substitution rule is interesting.

P.2 Let θ(Ai)
t and θ(Bi)

f cut formulae in the branch Θi
θ of Tθ

P.3 there is a joint unifier σ of θ(A1) =? θ(B1)∧ . . .∧ θ(An) =? θ(Bn)

P.4 thus σ ◦ θ is a unifier of A and B

P.5 hence there is a most general unifier ρ of A1 =? B1 ∧ . . .∧An =? Bn

P.6 so Θ is closed
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Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.
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Part III

Higher-Order Logic and λ-Calculus
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In this Part we set the stage for a deeper discussions of the logical foundations of mathematics by
introducing a particular higher-order logic, which gets around the limitations of first-order logic
— the restriction of quantification to individuals. This raises a couple of questions (paradoxes,
comprehension, completeness) that have been very influential in the development of the logical
systems we know today.

Therefore we use the discussion of higher-order logic as an introduction and motivation for the
λ-calculus, which answers most of these questions in a term-level, computation-friendly system.

The formal development of the simply typed λ-calculus and the establishment of its (meta-
logical) properties will be the body of work in this Part. Once we have that we can reconstruct a
clean version of higher-order logic by adding special provisions for propositions.
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Chapter 10

Higher-Order Predicate Logic

The main motivation for higher-order logic is to allow quantification over classes of objects that
are not individuals — because we want to use them as functions or predicates, i.e. apply them to
arguments in other parts of the formula.

Higher-Order Predicate Logic (PLΩ)

� Quantification over functions and Predicates: ∀P ∃F P (a)∨¬P (F (a))

� Comprehension: (Existence of Functions)
∃F ∀X FX = A e.g. f(x) = 3x2 + 5x− 7

� Extensionality: (Equality of functions and truth values)
∀F ∀G (∀X FX = GX)⇒F = G
∀P ∀Q (P ⇔Q)⇔P = Q

� Leibniz Equality: (Indiscernability)
A = B for ∀P PA⇒PB
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Indeed, if we just remove the restriction on quantification we can write down many things that are
essential on everyday mathematics, but cannot be written down in first-order logic. But the naive
logic we have created (BTW, this is essentially the logic of Frege [Fre79]) is much too expressive,
it allows us to write down completely meaningless things as witnessed by Russell’s paradox.

Problems with PLΩ

� Problem: Russell’s Antinomy: ∀Q M(Q)⇔¬Q(Q)

� the setM of all sets that do not contain themselves

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What has happened? the predicate Q has been applied to itself

� Solution for this course: Forbid self-applications by types!!

� ι, o (type of individuals, truth values), α→ β (function type)

� right associative bracketing: α→ β → γ abbreviates α→ (β → γ)
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� vector notation: αn → β abbreviates α1 → . . .→ αn → β

� Well-typed formulae (prohibits paradoxes like ∀Q M(Q)⇔¬Q(Q))

� Other solution: Give it a non-standard semantics (Domain-Theory [Scott])
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The solution to this problem turns out to be relatively simple with the benefit of hindsight: we
just introduce a syntactic device that prevents us from writing down paradoxical formulae. This
idea was first introduced by Russell and Whitehead in their Principia Mathematica [WR10].
Their system of “ramified types” was later radically simplified by Alonzo Church to the form we
use here in [Chu40]. One of the simplifications is the restriction to unary functions that is made
possible by the fact that we can re-interpret binary functions as unary ones using a technique
called “Currying” after the Logician Haskell Brooks Curry (∗1900, †1982). Of course we can
extend this to higher arities as well. So in theory we can consider n-ary functions as syntactic
sugar for suitable higher-order functions. The vector notation for types defined above supports
this intuition.

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 10.0.1 Given a set B T of base types, construct function types:
α→ β is the type of functions with domain type α and range type β. We call
the closure T of B T under function types the set of types over B T .

� Definition 10.0.2 We will use ι for the type of individuals and o for the type
of truth values.

� The type constructor is used as a right-associative operator, i.e. we use
α→ β → γ as an abbreviation for α→ (β → γ)

� We will use a kind of vector notation for function types, abbreviating α1 → . . .→ αn →
β with αn → β.
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Armed with a system of types, we can now define a typed higher-order logic, by insisting that all
formulae of this logic be well-typed. One advantage of typed logics is that the natural classes of
objects that have otherwise to be syntactically kept apart in the definition of the logic (e.g. the
term and proposition levels in first-order logic), can now be distinguished by their type, leading to
a much simpler exposition of the logic. Another advantage is that concepts like connectives that
were at the language level e.g. in PL0, can be formalized as constants in the signature, which again
makes the exposition of the logic more flexible and regular. We only have to treat the quantifiers
at the language level (for the moment).

Well-Typed Formulae (PLΩ)

� signature Σ =
⋃
α∈T Σα with

� connectives: ¬ ∈ Σo→o {∨,∧,⇒,⇔ . . .}⊆Σo→o→o

� variables VT =
⋃
α∈T Vα, such that every Vα countably infinite.
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� well-typed formula e wff α(Σ,VT ) of type α

� Vα ∪Σα⊆wff α(Σ,VT )

� If C ∈ wff α→β(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

� If A ∈ wff o(Σ,VT ), then (∀Xα A) ∈ wff o(Σ,VT )

� first-order terms have type ι, propositions the type o.

� there is no type annotation such that ∀Q M(Q)⇔¬Q(Q) is well-typed.
Q needs type α as well as α→ o.
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The semantics is similarly regular: We have universes for every type, and all functions are “typed
functions”, i.e. they respect the types of objects. Other than that, the setup is very similar to
what we already know.

Standard Semantics for PLΩ

� Definition 10.0.3 The universe of discourse (also carrier)

� arbitrary, non-empty set of individuals Dι
� fixed set of truth values Do = {T,F}
� function universes Dα→β = F(Dα;Dβ)

� interpretation of constants: typed mapping I : Σ→ D (i.e. I(Σα)⊆Dα)

� Definition 10.0.4 We call a structure 〈D, I〉, where D is a universe and I
an interpretation of constants a standard model of PLΩ.

� variable assignment: typed mapping ϕ : VT → D

� Definition 10.0.5 value function: typed mapping Iϕ : wff T (Σ,VT )→ D

� Iϕ|VT = ϕ Iϕ|ΣT
= I

� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(∀Xα A) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα.

� Ao valid under ϕ, iff Iϕ(A) = T.
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We now go through a couple of examples of what we can express in PLΩ, and that works out very
straightforwardly. For instance, we can express equality in PLΩ by Leibniz equality, and it has
the right meaning.

Equality

� “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o PA⇔PB

� not that ∀Pα→o PA⇒PB (get the other direction by instantiating P with
Q, where QX⇔¬PX)

� Theorem 10.0.6 If M = 〈D, I〉 is a standard model, then Iϕ(Qα) is the

62

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


identity relation on Dα.

� Notation 10.0.7 We write A = B for QAB (A and B are equal, iff there
is no property P that can tell them apart.)

� Proof:

P.1 Iϕ(QAB) = Iϕ(∀P PA⇒PB) = T, iff
Iϕ,[r/P ](PA⇒PB) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P ](PA) = r(Iϕ(A)) = F or Iϕ,[r/P ](PB) =
r(Iϕ(B)) = T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P ](PA⇒PB) = F, since Iϕ,[r/P ](PA) =
r(Iϕ(A)) = T and Iϕ,[r/P ](PB) = r(Iϕ(B)) = F.
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Another example are the Peano Axioms for the natural numbers, though we omit the proofs of
adequacy of the axiomatization here.

Example: Peano Axioms for the Natural Numbers

� Σ = {[N : ι→ o], [0 : ι], [s : ι→ ι]}

� N0 (0 is a natural number)

� ∀Xι NX⇒N(sX) (the successor of a natural number is natural)

� ¬ (∃Xι NX ∧ sX = 0) (0 has no predecessor)

� ∀Xι ∀Yι (sX = sY )⇒X = Y (the successor function is injective)

� ∀Pι→o P0⇒ (∀Xι NX⇒PX⇒P (sX))⇒ (∀Yι NY ⇒P (Y ))
induction axiom: all properties P , that hold of 0, and with every n for its
successor s(n), hold on all N
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Finally, we show the expressivity of PLΩ by formalizing a version of Cantor’s theorem.

Expressive Formalism for Mathematics

� Example 10.0.8 (Cantor’s Theorem) The cardinality of a set is smaller
than that of its power set.

� smaller-card(M,N) := ¬ (∃F surjective(F,M,N))

� surjective(F,M,N) := (∀X ∈M ∃Y ∈ N FY = X)

� Example 10.0.9 (Simplified Formalization) ¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

� Standard-Benchmark for higher-order theorem provers
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� can be proven by Tps and Leo (see below)
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The simplified formulation of Cantor’s theorem in Example 10.0.9 uses the universe of type ι for
the set S and universe of type ι→ ι for the power set rather than quantifying over S explicitly.
The next concern is to find a calculus for PLΩ.
We start out with the simplest one we can imagine, a Hilbert-style calculus that has been adapted
to higher-order logic by letting the inference rules range over PLΩ formulae and insisting that
substitutions are well-typed.

Hilbert-Calculus

� Definition 10.0.10 (HΩ Axioms) � ∀Po, Qo P ⇒Q⇒P

� ∀Po, Qo, Ro (P ⇒Q⇒R)⇒ (P ⇒Q)⇒P ⇒R

� ∀Po, Qo (¬P ⇒¬Q)⇒P ⇒Q

� Definition 10.0.11 (HΩ Inference rules)

Ao⇒Bo A

B

∀Xα A

[B/Xα](A)

A

∀Xα A

X 6∈ free(A) ∀Xα A∧B
A∧ (∀Xα B)

� Theorem 10.0.12 Sound, wrt. standard semantics

� Also Complete?
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Not surprisingly, HΩ is sound, but it shows big problems with completeness. For instance, if we
turn to a proof of Cantor’s theorem via the well-known diagonal sequence argument, we will have
to construct the diagonal sequence as a function of type ι → ι, but up to now, we cannot in
HΩ. Unlike mathematical practice, which silently assumes that all functions we can write down
in closed form exists, in logic, we have to have an axiom that guarantees (the existence of) such
a function: the comprehension axioms.

Hilbert-Calculus HΩ (continued)

� valid sentences that are not HΩ-theorems:

� Cantor’s Theorem:
¬ (∃Fι→ι→ι ∀Gι→ι (∀Kι (NK)⇒N(GK))⇒ (∃Jι (NJ)∧FJ = G))
(There is no surjective mapping from N into the set F(N; ,)N of natural
number sequences)

� proof attempt fails at the subgoal ∃Gι→ι ∀Xι GX = s(fXX)

� Comprehension ∃Fα→β ∀Xα FX = Aβ (for every variable Xα and every
term A ∈ wff β(Σ,VT ))

� extensionality
Extαβ ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G
Exto ∀Fo ∀Go (F ⇔G)⇔F = G

� correct! complete? cannot be!! [Göd31]
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Actually it turns out that we need more axioms to prove elementary facts about mathematics:
the extensionality axioms. But even with those, the calculus cannot be complete, even though
empirically it proves all mathematical facts we are interested in.

Way Out: Henkin-Semantics

� Gödel’s incompleteness theorem only holds for standard semantics

� find generalization that admits complete calculi:

� Idea: generalize so that the carrier only contains those functions that are
requested by the comprehension axioms.

� Theorem 10.0.13 (Henkin 1950) HΩ is complete wrt. this semantics.

� Proof Sketch: more models ; less valid sentences (these are HΩ-theorems)

� Henkin-models induce sensible measure of completeness for higher-order logic.
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Actually, there is another problem with PLΩ: The comprehension axioms are computationally
very problematic. First, we observe that they are equality axioms, and thus are needed to show
that two objects of PLΩ are equal. Second we observe that there are countably infinitely many of
them (they are parametric in the term A, the type α and the variable name), which makes dealing
with them difficult in practice. Finally, axioms with both existential and universal quantifiers are
always difficul to reason with.
Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

� ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A ∈ wff β(Σ,VT )
(for each term A and each variable X there is a function f ∈ Dα→β , with
f(ϕ(X)) = Iϕ(A))

� schematic in α, β, Xα and Aβ , very inconvenient for deduction

� Transformation in HΩ

� ∃Fα→β ∀Xα FX = Aβ

� ∀Xα (λXα A)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXα A)”

� (λXα A)B = [B/X]Aβ (∀E), in particular for B ∈ wff α(Σ,VT ).

� Definition 10.0.14 Axiom of β-equality: (λXα A)B = [B/X](Aβ)

� new formulae (λ-calculus [Church 1940])
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In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

� Definition 10.0.15 Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G

� Idea: Maybe we can get by with a simplified equality schema here as well.

� Definition 10.0.16 We say thatA and λXα AX are η-equal, (writeAα→β =η

(λXα AX), if), iff X 6∈ free(A).

� Theorem 10.0.17 η-equality and Extensionality are equivalent

� Proof: We show that η-equality is special case of extensionality; the converse
entailment is trivial

P.1 Let ∀Xα AX = BX, thus AX = BX with ∀E
P.2 λXα AX = λXα BX, therefore A = B with η

P.3 Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒F = G by twice ∀I.

� Axiom of truth values: ∀Fo ∀Go (F ⇔G)⇔F = G unsolved.
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The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.
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Chapter 11

Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of Skolem

contants).

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition 11.0.1 We call the set wff α(Σ,VT ) defined by the rules

� Vα ∪Σα⊆wff α(Σ,VT )

� If C ∈ wff α→β(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

� If A ∈ wff α(Σ,VT ), then (λXβ A) ∈ wff β→α(Σ,VT )

the set of well-typed formula e of type α over the signature Σ and use wff T (Σ,VT ) :=⋃
α∈T wff α(Σ,VT ) for the set of all well-typed formulae.

� Definition 11.0.2 We will call all occurrences of the variable X in A bound
in λX A. Variables that are not bound in B are called free in B.

� Substitutions are well-typed, i.e. σ(Xα) ∈ wff α(Σ,VT ) and capture-avoiding.

� Definition 11.0.3 (Simply Typed λ-Calculus) The simply typed λ-calculus
Λ→ over a signature Σ has the formulae wff T (Σ,VT ) (they are called λ-terms)
and the following equalities:

� α conversion: (λX A) =α (λY [Y/X](A))

� β conversion: (λX A)B =β [B/X](A)

� η conversion: (λX AX) =η A
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The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
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a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since (λXα AX)B =β AB.
We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→

expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

� Notation 11.0.4 (Application is left-associative) We abbreviate (((FA1)A2). . .)An

with FA1. . .An eliding the brackets and further with FAn in a kind of vector
notation.

� A stands for a left bracket whose partner is as far right as is consistent with
existing brackets; i.e. ABC abbreviates A(BC).

� Notation 11.0.5 (Abstraction is right-associative) We abbreviate λX1 λX2 · · ·λXn A · · ·
with λX1. . .Xn A eliding brackets, and further to λXn A in a kind of vector
notation.

� Notation 11.0.6 (Outer brackets) Finally, we allow ourselves to elide outer
brackets where they can be inferred.
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Intuitively, λX A is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.8 EdN:8
In this presentation of the simply typed λ-calculus we build-in α-equality and use capture-avoiding
substitutions directly. A clean introduction would followed the steps in Chapter 6 by introducing
substitutions with a substitutability condition like the one in Definition 7.2.10, then establishing
the soundness of α conversion, and only then postulating defining capture-avoiding substitution
application as in Definition 7.3.3. The development for Λ→ is directly parallel to the one for
PL1, so we leave it as an exercise to the reader and turn to the computational properties of the
λ-calculus.
Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

αβη-Equality (Overview)

� reduction with
{
β : (λX A)B→β [B/X](A)
η : (λX AX)→ηA

under =α :
λX A

=α

λY [Y/X](A)

� Theorem 11.0.7 βη-reduction is well-typed, terminating and confluent in
the presence of =α-conversion.

� Definition 11.0.8 (Normal Form) We call a λ-term A a normal form (in

8EdNote: rationalize the semantic macros for syntax!
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a reduction system E), iff no rule (from E) can be applied to A.

� Corollary 11.0.9 βη-reduction yields unique normal forms (up to α-equivalence).
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We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

� Definition 11.0.10 (Parts of λ-Terms) We can always write a λ-term in
the form T = λX1. . .Xk HA1 . . .An, where H is not an application. We
call

� H the syntactic head of T

� HA1. . .An the matrix of T, and

� λX1. . .Xk (or the sequence X1, . . . , Xk) the binder of T

� Definition 11.0.11 Head Reduction always has a unique β redex

(λXn (λY A)B1. . .Bn)→h
β (λXn [B1/Y ](A)B2. . .Bn)

� Theorem 11.0.12 The syntactic heads of β-normal forms are constant or
variables.

� Definition 11.0.13 Let A be a λ-term, then the syntactic head of the β-
normal form of A is called the head symbol of A and written as head(A). We
call a λ-term a j-projection, iff its head is the jth bound variable.

� Definition 11.0.14 We call a λ-term a η-long form, iff its matrix has base
type.

� Definition 11.0.15 η-Expansion makes η-long forms

η
[
(λX

1. . .Xn A)
]

:= (λX
1. . .Xn

λY
1. . .Y m AY 1. . .Y m)

� Definition 11.0.16 Long βη-normal form, iff it is β-normal and η-long.
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η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ B T , then A must be of the form λXα

n B, where B has type
β. Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the
two equality theories of Λ→ separately and thus reduce argumentational complexity.
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Chapter 12

Computational Properties of
λ-Calculus

As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
Chapter we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

12.1 Termination of β-reduction

We will use the termination of β reduction to present a very powerful proof method, called the
“logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.
Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

� only holds for the typed case
(λX XX)(λX XX)→β (λX XX)(λX XX)

� Theorem 12.1.1 (Typed β-Reduction terminates) For allA ∈ wff α(Σ,VT ),
the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the
untyped case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]
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The overall shape of the proof is that we reason about two relations: SR and LR between λ-terms
and their types. The first is the one that we are interested in, LR(A, α) essentially states the
property that βη reduction terminates at A. Whenever the proof needs to argue by induction on
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types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR on
base types, but is defined via a functionality property.

Relations SR and LR

� Definition 12.1.2 A is called strongly reducing at type α (write SR(A, α)),
iff each chain β-reductions from A terminates.

� We define a logical relationLR inductively on the structure of the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→ β), iff LR(CA, β) for all A ∈ wff α(Σ,VT ) with LR(A, α).

Proof: Termination Proof

� P.1 LR⊆SR (Lemma 12.1.4 b))

A ∈ wff α(Σ,VT ) implies LR(A, α) (Theorem 12.1.8 with σ = ∅)
thus SR(A, α).

P.2 P.3� Lemma 12.1.3 (SR is closed under subterms) If SR(A, α) and Bβ is a
subterm of A, then SR(B, β).

� Proof Idea: Every infinite β-reduction from B would be one from A.
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The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of SR,
and the second that LR is total on λ-terms. Togther they give the termination result.
The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR⊆SR (Rollercoaster Lemma)

� Lemma 12.1.4 (Rollercoaster Lemma)

a) If h is a constant or variable of type αn → α and SR(Ai, αi), then
LR(hAn, α).

b) LR(A, α) implies SR(A, α).

Proof: we prove both assertions by simultaneous induction on α

� P.1.1 α base type:

P.1.1.1.1 a): hAn is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.2 so LR(hAn, α) as α is a base type (SR = LR)

P.1.1.1.2 b): by definition

α = β → γ:

P.1.2P.1.2.1.1 a): Let LR(B, β).

P.1.2.1.1.2 by IH b) we have SR(B, β), and LR((hAn)B, γ) by IH a)
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P.1.2.1.1.3 so LR(hAn, α) by definition.

P.1.2.1.2 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.2.1.2.2 LR(X,β) by IH a) with n = 0, thus LR(AX, γ) by definition.

P.1.2.1.2.3 By IH b) we have SR(AX, γ) and by Lemma 12.1.3 SR(A, α).
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The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.
The next step in the proof is to show that all well-formed formulae are LR. For that we need to
prove closure of LR under =β expansion

β-Expansion Lemma

� Lemma 12.1.5 If LR([B/X](A), α) and LR(B, β) for Xβ 6∈ free(B), then
LR((λXα A)B, α).

� Proof:

P.1 Let α = γi → δ where δ base type and LR(Ci, γi)

P.2 It is sufficient to show that SR(((λX A)B)C, δ), as δ base type

P.3 We have LR([B/X](A)C, δ) by hypothesis and definition of LR.
P.4 thus SR([B/X](A)C, δ), as δ base type.

P.5 in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)

P.6 SR(B, β) by hypothesis and Lemma 12.1.4

P.7 So an infinite reduction from ((λX A)B)C cannot solely consist of re-
dexes from [B/X](A) and the Ci.

P.8 so an infinite reduction from ((λX A)B)C must have the form

((λX A)B)C →∗β ((λX A′)B′)C′

→1
β [B′/X](A′)C′

→∗β . . .

where A→∗βA′, B→∗β B′ and Ci→∗β Ci′

P.9 so we have [B/X](A)→∗β [B′/X](A′)

P.10 so we have the infinite reduction

[B/X](A)C →∗β [B′/X](A′)C′

→∗β . . .

which contradicts our assumption

72

http://creativecommons.org/licenses/by-sa/2.5/


� Lemma 12.1.6 (LR is closed under β-expansion)
If C→βD and LR(D, α), so is LR(C, α).
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Note that this Lemma is one of the few places in the termination proof, where we actually look
at the properties of =β reduction.
We now prove that every well-formed formula is related to its type by LR. But we cannot prove
this by a direct induction. In this case we have to strengthen the statement of the theorem – and
thus the inductive hypothesis, so that we can make the step cases go through. This is common for
non-trivial induction proofs. Here we show instead that every instance of a well-formed formula is
related to its type by LR; we will later only use this result for the cases of the empty substitution,
but the stronger assertion allows a direct induction proof.

A ∈ wff α(Σ,VT ) implies LR(A, α)

� Definition 12.1.7 We write LR(σ) if LR(σ(Xα), α) for all X ∈ supp(σ).

� Theorem 12.1.8 If A ∈ wff α(Σ,VT ), then LR(σ(A), α) for any substitu-
tion σ with LR(σ).

� Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σ(A), α) by assumption

P.1.2 A = X /∈ supp(σ): then σ(A) = A and LR(A, α) by Lemma 12.1.4
with n = 0.

P.1.3 A ∈ Σ: then σ(A) = A as above

P.1.4 A = BC: by IH LR(σ(B), γ → α) and LR(σ(C), γ)

P.1.4.2 so LR(σ(B)σ(C), α) by definition of LR.

P.1.5 A = λXβ Cγ : Let LR(B, β) and θ := σ, [B/X], then θ meets the
conditions of the IH.

P.1.5.2 Moreover σ(λXβ Cγ)B→β σ, [B/X](C) = θ(C).

P.1.5.3 Now, LR(θ(C), γ) by IH and thus LR(σ(A)B, γ) by Lemma 12.1.6.

P.1.5.4 So LR(σ(A), α) by definition of LR.
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In contrast to the proof of the roller coaster Lemma above, we prove the assertion here by an
induction on the structure of the λ-terms involved. For the base cases, we can directly argue with
the first assertion from Lemma 12.1.4, and the application case is immediate from the definition
of LR. Indeed, we defined the auxiliary relation LR exclusively that the application case – which
cannot be proven by a direct structural induction; remember that we needed induction on types
in Lemma 12.1.4– becomes easy.

