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Preface

Introduction

The ability to represent knowledge about the world and to draw logical inferences is one of the
central components of intelligent behavior. As a consequence, reasoning components of some form
are at the heart of many artificial intelligence systems.

Logic: The field of logic studies representation and inference systems. It dates back and has its
roots in Greek philosophy as presented in the works of Aristotle and others. Since then logic
has grown in richness and diversity over the centuries to finally reach the modern methodological
approach first expressed in the work of Frege. Logical calculi, which capture an important aspect of
human thought, were now amenable to investigation with mathematical rigour and the beginning
of this century saw the influence of these developments in the foundations of mathematics, in the
work of Hilbert, Russell and Whitehead, in the foundations of syntax and semantics of language,
and in philosophical foundations expressed most vividly by the logicians in the Vienna Circle.

Computational Logic: The field of Computational Logic looks at computational aspects of logic.
It is essentially the computer-science perspective of logic. The idea is that logical statements
can be executed on a machine. This has far-reaching consequences that ultimately lead to logic
programming, deduction systems for mathematics and engineering, logical design and verification
of computer software and hardware, deductive databases and software synthesis as well as logical
techniques for analysis in the field of mechanical engineering.

Logic Engineering: As all of these applications require efficient implementations of the underlying
inference systems, computational logic focuses on proof theory much more than on model theory
(which is the focus of mathematical logic, a neighboring field). As the respective applications have
different requirements on the expressivity and structure of the representation language and on the
statements derived or the terms simplified, computational logic focuses on “logic engineering”, i.e.
the development of representation languages, inference systems, and module systems with specific
properties.

Course Concept

Aims: The course 320441 “Computational Logic” (CompLog) is a specialization course offered
to third-year undergraduate students and to first-year graduate students at Jacobs University
Bremen. The course aims to give these students a solid (and somewhat theoretically oriented)
foundation of computational logic and logic engineering techniques.

Prerequisites: The course makes very little assumptions about prior knowledge, but the learning
curve is very steep for students who have no prior exposure to logic. As a consequence, the course
has a prerequisite to the course 320211 Formal Languages and Logic which is a mandatory course
in the Computer Science program at Jacobs University. This prerequisite can be waived by the
instructor for other students.

Corequisites and Extensions: In its incarnation as an undergraduate course, there are no co-
requisites, but in its incarnation as a graduate course, the course 320612 Computational Logic Lab
is required. It teaches the graduate-level material, in particular encoding logics in meta-logical
frameworks and gives hands-on experience with the LF and MMT systems.

Graduate students can optionally take the course 320434 Computational Logic Project, which
covers research-near techniques in a guided research project.

Course Contents: We carefully recap the foundations of first-order logic and present the tableau
calculus as a computationally inspired inference procedure.1EdN:1

1EdNote: continue, when the plan is fixed.
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This Document

This document contains the course notes for the course Computational Logic held at Jacobs
University Bremen in the fall semesters 2004/07/09/11.

Contents: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.

Caveat: This document is made available for the students of this course only. It is still an early
draft, and will develop over the course of the course. It will be developed further in coming
academic years.

Licensing: This document is licensed under a Creative Commons license that requires attribution,
forbids commercial use, and allows derivative works as long as these are licensed under the same
license.

Knowledge Representation Experiment: This document is also an experiment in knowledge repre-
sentation. Under the hood, it uses the STEX package [Koh08, Koh12], a TEX/LATEX extension for
semantic markup, which allows to export the contents into the eLearning platform PantaRhei.

Comments and extensions are always welcome, please send them to the author.

Comments: Comments and extensions are always welcome, please send them to the author.

Acknowledgments

CompLog Students: The following students have submitted corrections and suggestions to this
and earlier versions of the notes: Rares Ambrus, Florian Rabe, Deyan Ginev, Fulya Horozal.
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Recorded Syllabus for Fall 2013

In this document, we record the progress of the course in Fall 2013 in the form of a “recorded
syllabus”, i.e. a syllabus that is created after the fact rather than before.