The last case on λ-abstraction reveals why we had to strengthen the inductive hypothesis: =β

reduction introduces a substitution which may increase the size of the subterm, which in turn
keeps us from applying the inductive hypothesis. Formulating the assertion directly under all
possible LR substitutions unblocks us here.
This was the last result we needed to complete the proof of termiation of β-reduction.
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Remark: If we are only interested in the termination of head reductions, we can get by with a
much simpler version of this lemma, that basically relies on the uniqueness of head β reduction.

Closure under Head β-Expansion (weakly reducing)

� Lemma 12.1.9 (LR is closed under head β-expansion) If C →h
β D

and LR(D, α), so is LR(C, α).

� Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition

P.1.1.2 so SR(C, α), since head reduction is unique

P.1.1.3 and thus LR(C, α).

P.1.2 α = β → γ:

P.1.2.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.2.2 but CB→h
β DB, so LR(CB, γ) by IH

P.1.2.3 and LR(C, α) by definition.

Note: This result only holds for weak reduction (any chain of β head reductions
terminates) for strong reduction we need a stronger Lemma.
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For the termination proof of head β-reduction we would just use the same proof as above, just
for a variant of SR, where SRAα that only requires that the head reduction sequence out of A
terminates. Note that almost all of the proof except Lemma 12.1.3 (which holds by the same
argument) is invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to
give a set of conditions when logical relations proofs work.

12.2 Confluence of βη Conversion

We now turn to the confluence for βη, i.e. that the order of reductions is irrelevant. This entails
the uniqueness of βη normal forms, which is very useful.
Intuitively confluence of a relation R means that “anything that flows apart will come together
again.” – and as a consequence normal forms are unique if they exist. But there is more than one
way of formalizing that intuition.

� Confluence

� Definition 12.2.1 (Confluence) Let R⊆A2 be a relation on a set A, then
we say that

� has a diamond property, iff for every a, b, c ∈ A with a→1
R b a→1

R c there
is a d ∈ A with b→1

R d and c→1
R d.

� is confluent, iff for every a, b, c ∈ A with a→∗R b a→∗R c there is a d ∈ A
with b→∗R d and c→∗R d.
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� weakly confluent iff for every a, b, c ∈ A with a →1
R b a →1

R c there is a
d ∈ A with b→∗R d and c→∗R d.

diamond confluent weakly
property confluent

a

b c

d

a

b c

d

* *

* *

a

b c

d* *
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The diamond property is very simple, but not many reduction relations enjoy it. Confluence is
the notion that that directly gives us unique normal forms, but is difficult to prove via a digram
chase, while weak confluence is amenable to this, does not directly give us confluence.
We will now relate the three notions of confluence with each other: the diamond property (some-
times also called strong confluence) is stronger than confluence, which is stronger than weak
confluence

Relating the notions of confluence

� Observation 12.2.2 If a rewrite relation has a diamond property, then it is
weakly confluent.

� Theorem 12.2.3 If a rewrite relation has a diamond property, then it is con-
fluent.

� Proof Idea: by a tiling argument, composing 1 × 1 diamonds to an n × m
diamond.

� Theorem 12.2.4 (Newman’s Lemma) If a rewrite relation is terminating
and weakly confluent, then it is also confluent.
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Note that Newman’s Lemma cannot be proven by a tiling argument since we cannot control the
growth of the tiles. There is a nifty proof by Gérard Huet [Hue80] that is worth looking at.
After this excursion into the general theory of reduction relations, we come back to the case at
hand: showing the confluence of βη-reduction.
η is very well-behaved – i.e. confluent and terminating

η-Reduction ist terminating and confluent

� Lemma 12.2.5 η-Reduction ist terminating

� Proof: by a simple counting argument

� Lemma 12.2.6 η-reduction is confluent.

� Proof Idea: We show that η-reduction has the diamond property by diagram
chase over
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λX AX

A λX A′X

A′

where A→ηA′. Then the assertion follows by Theorem 12.2.3.
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For β-reduction the situation is a bit more involved, but a simple diagram chase is still sufficient
to prove weak confluence, which gives us confluence via Newman’s Lemma

β is confluent

� Lemma 12.2.7 β-Reduction is weakly confluent.

� Proof Idea: by diagram chase over

(λX A)B

(λX A′)B (λX A)B′ [B/X](A)

(λX A′)B′ [B′/X](A)

[B′/X](A′)

*

� Corollary 12.2.8 β-Reduction is confluent.

� Proof Idea: by Newman’s Lemma.
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There is one reduction in the diagram in the proof of Lemma 12.2.7 which (note that B can occur
multiple times in [B/X](A)) is not necessary single-step. The diamond property is broken by the
outer two reductions in the diagram as well.
We have shown that the β and η reduction relations are terminating and confluent and terminating
individually, now, we have to show that βη is a well. For that we introduce a new concept.

Commuting Relations
� Definition 12.2.9 Let A be a set, then we say that re-
lations R ∈ A2 and S ∈ A2 commute, if X →R Y and
X →S Z entail the existence of a W ∈ A with Y →S W
and Z →R W .

� Observation 12.2.10 If R and S commute, then →R
and →S do as well.

X

Y Z

W

R S

S R
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� Observation 12.2.11 R is confluent, if R commutes with itself.

� Lemma 12.2.12 If R and S are terminating and confluent relations such
that →∗R and →∗S commute, then →∗R∪S is confluent.

� Proof Sketch: As R and S commute, we can reorder any reduction sequence
so that all R-reductions precede all S-reductions. As R is terminating and
confluent, the R-part ends in a unique normal form, and as S is normalizing it
must lead to a unique normal form as well.
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This directly gives us our goal.

β η is confluent

� Lemma 12.2.13→∗β and →∗η commute.

� Proof Sketch: diagram chase

©:Michael Kohlhase 109
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Chapter 13

The Semantics of the Simply Typed
λ-Calculus

The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair 〈D, I〉, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition 13.0.1 We call a collection DT := {Dα |α ∈ T } a typed collec-
tion (of sets) and a collection fT : DT → ET , a typed function, iff fα : Dα →
Eα.

� Definition 13.0.2 A typed collectionDT is called a frame, iffDα→β ⊆Dα → Dβ

� Definition 13.0.3 Given a frame DT , and a typed function I : Σ→ D, then
we call Iϕ : wff T (Σ,VT )→ D the value function induced by I, iff

� Iϕ|VT = ϕ, Iϕ|Σ = I
� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(λXα A) is that function f ∈ Dα→β , such that f(a) = Iϕ,[a/X](A)
for all a ∈ Dα

� Definition 13.0.4 We call a frame 〈D, I〉 comprehension-closed or a Σ-
algebra, iff Iϕ : wff T (Σ,VT )→ D is total. (every λ-term has a
value)
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13.1 Soundness of the Simply Typed λ-Calculus

We will now show is that αβη-reduction does not change the value of formulae, i.e. if A =αβη B,
then Iϕ(A) = Iϕ(B), for all D and ϕ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.
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Substitution Value Lemma for λ-Terms

� Lemma 13.1.1 (Substitution Value Lemma) Let A and B be terms,
then Iϕ([B/X](A)) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.2 A = Y 6= X and Y ∈ VT : then Iϕ([B/X](A)) = Iϕ([B/X](Y )) =
Iϕ(Y ) = ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.3 A ∈ Σ: This is analogous to the last case.

P.1.4 A = CD: then Iϕ([B/X](A)) = Iϕ([B/X](CD)) = Iϕ([B/X](C)[B/X](D)) =
Iϕ([B/X](C))(Iϕ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(CD) = Iψ(A)

P.1.5 A = λYα C:

P.1.5.1 We can assume that X 6= Y and Y /∈ free(B)

P.1.5.2 Thus for all a ∈ Dα we have Iϕ([B/X](A))(a) = Iϕ([B/X](λY C))(a) =
Iϕ(λY [B/X](C))(a) = Iϕ,[a/Y ]([B/X](C)) = Iψ,[a/Y ](C) = Iψ(λY C)(a) =
Iψ(A)(a)
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Soundness of αβη-Equality

� Theorem 13.1.2 Let A := 〈D, I〉 be a Σ-algebra and Y 6∈ free(A), then
Iϕ(λX A) = Iϕ(λY [Y/X]A) for all assignments ϕ.

� Proof: by substitution value lemma

Iϕ(λY [Y/X]A) @ a = Iϕ,[a/Y ]([Y/X](A))
= Iϕ,[a/X](A)
= Iϕ(λX A) @ a

� Theorem 13.1.3 If A := 〈D, I〉 is a Σ-algebra and X not bound in A, then
Iϕ((λX A)B) = Iϕ([B/X](A)).

� Proof: by substitution value lemma again

Iϕ((λX A)B) = Iϕ(λX A) @ Iϕ(B)
= Iϕ,[Iϕ(B)/X](A)
= Iϕ([B/X](A))
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Soundness of αβη (continued)
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� Theorem 13.1.4 If X 6∈ free(A), then Iϕ(λX AX) = Iϕ(A) for all ϕ.

� Proof: by calculation

Iϕ(λX AX) @ a = Iϕ,[a/X](AX)
= Iϕ,[a/X](A) @ Iϕ,[a/X](X)
= Iϕ(A) @ Iϕ,[a/X](X) as X 6∈ free(A).
= Iϕ(A) @ a

� Theorem 13.1.5 αβη-equality is sound wrt. Σ-algebras. (if A =αβη B,
then Iϕ(A) = Iϕ(B) for all assignments ϕ)
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13.2 Completeness of αβη-Equality

We will now show is that αβη-equality is complete for the semantics we defined, i.e. that whenever
Iϕ(A) = Iϕ(B) for all variable assignments ϕ, then A =αβη B. We will prove this by a model
existence argument: we will construct a modelM := 〈D, I〉 such that if A 6=αβη B then Iϕ(A) 6=
Iϕ(B) for some ϕ.
As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

� Definition 13.2.1 We call a term A ∈ wff T (Σ,VT ) a β normal form iff
there is no B ∈ wff T (Σ,VT ) with A→β B.

We call N a β normal form of A, iff N is a β-normal form and A→βN.

We denote the set of β-normal forms with wff T (Σ,VT )
y
β η

.

� We have just proved that βη-reduction is terminating and confluent, so we
have

� Corollary 13.2.2 (Normal Forms) Every A ∈ wff T (Σ,VT ) has a unique
β normal form (βη, long βη normal form), which we denote by A↓β (A↓β η
A↓lβ η)
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The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

� Definition 13.2.3 LetD be a frame and∼ a typed equivalence relation onD,
then we call ∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

� Definition 13.2.4 We call a congruence ∼ functional, iff for all f, g ∈ Dα→β
the fact that f(a) ∼ g(a) holds for all a ∈ Dα implies that f ∼ g.
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� Example 13.2.5 =β (=βη) is a (functional) congruence on cwff T (Σ) by
definition.

� Theorem 13.2.6 Let D be a Σ-frame and ∼ a functional congruence on D,
then the quotient space D/∼ is a Σ-frame.

� Proof:

P.1 D/∼ = {[f ]∼ | f ∈ D}, define [f ]∼([a]∼) := [f(a)]∼.

P.2 This only depends on equivalence classes: Let f ′ ∈ [f ]∼ and a′ ∈ [a]∼.

P.3 Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

P.4 To see that we have [f ]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is
functional.

P.5 This is the case iff [f(a)]∼ = [g(a)]∼, iff [f ]∼([a]∼) = [g]∼([a]∼) for all
a ∈ Dα and thus for all [a]∼ ∈ D/∼.
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To apply this result, we have to establish that βη-equality is a functional congruence.
We first establish βη as a functional congruence on wff T (Σ,VT ) and then specialize this result to
show that is is also functional on cwff T (Σ) by a grounding argument.

βη-Equivalence as a Functional Congruence

� Lemma 13.2.7 βη-equality is a functional congruence on wff T (Σ,VT ).

� Proof: Let AC =βη BC for all C and X ∈ (Vγ\(free(A)∪ free(B))).

P.1 then (in particular) AX =βη BX, and

P.2 (λX AX) =βη (λX BX), since βη-equality acts on subterms.

P.3 By definition we have A=η(λXα AX)=βη(λXα BX)=ηB.

� Definition 13.2.8 We call an injective substitution σ : free(C)→ Σ a ground-
ing substitution for C ∈ wff T (Σ,VT ), iff no σ(X) occurs in C.

Observation: They always exist, since all Σα are infinite and free(C) is finite.

�� Theorem 13.2.9 βη-equality is a functional congruence on cwff T (Σ).

� Proof: We use Lemma 13.2.7

P.1 Let A,B ∈ cwff (α→β)(Σ), such that A 6=βη B.

P.2 As βη is functional on wff T (Σ,VT ), there must be aC withAC 6=βη BC.

P.3 Now let C′ := σ(C), for a grounding substitution σ.

P.4 Any βη conversion sequence for AC′ 6=βη BC′ induces one for AC 6=βη

BC.

P.5 Thus we have shown that A 6=βη B entails AC′ 6=βη BC′.
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Note that: the result for cwff T (Σ) is sharp. For instance, if Σ = {cι}, then (λX X) 6=βη (λX c),
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but (λX X)c=βηc=βη(λX c)c, as {c} = cwff ι(Σ) (it is a relatively simple exercise to extend
this problem to more than one constant). The problem here is that we do not have a constant
dι that would help distinguish the two functions. In wff T (Σ,VT ) we could always have used a
variable.
This completes the preparation and we can define the notion of a term algebra, i.e. a Σ-algebra
whose frame is made of βη-normal λ-terms.

A Herbrand Model for Λ→

� Definition 13.2.10 We call Tβη := 〈cwff T (Σ)
y
β η
, Iβ η〉 the Σ term alge-

bra, if Iβ η = IdΣ.

� The name “term algebra” in the previous definition is justified by the following

� Theorem 13.2.11 Tβη is a Σ-algebra

� Proof: We use the work we did above

P.1 Note that cwff T (Σ)
y
β η

= cwff T (Σ)/=βη and thus a Σ-frame by Theo-
rem 13.2.6 and Lemma 13.2.7.

P.2 So we only have to show that the value function Iβ η = IdΣ is total.

P.3 Let ϕ be an assignment into cwff T (Σ)
y
β η

.

P.4 Note that σ := (ϕ|free(A)) is a substitution, since free(A) is finite.

P.5 A simple induction on the structure of A shows that Iβ ηϕ (A) = σ(A)
y
β η

.

P.6 So the value function is total since substitution application is.
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And as always, once we have a term model, showing completeness is a rather simple exercise.
We can see that αβη-equality is complete for the class of Σ-algebras, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
Σ-algebras.

Completetness of αβη-Equality

� Theorem 13.2.12 A = B is valid in the class of Σ-algebras, iff A =αβη B.

� Proof: For A, B closed this is a simple consequence of the fact that Tβη is a
Σ-algebra.

P.1 If A = B is valid in all Σ-algebras, it must be in Tβη and in particular
A↓β η = Iβ η(A) = Iβ η(B) = B↓β η and therefore A =αβη B.

P.2 If the equation has free variables, then the argument is more subtle.

P.3 Let σ be a grounding substitution for A and B and ϕ the induced variable
assignment.

P.4 Thus Iβ ηϕ(A) = Iβ ηϕ(B) is the βη-normal form of σ(A) and σ(B).

P.5 Since ϕ is a structure preserving homomorphism on well-formed formulae,
ϕ−1(Iβ ηϕ(A)) is the is the βη-normal form of both A and B and thus
A =αβη B.
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Theorem 13.2.12 and Theorem 13.1.5 complete our study of the sematnics of the simply-typed
λ-calculus by showing that it is an adequate logic for modeling (the equality) of functions and
their applications.
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Chapter 14

Simply Typed λ-Calculus via
Inference Systems

Now, we will look at the simply typed λ-calculus again, but this time, we will present it as an
inference system for well-typedness jugdments. This more modern way of developing type theories
is known to scale better to new concepts.

Simply Typed λ-Calculus as an Inference System: Terms

� Idea: Develop the λ-calculus in two steps

� A context-free grammar for “raw λ-terms” (for the structure)

� Identify the well-typed λ-terms in that (cook them until well-typed)

� Definition 14.0.1 A grammar for the raw terms of the simply typed λ-
calculus:

α :== c | α→ α
Σ :== · | Σ, [c : type] | Σ, [c : α]
Γ :== · | Γ, [x : α]
A :== c | X | A1A2 | λXα A

� Then: Define all the operations that are possible at the “raw terms level”, e.g.
realize that signatures and contexts are partial functions to types.
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Simply Typed λ-Calculus as an Inference System: Judgments

� Definition 14.0.2 Judgments make statements about complex properties of
the syntactic entities defined by the grammar.

� Definition 14.0.3 Judgments for the simply typed λ-calculus

` Σ : sig Σ is a well-formed signature
Σ ` α : type α is a well-formed type given the type assumptions in Σ
Σ ` Γ : ctx Γ is a well-formed context given the type assumptions in Σ
Γ `Σ A : α A has type α given the type assumptions in Σ and Γ
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Simply Typed λ-Calculus as an Inference System: Rules

� A ∈ wff α(Σ,VT ), iff Γ `Σ A : α derivable in

Σ ` Γ : ctx Γ(X) = α

Γ `Σ X : α
wff:var

Σ ` Γ : ctx Σ(c) = α

Γ `Σ c : α
wff:const

Γ `Σ A : β → α Γ `Σ B : β

Γ `Σ AB : α
wff:app

Γ, [X : β] `Σ A : α

Γ `Σ λXβ A : β → α
wff:abs

Oops: this looks surprisingly like a natural deduction calculus. (; Curry
Howard Isomorphism)

�� To be complete, we need rules for well-formed signatures, types and contexts

` · : sig
sig:empty

` Σ : sig

` Σ, [α : type] : sig
sig:type

` Σ : sig Σ ` α : type

` Σ, [c : α] : sig
sig:const

Σ ` α : type Σ ` β : type

Σ ` α→ β : type
typ:fn

` Σ : sig Σ(α) = type

Σ ` α : type
typ:start

` Σ : sig

Σ ` · : ctx
ctx:empty

Σ ` Γ : ctx Σ ` α : type

Σ ` Γ, [X : α] : ctx
ctx:var
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Example: A Well-Formed Signature

� Let Σ := [α : type], [f : α→ α→ α], then Σ is a well-formed signature, since
we have derivations A and B

` · : sig
sig:type

` [α : type] : sig

A [α : type](α) = type
typ:start

[α : type] ` α : type

and with these we can construct the derivation C

A

B
B B

typ:fn
[α : type] ` α→ α : type

typ:fn
[α : type] ` α→ α→ α : type

sig:const
` Σ : sig
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Example: A Well-Formed λ-Term

� using Σ from above, we can show that Γ := [X : α] is a well-formed context:

C ctx:empty
Σ ` · : ctx

C Σ(α) = type
typ:start

Σ ` α : type
ctx:var

Σ ` Γ : ctx

We call this derivation G and use it to show that

� λXα fXX is well-typed and has type α→ α in Σ. This is witnessed by the
type derivation

C Σ(f) = α→ α→ α
wff:const

Γ `Σ f : α→ α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fX : α→ α

G
wff:var

Γ `Σ X : α
wff:app

Γ `Σ fXX : α
wff:abs

· `Σ λXα fXX : α→ α
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β η-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+ ∈ {α, β, η})

Γ `Σ A : α Γ `Σ B : β

Γ `Σ (λX A)B→1
β [B/X](A)

wffβ:top

Γ `Σ A : β → α X 6∈ dom(Γ)

Γ `Σ λX AX →1
η A

wffη:top

Γ `Σ A→1
+ B Γ `Σ AC : α

Γ `Σ AC→1
+ BC

tr:appfn

Γ `Σ A→1
+ B Γ `Σ CA : α

Γ `Σ CA→1
+ CB

tr:apparg

Γ, [X : α] `Σ A→1
+ B

Γ `Σ λX A→1
+ λX B

tr:abs
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β η-Equality by Inference Rules: Multi-Step Reduction
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� Multi-Step-Reduction (+ ∈ {α, β, η})

Γ `Σ A→1
+ B

Γ `Σ A→∗+ B
ms:start

Γ `Σ A : α

Γ `Σ A→∗+ A
ms:ref

Γ `Σ A→∗+ B Γ `Σ B→∗+ C

Γ `Σ A→∗+ C
ms:trans

� Congruence Relation
Γ `Σ A→∗+ B

Γ `Σ A =+ B
eq:start

Γ `Σ A =+ B

Γ `Σ B =+ A
eq:sym

Γ `Σ A =+ B Γ `Σ B =+ C

Γ `Σ A =+ C
eq:trans
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Chapter 15

Higher-Order Unification

We now come to a very important (if somewhat non-trivial and under-appreciated) algorithm:
higher-order unification, i.e. unification in the simply typed λ-calculus, i.e. unification modulo
αβη equality.

15.1 Higher-Order Unifiers

Before we can start solving the problem of higher-order unification, we have to become clear
about the terms we want to use. It turns out that “most general αβη unifiers may not exist – as
Theorem 15.1.5 shows, there may be infinitely descending chains of unifiers that become more an
more general. Thus we will have to generalize our concepts a bit here.

HOU: Complete Sets of Unifiers

� Question: Are there most general higher-order Unifiers?

� Answer: What does that mean anyway?

� Definition 15.1.1 σ =βη ρ[W ], iff σ(X) =αβη ρ(X) for all X ∈W . σ =βη

ρ[E ] iff σ =βη ρ[free(E)]

� Definition 15.1.2 σ is more general than θ on W (σ ≤βη θ[W ]), iff there is
a substitution ρ with θ =βη ρ ◦σ[W ].

� Definition 15.1.3 Ψ⊆U(E) is a complete set of unifiers, iff for all unifiers
θ ∈ U(E) there is a σ ∈ Ψ, such that σ ≤βη θ[E ].

� Definition 15.1.4 If Ψ⊆U(E) is complete, then ≤βη-minimal elements σ ∈
Ψ are most general unifiers of E .

� Theorem 15.1.5 The set {[λuv hu/F ]}∪ {σi | i ∈ N} where

σi := [λuv gnu(u(hn1uv)). . .(u(hnnuv))/F ], [λ v z/X]

is a complete set of unifiers for the equation FXaι =? FXbι, where F and X
are variables of types (ι→ ι)→ ι→ ι and ι→ ι

Furthermore, σi+1 is more general than σi.
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� Proof Sketch: [Hue76, Theorem 5]
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The definition of a solved form in Λ→ is just as always; even the argument that solved forms are
most general unifiers works as always, we only need to take αβη equality into account at every
level.

Unification

� Definition 15.1.6 X1 =? B1 ∧ . . .∧Xn =? Bn is in solved form, if the Xi

are distinct free variables Xi 6∈ free(Bj) and Bj does not contain Skolem
constants for all j.

� Lemma 15.1.7 If E = X1 =? B1 ∧ . . .∧Xn =? Bn is in solved form, then
σE := [B1/X1], . . ., [Bn/Xn] is the unique most general unifier of E

� Proof:

P.1 σ(Xi) =αβη σ(Bi), so σ ∈ U(E)

P.2 Let θ ∈ U(E), then θ(Xi) =αβη θ(B
i) = θ ◦σ(Xi)

P.3 so θ ≤βη θ ◦σ[E ].
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15.2 Higher-Order Unification Transformations

We are now in a position to introduce the higher-order unifiation transformations. We proceed
just like we did for first-order unification by casting the unification algorithm as a set of unification
inference rules, leaving the control to a second layer of development.
We first look at a group of transformations that are (relatively) well-behaved and group them under
the concept of “simplification”, since (like the first-order transformation rules they resemble) have
good properties. These are usually implemented in a group and applied eagerly.

Simplification SIM

� Definition 15.2.1 The higher-order simplification transformations SIM con-
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sist of the rules below.

(λXα A) =? (λYα B)∧E s ∈ ΣSkα new
SIM:α

[s/X](A) =? [s/Y ](B)∧E

(λXα A) =? B∧E s ∈ ΣSkα new
SIM:η

[s/X](A) =? Bs∧E

hUn =? hVn ∧E h ∈ (Σ∪ΣSk)
SIM:dec

U1 =? V1 ∧ . . .∧Un =? Vn ∧E

E ∧X =? A X 6∈ free(A) A∩ΣSk = ∅ X ∈ free(E)
SIM:elim

[A/X](E)∧X =? A

After rule applications all λ-terms are reduced to head normal form.
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The main new feature of these rules (with respect to their first-order counterparts) is the handling
of λ-binders. We eliminate them by replacing the bound variables by Skolem constants in the
bodies: The SIM : α standardizes them to a single one using α-equality, and SIM : η first η-
expands the right-hand side (which must be of functional type) so that SIM :α applies. Given
that we are setting bound variables free in this process, we need to be careful that we do not use
them in the SIM:elim rule, as these would be variable-capturing.

Consider for instance the higher-order unification problem (λX X) =? (λY W ), which is
unsolvable (the left hand side is the identity function and the right hand side some constant
function – whose value is given by W ). So after an application of SIM : α, we have c =? W ,
which looks like it could be a solved pair, but the elimination rule prevents that by insisting that
instances may not contain Skolem Variables.
Conceptually, SIM is a direct generalization of first-order unification transformations, and shares
it properties; even the proofs go correspondingly.

Properties of Simplification

� Lemma 15.2.2 (Properties of SIM) SIM generalizes first-order uni-
fication.

� SIM is terminating and confluent up to α-conversion

� Unique SIM normal forms exist (all pairs have the form hUn =? kVm)

� Lemma 15.2.3 U(E ∧ Eσ) = U(σ(E)∧Eσ).

Proof: by the definitions

� P.1 If θ ∈ U(E ∧Eσ), then θ ∈ (U(E)∩U(Eσ)).

So θ =βη θ ◦σ[supp(σ)],

and thus (θ ◦σ) ∈ U(E), iff θ ∈ U(σ(E)).
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P.2 P.3� Theorem 15.2.4 If E `SIM F , then U(E) ≤βη U(F)[E ]. (correct,
complete)

Proof: By an induction over the length of the derivation

P.1 We the SIM rules individually for the base case

P.1.1 SIM:α: by α-conversion

P.1.2 SIM:η: By η-conversion in the presence of SIM:α

P.1.3 SIM:dec: The head h ∈ (Σ∪ΣSk) cannot be instantiated.

P.1.4 SIM:elim: By Lemma 15.2.3.

P.2 The step case goes directly by inductive hypothesis and transitivity of
derivation.
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Now that we have simplifiation out of the way, we have to deal with unification pairs of the form
hUn =? kVm. Note that the case where both h and k are contstants is unsolvable, so we can
assume that one of them is a variable. The unification problem Fα→αa =? a is a particularly
simple example; it has solutions [λXα a/F ] and [λXα X/F ]. In the first, the solution comes by
instantiating F with a λ-term of type α → α with head a, and in the second with a 1-projection
term of type α → α, which projects the head of the argument into the right position. In both
cases, the solution came from a term with a given type and an appropriate head. We will look at
the problem of finding such terms in more detail now.

General Bindings

� Problem: Find all formulae of given type α and head h.

� sufficient: long βη head normal form, most general

� General Bindings: Gh
α(Σ) := (λXk

α h(H1X) . . . (HnX))

� where α = αk → β, h : γn → β and β ∈ B T
� and Hi :αk → γi new variables.

� Observation 15.2.5 General bindings are unique up to choice of names for
Hi.

� Definition 15.2.6 If the head h is jth bound variable in Gh
α(Σ), call Gh

α(Σ)
j-projection binding (and write Gj

α(Σ)) else imitation binding

� clearly Gh
α(Σ) ∈ wff α(Σ,VT ) and head(Gh

α(Σ)) = h
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For the construction of general bindings, note that their construction is completely driven by the
intended type α and the (type of) the head h. Let us consider some examples.

Example 15.2.7 The following general bindings may be helpful: Gaι
ι→ι(Σ) = λXι a,Gaι

ι→ι→ι(Σ) =

λXιYι a, and Gaι→ι
ι→ι→ι(Σ) = λXιYι a(HXY ), where H is of type ι→ ι→ ι

We will now show that the general bindings defined in Definition 15.2.6 are indeed the most general
λ-terms given their type and head.
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Approximation Theorem

� Theorem 15.2.8 If A ∈ wff α(Σ,VT ) with head(A) = h, then there is a
general binding G = Gh

α(Σ) and a substitution ρ with ρ(G) =αβη A and
dp(ρ)<dp(A).

� Proof: We analyze the term structure of A

P.1 If α = αk → β and h : γn → β where β ∈ B T , then the long head normal
form of A must be λXk

α hUn.

P.2 G = Gh
α(Σ) = λXk

α h(H1X) . . . (HnX) for some variablesHi :αk → γi.

P.3 Choose ρ := [λXk
α U1/H1], . . ., [λXk

α Un/Hn].

P.4 Then we have ρ(G) = λXk
α h(λXk

α U1X) . . . (λXk
α UnX)

=βη λXk
α hUn

=βη A

P.5 The depth condition can be read off as dp(λXk
α U1)≤dp(A)− 1.
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With this result we can state the higher-order unification transformations.

Higher-Order Unification (HOU)

� Recap: After simplification, we have to deal with pairs where one (flex/rigid)
or both heads (flex/flex) are variables

� Definition 15.2.9 Let G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1≤j≤n},
then HOU consists of the transformations (always reduce to SIM normal
form)

� Rule for flex/rigid pairs:
FαU=? hV∧E

HOU :fr
F =? G∧FU=? hV∧E

� Rules for flex/flex pairs:
FαU=? HV∧E

HOU :ff
F =? G∧FU=? HV∧E
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Let us now fortify our intuition with a simple example.

HOU Example

Example 15.2.10 Let Q,w : ι→ ι, l : ι→ ι→ ι, and j : ι, then we have the
following derivation tree in HOU .
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Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX l(X,w(X)) λX l(X,w(j)) λX l(j, w(X)) λX l(j, w(j))

Q=λX l(H(X),K(X))Q=λX X

H=λX X H=λX j

K=λX w(K′(X))
K=λX X

K=λX w(K′(X))
K=λX X

K′=λX X K′=λX j K′=λX X K′=λX j
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The first thing that meets the eye is that higher-order unification is branching. Indeed, for flex/-
rigid pairs, we have to systematically explore the possibilities of binding the head variable the
imitation binding and all projection bindings. On the initial node, we have two bindings, the
projection binding leads to an unsolvable unification problem, whereas the imitation binding leads
to a unification problem that can be decomposed into two flex/rigid pairs. For the first one of
them, we have a projection and an imitation binding, which we systematically explore recursively.
Eventually, we arrive at four solutions of the initial problem.
The following encoding of natural number arithmetics into Λ→ is useful for testing our unification
algorithm

A Test Generator for Higher-Order Unification

� Definition 15.2.11 (Church Numerals) We define closed λ-terms of type
ν := (α→ α)→ α→ α

� Numbers: Church numerals: (n-fold iteration of arg1 starting from arg2)

n := (λSα→α λOα S(S . . . S︸ ︷︷ ︸
n

(O) . . .))

� Addition (N -fold iteration of S from N)

+ := (λNνMν λSα→α λOα NS(MSO))

� Multiplication: (N -fold iteration of MS (=+m) from O)

· := (λNνMν λSα→α λOα N(MS)O)

� Observation 15.2.12 Subtraction and (integer) division on Church number-
als can be automted via higher-order unification.

� Example 15.2.13 5− 2 by solving the unification problem 2 + xν =? 5

Equation solving for Church numerals yields a very nice generator for test cases
for higher-order unification, as we know which solutions to expect.
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15.3 Properties of Higher-Order Unification

We will now establish the properties of the higher-order unification problem and the algorithms
we have introduced above. We first establish the unidecidability, since it will influence how we go
about the rest of the properties.
We establish that higher-order unification is undecidable. The proof idea is a typical for undecid-
able proofs: we reduce the higher-order unification problem to one that is known to be undecidable:
here, the solution of Diophantine equations N.

� Undecidability of Higher-Order Unification

� Theorem 15.3.1 Second-order unification is undecidable (Goldfarb
’82 [Gol81])

� Proof Sketch: Reduction to Hilbert’s tenth problem (solving Diophantine
equations) (known to be undecidable)

� Definition 15.3.2 We call an equation a Diophantine equation, if it is of the
form

� xi xj = xk

� xi +xj = xk

� xi = cj where cj ∈ N

where the variables xi range over N.

� These can be solved by higher-order unification on Church numerals. (cf. Ob-
servation 15.2.12)

.

� Theorem 15.3.3 The general solution for sets of Diophantine equations is
undecidable. (Matijasevič 1970 [Mat70])
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The argument undecidability proofs is always the same: If higher-order unification were decidable,
then via the encoding we could use it to solve Diophantine equations, which we know we cannot
by Matijasevič’s Theorem.
The next step will be to analyze our transformations for higher-order unification for correctness
and completeness, just like we did for first-order unification.

HOU is Correct

� Lemma 15.3.4 If E `HOU:fr E ′ or E `HOU:ff E ′, then U(E ′)⊆U(E).

� Proof Sketch: HOU :fr and HOU :ff only add new pair.

� Corollary 15.3.5 HOU is correct: If E `HOU E ′, then U(E ′)⊆U(E).
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Given that higher-order unification is not unitary and undecidable, we cannot just employ the
notion of completeness that helped us in the analysis of first-order unification. So the first thing
is to establish the condition we want to establish to see that HOU gives a higher-order unification
algorithm.

Completeness of HOU

� We cannot expect completeness in the same sense as for first-order unification:
“If E `U F , then U(E)⊆U(F)” (see Lemma 9.3.11) as the rules fix a binding
and thus partially commit to a unifier (which excludes others).

� We cannot expect termination either, since HOU is undecidable.

� For a semi-decision procedure we only need termination on unifiable problems.

� Theorem 15.3.6 (HOU derives Complete Set of Unifiers)
If θ ∈ U(E), then there is a HOU-derivation E `HOU F , such that F is in
solved form, σF ∈ U(E), and σF is more general than θ.

� Proof Sketch: Given a unifier θ of E , we guide the derivation with a measure
µθ towards F .
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So we will embark on the details of the completeness proof. The first step is to define a measure
that will guide the HOU transformation out of a unification problem E given a unifier θ of cE.

Completeness of HOU (Measure)

� Definition 15.3.7 We call µ(E , θ) := 〈µ1(E , θ), µ2(θ)〉 the unification mea-
sure for E and θ, if

� µ1(E , θ) is the multiset of term depths of θ(X) for the unsolved X ∈
supp(θ).

� µ2(E) the multiset of term depths in E .
� ≺ is the strict lexicographic order on pairs: (〈a, b〉 ≺ 〈c, d〉, if a < c or
a = c and b < d)

� Component orderings are multiset orderings: (M ∪{m} < M ∪N iff n <
m for all n ∈ N)

� Lemma 15.3.8 ≺ is well-founded. (by construction)
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This measure will now guide the HOU transformation in the sense that in any step it chooses
whether to use HOU : fr or HOU :ff, and which general binding (by looking at what θ would do).
We formulate the details in Theorem 15.3.9 and look at their consequences before we proove it.

Completeness of HOU (µ-Prescription)
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� Theorem 15.3.9 If E is unsolved and θ ∈ U(E), then there is a unification
problem E ′ with E `HOU E ′ and a substitution θ′ ∈ U(E ′) , such that

� θ =βη θ
′[E ]

� µ(E ′, θ′) ≺ µ(E , θ).

we call such a HOU-step a µ-prescribed

� Corollary 15.3.10 If E is unifiable without µ-prescribed HOU-steps, then
E is solved.

� In other words: µ guides the HOU-transformations to a solved form
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We now come to the proof of Theorem 15.3.9, which is a relatively simple consequence of Theo-
rem 15.2.8.

Proof of Theorem 15.3.9

� Proof:

P.1 Let A=? B be an unsolved pair of the form FU=? GV in F .
P.2 E is a SIM normal form, so F and G must be constants or variables,

P.3 but not the same constant, since otherwise SIM:dec would be applicable.

P.4 We can also exclude A =αβη B, as SIM:triv would be be appliccable.

P.5 If F = G is a variable not in supp(θ), then SIM : dec appliccable. By
correctness we have θ ∈ U(E ′) and µ(E ′, θ) ≺ µ(E , θ), as µ1(E ′, θ) �
µ1(E , θ) and µ2(E ′) ≺ µ2(E).

P.6 Otherwise we either have F 6= G or F = G ∈ supp(θ).

P.7 In both cases F or G is an unsolved variable F ∈ supp(θ) of type α, since
E is unsolved.

P.8 Without loss of generality we choose F = F.

P.9 By Theorem 15.2.8 there is a general binding G = Gf
α(Σ) and a substi-

tution ρ with ρ(G) =αβη θ(F ). So,

� if head(G) 6∈ supp(θ), then HOU :fr is appliccable,
� if head(G) ∈ supp(θ), then HOU :ff is appliccable.

P.10 Choose θ′ := θ∪ ρ. Then θ =βη θ
′[E ] and θ′ ∈ U(E ′) by correctness.

P.11 HOU :ff and HOU :fr solve F ∈ supp(θ) and replace F by supp(ρ) in
the set of unsolved variable of E .

P.12 so µ1(E ′, θ′) ≺ µ1(E , θ) and thus µ(E ′, θ′) ≺ µ(E , θ).
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We now convince ourselves that if HOU terminates with a unification problem, then it is either
solved – in which case we can read off the solution – or unsolvable.

Terminal HOU -problems are Solved or Unsolvable
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� Theorem 15.3.11 If E is a unsolved UP and θ ∈ U(E), then there is a
HOU-derivation E `HOU σσ, with σ ≤βη θ[E ].

� Proof: Let D : E `HOU F a maximal µ-prescribed HOU-derivation from E .

P.1 This must be finite, since ≺ is well-founded (ind. over length n of D)
P.2 If n = 0, then E is solved and σE most general unifier

P.3 thus σE ≤βη θ[E ]

P.4 If n > 0, then there is a µ-prescribed step E `HOU E ′ and a substitution
θ′ as in Theorem 15.3.9.

P.5 by IH there is a HOU-derivation E ′ `HOU F with σF ≤βη θ′[E ′].
P.6 by correctness σF ∈ U(E ′) ⊆ U(E).

P.7 rules of HOU only expand free variables, so σF ≤βη θ′[E ′]
P.8 Thus σF ≤βη θ′[E ],

P.9 This completes the proof, since θ′ =βη θ[E ] by Theorem 15.3.9.
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We now recap the properties of higher-order unification (HOU) to gain an overview.

Properties of HO-Unification

� HOU is undecidable, HOU need not have most general unifiers

� The HOU transformation induce an algorithm that enumerates a complete set
of higher-order unifiers.

� HOU :ff gives enormous degree of indeterminism

� HOU is intractable in practice consider restricted fragments where it is!

� HO Matching (decidable up to order four), HO Patterns (unitary, linear), . . .

©:Michael Kohlhase 142

15.4 Pre-Unification

We will now come to a variant of higher-order unification that is used in higher-order theorem
proving, where we are only interested in the exgistence of a unifier – e.g. in mating-style tableaux.
In these cases, we can do better than full higher-order unification.

Pre-Unification

� HOU :ff has a giant branching factor in the search space for unifiers. (makes
HOU impracticable)

� In most situations, we are more interested in solvability of unification problems
than in the unifiers themselves.

� More liberal treatment of flex/flex pairs.
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� Observation 15.4.1 flex/flex-pairs FUn =? GVm are always (trivially) solv-
able by [λXn H/F ], [λY m H/G], where H is a new variable

� Idea: consider flex/flex-pairs as pre-solved.

� Definition 15.4.2 (Pre-Unification) For given termsA,B ∈ wff α(Σ,VT )
find a substitution σ, such that σ(A) =p

β η σ(B), where =p
β η is the equality

theory that is induced by βη and FU = GV.

� Lemma 15.4.3 A higher-order unification problem is unifiable, iff it is pre-
unifiable.
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The higher-order pre-unification algorithm can be obtained from HOU by simply omitting the
offending HOU :ff rule.

Pre-Unification Algorithm HOPU

� Definition 15.4.4 A unification problem is a pre-solved form, iff all of its
pairs are solved or flex/flex

� Lemma 15.4.5 If E is solved and P flex/flex, then σσ is a most general
unifier of a pre-solved form E ∧P.

� Restrict all HOU rule so that they cannot be applied to pre-solved pairs.

� In particular, remove HOU :ff!

� HOPU only consists of SIM and HOU :fr.

� Theorem 15.4.6 HOPU is a correct and complete pre-unification algorithm

� Proof Sketch: with exactly the same methods as higher-order unification

� Theorem 15.4.7 Higher-order pre-unification is infinitary, i.e. a unification
problem can have infinitely many unifiers. (Huet 76’ [Hue76])

� Example 15.4.8 Y (λXι X)a=? a, where a is a constant of type ι and Y
a variable of type (ι→ ι)→ ι→ ι has the most general unifiers λ sz snz and
λ sz sna, which are mutually incomparable and thus most general.
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15.5 Applications of Higher-Order Unification

Application of HOL in NL Semantics: Ellipsis

� Example 15.5.1 John loves his wife. George does too

� love(john,wife_of(john))∧Q(george)

� “George has property some Q, which we still have to determine”
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Idea: If John has property Q, then it is that he loves his wife.

�� Equation: Q(john) =αβη love(john,wife_of(john))

� Solutions (computed by HOU):

� Q = λ z love(z,wife_of(z)) and Q = λ z love(z,wife_of(john))

* Q = λ z love(john,wife_of(z)) and Q = λ z love(john,wife_of(john))

� Readings: George loves his own wife. and George loves Johns wife.

©:Michael Kohlhase 145

99

http://creativecommons.org/licenses/by-sa/2.5/


Chapter 16

Simple Type Theory

In this Chapter we will revisit the higher-order predicate logic introduced in Chapter 9 with the
base given by the simply typed λ-calculus. It turns out that we can define a higher-order logic by
just introducing a type of propositions in the λ-calculus and extending the signatures by logical
constants (connectives and quantifiers).

Higher-Order Logic Revisited

� Idea: introduce special base type o for truth values

� Definition 16.0.1 We call a Σ-algebra 〈D, I〉 a Henkin model, iff Do =
{T,F}.

� Ao valid under ϕ, iff Iϕ(A) = T

� connectives in Σ: ¬ ∈ Σo→o and {∨,∧,⇒,⇔, . . .}⊆Σo→o→o (with the
intuitive I-values)

� quantifiers: Πα ∈ Σ(α→o)→o with I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα.

� quantified formula e: ∀Xα A stands for Πα(λXα A)

� Iϕ(∀Xα A) = I(Πα)(Iϕ(λXα A)) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα

� looks like PLΩ (Call any such system HOL→)
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There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and Σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

� Idea: In HOL→, we already have variable binder: λ, use that to treat quan-
tification.

� Definition 16.0.2 We assume logical constants Πα and Σα of type (α→ o)→
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o.

Regain quantifiers as abbreviations:

(∀Xα A) :=
α

Π(λXα A) (∃Xα A) :=
α

Σ(λXα A)

� Definition 16.0.3 We must fix the semantics of logical constants:

1) I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2) I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

� With this, we re-obtain the semantics we have given for quantifiers above:

Iϕ(∀Xι A) = Iϕ(
ι

Π(λXι A)) = I(
ι

Π)(Iϕ(λXι A)) = T

iff Iϕ(λXι A)(a) = I[a/X],ϕ(A) = T for all a ∈ Dα
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But there is another alternative of introducing higher-order logic due to Peter Andrews. Instead
of using connectives and quantifiers as primitives and defining equality from them via the Leibniz
indiscernability principle, we use equality as a primitive logical constant and define everything else
from it.

Alternative: HOL=

� only one logical constant qα ∈ Σα→α→o with I(qα)(a, b) = T, iff a = b.

� Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα

D T for qo = qo

D F for (λXo T ) = (λXo Xo)
D Πα for q(α→o)(λXα T )
N ∀Xα A for Πα(λXα A)
D ∧ for λXo λYo (λGo→o→o GT T ) = (λGo→o→o GXY )
N A∧B for ∧AoBo

D ⇒ for λXo λYo X = X ∧Y
N A⇒B for ⇒AoBo

D ¬ for qoF
D ∨ for λXo λYo ¬ (¬X ∧¬Y )
N A∨B for ∨AoBo

D ∃Xα Ao for ¬ (∀Xα ¬A)
N Aα 6= Bα for ¬ (qαAαBα)

� yield the intuitive meanings for connectives and quantifiers.
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In a way, this development of higher-order logic is more foundational, especially in the context of
Henkin semantics. There, Theorem 10.0.6 does not hold (see [And72] for details). Indeed the proof
of Theorem 10.0.6 needs the existence of “singleton sets”, which can be shown to be equivalent to
the existence of the identity relation. In other words, Leibniz equality only denotes the equality
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relation, if we have an equality relation in the models. However, the only way of enforcing this
(remember that Henkin models only guarantee functions that can be explicitly written down as
λ-terms) is to add a logical constant for equality to the signature.
We will conclude this section with a discussion on two additional “logical constants” (constants with
a fixed meaning) that are needed to make any progress in mathematics. Just like above, adding
them to the logic guarantees the existence of certain functions in Henkin models. The most impor-
tant one is the description operator that allows us to make definite descriptions like “the largest
prime number” or “the solution to the differential equation f ′ = f .

More Axioms for HOL→

� Definition 16.0.4 unary conditional w ∈ Σo→α→α
wAoBα means: “If A, then B”

� Definition 16.0.5 binary conditional if ∈ Σo→α→α→α
ifAoBαCα means: “if A, then B else C”.

� Definition 16.0.6 description operator ι ∈ Σ(α→o)→α
if P is a singleton set, then ιPα→o is the element in P,

� Definition 16.0.7 choice operator γ ∈ Σ(α→o)→α
if P is non-empty, then γPα→o is an arbitrary element from P

� Definition 16.0.8 (Axioms for these Operators)

� unary conditional: ∀ϕo ∀Xα ϕ⇒wϕX = X

� conditional: ∀ϕo ∀Xα, Yα, Zα (ϕ⇒ ifϕXY = X)∧ (¬ϕ⇒ ifϕZX = X)

� description ∀Pα→o (∃1Xα PX)⇒ (∀Yα PY ⇒ ιP = Y )

� choice ∀Pα→o (∃Xα PX)⇒ (∀Yα PY ⇒ γP = Y )

Idea: These operators ensure a much larger supply of functions in Henkin
models.
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�More on the Description Operator

� ι is a weak form of the choice operator (only works on singleton sets)

� Alternative Axiom of Descriptions: ∀Xα ια(=X) = X.