Recorded Syllabus Fall Semester 2013:

# date until slide page

1 Sep 9. admin/intro/history 11 10
2 Sep 11. more overview 13 10
3 Sep 16. substitution value lemma 24 21
4 Sep 18. inference for FOL 33 28
5 Sep 23. abstract consistency 45 35
6 Sep 25. model existence 52 39
7 Sep 30. unification algorithm 63 48
8 Oct 2. efficient unification 67 50
9 Oct 7. tableau soundness/completeness 76 55
10 Oct 14. Simply typed λ calculus & Head Reduction 93 71
11 Oct 16. Termination of β-reduction 99 76
12 Nov 5. αβη-completeness 112 83
13 Nov 6. HOU & General Bindings 117 87
14 Nov 12. HOU completeness 125 90
15 Nov 13. Andrews’ equality-based HOL 133 96
16 Nov 19. Higher-Order Tableaux 143 102
17 Nov 20. PL0 set description 171 122
18 Nov 26. Semantic Web/Ontologies ?? ??
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Chapter 1

Outline of the Course

In this course, we want to achieve three things: we want to
1. expose you to various logics from a computational perspective, in particular
2. teach you how to build up logics and and express domain theories modularly, and
3. apply that to the foundations of mathematics and of the Semantic Web.

Outline: From Classical Logic to Specialized Inference Procedures

B Recap: First-order Logic (cosolidation)

B special attention to substitutions, α-renaming (usually glossed over)

B soundness/completeness (interesting proofs)

B tableau calculi, unification (basis for later)

B Higher-Order Logic (more expressivity for math)

B simply typed λ calculus

B soundness, confluence, termination, completeness

B higher-order unification?

B higher-order tableaux

B Axiomatic Set Theory

B Description Logics (expressivity below)

B propositional logic for concept descriptions

B ALC+ extensions

B tableau calculi

©: Michael Kohlhase 1
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Chapter 2

320411/CompLog Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

Let ust first look at the setup of the CompLog Course in the Joacbs curriculum.

The Course/Lab Combo

B The course is both for undergraduate students in their third year and graduate students in
their first year.

B For graduate students, the course is accompanied by a lab, which

B During the Semester: teaches graduate-level (more advanced) concepts.

B During the semester: deepens the understanding of the course topics by practical exercise

B Over the break: let’s you experiment with them in a little research project

B Course and Lab are 5 credits each ( about one day of work per week each!)

B They are graded independently

©: Michael Kohlhase 2

For graduate students, the Course/Lab combo is one of two they will take in the first year. They
also have to take one graduate project, which is also offered in the CompLog context. The topic
of this is individually negotiated with the intstructor and serves as as a possible preparation (or
a test run) for a master’s thesis topic.

Even though the lecture itself will be the main source of information in the course, there are
various resources from which to study the material.

Textbooks, Handouts and Information, Forum

B No required textbook, but course notes, posted slides

B Course notes in PDF will be posted at http://kwarc.info/teaching/CompLog.html

B Everything will be posted on PantaRhei (notes+assignments+course forum)

B announcements, contact information, course schedule and calendar

3

http://creativecommons.org/licenses/by-sa/2.5/
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4 CHAPTER 2. 320411/COMPLOG ADMINISTRATIVA

B discussion among your fellow students (careful, we check for academic integrity!)

B http://panta.kwarc.info (use your Jacobs login)

B if there are problems send e-mail to c.prodescu@jacobs-university.de

©: Michael Kohlhase 3

No Textbook: There is no single textbook that covers the course. Instead we have a comprehensive
set of course notes (this document). They are provided in two forms: as a large PDF that is posted
at the course web page and on the PantaRhei system. The latter is actually the preferred method
of interaction with the course materials, since it allows to discuss the material in place, to play
with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the PantaRhei
system, which is still under development, develops problems.

But of course, there is a wealth of literature on the subject of computational logic, and the
references at the end of the lecture notes can serve as a starting point for further reading. We will
try to point out the relevant literature throughout the notes.

Now we come to a topic that is always interesting to the students: the grading scheme.

Prerequisites, Requirements, Grades

B Prerequisites: Motivation, Interest, Curiosity, hard work (mainly,. . . )

B exposure to discrete Math, possibly category theory

B experience in (some) logics

You can do this course if you want! (even without those, but they help)

B Grades: (plan your work involvement carefully)

Course Lab

Homework Assignments 70% Attendance and Wakefulness 10%
Quizzes 30% Graded Lab Assignments 50%
No Midterm Exam – Intersession Project 20%
No Final Exam – Discussion 20%

In particular, no midterm, and no final in the Lab, but attendance is mandatory!(excuses possible)

B Note that for the grades, the percentages of achieved points are added with the weights
above, and only then the resulting percentage is converted to a grade.