� use that I[a/X](=X) = {a}
� we only need this for base types 6= o

� Define ιo := =(λXo X) or ιo := (λGo→o GT ) or ιo := =(=T )

� ια→β := (λH(α→β)→oXα ιβ(λZβ (∃Fα→β (HF )∧ (FX) = Z)))
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Chapter 17

Higher-Order Tableaux

In this Chapter we will extend the ideas from first-order tableaux to higher-order logic.
The rules fo standard tableaux are just like the ones for first-order logic, only that we can take
advantage oft higher-order abstract syntax for the quantifiers

Tableau-Rules (T sω )

� Definition 17.0.1 The rules of T sω consist of the propositional tableau rules
of T0 together with

α

ΠAt

T sω :∀
ACt

α

ΠAf c ∈ (Σsk0 \H)
T sω :∃

Acf
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Higher-order, free-variable tableaux work exactly like first-order tableaux, except that the cut rule
uses higher-order unification.

Higher-Order Free-Variable Tableaus (Tω first try)

� Definition 17.0.2 The Tω calculus consists of the propositional tableau rules
plus

α

ΠAt

Tω:∀
AXα

t

α

ΠAf free(A) = {Y 1
α1
, . . . , Y nαn} f ∈ ΣSkαn→α new

Tω:∃
A(fY n)

f

� Problem: Unification in Λ→ is undecidable, so we need more

103

http://creativecommons.org/licenses/by-sa/2.5/


� Idea: explicit rule that residuates the unification problem

Aα

Bβ

Tω:cut
A 6=? B

and adapt the HOU rules to tableaux (DNF instead of CNF)
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Note that we cannot directly use the higher-order unification algorithm, since that is undecidable
– this would not result in a fair proof search procedure. Therefore we reinterpret HOPU rules as
tableau rules and mix them into the proof search procedure.
For the reinterpretation ofHOU rules into tableau rules we change notation of the unification pairs,
using A 6=? B instead of A =? B, since in the tableau setting we want to refute that A and B
cannot be made equal instead of finding conditions that make them equal (as we did for unification).
Correspondingly, we we do not use a “conjunction” of equations, but a disjunction (using tableau
branches) of “disequations”. But up to this “double negation” the unification algorithm stays the
same.

Tω (Pre-Unification)

� we can use SIM :α, SIM : η, and SIM : triv directly, for SIM : dec and
SIM:elim we integrate into tableau setting more closely, obtaining

hUn 6=? hVn h ∈ (Σ∪ΣSk ∪VT )
Tω :dec

U1 6=? V1
∣∣∣ . . . ∣∣∣ Un 6=? Vn

FαU 6=? hV
Tω :fr

F 6=? G
∣∣∣ FU 6=? hV

X 6=? A X 6∈ free(A) A∩ΣSk = ∅
Tω :elim

⊥

where G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1≤j≤n}

� Definition 17.0.3 We call a Tω tableau closed, if all branches end in a ⊥ or
a flex/flex pair.
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Note that the elimination rule is particularly elegant in the tableau setting – it comes in the form
of a closure rule: If we have a solved pair, then we can just make the branch unsatisfiable by
applying its most general unifier to the whole tableau.
Note furthermore, that with the mixed propositional and pre-unification calculus in Tω, the de-
cision whether to do regular or matings-style tableaux boils down to a a decision of the strategy
used to expand the Tω tableaux.
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We will now fortify our intuition with an extended example: a Tω proof of (a version of) Cantor’s
theorem. The particular formulation we use below uses the whole universe of type ι for the set S
and universe of type ι→ ι for the power set.

Tω Example: Cantor’s Theorem

� Theorem 17.0.4 There is no surjective function from the natural numbers
into the sequences of natural numbers.

� Formally: ¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

� For the proof we use

� ∀Xι ¬X = sX (the successor function has no fixed points)

� an extensionality axiom
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We initialize the tableau with the three formulae discussed above, and then employ the Tω rules.

Tω-Proof (Cantor’s Theorem)

� First the propositional part (analyzing formula structure)

¬ (∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)
f

∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = Gt

∀Gι→ι ∃Jι fι→ι→ιJ = Gt

∃Jι fJ = Gt

f(jG) = Gt

H = K⇒ (∀Nι HN = KN)
t

H = K f

H = K 6=? f(jG) = G
H 6=? f(jG)

⊥
K 6=? G
⊥

HN = KN t

f(jG)N = GN t

X = sX f

X = sX 6=? f(jG)N = GN

� then we continue with unification tableau
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X = sX 6=? f(jG)N = GN

GN 6=? s(f(jG)N)

s(H1N) 6=? s(f(jG)N)

H1N 6=? f(jG)N

f(H2N)(H3N) 6=? f(jG)N

X 6=? f(jG)N

⊥

G 6=? (λYι s(H
1Y ))

⊥

H1 6=? (λYι f(H2Y )(H3Y ))

⊥
H2N 6=? jG H3N 6=? N

H2 6=? (λYι Y ) N 6=? jG H3 6=? (λYι Y ) jG 6=? jG

⊥ ⊥ ⊥ ⊥

� We found a closed tableau and completed the Tω proof.
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In the higher-order unification tableau above we face the same problem we always face when we
try to display the dynamics of free-variable tableaux: in the closure rules we have to instantiate
the whole tableau. But this turns the tableau into a standard tableau. So we close the leftmost
branch and apply the substitution to the branches to the right of the current branch only.
Note that at first sight N 6=? jG is not solved (and indeed unsolvable), since j is a Skolem constant.
But we only need to forbid the Skolem constants that were introduced by the SIM:α and SIM:η
rules. So there is no problem here; since they were introduced by Tω:∃.
Even though we were successful in proving Cantor’s theorem, Tω is not complete as we will see.

Problem for Tω
� Theorem 17.0.5 There is a valid formula (∃Xo X)

� This is clearly valid, (eg. A∨¬A)

� Tω attempt
¬ (∀Xo ¬X)

f

∀Xo ¬Xt

¬Xt

X f

� we are stuck!

� Observation: We have to instantiate X further, e.g. by [¬Qo/X].

� then we can continue
X f

¬Qf

Qt

X 6=? Q

close with [Q/X].
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We see that unlike in first-order unification we cannot obtain all necessary instantiations by unifi-
cation. Indeed in the presence of predicate variables – in our example above we can view Xo as a
nullary predicate – we have to allow instantiations with (all) logical connectives and quantifiers.
Fortunately, we can do this in a minimally committing fashion via general bindings, unfortunately,
we have to systematically try out all possible ones – which is costly, since there are infinitely many
quantifiers.

Primitive Substitutions

� Unification is not sufficient for Tω

� We need a rule that instantiates head variables with terms that introduce
logical constants.

� Definition 17.0.6 We extend Tω with the rule Tω:prim.

XαUnα G ∈ Gk
α(Σ) k ∈ ({∧,¬}∪{

β

Π |β ∈ T })
Tω:prim

X 6=? G
∣∣∣ XαUn

α

We call [G/X] a primitive substitution.

� In our example ¬Q = G¬o (Σ).
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There is another source of incompleteness as another example shows: we can have propositions
embedded in formulae. Note that this is different from the situation in first-order logic, but quite
natural in mathematics, e.g. for conditional statements of the form “if ϕo then Aα else Bα.”,
where ϕ is a proposition embedded in a term of type α.

Another Example

� A = ¬ (co→obo)∨ (c¬¬ b) is valid

� Tω proof attempt
¬ (cb)∨ (c¬¬ b)f

¬ (cb)
f

c¬¬ bf
cbt

cb 6=? c¬¬ b
b 6=? ¬¬ b

and we are stuck (again)

� Idea: theory unification with Xo = ¬¬Xo

� But the problem is more general: If A⇔B valid, then ¬ (cA)∧ (cB) must
be Tω-refutable.

� Solution: call to the theorem prover recursively.
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� Definition 17.0.7 We extend Tω with the rule Tω:rec,

Ao 6=? Bo

At

Bf

∣∣∣∣ Af

Bt

Tω:rec

� Observation 17.0.8 We can prove Ao by unifying it with To.
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The Tω:rec rule puts the propositional and unification rules of Tω at an equal footing. Tω can
be seen as a calculus for theorem proving or as an unification algorithm that takes the theory of
equivalence into account.
Each aspect of Tω can recurse into the the other; this is necessary, since in HOL→ the propositional
level – which has a fixed interpretation and therefore special Tω rules – and the term level – which
is freely interpreted and must thus be handled by unification – can recurse arbitrarily.
To make matters worse, we also have a soundness problem that comes from Skolemization: we
can prove a version of the Axiom of Choice that is known to be independent of HOL→, and thus
should not be provable.

Skolemization is not sound

� Axiom of Choice:
∃γα→o→α ∀Pα→o (∃Xα PX)⇒ (∀Yα (PY )⇒ γP = Y )

� Weaker Version: (call it C)

∀Rα→α→o (∀Xα ∃Yα RXY )⇒ (∃F(α→o)→α ∀Zα RZ(FZ))

� Neither C nor ¬C are valid in HOL→ (independent)

� but C is provable Tω. (see next slide)
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In this proof, the Skolem constant f introduced for the assumption ∀Xα ∃Yα RXY becomes
available as an instance for the variable F in (used to require the existence of a choice opera-
tor).

Skolemization is not sound (Choice Proof)
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∀Rα→α→o (∀Xα ∃Yα RXY )⇒ (∃F(α→o)→α ∀Zα RZ(FZ))
f

∀Xα ∃Yα rXY
t

∃F(α→o)→α ∀Zα rZ(FZ)
f

∃Yα rXY
t

rX(fX)
t

∀F(α→o)→α ¬ (∀Zα rZ(fZ))
t

∀Zα rZ(FZ)
f

r(gF )(F (gF ))
f

rX(fX) 6=? r(gF )(F (gF ))
X 6=? gF
⊥

f(gF ) 6=? F (gF )
F 6=? (λZα f(H1Z))

⊥
f(g(λZα f(H1Z))) 6=? f(H1(g(λZα f(H1Z))))

g(λZα f(H1Z)) 6=? H1(g(λZα f(H1Z)))
H1 6=? (λWα W )

⊥
g(λZα fZ) 6=? g(λZα fZ)

⊥
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In first-order logic, Skolemization is sound, since Skolem constants do not “lose their arguments”,
so they cannot be used to prove the axiom of choice.

The following part is still experimentals; not required for the course

Variable Conditions

� Definition 17.0.9 Let Γ be an annotated variable context, Then a variable
condition R is a relation on R⊆dom(Γ)×dom(Γ−).

� Definition 17.0.10 We call a substitution σ with supp(σ)⊆dom(Γ)∪dom(∆)
a R-substitution, iff Y 6∈ free(σ(X)) for all (x, y) ∈ R.

� Intuition: If (X,Y −) ∈ R, then no formula that contains Y − freely may be
substituted for X.

� We define a judgment ∆ ` R(X,A) by

� ∆,Γ `σ A : Γ(X) und X 6∈ free(A),

� ({X}× free(A))∩R = ∅ (no variable Y ∈ free(A) is an R-image of X)

� So σ is a R-substitution, iff ∆ `Σ R(X,σ(X)) for all X ∈ supp(σ).

� Extension of variable conditions for instantiaton with [A/X]:

R(A/X) := {(Z,W ) ∈ R |Z 6= X}∪ {(Z,W ) |Z ∈ free(A),R(X,W )}
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Higher-Order Tableaux (final)

� Higher-order tableaux are triples 〈Γ: R〉 T
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� propositional tableaux as always (do not change Γ or R)

� New quantifier rules
α

ΠAt

AXα
t

α

ΠAf

AY −
f

where

� X,Y − 6∈ dom(Γ)

� Γ′ := Γ, [X : α] and Γ′ := Γ, [Y − : α]

� R′ := R and R′ := R∪ (free(A)×{Y −}).

� substitution rule: If a path in 〈Γ, [X : α] : R〉 T ends in an equation X =? A
with Γ `Σ R(X,A), then generate 〈Γ: R(A/X)〉 [A/X]T .

� Primitive Substitution: If 〈Γ, [X : α] : R〉 T contains a formula (XUn)α, and
A ∈ Gk

α(Σ,Γ, C) with k ∈ ({∧,¬}∪{Πβ |β ∈ T }), then generate 〈Γ∪C : R(A/X)〉 [A/X]T

� Closed Tableau: every branch ends in a trivial equation A=? A or a pre-solved
equation FU 6=? GV.

� tableau-substitution closes the respective branch

� Side conditions

(λXα A) 6=? (λYα B) Z 6∈ dom(Γ)

[Z/X](A) 6=? Z(Y )(B)

(λXα A) 6=? B Z 6∈ dom(Γ)

[Z/X](A) 6=? BZ

where Γ′ = Γ, [Z0 : α] and R′ := R(Z/X)

hUn 6=? hVn h ∈ (Σ∪dom(Γ0)∪dom(Γ−))

U1 6=? V1
∣∣∣ . . . ∣∣∣ Un 6=? Vn

FU=? hV Γ(F ) = α Γ `Σ R(F,G)

F 6=? G
∣∣∣ FU 6=? hV

Here we have

� G ∈ Gh(Σ,∆, C)
� Γ′ = Γ∪C and R′ := R
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Part IV

Axiomatic Set Theory (ZFC)
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Sets are one of the most useful structures of mathematics. They can be used to form the basis
for representing functions, ordering relations, groups, vector spaces, etc. In fact, they can be used
as a foundation for all of mathematics as we know it. But sets are also among the most difficult
structures to get right: we have already seen that “naive” conceptions of sets lead to inconsistencies
that shake the foundations of mathematics.

There have been many attempts to resolve this unfortunate situation and come up a “foundation
of mathematics”: an inconsistency-free “foundational logic” and “foundational theory” on which all
of mathematics can be built.

In this Part we will present the best-known such attempt – and an attempt it must remain
as we will see – the axiomatic set theory by Zermelo and Fraenkel (ZFC), a set of axioms for
first-order logic that carefully manage set comprehension to avoid introducing the “set of all sets”
which leads us into the paradoxes.
Recommended Reading: The – historical and personal – background of the material covered in
this Part is delightfully covered in [DPPDD09].
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Chapter 18

Naive Set Theory

We will first recap “naive set theory” and try to formalize it in first-order logic to get a feeling for
the problems involved and possible solutions.

(Naive) Set Theory [Can95, Can97]

� Definition 18.0.1 A set is “everything that can form a unity in the face of
God”. (Georg Cantor (∗1845, †1918))

� Example 18.0.2 (determination by elementhood relation ∈)

� “the set that consists of the number 7 and the prime divisors of 510510”

� {7, c}, {1, 2, 3, 4, 5n, . . .}, {x |x is an integer}, {X |P(X)}

Questions (extensional/intensional):

� � If c = 7, is {7, c} = {7}?
� Is {X |X ∈ N, X 6= X} = {X |X ∈ N, X2 < 0}?
� yes ; extensional ; no ; intensional ;
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Georg Cantor was the first to systematically develop a “set theory”, introducing the notion of
a “power set” and distinguishing finite from infinite sets – and the latter into denumerable and
uncountable sets, basing notions of cardinality on bijections.

In doing so, he set a firm foundation for mathematics1, even if that needed more work as was
later discovered.
Now let us see whether we can write down the “theory of sets” as envisioned by Georg Cantor in
first-order logic – which at the time Cantor published his seminal articles was just being invented by
Gottlob Frege. The main idea here is to consider sets as individuals, and only introduce a single
predicate – apart from equality which we consider given by the logic: the binary elementhood
predicate.

(Naive) Set Theory: Formalization

1David Hilbert famously exclaimed “No one shall expel us from the Paradise that Cantor has created” in [Hil26,
p. 170]
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� Idea: Use first-order logic (with equality)

� Signature: (sets are individuals) Σ := {∈}
� Extensionality: ∀M,N M = N⇔ (∀X X ∈M⇔X ∈ N)

� Comprehension: (all sets that we can write down exist)
∃M ∀X X ∈M⇔E (schematic in expression E)

� Idea: Define set theoretic concepts from ∈ as signature extensions

Union ∪ ∈ Σf2 ∀M,N,X X ∈ (M ∪N)⇔X ∈M ∨X ∈ N
Intersection ∩ ∈ Σf2 ∀M,N,X X ∈ (M ∩N)⇔X ∈M ∧X ∈ N
Empty Set ∅ ∈ Σf0 ¬ (∃X X ∈ ∅)

and so on.
...

...

©:Michael Kohlhase 164

The central here is the comprehension axiom that states that any set we can describe by writing
down a frist-order formula E – which usually contains the variable X – must exist. This is a direct
implementation of Cantor’s intuition that sets can be “ . . . everything that forms a unity . . . ”. The
usual set-theoretic operators ∪, ∩, . . . can be defined by suitable axioms.
This formalization will now allow to understand the problems of set theory: with great power
comes great responsibility!

(Naive) Set Theory (Problems)

� Example 18.0.3 (The set of all set and friends)
{M |M set}, {M |M set,M ∈M}, . . .

� Definition 18.0.4 (Problem) Russell’s Antinomy:

M := {M |M set,M 6∈M}

the setM of all sets that do not contain themselves.

� Question: IsM∈M? Answer: M∈M iffM 6∈ M.

� What happened?: We have written something down that makes problems

� Solutions: Define away the problems:

weaker comprehension axiomatic set theory now
weaker properties higher-order logic done
non-standard semantics domain theory [Scott] another time
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The culprit for the paradox is the comprehension axiom that guarantees the existence of the “set of
all sets” from which we can then separate out Russell’s set. Multiple ways have been proposed to
get around the paradoxes induced by the “set of all sets”. We have already seen one: (typed) higher-
order logic simply does not allow to write down MM which is higher-order (sets-as-predicates)
way of representing set theory.

114

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


The way we are going to exploren now is to remove the general set comprehension axiom we
had introduced above and replace it by more selective ones that only introduce sets that are known
to be safe.
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Chapter 19

ZFC Axioms

We will now introduce the set theory axioms due to Zermelo and Fraenkel.
We write down a first-order theory of sets by declaring axioms in first-order logic (with equality).
The basic idea is that all individuals are sets, and we can therefore get by with a single binary
predicate: ∈ for elementhood.

Axiomatic Set Theory in First-Order Logic

� Idea: Avoid paradoxes by cautious (axiomatic) Comprehension. ([Zer08])

Ex ∃X X = X There is a set
Ext ∀M,N M = N⇔ (∀X X ∈M⇔X ∈ N) Extensionality
Sep ∀N ∃M ∀Z Z ∈M⇔Z ∈ N ∧E

From a given set N we can separate all members described by
expression E.

� Theorem 19.0.1 ∀M,N (M ⊆N)∧ (N ⊆M)⇒M = N

� Theorem 19.0.2 M is uniquely determined in Sep

� Proof Sketch: With Ext

� Notation 19.0.3 Write {X ∈ N | E} for the set M guaranteed by Sep.

©:Michael Kohlhase 166

Note that we do not have a general comprehension axiom, which allows the construction of sets
from expressions, but the separation axiom Sep, which – given a set – allows to “separate out” a
subset. As this axiom is insufficient to providing any sets at all, we guarantee that there is one in
Ex to make the theory less boring.
Before we want to develop the theory further, let us fix the success criteria we have for our
foundation.

Quality Control

� Question: Is ZFC good? (make this more precise under various views)

foundational: Is ZFC sufficient for mathematics?
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adequate: is the ZFC notion of sets adequate?

formal: is ZFC consistent?

ambitious: Is ZFC complete?

pragmatic: Is the formalization convenient?

computational: does the formalization yield computation-guiding structure?

� Questions like these help us determine the quality of a foundational system or
theory.
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The question about consistency is the most important, so we will address it first. Note that the
absence of paradoxes is a big question, which we cannot really answer now. But we can convince
ourselves that the “set of all sets” cannot exist.

How about Russel’s Antinomy?

� Theorem 19.0.4 There is no universal set

� Proof:

P.1 For each set M , there is a set MR := {X ∈M | X 6∈ X} by Sep.

P.2 show ∀M MR 6∈M
P.3 If MR ∈M , then MR 6∈MR, (also if MR 6∈M)

P.4 thus MR 6∈M or MR ∈MR.

� to get the paradox we would have to separate from the universal set A, to get
AR.

� Great, then we can continue developing our set theory!
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Somewhat surprisingly, we can just use Russell’s construction to our advantage here. So back to
the other questions.

Are there Interesting Sets at all?

� yes, e.g. the empty set

� let M be a set (there is one by Ex; we do not need to know what it is)

� define ∅ := {X ∈M | X 6= X}
� ∅ is empty and uniquely determined by Ext.

� Definition 19.0.5 Intersections: M ∩N := {X ∈M | X ∈ N}

Question: How about M ∪N? or N?

�� Answer: we do not know they exist yet! (need more axioms)
Hint: consider Dι = {∅, {∅}, {{∅}}, . . .}
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So we have identified at least interesting set, the empty set. Unfortunately, the existence of the
intersection operator is no big help, if we can only intersect with the empty set. In general, this is
a consequence of the fact that Sep – in contrast to the comprehension axiom we have abolished
– only allows to make sets “smaller”. If we want to make sets “larger”, we will need more axioms
that guarantee these larger sets. The design contribution of axiomatic set theories is to find a
balance between “too large” – and therefore paradoxical – and “not large enough” – and therefore
inadequate.
Before we have a look at the remaining axioms of ZFC, we digress to a very influential experiment
in developing mathematics based on set theory.
“Nicolas Bourbaki” is the collective pseudonym under which a group of (mainly French) 20th-
century mathematicians, with the aim of reformulating mathematics on an extremely abstract
and formal but self-contained basis, wrote a series of books beginning in 1935. With the goal of
grounding all of mathematics on set theory, the group strove for rigour and generality.

Is Set theory enough? ; Nicolas Bourbaki

� Is it possible to develop all of Mathematics from set theory?
; N. Bourbaki: Éléments de Mathématiques/ (there is only one mathematics)

� Original Goal: A modern textbook on calculus.

� Result: 40 volumes in nine books from 1939 to 1968

Set Theory [Bou68] Functions of one real variable Commutative Algebra
Algebra [Bou74] Integration Lie Theory
Topology [Bou89] Topological Vector Spaces Spectral Theory

� Contents:

� starting from set theory all of the fields above are developed.

� All proofs are carried out, no references to other books.
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Even though Bourbaki has dropped in favor in modern mathematics, the universality of axiomatic
set theory is generally acknowledged in mathematics and their rigorous style of exposition has
influenced modern branches of mathematics.
The first two axioms we add guarantee the unions of sets, either of finitely many – ∪Ax only
guarantees the union of two sets – but can be iterated. And an axiom for unions of arbitrary
families of sets, which gives us the infinite case. Note that once we have the ability to make finite
sets,

⋃
Ax makes ∪Ax redundant, but minimality of the axiom system is not a concern for us

currently.

The Axioms for Set Union

� Axiom 19.0.6 (Small Union Axiom (∪Ax)) For any setsM andN there
is a set W , that contains all elements of M and N .
∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W
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� Definition 19.0.7 M ∪N := {X ∈W | X ∈M ∨X ∈ N} (exists by
Sep.)

� Axiom 19.0.8 (large Union Axiom (
⋃
Ax)) For each set M there is a

set W , that contains the elements of all elements of M .
∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

� Definition 19.0.9
⋃

(M) := {X | ∃Y Y ∈M ∧X ∈ Y } (exists by Sep.)

� This also gives us intersections over families (without another axiom):

� Definition 19.0.10⋂
(M) := {Z ∈

⋃
(M) | ∀X X ∈M⇒Z ∈ X}
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In Definition 19.0.10 we note that
⋃
Ax also guarantees us intersection over families. Note that

we could not have defined that in analogy to Definition 19.0.5 since we have no set to separate
out of. Intuitively we could just choose one element N from M and define⋂

(M) := {Z ∈ N | ∀X X ∈M⇒Z ∈ X}

But for choice from an infinite set we need another axiom still.
The power set axiom is one of the most useful axioms in ZFC. It allows to construct finite
sets.

The Power Set Axiom

� Axiom 19.0.11 (Power Set Axiom) For each set M there is a set W
that contains all subsets of M : ℘Ax := (∀M ∃W ∀X (X⊆M)⇒X ∈W )

� Definition 19.0.12 Power Set: P(M) := {X |X⊆M} (Exists by Sep.)

� Definition 19.0.13 singleton set: {X} := {Y ∈ P(X) | X = Y }

� Axiom 19.0.14 (Pair Set (Axiom)) (is often assumed instead of ∪Ax)

Given sets M and N there is a set W that contains exactly the elements M
and N : ∀M,N ∃W ∀X X ∈W ⇔ (X = N)∨ (X = M)

� Is derivable from ℘Ax: {M,N} := {M} ∪ {N}.

� Definition 19.0.15 (Finite Sets) {X,Y, Z} := {X,Y } ∪ {Z}. . .

� Theorem 19.0.16 ∀Z,X1, . . ., Xn Z ∈ {X1, . . ., Xn}⇔Z = X1 ∨ . . .∨Z = Xn
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The Foundation Axiom

� Axiom 19.0.17 (The foundation Axiom (Fund)) Every non-empty set
has a ∈-minimal element,.
∀X X 6= ∅⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y ))
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� Theorem 19.0.18 There are no infinite descendig chains . . . , X2, X1, X0

and thus no cycles . . . X1, X0, . . . , X2, X1, X0.

� Definition 19.0.19 Fund guarantees a hierarchical structure (von Neumann
Hierarchy) of the universe. 0. order: ∅, 1. order: {∅}, 2. order: all subsets of
1. order, · · ·

� Note: In contrast to a Russel-style typing where sets of differernt type are
distinct, this categorization is cummulative
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The Infinity Axiom

� We already know a lot of sets

� z.B. ∅, {∅}, {{∅}}, . . . (iterated singleton set)

� or ∅, {∅}, {∅, {∅}}, . . . (iterated pair set)

But: Does the set N of all members of these sequences?

� Axiom 19.0.20 (Infinity Axiom (∞Ax)) There is a set that contains ∅
and with each X also X ∪ {X}.
∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 19.0.21 M is inductive: Ind(M) := ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M).

� Definition 19.0.22 Set of the Inductive Set: ω := {Z | ∀W Ind(W )⇒Z ∈W}

� Theorem 19.0.23 ω is inductive.
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The Replacement Axiom

� We have ω, ℘(M), but not {ω, ℘(ω), ℘(℘(ω)), . . .}.

� Axiom 19.0.24 (The Replacement Axiom (Schema): Rep) If for each
X there is exactly one Y with property P(X,Y ), then for each set U , that
contains these X, there is a set V that contains the respective Y .
(∀X ∃1 Y P(X,Y ))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y )⇒Y ∈ V )

� Intuitively: A right-unique propertyP induces a replacement ∀U ∃V V = {F (X) |X ∈ U}.

� Example 19.0.25 Let U = {1, {2, 3}} and P(X⇔Y )⇔ (∀Z Z ∈ Y ⇒Z = X),
then the induced function F maps each X to the set V that contains X, i.e.
V = {{X} |X ∈ U = {{1}, {{2, 3}}}}.
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Zermelo Fraenkel Set Theory
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� Definition 19.0.26 (Zermelo Fraenkel Set Theory) We call the first-
order theory given by the axioms below Zermelo/Fraenkel set theory and denote
it by ZF.

Ex ∃X X = X
Ext ∀M,N M = N⇔ (∀X X ∈M⇔X ∈ N)
Sep ∀N ∃M ∀Z Z ∈M⇔Z ∈ N ∧E
∪Ax ∀M,N ∃W ∀X (X ∈M ∨X ∈ N)⇒X ∈W⋃
Ax ∀M ∃W ∀X,Y Y ∈M⇒X ∈ Y ⇒X ∈W

℘Ax ∀M ∃W ∀X (X⊆M)⇒X ∈W
∞Ax ∃M ∅ ∈M ∧ (∀Z Z ∈M⇒ (Z ∪ {Z}) ∈M)
Rep (∀X ∃1 Y P(X,Y ))⇒ (∀U ∃V ∀X,Y X ∈ U ∧P(X,Y )⇒Y ∈ V )
Fund ∀X X 6= ∅⇒ (∃Y Y ∈ X ∧¬ (∃Z Z ∈ X ∧Z ∈ Y ))
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The Axiom of Choice

� Axiom 19.0.27 (The axiom of Choice :AC) For each set X of non-
empty, pairwise disjoint subsets there is a set that contains exactly one element
of each element of X.
∀X,Y, Z Y ∈ X ∧Z ∈ X ⇒ Y 6= ∅∧ (Y = Z ∨Y ∩Z = ∅)⇒ ∃U ∀V V ∈ X⇒ (∃W U ∩V = {W})

� This axiom assumes the existence of a set of representatives, even if we cannot
give a construction for it. ; we can “pick out” an arbitrary element.

� Reasons for AC:

� Neither ZF ` AC, nor ZF ` ¬AC

� So it does not harm?

� Definition 19.0.28 (Zermelo Fraenkel Set Theory with Choice) The
theory ZF together with AC is called ZFC with choice and denoted as ZFC.
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Chapter 20

ZFC Applications

Limits of ZFC

� Conjecture 20.0.1 (Cantor’s Continuum Hypothesis (CH)) There is
no set whose cardinality is strictly between that of integers and real numbers.

� Theorem 20.0.2 If ZFC is consistent, then neither CH nor ¬CH can be
derived. (CH is independent of ZFC)

� The axiomatzation of ZFC does not suffice

� There are other examples like this.
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Ordered Pairs

� Empirically: In ZFC we can define all mathematical concepts.

� For Instance: We would like a set that behaves like an odererd pair

� Definition 20.0.3 Define 〈X,Y 〉 := {{X}, {X,Y }}

� Lemma 20.0.4 〈X,Y 〉 = 〈U, V 〉⇒X = U ∧Y = V

� Lemma 20.0.5 U ∈ X ∧V ∈ Y ⇒〈U, V 〉 ∈ P(P(X ∪ Y ))

� Definition 20.0.6 left projection: πl(X) =

{
U if ∃V X = 〈U, V 〉
∅ if X is no pair

� Definition 20.0.7 right projection πr analogous.
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Relations

� All mathematical objects are represented by sets in ZFC, in particular relations
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� Definition 20.0.8 The Cartesian produkt of X and Y
X ×Y := {Z ∈ P(P(X ∪ Y )) | Z is ordered pair with πl(Z) ∈ X ∧πr(Z) ∈ Y }
A relation is a subset of a Cartesian product.

� Definition 20.0.9 The domain and codomain of a function are defined as
usual

Dom(X) =

{
{πl(Z) |Z ∈ X} if if X is a relation;

∅ else

coDom(X) =

{
{πr(Z) |Z ∈ X} if if X is a relation;

∅ else

but they (as first-order functions) must be total, so we (arbitrarily) extend them
by the empty set for non-relations
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Functions

� Definition 20.0.10 A function f from X to Y is a right-unique relation with
Dom(f) = X and coDom(f) = Y ; write f : X → Y .

� Definition 20.0.11 function application: f(X) =

{
Y if f function and 〈X,Y 〉 ∈ f
∅ else
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Domain Language vs. Representation Language

� Note: Relations and functions are objects of set theory, ZFC ∈ is a predicate
of the representation language

� predicates and functions of the representation language can be expressed in
the object language:

� ∀A ∃R R = {〈U, V 〉 |U ∈ A∧V ∈ A∧ p(U ∧V )} for all predicates p.
� ∀A ∃F F = {〈X, f(X)〉 |X ∈ A} for all functions f .

� As the natural numbers can be epxressed in set theory, the logical calculus can
be expressed by Gödelization.
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Part V

Knowledge Representation
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In the third and final part of the course, we will look into logic-based formalisms for knowledge
representation and their application in the “Semantic Web”.
The field of “Knowledge Representation” is usually taken to be an area in Artificial Intelligence
that studies the representation of knowledge in formal system and how to leverage inferencing
techniques to generate new knowledge items from existing ones.
Note that this definition coincides with with what we know as “logical systems” in this course.
This is the view taken by the subfield of “description logics”, but restricted to the case, where the
logical systems have a entailment relation to ensure applicability.
This Part is organized as follows. We will first give a general introduction to the concepts of knowl-
edge representation using semantic networks – an early and very intuitive approach to knowledge
representation – as an object-to-think-with. In Chapter 21 we introduce the principles and ser-
vices of logic-based knowledge-representation using a non-standard interpretation of propositional
logic as the basis, this gives us a formal account of the taxonomic part of semantic networks. In
Chapter 22 we introduce the logic ALC that adds relations (called “roles”) and restricted quantifi-
cation and thus gives us the full expressive power of semantic networks. Thus ALC can be seen
as a prototype description logic. In Chapter 23 we show how description logics are applied as the
basis of the “semantic web”, and finally in Chapter 24 we show various extensions of ALC an their
inference procedures.
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Chapter 21

Introduction to Knowledge
Representation

Before we start into the development of description logics, we set the stage by looking into alter-
natives for knowledge representation.

21.1 Knowledge & Representation

To approach the question of knowledge representation, we first have to ask ourselves, what knowl-
edge might be. This is a difficult question that has kept philosophers occupied for millennia. We
will not answer this question in this course, but only allude to and discuss some aspects that are
relevant to our cause of knowledge representation.

What is knowledge? Why Representation?

� According to Probst/Raub/Romhardt [PRR97]

For the purposes of this course: Knowledge is the information necessary to
support intelligent reasoning

�

representation can be used to determine
set of words whether a word is admissible
list of words the rank of a word
a lexicon translation or grammatical function
structure function
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According to an influential view of [PRR97], knowledge is appears in layers. Staring with a
character set that defines a set of glyphs, we can add syntax that turns mere strings into data.
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Adding context information gives information, and finally, by relating the information to other
information allows to draw conclusions, turning information into knowledge.
Note that we already have aspects of representation and function in the diagram at the top of the
slide. In this, the additional functions added in <the successive layers give the representations more
and more function, until we reach the knowledge level, where the function is given by inferencing.
In the second example, we can see that representations determine possible functions.
Let us now strengthen our intuition about knowledge by contrasting knowledge representations
from “regular” data structures in computation.

Knowledge Representation vs. Data Structures

� Representation as structure and function.

� the representation determines the content theory (what is the data?)

� the function determines the process model(what do we do with the data?)

� Why do we use the term “knowledge representation” rather than

� data structures? (sets, lists, ... above)

� information representation? (it is information)

� no good reason other than AI practice, with the intuition that

� data is simple and general (supports many algorithms)

� knowledge is complex (has distinguished process model)
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As knowledge is such a central notion in artificial intelligence, it is not surprising that there are
multiple approaches to dealing with it. We will only deal with the first one and leave the others
to self-study.

Some Paradigms for Knowledge Representation in AI/NLP

� GOFAI (good old-fashioned AI)

� symbolic knowledge representation, process model based on heuristic search

� statistical, corpus-based approaches.

� symbolic representation, process model based on machine learning

� knowledge is divided into symbolic- and statistical (search) knowledge

� connectionist approach (not in this course)

� sub-symbolic representation, process model based on primitive processing
elements (nodes) and weighted links

� knowledge is only present in activation patters, etc.
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When assessing the relative strengths of the respective approaches, we should evaluate them with
respect to a pre-determined set of criteria.
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KR Approaches/Evaluation Criteria

� Expressive Adequacy: What can be represented, what distinctions are sup-
ported.

� Reasoning Efficiency: can the representation support processing that generates
results in acceptable speed?

� Primitives: what are the primitive elements of representation, are they intuitive,
cognitively adequate?

� Meta-representation: knowledge about knowledge

� Incompleteness: the problems of reasoning with knowledge that is known to
be incomplete.

©:Michael Kohlhase 186

21.2 Semantic Networks

To get a feeling for early knowledge representation approaches from which description logics de-
veloped, we take a look at “semantic networks” and contrast them to logical approaches.
Semantic networks are a very simple way of arranging concepts and their relations in a graph.

Semantic Networks [CQ69]

� Definition 21.2.1 A semantic network is a directed graph for representing
knowledge:

� nodes represent concepts (e.g. bird, John, robin)

� links represent relations between these (isa, father_of, belongs_to)

� Example 21.2.2 A semantic net for birds and persons:

wings

Mary

John

robin

bird Jack

has_part

loves

owner_of

instisa

Problem: how do we do inference from such a network?

�� Idea: encode taxonomic information about concepts and individuals

� in “isa” links (inclusion of concepts)

� in “inst” links (concept memberships)

� use property inheritance along “isa” and “inst” in the process model
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Even though the network in Example 21.2.2 is very intuitive (we immediately understand the
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concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.
Another problem is that the semantic net in Example 21.2.2 confuses two kinds of concepts:
individuals (represented by proper names like John and Jack) and concepts (nouns like robin and
bird). Even though the “isa” and “inst” links already acknowledge this distinction, the “has_part”
and “loves” relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

� Example 21.2.3 From the network

ClydeRexRoy

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

infer that elephants have legs and that Clyde is gray.

� Definition 21.2.4 We call the subgraph of a semantic network N spanned
by the “isa” relations the terminology (or TBox, or the famous Isa-Hierarchy)
and the subgraph spanned by the “inst” relation the assertions (or ABox) of N .
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But there are sever shortcomings of semantic networks: the suggestive shape and node names give
(humans) a false sense of meaning, and the inference rules are only given in the process model
(the implementation of the semantic network processing system).

This makes it very difficult to assess the strength of the inference system and make assertions
e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link names are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational
semantics)

Problem: No distinction of optional and defining traits

�� Example 21.2.5 Consider a robin that has lost its wings in an accident
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wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

Cancel-links have been proposed, but their status and process model are de-
batable.
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To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

Another Notation for Semantic Networks

� Definition 21.2.6 (Idea) function/argument notation for semantic networks

� interprets nodes as arguments (reification to individuals)

� interprets links as functions (logical relations)

� Example 21.2.7

wings

Mary

John

robin

bird Jack

has_part

loves

owner_of

instisa isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

Evaluation:

� + linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in ProLog)

– worse locality properties (networks are associative)
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Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple
(English) sentences. This will play a role in the “semantic web” later.
Building on the function/argument notation from above, we can now give a formal semantics for
semantic networks: we translate into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Extension: take isa/inst concept/individual distinction into account
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wings

Mary

John

robin

bird Jack

has_part

loves

owner_of

instisa robin⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner_of(John, Jack)
loves(John,Mary)

� Observation: this looks like first-order logic, if we take

� A⊆B to mean ∀X A(X)⇒B(X)

� a ∈ S to mean S(a)

� haspart(A,B) to mean ∀X A(X)⇒ (∃Y B(Y )∧ part_of(X,Y ))

� Idea: Take first-order deduction as process model (gives inheritance for free)
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Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning
to the semantic networks. Note that this only holds only for the features of semantic networks
that are representable in this way, e.g. the cancel links shown above are not (and that is a feature,
not a bug).
But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.
Before we go on, let us have a look at an important application of knowledge representation
technologies: the Semantic Web.

21.3 The Semantic Web

The Semantic Web

� Definition 21.3.1 The semantic web is a collaborative movement led by the
W3C that promotes the inclusion of semantic content in web pages with the aim
of t converting the current web, dominated by unstructured and semi-structured
documents into a machine-understandable “web of data”.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 21.3.2 We want to find information that is not explicitly repre-
sented (in one
place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .
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Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . . ] John F. Kennedy (starting
January 20)

Humans can read (and understand) the text and combine the information to
get the answer.
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The term “Semantic Web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).
To see that problems have to be solved, to arrive at the “Semantic Web”, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong
Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Nor-
way,
Singapore, Switzerland, the United Kingdom, the United States,
Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation
internet.

©:Michael Kohlhase 193

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce
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S〈e∇ato\Wa〉‖〉‖〉Hotel
Ho\olulu⇔Hawa〉〉⇔USA
7↖∞∞Ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙

S√ea‖e∇∫co\{〉∇med

T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et↙

©:Michael Kohlhase 194

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om
Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</participants>

</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖
\et<speaker>
</program>
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What can we do with this?
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� Example 21.3.3 Consider the following fragments:

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>

Given the markup above, we can

� parse 7↖∞∞Ma†∈′′∈ as the date May 7-11 2002 and add this to the user’s
calendar.

� parse S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA as a destination and find
flights.

But: do not be deceived by your ability to understand English
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We have to obfuscate the markup as well, since it does not carry any meaning to the machine
intrinsically either.

�What the machine sees of the XML

<t〉tle>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</√lace>

<date>7↖∞∞Ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om
Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔
I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>
<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖
\et<∫√ea‖e∇>

</√∇o}∇am>

©:Michael Kohlhase 197

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from knowledge representation come into play
To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).
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The Current Web
� Resources: identified by URI’s, un-
typed

� Links: href, src, . . . limited, non-
descriptive

� User: Exciting world - semantics of
the resource, however, gleaned from
content

� Machine: Very little information
available - significance of the links
only evident from the context around
the anchor.
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Let us now contrast this with the envisioned semantic web.

The Semantic Web
� Resources: Globally Identified by
URI’s or Locally scoped (Blank), Ex-
tensible, Relational

� Links: Identified by URI’s, Extensi-
ble, Relational

� User: Even more exciting world,
richer user experience

� Machine: More processable informa-
tion is available (Data Web)

� Computers and people: Work, learn
and exchange knowledge effectively
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Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with
that.
The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Need to add “Semantics”

� External agreement on meaning of annotations E.g., Dublin Core

� Agree on the meaning of a set of annotation tags

� Problems with this approach: Inflexible, Limited number of things can be
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expressed

� Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [HASB13b] and ontolo-
gies on OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge (e.g. chaining multiple facts from
Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)
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21.4 Other Knowledge Representation Approaches

Now that we know what semantic networks mean, let us look at a couple of other approaches that
were influential for the development of knowledge representation. We will just mention them for
reference here, but not cover them in any depth.

Frame Notation as Logic with Locality

� Predicate Logic: (where is the locality?)

catch_22 ∈ catch_object There is an instance of catching
catcher(catch_22, jack_2) Jack did the catching
caught(catch_22, ball_5) He caught a certain ball

� Frame Notation (group everything around the object)

(catch_object catch_22
(catcher jack_2)
(caught ball_5))

+ Once you have decided on a frame, all the information is local

+ easy to define schemes for concepts (aka. types in feature structures)

– how to determine frame, when to choose frame (log/chair)
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KR involving Time (Scripts [Shank ’77])
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� Idea: organize typical event sequences, actors and props into representation
structure

� Example 21.4.1 getting your hair
cut (at a beauty parlor)

� props, actors as “script variables”

� events in a (generalized) sequence

� use script material for

� anaphors, bridging references

� default common ground

� to fill in missing material into sit-
uations

big tip small tip

happy unhappy

pay

Beautician cuts hair

tell receptionist you’re here

go into beauty parlor

make appointment
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Other Representation Formats (not covered)

� Procedural Representations (production systems)

� analogical representations (interesting but not here)

� iconic representations (interesting but very difficult to formalize )

� If you are interested, come see me off-line

©:Michael Kohlhase 203
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Chapter 22

Logic-Based Knowledge
Representation

We now turn to knowledge representation approaches that are based on some kind of logical
system. These have the advantage that we know exactly what we are doing: as they are based
on symbolic representations and declaratively given inference calculi as process models, we can
inspect them thoroughly and even prove facts about them.

Logic-Based Knowledge Representation

� Logic (and related formalisms) have a well-defined semantics

� explicitly (gives more understanding than statistical/neural methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by log. calculi (combinatorial explosion)

One possible answer: Description Logics. (next couple of times)
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But of course logic-based approaches have big drawbacks as well. The first is that we have to obtain
the symbolic representations of knowledge to do anything – a non-trivial challenge, since most
knowledge does not exist in this form in the wild, to obtain it, some agent has to experience the
word, pass it through its cognitive apparatus, conceptualize the phenomena involved, systematize
them sufficiently to form symbols, and then represent those in the respective formalism at hand.

The second drawback is that the process models induced by logic-based approaches (inference
with calculi) are quite intractable. We will see that all inferences can be played back to satisfiability
tests in the underlying logical system, which are exponential at best, and undecidable or even
incomplete at worst.

Therefore a major thrust in logic-based knowledge representation is to investigate logical sys-
tems that are expressive enough to be able to represent most knowledge, but still have a decidable
– and maybe even tractable in practice – satisfiability problem. Such logics are called “description
logics”. We will study the basics of such logical systems and their inference procedures in the
following.
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22.1 Propositional Logic as a Set Description Language

Before we look at “real” description logics in Chapter 22, we will make a “dry run” with a logic we
already understand: propositional logic, which we will re-interpret the system as a set description
language by giving a new, non-standard semantics. This allows us to already preview most of
the inference procedures and knowledge services of knowledge representation systems in the next
Section.
To establish propositional logic as a set description language, we use a different interpretation
than usual. We interpret propositional variables as names of sets and the logical connectives as
set operations, which is why we give them a different – more suggestive – syntax.

� Propositional Logic as Set Description Language

� Idea: use propositional logic as a set description language (variant syntax)

� sets represented as “concepts” (via propositional variables)

� concept intersection (u) (via conjunction ∧)
� concept complement (·) (via negation ¬)
� concept union (t), subsumption (v), and equality (≡) defined from these.

(=̂ ∧, ⇒, and ⇔)

� Example 22.1.1

concepts Set Semantics

child
daughter
son

daughterssons

children
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We elaborate the idea of PL0 as a set description language by giving a variant – set theoretic –
semantics as well.

Set-Theoretic Semantics of Axioms

� Definition 22.1.2 (Formal Semantics)
Let D be a given set (called the domain) and ϕ : Vo → P(D), then

� [[P ]] := ϕ(P ), (remember ϕ(P )⊆D).
� [[AtB]] = [[A]]∪ [[B]] and

[[
A
]]

= D\[[A]]. . .

Let L be given by L :== C | > | ⊥ | L | LuL | LtL | L v L | L ≡ L, then
we denote the logical system L,D, [[·]] with PL0

DL.