©: Michael Kohlhase 4

Our main motivation in this grading scheme is to entice you to study continuously. This means
that you will have to stay involved, do all your homework assignments, and keep abreast with the
course. This also means that your continued involvement may be higher than other (graduate)
courses, but you are free to concentrate on these during exam week.

Homework assignments

B Goal: Reinforce and apply what is taught in class.

http://panta.kwarc.info
c.prodescu@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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B Homeworks: will be small individual problem/programming/proof assignments(but take time to solve)
group submission if and only if explicitly permitted

B Admin: To keep things running smoothly

B Homeworks will be posted on PantaRhei

B Homeworks are handed in electronically in JGrader (plain text, Postscript, PDF,. . . )

B go to the tutorials, discuss with your TA (they are there for you!)

B materials: sometimes posted ahead of time; then read before class, prepare questions,
bring printout to class to take notes

B Homework Discipline:

B start early! (many assignments need more than one evening’s work)

B Don’t start by sitting at a blank screen

B Humans will be trying to understand the text/code/math when grading it.

©: Michael Kohlhase 5

Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them. They are usually directly based on concepts covered in
the lecture, so reviewing the course notes often helps getting started.

Homework Submissions, Grading, Tutorials

B Submissions: We use Heinrich Stamerjohanns’ JGrader system

B submit all homework assignments electronically to https://jgrader.de.

B you can login with your Jacobs account and password. (should have one!)

B feedback/grades to your submissions

B get an overview over how you are doing! (do not leave to midterm)

B Tutorials: select a tutorial group and actually go to it regularly

B to discuss the course topics after class (lectures need pre/postparation)

B to discuss your homework after submission (to see what was the problem)

B to find a study group (probably the most determining factor of success)

©: Michael Kohlhase 6

The next topic is very important, you should take this very seriously, even if you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract
among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have

http://creativecommons.org/licenses/by-sa/2.5/
https://jgrader.de
http://creativecommons.org/licenses/by-sa/2.5/
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gone through an academic education and expect that you (as a graduate of Jacobs) will behave
by these rules.

The Code of Academic Integrity

B Jacobs has a “Code of Academic Integrity”

B this is a document passed by the Jacobs community (our law of the university)

B you have signed it during enrollment (we take this seriously)

B It mandates good behaviors from both faculty and students and penalizes bad ones:

B honest academic behavior (we don’t cheat/falsify)

B respect and protect the intellectual property of others (no plagiarism)

B treat all Jacobs members equally (no favoritism)

B this is to protect you and build an atmosphere of mutual respect

B academic societies thrive on reputation and respect as primary currency

B The Reasonable Person Principle (one lubricant of academia)

B we treat each other as reasonable persons

B the other’s requests and needs are reasonable until proven otherwise

B but if the other violates our trust, we are deeply disappointed(severe uncompromising consequences)

©: Michael Kohlhase 7

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the primary
good that is produced and consumed consists in ideas and knowledge, and the primary currency
involved is academic reputation1. Even though academic societies may seem as altruistic —
scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.

Next we come to a special project that is going on in parallel to teaching the course. I am using the
coures materials as a research object as well. This gives you an additional resource, but may affect
the shape of the coures materials (which now server double purpose). Of course I can use all the
help on the research project I can get, so please give me feedback, report errors and shortcomings,
and suggest improvements.

Experiment: E-Learning with OMDoc/PantaRhei

B My research area: deep representation formats for (mathematical) knowledge

B Application: E-learning systems (represent knowledge to transport it)

1Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

http://creativecommons.org/licenses/by-sa/2.5/
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B Experiment: Start with this course (Drink my own medicine)

B Re-Represent the slide materials in OMDoc (Open Math Documents)

B Feed it into the PantaRhei system (http://panta.kwarc.info)

B Try it on you all (to get feedback from you)

B Tasks (Unfortunately, I cannot pay you for this; maybe later)

B help me complete the material on the slides (what is missing/would help?)

B I need to remember “what I say”, examples on the board. (take notes)

B Benefits for you (so why should you help?)