� Set-Theoretic Semantics of ‘true’ and ‘false’ (> = ϕtϕ ⊥ = ϕuϕ)

[[⊥]] = [[p]]∪ [[p]] = [[p]]∪ [[p]] = D Analogously: [[⊥]] = ∅
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Idea: Use logical axioms to describe the world (Axioms restrict the class of
admissible domain structures)

�� Definition 22.1.3 (Set-Theoretic Semantics of Axioms) A is true in
domain D iff [[A]] = D
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The main use of the set-theoretic semantics for PL0 is that we can use it to give meaning to
“concept axioms”, which we use to describe the “world”.

Concept axioms are used to restrict the set of admissible domains to the intended ones. In our
situation, we require them to be true – as usual – which here means that they denote the whole
domain D.
The set-theoretic semantics introduced above is compatible with the regular semantics of proposi-
tional logic, therefore we have the same propositional identities. Their validity can be established
directly from the settings in Definition 22.1.2.

Propositional Identities

Name for u for t
Idenpot. ϕuϕ = ϕ ϕtϕ = ϕ
Identity ϕu> = ϕ ϕt⊥ = ϕ
Absorpt. ϕt> = > ϕu⊥ = ⊥
Commut. ϕuψ = ψ uϕ ϕtψ = ψ tϕ
Assoc. ϕu (ψ u θ) = (ϕuψ)u θ ϕt (ψ t θ) = (ϕtψ)t θ
Distrib. ϕu (ψ t θ) = ϕuψ tϕu θ ϕtψ u θ = (ϕtψ)u (ϕt θ)
Absorpt. ϕu (ϕt θ) = ϕ ϕtϕu θ = ϕu θ
Morgan ϕuψ = ϕtψ ϕtψ = ϕuψ
dneg ϕ = ϕ
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Let us fortify our intuition about concept axions with a simple example about the sibling rela-
tion. We tive four concept axions and study their effect on the admissible models by looking
at the respective Venn diagrams. In the end we see that in all admissible models, the denota-
tions of the concepts son and daughter are disjoint, and child is the union of the two – just as
intended.

Effects of Axioms to Siblings
Axioms Semantics

son v child
iff [[son]]∪ [[child]] = D
iff [[son]]⊆ [[child]]

daughter v child
iff

[[
daughter

]]
∪ [[child]] = D

iff [[daughter]]⊆ [[child]]

daughterssons

children

sonu daughter
child v (sont daughter)

daughterssons

daughterssons

children
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There is another way we can approach the set description interpretation of propositional logic: by
translation into a logic that can express knowledge about sets – first-order logic.

Set-Theoretic Semantics and Predicate Logic
Definition 22.1.4
Translation into PL1 (borrow
semantics from that)

� recursively add argument
variable x

� change back u,t,v,≡
to ∧,∨,⇒,⇔

� universal closure for x at
formula level.

Definition Comment
pfo(x) := p(x)

A
fo(x)

:= ¬Afo(x)

AuBfo(x) := A
fo(x) ∧Bfo(x) ∧ vs. u

AtBfo(x) := A
fo(x) ∨Bfo(x) ∨ vs. t

A v B
fo(x)

:= A
fo(x)⇒B

fo(x) ⇒ vs. v
A = B

fo(x)
:= (A

fo(x)⇔B
fo(x)

) ⇔ vs. =

A
fo

:= (∀x A
fo(x)

) for formulae
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Normally, we embed PL0 into PL1 by mapping propositional
variables to atomic predicates and the connectives to them-
selves. The purpose of this embedding is to “talk about
truth/falsity of assertions”. For “talking about sets” we use
a non-standard embedding: propositional variables in PL0 are
mapped to first-order predicates, and the propositional con-
nectives to corresponding set operations. This uses the con-
vention that a set S is represented by a unary predicate pS (its
characteristic predicate), and set membership a ∈ S as pS(a).

PL0

PL1

ϕ

undecideable

decideable

ϕ :=

 Xo 7→ pα→o
∧ 7→ u
¬ 7→ ·



Translation Examples

� Example 22.1.5

son v child
fo

= ∀x son(x)⇒ child(x)

daughter v child
fo

= ∀x daughter(x)⇒ child(x)

(son v daughter)
fo

= ∀x son(x)∧ daughter(x)

child v (sont daughter)
fo

= ∀x child(x)⇒ son(x)∨ daughter(x)

� What are the advantages of translation to PL1?

� theoretically: A better understanding of the semantics

� computationally: Description Logic Framework, but NOTHING fo PL0

� we can follow this pattern for richer description logics
� many tests are decidable for PL0, but not for PL1 (Description
Logics?)
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22.2 Ontologies and Description Logics

We have seen how sets of concept axioms can be used to describe the “world” by restricting the set
of admissible models. We want to call such concept descriptions “ontologies” – formal descriptions
of (classes of) objects and their relations.

Ontologies aka. “World Descriptions”

� Definition 22.2.1 (Classical) An ontology is a representation of the types,
properties, and interrelationships of the entities that really or fundamentally
exist for a particular domain of discourse.

� Remark: Definition 22.2.1 is very general, and depends on what we mean by
“representation”, “entities”, “types”, and “interrelationships”.

This may be a feature, and not a bug, since we can use the same intuitions
across a variety of representations.

� Definition 22.2.2 An ontology consists of a representation format L and
statements (expressed in L )about

� Individuals: concrete instances of objects in the domain,

� concepts: classes of individuals that share properties and aspects, and

� relations: ways in which classes and individuals can be related to one an-
other

� Example 22.2.3 Semantic networks are ontologies (relatively informal)

� Example 22.2.4 PL0
DL is an ontology format (formal, but relatively weak)

� Example 22.2.5 PL1 is an ontology format as well. (formal, expressive)
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As we will see, the situation for PL0
DL is typical for formal ontologies (even though it only offers

concepts), so we state the general description logic paradigm for ontologies. The important idea
is that having a formal system as an ontology format allows us to capture, study, and implement
ontological inference.

The Description Logic Paradigm

� Idea: Build a whole family of logics for describing sets and their relations(tailor
their expressivity and computational properties)

� Definition 22.2.6 A description logic is a formal system for talking about
sets and their relations that is at least as expressive as PL0 with set-theoretic
semantics and offers individuals and relations.

A description logic has the following four components
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� a formal language L with logical con-
stants u, ·, t, v, and ≡.

� a set-theoretic semantics D, [[·]]

� a translation into first-order logic that is
compatible with D, [[·]].

� a calculus for L that induces a decision
procedure for L-satisfiability. PL0

DL

PL1

ϕ

ψ

undecideable

decideable

ψ :=

 C 7→ pα→o

u 7→ ∩
· 7→ D\·


ϕ :=

 Xo 7→ C
∧ 7→ u
¬ 7→ ·


� Definition 22.2.7 Given a description logic D, D-ontology consists of

� a terminology (or TBox): concepts and roles and a set of concept axioms
that describe them, and

� assertions (or ABox): a set of individuals and statements about concept
membership and role relationships for them.
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For convenience we add concept definitions as a mechanism for defining new concepts from old ones.
The so-defined concepts inherit the properties from the concepts they are defined from.

TBoxes in Description Logics

� Let D be a description logic with concepts C.

� Definition 22.2.8 A concept definition is a pair c = C, where c is a new
concept name and C ∈ C is a D-formula.

� Definition 22.2.9 A concept definition c = C is called recursive, iff c occurs
in C.

� Example 22.2.10 We can define mother = womanu has_child.

� Definition 22.2.11 An TBox is a finite set of concept definitions and concept
axioms. It is called acyclic, iff it does not contain recursive definitions.

� Definition 22.2.12 A formula A is called normalized wrt. an TBox T , iff it
does not contain concept names defined in T . (convenient)

� Definition 22.2.13 (Algorithm) (for arbitrary DLs)

Input: A formula A and a TBox T .

� While [A contains concept name c and T a concept definition c = C]

� substitute c by C in A.

� Lemma 22.2.14 This algorithm terminates for acyclic TBoxes, but results
can be exponentially large.
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As PL0
DL does not offer any guidance on this, we will leave the discussion of ABoxes to Section 23.2

when we have introduced our first proper description logic ALC.
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22.3 Description Logics and Inference

Now that we have established the description logic paradigm, we will have a look at the inference
services that can be offered on this basis.
Before we go into details of particular description logics, we must ask ourselves what kind of
inference support we would want for building systems that support knowledge workers in building,
maintaining and using ontologies. An example of such a system is the Protégé system [Pro], which
can serve for guiding our intuition.

Kinds of Inference in Description Logics

� Consistency test (is a concept definition satisfiable?)

� Subsumption test (does a concept subsume another?)

� Instance test (is an individual an example of a concept?)

� . . .

� Problem: decidability, complexity, algorithm
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We will now through these inference-based tests separately.
The consistency test checks for concepts that do not/cannot have instances. We want to avoid such
concepts in our ontologies, since they clutter the namespace and do not contribute any meaningful
contribution.

Consistency Test

� Example 22.3.1 T-Box

woman = personu has_Y person without y-chromosome
man = personu has_Y person with y-chromosome

hermaphrodite = manuwoman man and woman

� This specification is inconsistent, i.e. [[hermaphrodite]] = ∅ for all D, ϕ.

� Algorithm: propositional satisfiability test (NP-complete) we know how to do
this, e.g. tableau, resolution.
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Even though consistency in our example seems trivial, large ontologies can make machine support
necessary. This is even more true for ontologies that change over time. Say that an ontology
initially has the concept definitions woman = personu long_hair and man = personu bearded,
and then is modernized to a more biologically correct state. In the initial version the concept
hermaphrodite is consistent, but becomes inconsistent after the renovation; the authors of the
renovation should be made aware of this by the system.
The subsumption test determines whether the sets denoted by two concepts are in a subset relation.
The main justification for this is that humans tend to be aware of concept subsumption, and tend
to think in taxonomic hierarchies. To cater to this, the subsumption test is useful.
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Subsumption Test

� Example 22.3.2 in this case trivial

Axioms entailed subsumption relation
woman = personu has_Y woman v person
man = personu has_Y man v person

Reduction to consistency test: (need to implement only one)
Axioms⇒A⇒B is valid iff Axioms∧A∧¬B is inconsistent.

�� Definition 22.3.3 A subsumes B (modulo an axiom set A)
iff [[B]]⊆ [[A]] for all interpretations D, that satisfy A
iff Axioms⇒B⇒A is valid

� in our example: person subsumes woman and man
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The good news is that we can reduce the subsumption test to the consistency test, so we can
re-use our existing implementation.
The main user-visible service of the subsumption test is to compute the actual taxonimy induced
by an ontology.

Classification

� The subsumption relation among all concepts (subsumption graph)

� Visualization of the Subsumption graph for inspection (plausibility)

� Definition 22.3.4 Classification is the computation of the subsumption graph.

� Example 22.3.5 (not always so trivial)

male_student female_student boy girl

man woman student professor child

person

object
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If we take stock of what we have developed so far, then we can see PL0
DL as a rational reconstruc-

tion of semantic networks restricted to the “isa” relation. We relegate the “instance” relation to
Section 23.2.
This reconstruction can now be used as a basis on which we can extend the expressivity and
inference procedures without running into problems.
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Chapter 23

A simple Description Logic: ALC

In this Chapter, we instantiate the description-logic paradigm further with the prototypical logic
ALC, which we will introduce now.

23.1 Basic ALC: Concepts, Roles, and Quantification

In this Section, we instantiate the description-logic paradigm with prototypical logic ALC, which
we will devleop now.

Motivation for ALC (Prototype Description Logic)

� Propositional logic (PL0) is not expressive enough

� Example 23.1.1 “mothers are women that have a child”

� Reason: there are no quantifiers in PL0 (existential (∃) and universal (∀))

� Idea: use first-order predicate logic (PL1)

∀x mother(x)⇔woman(x)∧ (∃y has_child(x, y))

� Problem: complex algorithms, non-termination (PL1 is too expressive)

� Idea: Try to travel the middle ground
more expressive than PL0 (quantifiers) but weaker than PL1 (still tractable)

� Technique: Allow only “restricted quantification”, where quantified variables
only range over values that can be reached via a binary relation like has_child.
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More ALC Examples

� caru∃ has_part (∃made_in EU) (cars that have at least one part that has
not been made in the EU)

� studentu∀ audits_course graduatelevelcourse (students, that only audit
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graduate level courses)

� houseu∀ has_parking off_street (houses with off-street parking)

� Note: p v q can still be used as an abbreviation for pt q.

� studentu∀ audits_course (∃ hastutorial > v ∀ has_TA woman) (students
that only audit courses that either have no tutorial or tutorials that are TAed
by women)
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As before we allow concept definitions so that we can express new concepts from old ones, and
obtain more concise descriptions.

ALC Concept Definitions

� Define new concepts from known ones: (KDALC :== C = FALC)

Definition rec?
man = personu∃ has_chrom Y_chrom -
woman = personu∀ has_chrom Y_chrom -
mother = womanu∃ has_child person -
father = manu∃ has_child person -
grandparent = personu∃ has_child (mothert father) -
german = personu∃ has_parents german +
number_list = empty_listt∃ is_first numberu∃ is_rest number_list +
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As before, we can be normalize a TBox by definition exapansion – if it is acyclic. With the
introduction of roles and quantification, concept definitions in ALC have a more “interesting” way
to be cyclic as Observation 23.1.4 shows.

TBox Normalization in ALC
� Example 23.1.2 (Normalizing grandparent)

grandparent

7→ personu∃ has_child (mother t father)

7→ personu∃ has_child (womanu∃ has_child person),man, ( ∃ has_child person)

7→ personu∃ has_child (personu∃ has_chrom Y_chromu∃ has_child personu personu∃ has_chrom Y_chromu∃ has_child person)

� Observation 23.1.3 Normalization result can be exponential (contain
redundancies)

� Observation 23.1.4 Normalization need not terminate on cyclic TBoxes.

german 7→ personu∃ has_parents german

7→ personu∃ has_parents (personu∃ has_parents german)

7→ . . .
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Concept Axioms

� Definition 23.1.5 DL formulae that are not concept definitions are called
concept axioms.

� They normally contain additional information about concepts

� Example 23.1.6 � personu car (persons and cars are disjoint)

� car v motor_vehicle (cars are motor vehicles)

� motor_vehicle v (cart trucktmotorcycle) (motor vehicles are cars,
trucks, or motorcycles)
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Now that we have motivated and fixed the syntax of ALC, we will give it a formal semantics.
The semantics of ALC is an extension of the set-theoretic semantics for PL0, thus the interpretation
[[·]] assigns subsets of the domain to concepts and binary relations over the domain to roles.

Semantics of ALC

� ALC semantics is an extension of the set-semantics of propositional logic.

� Definition 23.1.7 A model for ALC is a pair 〈D, [[·]]〉, where D is a non-empty
set called the domain and [[·]] a mapping called the interpretation, such that

Op. formula semantics
[[c]]⊆D = [[>]] [[⊥]] = ∅ [[r]]⊆D×D

· [[ϕ]] = [[ϕ]] = D\[[ϕ]]
u [[ϕuψ]] = [[ϕ]]∩ [[ψ]]
t [[ϕtψ]] = [[ϕ]]∪ [[ψ]]

∃R [[∃R ϕ]] = {x ∈ D | ∃y 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}
∀R [[∀R ϕ]] = {x ∈ D | ∀y if 〈x, y〉 ∈ [[R]] then y ∈ [[ϕ]]}

� Alternatively we can define the semantics of ALC by translation into PL1.

� Definition 23.1.8 The translation of ALC into PL1 extends the one from
Definition 22.1.4 by the following quantifier rules:

∀R ϕ
fo(x)

:= (∀y R(x, y)⇒ϕfo(y)) ∃R ϕ
fo(x)

:= (∃y R(x, y)∧ϕfo(y))

� Observation 23.1.9 The set-theoretic semantics from Definition 23.1.7 and
the “sematnics-by-translation” from Definition 23.1.8 induce the same notion
of satisfiability.
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The following equivalences will be useful later on. They can be proven directly with the settings
from Definition 23.1.7; we carry this out for one of them below.

ALC Identities
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� 1 ∃R ϕ = ∀R ϕ 3 ∀R ϕ = ∃R ϕ
2 ∀R (ϕuψ) = ∀R (ϕu∀R ψ) 4 ∃R (ϕtψ) = ∃R (ϕt∃R ψ)

� Proof of 1[[
∃R ϕ

]]
= D\[[∃R ϕ]] = D\{x ∈ D | ∃ y (〈x, y〉 ∈ [[R]]) and (y ∈ [[ϕ]])}

= {x ∈ D | not ∃ y (〈x, y〉 ∈ [[R]]) and (y ∈ [[ϕ]])}
= {x ∈ D | ∀ y if (〈x, y〉 ∈ [[R]]) then (y 6∈ [[ϕ]])}
= {x ∈ D | ∀ y if (〈x, y〉 ∈ [[R]]) then (y ∈ (D\[[ϕ]]))}
= {x ∈ D | ∀ y if (〈x, y〉 ∈ [[R]]) then (y ∈ [[ϕ]])}
= [[∀R ϕ]]
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The form of the identities (interchanging quantification with propositional connectives) is rem-
iniscient of identities in PL1; this is no coincidence as the “semantics by translation” of Defini-
tion 23.1.8 shows.
We can now use the ALC identities above to establish a useful normal form for ALC. This will play
a role in the inference procedures we study next.

Negation Normal Form

� Definition 23.1.10 (NNF) · directly in front of concept names in ALC for-
mulae

� Use the ALC Identities as rules to compute it. (in linear time)

example by rule

∃R (∀S eu∀S d)

7→ ∀R ∀S eu∀S d ∃R ϕ 7→ ∀R ϕ

7→ ∀R (∀S et∀S d) ϕuψ 7→ ϕtψ
7→ ∀R (∃S et∀S d) ∀R ϕ 7→ ∀R ϕ
7→ ∀R (∃S et∀S d) ϕ 7→ ϕ
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Finally, we extend ALC with an ABox component. This mainly means that we define two new
assertions in ALC and specify their semantics and PL1 translation.

ALC with Assertions about Individuals

� Definition 23.1.11 (ABox Formulae) We define the ABox formulae for
ALC

� (a : ϕ) (a is a ϕ)

� aRb (a stands in relation R to b)

� Definition 23.1.12 Let 〈D, [[·]]〉 be a model for ALC, then we define
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� [[(a : ϕ)]] = T, iff [[a]] ∈ [[ϕ]], and

� [[aRb]] = T, iff ([[a]], [[b]]) ∈ [[R]].

� Definition 23.1.13 We extend the PL1 translation of ALC to ABox formulae
by

� (a : ϕ)
fo

:= ϕfo(a), and

� aRb
fo

:= R(a, b).
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If we take stock of what we have developed so far, then we see that ALC as a rational reconstruction
of semantic networks restricted to the “isa” and “instance” relations – which are the only ones that
can really be given a denotational and operational semantics.

23.2 Inference for ALC

In this Section we make good on the motivation from Section 22.1 that description logics enjoy
tractable inference procedures: We present a tableau calculus for ALC, show that is is a decision
procedures, and study its complexity.

TALC: A Tableau-Calculus for ALC

� Recap Tableaux: A tableau calculus develops an initial tableau in a tree-formed
scheme using tableau extension rules.

A saturated tableau (no rules applicable) constitutes a proof, if all branches are
closed (end in ∗).

� Definition 23.2.1 The tableau calculus TALC acts on ABox assertions

� (x : ϕ): (x inhabits concept ϕ)

� xRy: (x and y are in relation R)

with the following rules rules:

(x : c)
(x : c)

∗
T∗

(x : ϕuψ)

(x : ϕ)
(x : ψ)

Tu
(x : ϕtψ)

(x : ϕ)
∣∣∣ (x : ψ)

Tt

(x : ∀R ϕ)
xRy

(y : ϕ)
T∀

(x : ∃R ϕ)

xRy
(y : ϕ)

T∃

� To test consistency of a concept ϕ, normalize ϕ to ψ, initialize the tableau
with (x : ψ) , saturate. Open branches ; consistent. (x arbitrary)
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In contrast to the tableau calculi for theorem proving we have studied earlier, TALC is run in
“model generation mode”. Instead of initializing the tableau with the axioms and the negated
conjecture and hope that all branches will close, we initialize the TALC tableau with axioms and
the “conjecture” that a given concept ϕ is satisfiable – i.e. ϕ has a member x, and hope for
branches that are open, i.e. that make the conjecture true (and at the same time give a model).
Let us now work through two very simple examples; one unsatisfiable, and a satisfiable one.
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TALC Examples

� Example 23.2.2 We have two similar conjectures about children.

� (x : ∀ has_child manu∃ has_child man) (all sons, but a daughter)

� (x : ∀ has_child manu∃ has_child man) (only sons, and at least one)

� Tableau Proof

1 (x : ∀ has_child manu
∃ has_child man

) initial (x : ∀ has_child manu
∃ has_child man

) initial
2 (x : ∀ has_child man) Tu (x : ∀ has_child man) Tu
3 (x : ∃ has_child man) Tu (x : ∃ has_child man) Tu
4 x has_child y T∃ x has_child y T∃
5 (y : man) T∃ (y : man) T∃
6 (y : man) T∀ open
7 ∗ T∗

inkonsistent

The right tableau has a model: there are two persons, x and y. y is the only
child of x, y is a man
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Another example: this one is more complex, but the concept is satisfiable.

Another TALC Example

� Example 23.2.3
∀ has_child (ugradt grad)u∃ has_child ugrad is satisfiable.

� Let’s try it on the board

� Tableau proof for the notes

1 (x : ∀ has_child (ugradt grad)u∃ has_child ugrad)
2 (x : ∀ has_child (ugradt grad)) Tu
3 (x : ∃ has_child ugrad) Tu
4 x has_child y T∃
5 (y : ugrad) T∃
6 (y : ugradt grad) T∀

7 (y : ugrad) (y : grad) Tt
8 ∗ offen

The left branch is closed, the right one represents a model: y is a child of x, y
is a graduate student, x hat exactly one child: y.
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After we got an intution about TALC , we can now study the properties of the calculus to determine
that it is a decision procedure for ALC.
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Properties of Tableau Calculi

� We study the following properties of a tableau calculus C:

Termination there are no infinite sequences of rule applications.

Correctness If ϕ is satisfiable, then C terminates with an open branch.

Completeness If ϕ is in unsatisfiable, then C terminates and all branches are
closed.

Complexity of the algorithm

� Additionally, we are interested in the complexity of the satisfiability itself (as
a benchmark)
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The correctness result for TALC is as usual: we start with a model of (x : ϕ) and show that an TALC
tableau must have an open branch.

Correctness

� Lemma 23.2.4 If ϕ satisfiable, then TALC terminates on (x : ϕ) with open
branch.

� Proof: LetM := 〈D, I〉 be a model for ϕ and w ∈ [[ϕ]].

P.1 we define [[x]] := w and
I |= (x : ψ) iff [[x]] ∈ [[ψ]]
I |= xRy iff 〈x, y〉 ∈ [[R]]
I |= S iff I |= c for all c ∈ S

P.2 This gives us I |= (x : ϕ) (base case)

P.3 case analysis: if branch satisfiable, then either

� no rule applicable to leaf (open branch)
� or rule applicable and one new branch satisfiable (inductive case)

P.4 consequence: there must be an open branch (by termination)
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We complete the proof by looking at all the TALC inference rules in turn.

Case analysis on the rules

Tu applies then I |= (x : ϕuψ), i.e. [[x]] ∈ [[(ϕuψ)]]
so [[x]] ∈ [[ϕ]] and [[x]] ∈ [[ψ]], thus I |= (x : ϕ) and I |= (x : ψ).

Tt applies then I |= (x : ϕtψ), i.e [[x]] ∈ [[(ϕtψ)]]
so [[x]] ∈ [[ϕ]] or [[x]] ∈ [[ψ]], thus I |= (x : ϕ) or I |= (x : ψ),
wlog. I |= (x : ϕ).

T∀ applies then I |= (x : ∀R ϕ) and I |= xRy, i.e. [[x]] ∈ [[∀R ϕ]] and 〈x, y〉 ∈
[[R]], so [[y]] ∈ [[ϕ]]
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T∃ applies then I |= (x : ∃R ϕ), i.e [[x]] ∈ [[∃R ϕ]],
so there is a v ∈ D with 〈[[x]], v〉 ∈ [[R]] and v ∈ [[ϕ]].
We define [[y]] := v, then I |= xRy and I |= (y : ϕ)
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For the completeness result for TALC we have to start with an open tableau branch and construct at
model that satisfies all judgements in the branch. We proceed by building a Herbrand model, whose
domain consists of all the individuals mentioned in the branch and which interprets all concepts
and roles as specified in the branch. Not surprisingly, the model thus constructed satisfies the
branch.

Completeness of the Tableau Calculus

� Lemma 23.2.5 Open saturated tableau branches for ϕ induce models for ϕ.

� Proof: construct a model for the branch and verify for ϕ

P.1 (Model Construction)Let B be an open saturated branch

� we define

D : = {x | (x : ψ) ∈ B or zRx ∈ B}
[[c]] : = {x | (x : c) ∈ B}
[[R]] : = {〈x, y〉 |xRy ∈ Sn}

� well-defined since never x : c, x : c ∈ B (otherwise T∗ applies)
� I satisfies all constraints (x : c), (x : c) and xRy, (by construction)

P.2 (Induction)I |= (y : ψ), for all (y : ψ) ∈ B (on k = size(ψ) next slide)

P.3 (Consequence)I |= (x : ϕ).
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We complete the proof by looking at all the TALC inference rules in turn.

Case Analysis for Induction

case (y : ψ) = (y : ψ1 uψ2) Then {y : ψ1, y : ψ2}⊆B (Tu-rule, saturation)
so I |= (y : ψ1) and I |= (y : ψ2) and I |= (y : ψ1 uψ2) (IH, Definition)

case (y : ψ) = (y : ψ1 tψ2) Then (y : ψ1) ∈ B or (y : ψ2) ∈ B (Tt, saturation)
so I |= (y : ψ1) or I |= (y : ψ2) and I |= (y : ψ1 tψ2) (IH, Definition)

case (y : ψ) = (y : ∃R θ) then {yRz, z : θ}⊆B (z new variable) (T∃-rules,
saturation)

so I |= (z : θ) and I |= yRz, thus I |= (y : ∃R θ). (IH, Definition)

case (y : ψ) = (y : ∀R θ) Let 〈[[y]], v〉 ∈ [[R]] for some r ∈ D
then v = z for some variable z with yRz ∈ B (construction of [[R]])

So (z : θ) ∈ B and I |= (z : θ). (T∀-rule, saturation, Def)
Since v was arbitrary we have I |= (y : ∀R θ).
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©:Michael Kohlhase 234

Termination

� Theorem 23.2.6 TALC terminates

� To prove termination of a tableau algorithm, find a well-founded measure
(function) that is decreased by all rules

(x : c)
(x : c)

∗
T∗

(x : ϕuψ)

(x : ϕ)
(x : ψ)

Tu
(x : ϕtψ)

(x : ϕ)
∣∣∣ (x : ψ)

Tt

(x : ∀R ϕ)
xRy

(y : ϕ)
T∀

(x : ∃R ϕ)

xRy
(y : ϕ)

T∃

� Proof: Sketch (full proof very technical)

P.1 any rule except T∀ can only be applied once to (x : ψ).

P.2 rule T∀ applicable to (x : ∀R ψ) at most as the number of R-successors of
x. (those y with xRy above)

P.3 the R-successors are generated by (x : ∃R θ) above, (number bounded by
size of input formula)

P.4 every rule application to (x : ψ) generates constraints (z : ψ′), where ψ′ a
proper sub-formula of ψ.
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We can turn the termination result into a worst-case complexity result by examining the sizes of
branches.

Complexity

� Idea: Work of tableau branches one after the other. (Branch size =̂ space
complexity)

� Observation 23.2.7 The size of the branches is polynomial in the size of
the input formula:

branch size = |input formulae|+ #(∃-formulae) ·#(∀-formulae)

� Proof Sketch: re-examine the termination proof and count: the first summand
comes from P, the second one from P and P

� Theorem 23.2.8 The satisfiability problem for ALC is in PSPACE.

� Theorem 23.2.9 The satiability problem for ALC is PSPACE-Complete.

� Proof Sketch: reduce a PSPACE-complete problem to ALC-satisfiability

� Theorem 23.2.10 (Time Complexity) The ALC-satisfiability problem is
in EXPTIME
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� Proof Sketch: There can be exponentially many branches (already for PL0)
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In summary, the theoretical complexity of ALC is the same as that for PL0, but in practice ALC is
much more expressive. So this is a clear win.
But the description of the tableau algorithm TALC is still quite abstract, so we look at an exemplary
implementation in a functional programming language

The functional Algorithm for ALC

� Observation: leads to treatment for ∃

� the T∃-rule generates the constraints xRy and (y : ψ) from (x : ∃R ψ)

� this triggers the T∀-rule for (x : ∀R θi), which generate (y : θ1), . . . , (y : θn)

� for y we have (y : ψ) and (y : θ1), . . . (y : θn). (do all of this in a single
step)

� we are only interested in non-emptiness, not in the particular witnesses
(leave them out)

consistent(S) =
if {c, c}⊆S then false
elseif ‘(ϕuψ)’ ∈ S and (‘ϕ’ 6∈ S or ‘ψ’ 6∈ S)
then consistent(S ∪{ϕ,ψ})

elseif ‘(ϕtψ)’ ∈ S and {ϕ,ψ} 6∈ S
then consistent(S ∪{ϕ}) or consistent(S ∪{ψ})

elseif forall ‘∃R ψ’ ∈ S
consistent({ψ}∪ {θ ∈ θ | ‘∀R θ’ ∈ S})
else true

� relatively simple to implement (good implementations optimized)

� but: this is restricted to ALC. (extension to other DL difficult)
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Note that we have (so far) only considered an empty TBox: we have initialized the tableau with
a normalized concept; so we did not need to include the concept definitions. To cover “real”
ontologies, we need to consider the case of concept axioms as well.
We now extend TALC with concept axioms. The key idea here is to realize that the concept axioms
apply to all individuals. As the individuals are generated by the T∃ rule, we can simply extend
that rule to apply all the concepts axioms to the newly introduced individual.

Extending the Tableau Algorithm by Concept Axioms

� Concept axioms, e.g. child v (sont daughter) cannot be handled in TALC yet.

� Idea: Whenever a new variable y is introduced (by T∃-rule) add the information
that axioms hold for y.

� initialize tableau with {x : ϕ}∪ CA (CA : = set of concept axioms)
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� new rule for ∃:
(x : ∃R ϕ) CA = {a1, . . . , an}

(y : ϕ)
xRy

(y : α1)
...

(y : αn)

T ∃CA (instead of T∃)

� Problem: CA := {∃R c} and start tableau with (x : d) (non-termination)
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The problem of this approach is that it spoils termination, since we cannot control the number of
rule applications by (fixed) properties of the input formulae. The example shows this very nicely.
We only sketch a path towards a solution.

Non-Termination of TALC with Concept Axioms

� Problem: CA := {∃R c} and start tableau with (x : d). (non-termination)

(x : d) start
(x : ∃R c) in CA
xRy1 T∃
(y1 : c) T∃
(y1 : ∃R c) T ∃CA
y1Ry2 T∃
(y2 : c) T∃
(y2 : ∃R c) T ∃CA
. . .

Solution: Loop-Check:

� instead of a new variable y take an old
variable z, if we can guarantee that what-
ever holds for y already holds for z.

� we can only do this, iff the T∀-rule has
been exhaustively applied.
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23.3 ABoxes, Instance Testing, and ALC

Instance Test

� Example 23.3.1 (will explain TBox and ABox with ALC later)

TBox (terminological Box)

woman = personu has_Y
man = personu has_Y

ABox (assertional Box, data base)
(tony : person) Tony is a person
(tony : has_Y) Tony has a y-chromosome

� This entails: (tony : man) (Tony is a man).
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Realization

� Definition 23.3.2 Realization is the computation of all instance relations
between ABox objects and TBox concepts.

� sufficient to remember the lowest concepts in the subsumption graph

male_student female_student girl boy

man woman student professor child

person

object

Tony TimmyTerry

� if (tony : male_student) is known, we do not need (tony : man).
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ABox Inference in ALC: Phenomena

� There are different kinds of interactions between TBox and ABox in description
logics

property example

internally inconsistent (tony : student), (tony : student)

inconsistent with a TBox TBox: studentu prof
ABox: (tony : student), (tony : prof)

implicit info that is not ex-
plicit

Abox: (tony : ∀ has_grad genius)
tonyhas_gradmary
|= (mary : genius)

info that can be combined
with TBox info

TBox: cont_prof = prof u∀ has_grad genius
ABox: (tony : cont_prof), tonyhas_gradmary
|= (mary : genius)
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Tableau-based Instance Test and Realization

� Query: do the ABox and TBox together entail (a : ϕ) (a ∈ ϕ?)

� Algorithm: test (a : ϕ) for consistency with ABox and TBox.9 (use our
tableau)
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� necessary changes: (no big deal)

� Normalize ABox wrt. TBox (definition expansion)

� initialize the tableau with ABox in NNF (so it can be used)

Example: add (mary : genius) to determine ABox, TBox |= (mary : genius)

TBox cont_prof = prof u∀ has_grad genius
(tony : prof u∀ has_grad genius) TBox

tonyhas_gradmary ABox
(mary : genius) Query
(tony : prof) Tu

(tony : ∀ has_grad genius) Tu
(mary : genius) T∀

∗ T∗
ABox

(tony : cont_prof)
tonyhas_gradmary

� Note: The instance test is the base for the realization (remember?)

� extend to more complex ABox queries: (give me all instances of ϕ)
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iEdNote: need to unify abox and tbox judgments.
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Chapter 24

Description Logics and the Semantic
Web

In this Chapter we discuss how we can apply description logics in the real world, in particular,
as a conceptual and algorithmic basis of the “Semantic Web”. That tries to transform the “World
Wide Web” from a human-understandable web of multimedia documents into a “web of machine-
understandable data”. In this context, “machine-understandable” means that machines can draw
inferences from data they have access to.
Note that the discussion in this digression is not a full-blown introduction to RDF and OWL,
we leave that to [SR14, HASB13a, HKP+12] and the respective W3C recommendations. Instead
we introduce the ideas behind the mappings from a perspective of the description logics we have
discussed above.
The most important component of the “Semantic Web” is a standardized language that can rep-
resent “data” about information on the Web in a machine-oriented way.

Resource Description Framework

� Definition 24.0.1 The Resource Description Framework (RDF) is a frame-
work for describing resources on the web. It is an XML vocabulary developed
by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
being displayed to people. (it shows)

� Example 24.0.2 RDF can be used for describing

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified date)

� content and rating for web pictures

� content for search engines

� electronic libraries
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Note that all these examples have in common that they are about “objects on the Web”, which is
an aspect we will come to now.

159

http://creativecommons.org/licenses/by-sa/2.5/


“Objects on the Web” are traditionally called “resources”, rather than defining them by their
intrinsic properties – which would be ambitious and prone to change – we take an external property
to define them: everything that has a URI is a web resource. This has repercussions on the design
or RDF.

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 24.0.3 A resource is anything that can have a URI, such as http:
//www.jacobs-university.de

� Definition 24.0.4 A property is a resource that has a name, such as author
or homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase (a property value can be
another resource)

� Definition 24.0.5 The combination of a resource, a property, and a property
value forms a statement (known as the subject, predicate and object of a
statement).x

� Example 24.0.6 Statement: [This slide]subj has been [author]preded by
[Michael Kohlhase]obj
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The crucial observation here is that if we map “subjects” and “objects” to “individuals”, and
“predicates” to “relations”, the RDF statements are just relational ABox statements of description
logics. As a consequence, the techniques we developed apply.
We now come to the concrete syntax of RDF. This is a relatively conventional XML syntax
that combines RDF statements with a common subject into a single “description” of that re-
source.

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 24.0.7 The following RDF document could describe the slides as
a resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description
element

� The predicates are given by the element names of its children

160

http://www.jacobs-university.de
http://www.jacobs-university.de
http://kwarc.info/kohlhase
http://creativecommons.org/licenses/by-sa/2.5/


� The objects are given in the elements as URIs or literal content.

Intuitively: RDF is a web-scalable way to write down ABox information.
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Note that XML namespaces play a crucial role in using element to encode the predicate URIs.
Recall that an element name is a qualified name that consists of a namespace URI and a proper
element name (without a colon character). Concatenating them gives a URI in our example
the predicate URI induced by the dc:creator element is http://purl.org/dc/elements/1.1/
creator. Note that as URIs go RDF URIs do not have to be URLs, but this one is and it references
(is redirected to) the relevant part of the Dublin Core elements specification [DCM12].
RDF was deliberately designed as a standoff markup format, where URIs are used to annotate
web resources by pointing to them, so that it can be used to give information about web resources
without having to change them. But this also creates maintenance problems, since web resources
may change or be deleted without warning.

RDFa gives authors a way to embed RDF triples into web resources and make keeping RDF
statements about them more in sync.

� RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)

� Example 24.0.8

<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">
<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="20091111">November 11., 2009</em>
</div>

https://svn.kwarc.info/.../CompLog/kr/en/rdfa.tex

RDF as an Inline RDF Markup Format

20091111 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator
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In the example above, the about and property attribute are reserved by RDFa and specify the
subject and predicate of the RDF statement. The object consists of the body of the element,
unless otherwise specified e.g. by the resource attribute.
Let us now come back to the fact that RDF is just an XML syntax for ABox statements.

RDF as an ABox Language for the Semantic Web

� Idea: RDF triples are ABox entries hRs or h : ϕ.
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� Example 24.0.9 h is the resource for Ian Horrocks, s is the resource for Ul-
rike Sattler, R is the the relation “hasColleague”, and ϕ is the class foaf:Person
<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

Idea: Now, we need an similar language for TBoxes (based on ALC)
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In this situation, we want a standardized representation language for TBox information; OWL
does just that: it standardizes a set of knowledge representation primitives and specifies a variety
of concrete syntaxes for them. OWL is designed to be compatible with RDF, so that the two
together can form an ontology language for the web.

� OWL as an Ontology Language for the Semantic Web

� Task: Complement RDF (ABox) with a TBox language

� Idea: Make use of resources that are values in rdf:type (called Classes)

� Definition 24.0.10 OWL (the ontology web language) is a language for
encoding TBox information about RDF classes.

� Example 24.0.11 (A concept definition for “Mother”)
Mother = WomanuParent is represented as

XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>
<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(
:Woman
:Parent

)
)
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We have introduced the ideas behind using description logics as the basis of a “machine-oriented
web of data”. While the first OWL specification (2004) nhad three sublanguages “OWL Lite”,
“OWL DL” and “OWL Full”, of which only the middle was based on description logics, with the
OWL2 Recommendation from 2009, the foundation in description logics was nearly universally
accepted.
The Semantic Web hype is by now nearly over, the technology has reached the “plateau of pro-
ductivity” with many applications being pursued in academia and industry. We will not go into
these, but briefly instroduce one of the tools that make this work.

SPARQL a RDF Query language

� Definition 24.0.12 A database that stores RDF data is called a triple store
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� Definition 24.0.13 SPARQL, the “ SPARQL Protocol and RDF Query
Language” is an RDF query language, able to retrieve and manipulate data
stored in RDF. The SPARQL language was standardize by the World Wide
Web Consortium in 2008 [PS08].

� SPARQL is pronounced like the word “sparkle”.

� Definition 24.0.14 A triple store is called a SPARQL endpoint, iff it answers
SPARQL queries.

� Example 24.0.15
Query for person names and their e-mails from a triple store with FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}
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SPARQL end-points can be used to build interesting applications, if fed with the appropriate data.
An interesting – and by now paradigmatic – example is the DBPedia project.

SPARQL Applications: DBPedia

� Typical Application: DBPedia screen-scrapes Wikipedia fact boxes for RDF
triples and uses SPARQL for querying the induced triple store.

� Example 24.0.16 (DBPedia Query)
People who were born in Berlin before 1900 (http://dbpedia.org/sparql)

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Berlin .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900-01-01"^^xsd:date) .

}
ORDER BY ?name
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Chapter 25

ALC Extensions

Language Extensions

� ALC is much more expressive than propositional logic, (still not enough)

� Idea: study more expressive extensions

� Need to study:

� which new operators? (are some definable)

� translation into predicate logic

� are the inference problems decidable? (consistency, subsumption, instance
test,. . . )

� what is the complexity of the decision problem?

� what do the algorithms look like?
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Description Logic Naming Scheme

� Idea: Use the name of a description logic to show its expressive power(letters
express constructors)

� Definition 25.0.1 title=DL Naming Conventions Use S forALC with transtive
roles (the basic DL) (instead of ALC(R+))

� The letter H represents subroles (role Hierarchies),

� O represents nominals (nOminals),

� I represents inverse roles (Iinverse),

� N represent number restrictions (Number), and

� Q represent qualified number restrictions (Qualified).

The integration of a concrete domain/datatype is indicated by appending its
name in parenthesis, but sometimes a âĂĲgenericâĂİ D is used to express that
some concrete domain/datatype has been integrated.
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� Example 25.0.2 The DL corresponding to the OWL DL ontology language
includes all of these constructors and is therefore called SHOIN (D).
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25.1 Functional Roles and Number Restrictions

Functional Roles

� Example 25.1.1 CSR=̂ Car with glass sun roof

� In ALC: CSR = caru∃ has_sun_roof glass

� potential unwanted interpretation: more than one sun roof.

� Problem: has_sun_roof is a relation in ALC (no partial function)

� Example 25.1.2 Humans have exactly one father and mother.

� in ALC: human v ∃ has_father humanu∃ has_mother human

� Problem: has_father should be a total function (on the set of humans)

Solution: Number Restrictions (see next slide)

�� Example 25.1.3 Teenager = human between 13 and 19

� teenager = humanu (age < 20)age > 12 (not covered by ALC)
� Solution: concrete domains (outside the scope of this course)
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Number Restrictions

� Example 25.1.4 Car = vehicle with at least four wheels

� Trick: In ALC: model car using two new distinguishing concepts p1 and p2

vehicleu∃ has_wheel (p1 u p2)u∃ has_wheel (p1 u p2)u∃ has_wheel (p1 u p2)u∃ has_wheel (p1 u p2)

� Problem: city = town with at least 1,000,000 inhabitants (oh boy)

� Alternative: Operators for number restrictions.
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(Unqualified) Number Restrictions

� Definition 25.1.5 ALCN is ALC plus operators ∃n≥R and ∀n≤R (R role,
n ∈ N)
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� Example 25.1.6

car = vehicleu∃4
≥has_wheel (25.1)

city = townu∃1,000,000
≥ has_inhabitants (25.2)

small_family = familyu∀2
≤has_child (25.3)

� [[
∃n≥R

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]]}) ≥ n} (25.4)[[

∀n≤R
]]

= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]]}) ≤ n} (25.5)

� Intuitively: ∃n≥R is the set of objects that have at least n R-successors.

� Example 25.1.7 ∃1,000,000
≥ has_inhabitants is the set of objects that have at

least 1,000,000 inhabitants.
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Translation into Predicate Logic

� Two extra rules for number restrictions: (very cumbersome)

∃n≥R
fo(x) ∀n≤R

fo(x)

∃ y1 R(x, y1)∧ . . . ∧∃ yn R(x, yn) ¬∃ y R(x, y)∨
∧y1 6= y2∧ . . . ∧y1 6= yn (∃ y1 R(x, y1) ∧ . . . ∧ ∃ yn R(x, yn)

∧ y2 6= y3∧ . . . ∧ y2 6= yn∧ ∀ y R(x, y)⇒ (y = y1 ∨ . . . ∨ y = yn))
yn−1 6= yn

� Definable Operator: n
= R := ∃n≥Ru∀n≤R

defines the set of objects that have exactly n R-successors.

� Example 25.1.8 car = vehicleu n
= has_wheel (vehicles with exactly 4

wheels)
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Functional Roles

� Example 25.1.9 CSR = caru 1
= has_sun_roof (CSR = car with sun roof)

has_sun_roof is a relation, but restricted to CSR it is a total function.

� Partial functions: Chd = computeru∀1
≤has_hd (computer with at most one

hard drive) has_hd is a partial function on the set Chd

� Intuition: number restrictions can be used to encode partial and total functions,
but not to specify the range type.
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Negation Rules

� Observation: to compute the negation normal form, need the rules for the new
operators ∃n≥R 7→ ∀n−1

≤ R ∀n≤R 7→ ∃n+1
≥ R

� Proof Sketch: by the semantics of the operators

� Example 25.1.10
1: ∃5

≥has_child = ∀4
≤has_child

2: ∀5
≤has_child = ∃6

≥has_child
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Tableaux Rules (without ABox Information)

xRa1

...
xRan−k

(x : ∃n≥R)

y1, . . . , yk new

xRy1

...
xRyk

xRa1

...
xRam

(x : ∀n≤R)

m>n
1≤i, j≤m

[aj/ai] everywhere

� Basic Intuition (but when do we fail? Can we always identify)

� ∃n≥R: Introduce as many R-successors as necessary

� ∀n≤R: Identify two R-successors if there are too many (repeat as needed)
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25.2 Unique Names

Unique Name Assumption

� Problem: assuming UNA for ABox constants (but not always)

� Definition 25.2.1 (Unique Name Assumption) (UNA)

Different names for objects denote different objects, (cannot be equated)

� Example 25.2.2

(Bob : gardener)
(Bill : gardener)
(1UNAbomber : gardener)

� Bill and Bob are different

� but the UNAbomber can be Bill or
Bob or someone else.
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� Assumption: mark every ABox constant with ‘UNA’ or ‘UNA’
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Tableau Rules (with ABox Information)

� Definition 25.2.3 The rules for ALC with unique name assumption are

xRa1

...
xRan−k

(x : ∃n≥R)

y1, . . . , yk : UNA new
a1, . . . , an−k : UNA

xRy1

...
xRyk

xRa1

...
xRam

(x : ∀n≤R)

m > n
1≤i, j≤m
ai : UNA

[aj/ai] everywhere

xRa1

...
xRam

(x : ∀n≤R)

m > n
a1, . . . , am : UNA

∗
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Example: Solving a Crime with Number Restrictions

� Example 25.2.4 Tony has observed (at most) two people. Tony observed
a murderer that had black hair. It turns out that Bill and Bob were the two
people Tony observed. Bill is blond, and Bob has black hair. (Who was the
murderer.)