B you will be mentioned in the acknowledgements (for all that is worth)

B you will help build better course materials (think of next-year’s students)

©: Michael Kohlhase 8
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Chapter 3

A History of Ideas in Logic

Before starting with the discussion on particular logics and inference systems, we put things into
perspective by previewing ideas in logic from a historical perspective. Even though the presentation
(in particular syntax and semantics) may have changed over time, the underlying ideas are still
pertinent in today’s formal systems.

Many of the source texts of the ideas summarized in this chapter can be found in [vH67].

History of Ideas (abbreviated): Propositional Logic

B General Logic ([ancient Greece, e.g. Aristotle])

+ conceptual separation of syntax and semantics

+ system of inference rules (“Syllogisms”)

– no formal language, no formal semantics

B Propositional Logic [Boole ∼ 1850]

+ functional structure of formal language (propositions + connectives)

+ mathematical semantics ( Boolean Algebra)

– abstraction from internal structure of propositions

©: Michael Kohlhase 9

History of Ideas (continued): Predicate Logic

B Frege’s “Begriffsschrift” [Fre79]

+ functional structure of formal language(terms, atomic formulae, connectives, quantifiers)

– weird graphical syntax, no mathematical semantics

– paradoxes e.g. Russell’s Paradox [R. 1901](the set of sets that do not contain themselves)

B modern form of predicate logic [Peano ∼ 1889]

+ modern notation for predicate logic (∨,∧,⇒,∀,∃)

©: Michael Kohlhase 10

9
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History of Ideas (continued): First-Order Predicate Logic

B Types ([Russell 1908])

– restriction to well-types expression

+ paradoxes cannot be written in the system

+ Principia Mathematica ([Whitehead, Russell 1910])

B Identification of first-order Logic ([Skolem, Herbrand, Gödel ∼ 1920 – ’30])

– quantification only over individual variables (cannot write down induction principle)

+ correct, complete calculi, semi-decidable

+ set-theoretic semantics ([Tarski 1936])

©: Michael Kohlhase 11

History of Ideas (continued): Foundations of Mathematics

B Hilbert’s Program: find logical system and calculus, ([Hilbert ∼ 1930])

B that formalizes all of mathematics

B that admits sound and complete calculi

B whose consistence is provable in the system itself

B Hilbert’s Program is impossible! ([Gödel 1931])

Let L be a logical system that formalizes arithmetics (〈NaturalNumbers,+, ∗〉),

B then L is incomplete

B then the consistence of L cannot be proven in L.

©: Michael Kohlhase 12

History of Ideas (continued): λ-calculus, set theory

B Simply typed λ-calculus ([Church 1940])

+ simplifies Russel’s types, λ-operator for functions

+ comprehension as β-equality (can be mechanized)

+ simple type-driven semantics (standard semantics  incompleteness)

B Axiomatic set theory

+– type-less representation (all objects are sets)

+ first-order logic with axioms

+ restricted set comprehension (no set of sets)

– functions and relations are derived objects

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
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Part I

First-Order Logic and Inference

13





Chapter 4

First-Order Logic

First-order logic is the most widely used formal system for modelling knowledge and inference
processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

B Coverage: We can talk about (All humans are mortal)

B individual things and denote them by variables or constants

B properties of individuals, (e.g. being human or mortal)

B relations of individuals, (e.g. sibling of relationship)

B functions on individuals, (e.g. the father of function)

We can also state the existence of an individual with a certain property, or the universality of
a property.

B But we cannot state assertions like

B There is a surjective function from the natural numbers into the reals.

B First-Order Predicate Logic has many good properties (complete calculi, compactness, unitary, linear unification,. . . )

B But too weak for formalizing: (at least directly)

B natural numbers, torsion groups, calculus, . . .

B generalized quantifiers (most, at least three, some,. . . )

©: Michael Kohlhase 14

We will now introduce the syntax and semantics of first-order logic. This introduction differs
from what we commonly see in undergraduate textbooks on logic in the treatment of substitutions
in the presence of bound variables. These treatments are non-syntactic, in that they take the
renaming of bound variables (α-equivalence) as a basic concept and directly introduce capture-
avoiding substitutions based on this. But there is a conceptual and technical circularity in this
approach, since a careful definition of α-equivalence needs substitutions.

In this chapter we follow Peter Andrews’ lead from [And02] and break the circularity by intro-
ducing syntactic substitutions, show a substitution value lemma with a substitutability condition,

15
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16 CHAPTER 4. FIRST-ORDER LOGIC

use that for a soundness proof of α-renaming, and only then introduce capture-avoiding substitu-
tions on this basis. This can be done for any logic with bound variables, we go through the details
for first-order logic here as an example.

4.1 First-Order Logic: Syntax and Semantics

The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).

The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

B Definition 4.1.1 First-order logic (PL1), is a formal logical system extensively used in math-
ematics, philosophy, linguistics, and computer science. It combines propositional logic with
the ability to quantify over individuals.

B PL1 talks about two kinds of objects: (so we have two kinds of symbols)

B truth values; sometimes annotated by type o (like in PL0)

B individuals; sometimes annotated by type ι (numbers, foxes, Pokémon,. . . )

B Definition 4.1.2 A first-order signature consists of (all disjoint; k ∈ N)

B connectives: Σo = {T, F,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

B function constants: Σfk = {f, g, h, . . .} (functions on individuals)

B predicate constants: Σpk = {p, q, r, . . .} (relations among inds.)

B (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constructors; countably ∞)

B We take the signature Σ to be all of these together: Σ := Σo ∪ Σf ∪ Σp ∪ Σsk, where
Σ∗ :=

⋃
k∈N Σ∗k.

B We assume a set of individual variables: Vι = {Xι, Yι, Z,X
1
ι, X

2} (countably ∞)

©: Michael Kohlhase 15

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.

The formulae of first-order logic is built up from the signature and variables as terms (to represent
individuals) and propositions (to represent propositions). The latter include the propositional
connectives, but also quantifiers.

PL1 Syntax (Formulae)

B Definition 4.1.3 terms: A ∈ wff ι(Σι) (denote individuals: type ι)

http://creativecommons.org/licenses/by-sa/2.5/
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B Vι ⊆ wff ι(Σι),

B if f ∈ Σfk and Ai ∈ wff ι(Σι) for i ≤ k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

B Definition 4.1.4 propositions: A ∈ wff o(Σ) (denote truth values: type o)

B if p ∈ Σpk and Ai ∈ wff ι(Σι) for i ≤ k, then p(A1, . . . ,Ak) ∈ wff o(Σ),

B if A,B ∈ wff o(Σ), then T,A ∧B,¬A,∀X A ∈ wff o(Σ).

B Definition 4.1.5 We define the connectives F,∨,⇒,⇔ via the abbreviations A ∨B :=
¬(¬A ∧ ¬B), A⇒ B := ¬A ∨B, A⇔ B := (A⇒ B) ∧ (B⇒ A), and F := ¬T . We
will use them like the primary connectives ∧ and ¬

B Definition 4.1.6 We use ∃X A as an abbreviation for ¬(∀X ¬A). (existential quantifier)

B Definition 4.1.7 Call formulae without connectives or quantifiers atomic else complex.

©: Michael Kohlhase 16

Note: that we only need e.g. conjunction, negation, and universal quantification, all other logical
constants can be defined from them (as we will see when we have fixed their interpretations).

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

B Definition 4.1.8 We call an occurrence of a variable X bound in a formula A, iff it occurs
in a sub-formula ∀X B of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free) variables
of A, i.e. variables that have a free/bound occurrence in A.

B Definition 4.1.9 We define the set free(A) of free variables of a formula A inductively:

free(X) := {X}
free(f(A1, . . . ,An)) :=

⋃
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) :=
⋃

1≤i≤n free(Ai)

free(¬A) := free(A)
free(A ∧B) := free(A) ∪ free(B)
free(∀X A) := free(A)\{X}

B Definition 4.1.10 We call a formula A closed or ground, iff free(A) = ∅. We call a closed
proposition a sentence, and denote the set of all ground terms with cwff ι(Σι) and the set of
sentences with cwff o(Σι).

©: Michael Kohlhase 17

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of meta-variables, i.e. syntactic placeholders that
can be instantiated with terms when needed in an inference calculus.

http://creativecommons.org/licenses/by-sa/2.5/
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18 CHAPTER 4. FIRST-ORDER LOGIC

The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

Semantics of PL1 (Models)

B We fix the Universe Do = {T,F} of truth values.

B We assume an arbitrary universeDι 6= ∅ of individuals(this choice is a parameter to the semantics)

B Definition 4.1.11 An interpretation I assigns values to constants, e.g.