Bill : UNA, Bob : UNA, tony : UNA, muderer : UNA

(tony : ∀2
≤observes)

tonyobservesBill
tonyobservesBob

tonyobservesmuderer
(muderer : black_hair)

(Bill : black_hair)
(Bob : black_hair)

tonyobservesBill
(Bill : black_hair)

∗

tonyobservesBob
(Bob : black_hair)
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25.3 Qualified Number Restrictions
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Qualified Number Restrictions

� Definition 25.3.1 ALCQ is ALC plus operators ∃n≥R ϕ and ∀n≤R ϕ (R role,
n ∈ N , ϕ formula)

� Example 25.3.2 personu (∀2
≤has_child blond) (persons with ≤ 2 blond

kids)

� Example 25.3.3 compu (∃5
≥has_client car_comp) (company with at least

5 clients in the automobile industry)

� Special case: Unqualified Number restrictions (∃n≥R >, ∀n≤R >.)

�[[
∃n≥R ϕ)

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≥ n}

[[
∀n≤R ϕ)

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≤ n}
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Negation and Quantifier Elimination

� ∃n≥R ϕ = ∀n−1
≤ R ϕ ∀n≤R ϕ = ∃n+1

≥ R ϕ

� Example 25.3.4 ∃3
≥has_child teacher = ∀2

≤has_child teacher

� Example 25.3.5 ∀3
≤has_child teacher = ∃4

≥has_child teacher

� Quantifier elimination (regular quantifiers no longer necessary)

� ∃R ϕ = ∃1
≥R ϕ

� ∀R ϕ = ∃R ϕ = ∃1
≥R ϕ = ∀0

≤R ϕ
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Optimizied Tableau Rules [Tob00]

� Definition 25.3.6 TALC rules plus:

B
(x : ∃n≥r ϕ)

#({y |xRy, y : ϕ ∈ B}) < n y new

xRy
(y : ϕ)
(y : ξ1)

...
(y : ξk)

where {ψ1, . . . , ψk} = {ψ | (x : ∃m≥R ψ) ∈ B or (x : ∀m≤R ψ) ∈ B} and ξi = ψ
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or ξ = ψ.
B

(x : ∀n≤r ϕ)
#({y |xRy, y : ϕ ∈ B}) > n

∗
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Example Tableau

� Example 25.3.7

(x : (∃3
≥R ϕ)u (∀1

≤R ψ)u (∀1
≤R ψ))

(x : ∃3
≥R ϕ)

(x : ∀1
≤R ψ)

(x : ∀1
≤R ψ)

xRy1

(y1 : ϕ)
(y1 : ψ)
xRy2

(y2 : ϕ)
(y2 : ψ)
∗

(y2 : ψ)
xRy3

(y3 : ϕ)
(y3 : ψ)
∗

(y3 : ψ)
∗

(y1 : ψ)
xRy2

(y2 : ϕ)
(y2 : ψ)
xRy3

(y2 : ϕ)
(y3 : ψ)
∗

(y3 : ψ)
∗

(y2 : ψ)
∗

� Problem: Naive Implementation: exponential path lengths
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Implementation by “Traces”

� Algorithm SAT(ϕ) = sat(x0, {x0 : ϕ})

sat(x, S):

allocate counter #rS(x, ψ) := 0 for all roles R and positive or negative subfor-
mulae ψ in S.

apply rules Tu and Tt as long as possible

If S contains an inconsistency, RETURN ∗.
while( 7→≥ is appliccable to x) do:

Sneu := {TALCRxy, y : ϕ, y : ξ1, . . . y : ξk}
where

y is a new variable,
(x : ∃n≥R ϕ) triggers rule 7→≥,
{ψ1, . . . , ψk} = {ψ | (x : ∃m≥R ψ) ∈ B or (x : ∀m≤R ψ) ∈ B} and
ξi = ψ oder ξ = ¬ψ.
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For each (y : ψ) ∈ Snew: #rS(x, ψ)+ = 1 If (x : ∀m≤R ψ) ∈ B and
#rS(x, ψ) > m RETURN ∗

If sat(y, Sneu) = ∗ RETURN ∗ od
RETURN "‘consistent"’.
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Analysis

� Idea: Each R-successor of x triggers a recursive call of sat.

� There may be exponentially many R-successor, but they are treated one-by-
one, so their space can be re-used.

� The chains of R-successors are at most as long as the nesting depth of operators
(linear)

� Lemma 25.3.8 Space consumption is polynomial.

� Lemma 25.3.9 This algorithm is complete.

� Proof Sketch: The global counters #rS(x, ψ) count the R-successors and
trigger rule 7→≤.

� Theorem 25.3.10 The algorithm is correct, complete and terminating, and
PSPACE (no worse than ALC)
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25.4 Role Operators

The DL-Zoo: Operator Types

� Operators on role names (construct roles on the fly)

� role hierarchy and role axioms (knowledge about roles)

� nominals (names for domain elements)

� features (partial functions)

� concrete domains (e.g. N,Z, trees)

� external data structures (for programming)

� epistemic operators (belief,. . . )

� . . .

©:Michael Kohlhase 270
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Role Hierarchies

� Idea: specification of subset relations among relations.

� Example 25.4.1 role hierarchy as a directed graph R

has_daughterv has_child
has_sonv has_child

talks_tov communicates_with
callsv communicates_with

buysv obtains
stealsv obtains
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ALC with Role hierarchies (without role operators)

� Definition 25.4.2 TALC + complex roles instead of role names

(x : ∃R ϕ)

xRy
(y : ϕ)

T∃

xSy
(x : ∀R ϕ)

SvR ∈ R

(y : ϕ)
∀v

The T∃ rule is the same as before
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Operators on Roles: Role Conjunction

� Example 25.4.3 personu∃ (has_teacheru has_friend) swiss (persons that
have a Swiss teacher that is also their friend)

� Example 25.4.4 comu∃ (has_employeeu has_attorney) lawyer (compa-
nies that have an employed attorney that is a lawyer)

� [[RuS]] = [[R]]∩ [[S]] = {〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] and 〈x, y〉 ∈ [[S]]}

•

•

•

•

s

r

r

r

s u r

Inference Rules
∀RuS ϕ v ∀R ϕu∀S ϕ

∃RuS ϕ v ∃R ϕu∃S ϕ
(∃n≥RuS ϕ) v (∃n≥R ϕ)u (∃n≥S ϕ)

(∀n+m
≤ RuS ϕ) v (∃n≥R ϕ)u (∃m≥S ϕ)
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Role Disjunction t
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� Example 25.4.5 personu∀ has_childt has_friend teacher (persons whose
children and friends are all teachers)

� Example 25.4.6 comu∃ has_employeet has_consultant member_of_congress
(companies with an employee or consultant who is member of congress)

� [[Rt S]] = [[R]]∪ [[S]] = {〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] or 〈x, y〉 ∈ [[S]]}

•

•

•

•

s

r

r

s t r

s t r

s t r Inference Rules
∀Rt S ϕ = ∀R ϕt∀ S ϕ

∃Rt S ϕ = ∃R ϕt∃ S ϕ
∃n≥RtS ϕ =??
(∀n≤Rt S ϕ) v (∀n≤R ϕ)u (∀n≤S ϕ)
(∀n+m≤ Rt S ϕ) v (∀n≤R ϕ)u (∀m≤S ϕ)

(∃max(n,m)
≥ Rt S ϕ) v ((∃n≥R ϕ)t (∃m≥S ϕ))
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Role Complement ·

� Example 25.4.7 univu∀ has_employeeu has_prof unionized (universities
whose employees that are not professors are unionized)

� Example 25.4.8 houseu∃ residentu owner swiss (houses whose residents
that are not owners are Swiss)

�
[[

R
]]

= D2\[[R]] = {〈x, y〉 ∈ D2 | 〈x, y〉 6∈ [[R]]}

� Observation: u,t, · is a Boolean algebra (propositional logic)

We can compute with role terms built up from u,t, · exactly like with propo-
sitional formulae built up from ∧,∨,¬.

� Example 25.4.9 ∀RuS ϕ = ∀RtS ϕ

� more rules: if RvS is a tautology, then ∀S ϕ v ∀R ϕ and ∃R ϕ v ∃S ϕ
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Special Relations 0 and 1

RuR = 0 empty relation
RtR = 1 universal relation

� Question: what does ∀ 1 ϕ mean?

©:Michael Kohlhase 276

Role composition ◦

� Example 25.4.10 personu∃ has_child ◦ has_child prof (persons that have
grandchild that is a professor)
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� Example 25.4.11 univu∀ has_student ◦ has_Partner ◦ lives_in) Texas(uni-
versities whose students all have partners that live in Texas)

� [[R ◦ S]] = [[R]][[S]] = {〈x, z〉 ∈ D2 | ∃ y (〈x, y〉 ∈ [[S]]) and (〈y, z〉 ∈ [[R]])}

•

•
•

•

srr

•
•
•

•

•

r

r

r
r

s
s

s

s

s

s ◦ r
s ◦ r
s ◦ r
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Converse Roles (·−1)

� Example 25.4.12 (set of objects whose parents are teachers)

[[
∀ has_child−1 teacher

]]
= {x | ∀y 〈x, y〉 ∈

[[
has_child−1

]]
⇒ y ∈ [[teacher]]}

= {x | ∀y 〈y, x〉 ∈ [[has_child]]⇒ y ∈ [[teacher]]}
= {x | ∀y 〈x, y〉 ∈ [[has_parents]]⇒ y ∈ [[teacher]]}

� Definition 25.4.13
[[

R−1
]]

= [[R]]
−1

= {〈y, x〉 ∈ D2 | 〈x, y〉 ∈ [[R]]}

� Example 25.4.14

has_child−1 = has_parents

is_part_of−1 = contains_as_part

owns−1 = belongs_to

. . .
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Translation of Role Terms

� Definition 25.4.15 Translation Rules:

tr(R) := R(x, y)
tr(RuS) := tr(R)∧ tr(S) tr(RtS) := tr(R)∨ tr(S)
tr(RvS) := tr(R)⇒ tr(S) tr(R ◦S) := ∃ z tr(R), tr(S)

tr(R−1) := tr(R) tr(R) := ¬ tr(R)

∀R ϕ
fo(x)

:= ∀ y tr(R)⇒ϕfo(y) ∃R ϕ
fo(x)

:= ∃ y tr(R), ϕfo(y)

� Example 25.4.16
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∀R ◦ SuT−1 c
fo(x)

= ∀y tr(R ◦ SuT−1)⇒ cfo(y)

= ∀y ¬ tr(R ◦SuT−1)⇒ c(y)

= ∀y ¬ (∃ z (R(x∧ z)∧ tr(SuT−1)))⇒ c(y)

= ∀y ¬ (∃ z (R(x∧ z)∧ tr(SuT)))⇒ c(y)

= ∀y ¬ (∃ z (R(x∧ z)∧ S(y ∧ z)∧T(y ∧ z)))⇒ c(y)
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Connection to dynamic Logic

� Dynamic Logic is used for specification and verification of imperative programs
(including non-deterministic, parallel)

� Similar to ALC with role terms (role terms as program fragments)

� Domain of interpretation of a DynL formula is the set of states of the processes
([[∀R ϕ]] = “in all states after executing R, ϕ holds”)

RuS parallel execution of R and S
RtS execution of R or S (nondeterministically)
R ◦ S execution of S after R
R execution of a program that is not R
R−1 execution of an undo operation
?ψ test whether ψ holds (not in ALC)

©:Michael Kohlhase 280

Tableaux Calculus: ALC + Role Terms

� Definition 25.4.17 complex roles instead of role names

(x : ∃R ϕ)
xRz

xRy
(y : ϕ)

T∃

B
(x : ∀R ϕ)

B |= xRy

(y : ϕ)
∀R

� Problem: What is B |= xRy (B is the current branch)

� Simple case: no role composition ◦ and no converse roles ·−1.

� then B |= xRy, iff {S |xSy ∈ B}∪{R} inconsistent in PL0 (decidable)

� General case: B |= xRy, iff {tr(S) |uSv ∈ B}∪{tr(R)} inconsistent in PL1

(undecidable in general)
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Special Cases for B |= xRy

� no role composition ◦ (decidable)

� then B |= xRy, iff {tr(S) |xSy ∈ B}∪{tr(R)} inconsistent in PL1 (as set
of ground formulae).

� role complement only for role names (decidable)

� then {tr(S) |uSv ∈ B} is a set of ground formulae and tr(R) only contains
constants and variables in the clause normal form.

� The general case is undecidable, therefore the naive tableau approach is un-
suitable
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25.5 Role Axioms

General Role Axioms

has_daughterv has_child daughters are children
has_sonv has_child sons are children
has_daughteru has_son sons and daughters are disjoint
has_childv has_sont has_daughter children are either sons or daughters

� Translation of an axiom ρ: trr(ρ) = ∀x, y tr(ρ)

trr(has_childv (has_sont has_daughter))

= ∀x, y tr(has_childv has_sont has_daughter)

= ∀x, y has_child(x⇒ y)⇒ has_son(x∨ y)∨ has_daughter(x∨ y)
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ALC + Role Terms + Role Axioms ρ

� Idea: Tableau like for ALC + role terms (B, ρ |= xRy instead of B |= xRy)

� Simple case: no role composition ◦ and no converse roles ·−1. (decidable)

� then B, ρ |= xRy iff {S |xSy ∈ B}∪ ρ∪{R} inconsistent in PL0

� General case: B, ρ |= xRy, iff {tr(S) |uSv ∈ (B∪ trr(ρ)∪{tr(R)})} inconsis-
tent in PL1 (undecidable in

176

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


general)

� no role composition ◦ (decidable)

� then B, ρ |= xRy, iff {tr(S) |xSy ∈ (S ∪ trr(ρ)∪{tr(R)})} inconsistent in
PL1 (as set of formulae without functions).

� role complement only for role names (decidable)

� then {tr(S) |uSv ∈ B} is a set of ground formulae and both tr(ρ) and tr(R)
only contain constants and variables in CNF
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25.6 Features

ALCF : Features

� Features are partial functions.

� Idea: ALCF is ALC + features + special constraints on feature paths

� Definition 25.6.1 Let F := {f, g, f1, . . .} be a set of features, then we
define the ALCF formulae by
FALCF :== FALC | R.FALCF | (π)↑ | π = π | π 6= π where π :== f | f ◦π

� Definition 25.6.2 The semantics of the ALC part is as always.

1) The meaning of a feature f is a partial function [[f ]] : D×D → D.
2) [[f ◦π]](x) := [[π]]([[f ]](x))

3) [[(π)↑]] := D\dom([[π]])

4) [[f.ϕ]] := {x ∈ dom([[π]]) | [[f ]](x) ∈ [[ϕ]]}
5) [[ϕ = ω]] := {x ∈ dom([[π]])∩dom([[ω]]) | [[π]](x) = [[ω]](x)}
6) [[ϕ 6= ω]] := {x ∈ dom([[π]])∩dom([[ω]]) | [[π]](x) 6= [[ω]](x)}
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Examples

� Example 25.6.3 persons, whose father is a teacher: personu had_father.teacher

� Example 25.6.4 persons that have no father: personu (had_father)↑

� Example 25.6.5 companies, whose bosses have no company car: companyu (has_boss ◦ has_comp_car)↑

� Example 25.6.6 cars whose exterior color is the same as the interior color:
caru color_exterior = color_interior

� Example 25.6.7 cars whose exterior color is different from the interior
color: caru color_exterior 6= color_interior
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� Example 25.6.8 companies whose Bosses and Vice Presidents have the
same company car: companyu has_boss ◦ has_comp_car = has_VP ◦ has_comp_car
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Normalization

� Normalization rules

f.ϕ → (f)↑t f.ϕ
π = ω → ((π)↑)(ω)↑tπ 6= ω

π 6= ω → ((π)↑)(ω)↑tπ = ω

(f ◦π)↑ → (f)↑t f ◦ (π)↑

� Example 25.6.9 (for the last transformation)

(has_boss ◦ has_comp_car ◦ has_sun_roof)↑ = . . .

i.e. the set of objects that do not have a boss, plus the set of objects whose
boss does not have a company car plus the set of objects whose bosses have
company cars without sun roofs
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Tableau Calculus

� Definition 25.6.10 The calculus is an extension of TALC .

(x : f.ϕ)

xfy
(y : ϕ)

(x : π = ω)

xπy
xωy

(x : π 6= ω)

xπy
xωz
y 6= z

xf ◦πy
xfy
zπy

B
xfy
xfz

6= y, z

[y/z](B)

(x : ⊥)

∗

(x : c)
(x : c)

∗

xfy
(x : (f)↑)
∗

x 6= x

∗

� Theorem 25.6.11 The calculus is correct, complete and terminating.

� Theorem 25.6.12 It can be implemented in PSPACE
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Example

� Example 25.6.13 (has_boss ◦ has_comp_car)↑u has_boss.has_comp_car.has_sun_roof.>
is inconsistent.
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� Normalize: ((has_boss)↑t has_boss.(has_comp_car)↑)u has_boss.has_comp_car.has_sun_roof.>

� Tableau

(x : (has_boss)↑t has_boss.(has_comp_car)↑)
(x : has_boss.has_comp_car.has_sun_roof.>)

xhas_bossy
(y : has_comp_car.has_sun_roof.>)

yhas_comp_carz
(z : has_sun_roof.>)

(x : (has_boss)↑)
∗

(x : has_boss.(has_comp_car)↑)
xhas_bossv

(v : (has_comp_car)↑)
(y : (has_comp_car)↑) (y = v)

∗
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25.7 Concrete Domains

ALC with “concrete Domains” (Examples)

Formula Concrete Domain
personu age < 20 real numbers
persons younger than 20
companyu has_CEO ◦ has_comp_car ◦ price) > $100000 natural numbers
companies with CEOs with expensive car
caru height > width natural numbers
cars that are higher than wide
personu first_name < last_name strings
persons whose first name is lexicographically smaller than their last name
personu has_father ◦ studiesbefore(has_mother ◦ studies temporal interval logic
persons whose fathers have studied before their mothers
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Concrete Domain

� Definition 25.7.1 A concrete domain is a pair 〈C,P〉, where C is a set and
P a set of predicates.

� Example 25.7.2 � C = N and P = {=, <,≤, >,≥} (natural numbers)

� C = R and P = {=, <,≤, >,≥} (real numbers)

� C = temporal intervals, P = {before, after, overlaps, . . .} (Allen’s interval
logic)

� C = facts in a relational data base, P = SQL relations

©:Michael Kohlhase 291
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Admissible Concrete Domains

� Idea: concrete domains are admissible, iff P is decidable.

� Definition 25.7.3 Let {P1, . . . , Pn}⊆P, then conjunctions P1(x1, . . .)∧ . . .∧Pn(xn, . . .)
are called satisfiable, iff there is a satisfying variable assignment [ai/xi] with
ai ∈ C. (the model is fixed in a concrete domain)

� Example 25.7.4 C = real numbers

P1(x, y) = ∃z (x+ z2 = y) satisfiable (z =
√
y − x, e.g. x = y = 1, z = 0)

P2(x, y) = P1(x, y)∧x > y unsatisfiable

� Definition 25.7.5 A concrete domain 〈C,P〉 is called admissible, iff

1) the satisfiability problem for conjunctions is decidable

2) P is closed under negation and contains a name for C.

©:Michael Kohlhase 292

ALC(C)

� FALC(C) :== FALCF | P (π, . . . , π)

� Example 25.7.6 a female human under 21 can become a woman by having
a child

mother = humanu ♀u∃ has_child human

woman = humanu ♀u (mothert age ≥ 21)

here age ≥ 21 ∈ FALC(C), since it is of the form P (age) (P = λx.x ≥ 21)

� Semantics of ALC(D)

� D and C are disjoint.

� P (π1, . . . , πn) = xDthere are y1 = [[π1]](x), . . ., yn = [[πn]](x) ∈ C,with 〈y1, . . ., yn〉 ∈ [[P ]]

Warning: [[ϕ]] = D\[[ϕ]], but not [[ϕ]] = (D∪C)\[[ϕ]]
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!

� Negation Rules and Tableau Calculus

� Let >C be the name for the concrete domain (as a set) and P the negated
predicate for P (C is admissible)

� New negation rule: P (π1, . . . , πn)→ P (π1, . . . , πn)t∀π1 >C t . . .t∀πn >C
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� New tableau rule

P1(x11, . . . , x1n1
)

...
Pk(xk1, . . . , xknk)

∧
1≤i≤k Pi(xi1, . . . , xini) inconsistent

∗
⊥p
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Example:caru height = 2uwidth = 1 v caru height > width

(x : caru height = 2uwidth = 1)
(x : caruwidth ≤ height)

(x : car)
(x : height = 2)
(x : width = 1)

(x : car)
∗

(x : width ≤ height)
xheight y1

y1 = 2
(x : width = y2)

y2 = 1
(x : width y3)

(x : height = y4)
y3 ≤ y4

y1 ≤ y2

∗
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25.8 Nominals

Nominals

� Definition 25.8.1 (Idea) nominal are names for domain elements that can
be used in the T-Box.

� Example 25.8.2 Students that study on Bremen or Hamburg: studentu∃ studies_in {Bremen,Hamburg}

� Example 25.8.3 Students that have a friend with name Eva: studentu∃ has_friend ◦ has_name {Eva}

� Example 25.8.4 persons that have phoned Bill, Bob, or the murderer:
personu∃ has_phoned {Bill, Bob,murderer}

� Example 25.8.5 friends of Eva: personu has_friend : Eva

� Example 25.8.6 companies whose employees all bank at Sparda Bank:
companyu∀ has_empl has_bank : Sparda

� Example 25.8.7 employees of Jacobs that bank at Sparda: employed_at : Jacobsu has_bank : Sparda

©:Michael Kohlhase 296

181

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Semantics

� Definition 25.8.8 [[{a1, . . . , an}]] is the set of objects with names a1, . . . an.

� Definition 25.8.9 [[R : a]] is the set of objects that have [[a]] as R-successor

[[{a1, . . . , an}]] = {[[a1]], . . ., [[an]]}
[[R : a]] = {x ∈ D | 〈x, [[a]]〉 ∈ [[R]]}

� Definition 25.8.10 (Negation Rules)

{a1, . . . , an} = invariant
R : a = ∀R {a}

� Example 25.8.11 had_friend : Eva (the complement of the set of friends
of Eva)

= ∀ had_friend {Eva} (the set of objects that do not have Eva as a friend)
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Example Language with Nominals

� We consider the following language: ALC + unqualified number restrictions
(∃n≥R, ∀n≤R), some role operators (u, ◦, ·−1), {a1, . . . , an}, R : a

� Example 25.8.12 persons that have at most two friends among their
neighbors and whose neighbors are Bill, Bob, or the gardener personu∀2

≤(has_friendu has_neighbor)u∀ has_neighbor {Bill, Bob,Gardener}

� Example 25.8.13 companies with at least 100 employees that have a car
and live in Bremen companyu∃100

≥ has_empl ◦ has_comp_caru has_empl ◦ lives_in : Bremen
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Tableaux Calculus (only T-Box)

� Definition 25.8.14 The calculus consists of the TALC rules together with:

(a : {. . . , a, . . .})
∗

B
(x : {a1, . . . , an})

[x/a1](B)
∣∣∣ . . . [x/an](B)

(x : R : a)

xRa

xR−1y

yRx

xRu Sy

xRy
xSy

xR ◦Sy

xRz
zSy

� Theorem 25.8.15 The calculus is correct, complete, and terminating

� Proof Sketch: very technical but not terribly difficult using the techniques
developed so far.
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