B I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

B I : Σfk → F(Dιk;Dι) (interpret function symbols as arbitrary functions)

B I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

B Definition 4.1.12 A variable assignment ϕ : Vι → Dι maps variables into the universe.

B A first-order Model M = 〈Dι, I〉 consists of a universe Dι and an interpretationI.

©: Michael Kohlhase 18

We do not have to make the universe of truth values part of the model, since it is always the same;
we determine the model by choosing a universe and an interpretation function.

Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

B Given a model 〈D, I〉, the value function Iϕ is recursively defined:(two parts: terms & propositions)

B Iϕ : wff ι(Σι)→ Dι assigns values to terms.

B Iϕ(X) := ϕ(X) and

B Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

B Iϕ : wff o(Σ)→ Do assigns values to formulae:

B Iϕ(T ) = I(T ) = T, Iϕ(¬A) = I(¬)(Iϕ(A)) Iϕ(A ∧B) = I(∧)(Iϕ(A), Iϕ(B))

(just as in PL0)

B Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)

B Iϕ(∀X A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.

©: Michael Kohlhase 19

The only new (and interesting) case in this definition is the quantifier case, there we define the value
of a quantified formula by the value of its scope – but with an extended variable assignment. Note
that by passing to the scope A of ∀xA, the occurrences of the variable x in A that were bound
in ∀xA become free and are amenable to evaluation by the variable assignment ψ := ϕ, [a/X].
Note that as an extension of ϕ, the assignment ψ supplies exactly the right value for x in A.
This variability of the variable assignment in the definition value function justifies the somewhat
complex setup of first-order evaluation, where we have the (static) interpretation function for the
symbols from the signature and the (dynamic) variable assignment for the variables.

http://creativecommons.org/licenses/by-sa/2.5/
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Note furthermore, that the value Iϕ(∃xA) of ∃xA, which we have defined to be ¬(∀x¬A) is true,
iff it is not the case that Iϕ(∀x¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := ϕ, [a/X]. This is
the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

4.2 First-Order Substitutions

We will now turn our attention to substitutions, special formula-to-formula mappings that oper-
ationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

B Intuition: If B is a term and X is a variable, then we denote the result of systematically
replacing all occurrences of X in a term A by B with [B/X](A).

B Problem: What about [Z/Y ], [Y/X](X), is that Y or Z?

B Folklore: [Z/Y ], [Y/X](X) = Y , but [Z/Y ]([Y/X](X)) = Z of course. (Parallel application)

B Definition 4.2.1 We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σ(f(A1, . . . ,An)) =
f(σ(A1), . . . , σ(An)) and the support supp(σ) := {X |σ(X) 6= X} of σ is finite.

B Observation 4.2.2 Note that a substitution σ is determined by its values on variables alone,
thus we can write σ as σ|Vι = {[σ(X)/X] |X ∈ supp(σ)}.

B Notation 4.2.3 We denote the substitution σ with supp(σ) = {xi | 1 ≤ i ≤ n} and σ(xi) =
Ai by [A1/x

1], . . ., [An/x
n].

B Example 4.2.4 [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

B Definition 4.2.5 We call intro(σ) :=
⋃
X∈supp(σ) free(σ(X)) the set of variables intro-

duced by σ.

©: Michael Kohlhase 20

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ, [A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

B Notation 4.2.6 (Substitution Extension) Let σ be a substitution, then we denote with
σ, [A/X] the function {〈Y,A〉 ∈ σ |Y 6= X} ∪ {〈X,A〉}. (σ, [A/X] coincides with σ of X, and gives the result A there.)

B Note: If σ is a substitution, then σ, [A/X] is also a substitution.

B Definition 4.2.7 If σ is a substitution, then we call σ, [A/X] the extension of σ by [A/X].

B We also need the dual operation: removing a variable from the support

B Definition 4.2.8 We can discharge a variable X from a substitution σ by σ−X := σ, [X/X].

http://creativecommons.org/licenses/by-sa/2.5/
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Note that the use of the comma notation for substitutions defined in Notation 4.2.3 is consis-
tent with substitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of
the empty substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note
furthermore, that substitution extension is not commutative in general.

For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

B Problem: We want to extend substitutions to propositions, in particular to quantified formu-
lae: What is σ(∀X A)?

B Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′ ill-formed)

B Definition 4.2.9 σ(∀X A) := ∀X σ−X(A).

B Problem: This can lead to variable capture: [f(X)/Y ](∀X p(X,Y )) would evaluate to
∀X p(X, f(X)), where the second occurrence of X is bound after instantiation, whereas
it was free before.

B Definition 4.2.10 Let B ∈ wff ι(Σι) and A ∈ wff o(Σ), then we call B substitutable for
X in A, iff A has no occurrence of X in a subterm ∀Y C with Y ∈ free(B).

B Solution: Forbid substitution [B/X]A, when B is not substitutable for X in A.

B Better Solution: Rename away the bound variable X in ∀X p(X,Y ) before applying the
substitution. (see alphabetic renaming later.)

©: Michael Kohlhase 22

Here we come to a conceptual problem of most introductions to first-order logic: they directly
define substitutions to be capture-avoiding by stipulating that bound variables are renamed in
the to ensure subsitutability. But at this time, we have not even defined alphabetic renaming
yet, and cannot formally do that without having a notion of substitution. So we will refrain from
introducing capture-avoiding substitutions until we have done our homework.

We now introduce a central tool for reasoning about the semantics of substitutions: the “substitution-
value Lemma”, which relates the process of instantiation to (semantic) evaluation. This result will
be the motor of all soundness proofs on axioms and inference rules acting on variables via sub-
stitutions. In fact, any logic with variables and substitutions will have (to have) some form of
a substitution-value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic.

We establish the substitution-value Lemma for first-order logic in two steps, first on terms,
where it is very simple, and then on propositions, where we have to take special care of substi-
tutability.

Substitution Value Lemma for Terms

B Lemma 4.2.11 Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

B Proof: by induction on the depth of A:

http://creativecommons.org/licenses/by-sa/2.5/
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P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y ), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) = ϕ(Y ) =
ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X](A)) = I(f)(Iϕ([B/X](A1)), . . . , Iϕ([B/X](An)))

= I(f)(Iψ(A1), . . . , Iψ(An))

= Iψ(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion

©: Michael Kohlhase 23

We now come to the case of propositions. Note that we have the additional assumption of substi-
tutability here.

Substitution Value Lemma for Propositions

B Lemma 4.2.12 Let B ∈ wff ι(Σι) be substitutable forX in A ∈ wff o(Σ), then Iϕ([B/X](A)) =
Iψ(A), where ψ = ϕ, [Iϕ(B)/X].

B Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the inductive case of
the substitution value lemma for terms.

P.1.2 n > 0 and A = ¬B or A = C ◦D: Here we argue like in the inductive case of the
term lemma as well.

P.1.3 n > 0 and A = ∀X C: then Iψ(A) = Iψ(∀X C) = T, iff Iψ,[a/X](C) = Iϕ,[a/X](C) =
T, for all a ∈ Dι, which is the case, iff Iϕ(∀X C) = Iϕ([B/X](A)) = T.

P.1.4 n > 0 and A = ∀Y C where X 6= Y : then Iψ(A) = Iψ(∀Y C) = T, iff Iψ,[a/Y ](C) =
Iϕ,[a/Y ]([B/X](C)) = T, by inductive hypothesis. So Iψ(A) = Iϕ(∀Y [B/X](C)) =
Iϕ([B/X](∀Y C)) = Iϕ([B/X](A))

©: Michael Kohlhase 24

To understand the proof full, you should look out where the substitutability is actually used.

Armed with the substitution value lemma, we can now define alphabetic renaming and show it to
be sound with respect to the semantics we defined above. And this soundness result will justify
the definition of capture-avoiding substitution we will use in the rest of the course.
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4.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
without changing the meaning of a formula.

Alphabetic Renaming

B Lemma 4.3.1 Bound variables can be renamed: If Y is substitutable for X in A, then
Iϕ(∀X A) = Iϕ(∀Y [Y/X](A))

B Proof: by the definitions:

P.1 Iϕ(∀X A) = T, iff

P.2 Iϕ,[a/X](A) = T for all a ∈ Dι, iff

P.3 Iϕ,[a/Y ]([Y/X](A)) = T for all a ∈ Dι, iff (by substitution value lemma)

P.4 Iϕ(∀Y [Y/X](A)) = T.

B Definition 4.3.2 We call two formulae A and B alphabetical variants (or α-equal; write
A =α B), iff A = ∀X C and B = ∀Y [Y/X](C) for some variables X and Y .

©: Michael Kohlhase 25

We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instantiations respect a substitutability condition, which is quite
tedious. We will now come up with an improved definition of substitution application for first-
order logic that does not have this problem.

Avoiding Variable Capture by Built-in α-renaming

B Idea: Given alphabetic renaming, we will consider alphabetical variants as identical

B So: Bound variable names in formulae are just a representational device(we rename bound variables wherever necessary)

B Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old) modulo =α.
(formulae as syntactic representatives of equivalence classes)

B Definition 4.3.3 (Capture-Avoiding Substitution Application) Let σ be a substi-
tution, A a formula, and A′ an alphabetical variant of A, such that intro(σ) ∩BVar(A) =
∅. Then [A]=α = [A′]=α and we can define σ([A]=α) := [σ(A′)]=α .

B Notation 4.3.4 After we have understood the quotient construction, we will neglect making
it explicit and write formulae and substitutions with the understanding that they act on
quotients.

©: Michael Kohlhase 26

4.4 Entailment Theorem

The next theorem shows that the implication connective and the entailment relation are closely
related: we can move a hypothesis of the entailment relation into an implication assumption in the
conclusion of the entailment relation. Note that however close the relationship between implication
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and entailment, the two should not be confused. The implication connective is a syntactic formula
constructor, whereas the entailment relation lives in the semantic realm. It is a relation between
formulae that is induced by the evaluation mapping.

The Entailment Theorem

B Theorem 4.4.1 If H,A |= B, then H |= (A⇒ B).

B Proof: We show that Iϕ(A⇒ B) = T for all assignments ϕ with Iϕ(H) = T whenever
H,A |= B

P.1 Let us assume there is an assignment ϕ, such that Iϕ(A⇒ B) = F.

P.2 Then Iϕ(A) = T and Iϕ(B) = F by definition.

P.3 But we also know that Iϕ(H) = T and thus Iϕ(B) = T, since H,A |= B.

P.4 This contradicts our assumption Iϕ(B) = T from above.

P.5 So there cannot be an assignment ϕ that Iϕ(A⇒ B) = F; in other words, A ⇒ B is
valid.

©: Michael Kohlhase 27

Now, we complete the theorem by proving the converse direction, which is rather simple.

The Entailment Theorem (continued)

B Corollary 4.4.2 H,A |= B, iff H |= (A⇒ B)

B Proof: In the light of the previous result, we only need to prove that H,A |= B, whenever
H |= (A⇒ B)

P.1 To prove that H,A |= B we assume that Iϕ(H,A) = T.

P.2 In particular, Iϕ(A⇒ B) = T since H |= (A⇒ B).

P.3 Thus we have Iϕ(A) = F or Iϕ(B) = T.

P.4 The first cannot hold, so the second does, thus H,A |= B.

©: Michael Kohlhase 28
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Chapter 5

Inference in First-Order Logic

In this chapter we will introduce inference systems (calculi) for first-order logic and study their
properties, in particular soundness and completeness.

5.1 Formal Systems

To prepare the ground for the particular developments coming up, let us spend some time on
recapitulating the basic concerns of formal systems.

5.1.1 Logical Systems

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical
system consists of a formal language, a class of models, and a satisfaction relation between models
and expressions of the formal lanugage. The satisfaction relation tells us when an expression is
deemed true in this model.

Logical Systems

B Definition 5.1.1 A logical system is a triple S := 〈L,K, |=〉, where L is a formal language,
K is a set and |= ⊆ K × L. Members of L are called formulae of S, members of K models
for S, and |= the satisfaction relation.

B Definition 5.1.2 Let S := 〈L,K, |=〉 be a logical system, M ∈ K be a model and A ∈ L
a formula, then we call A

B satisfied by M, iff M |= A

B falsified by M, iff M 6|= A

B satisfiable in K, iff M |= A for some model M∈ K.

B valid in K (write |=M), iff M |= A for all models M∈ K
B falsifiable in K, iff M 6|= A for some M∈ K.

B unsatisfiable in K, iff M 6|= A for all M∈ K.

B Definition 5.1.3 Let S := 〈L,K, |=〉 be a logical system, then we define the entailment
relation |= ⊆ L× L. We say that A entails B (written A |= B), iff we have M |= B for all
models M∈ K with M |= A.

B Observation 5.1.4 A |= B and M |= A imply M |= B.

25
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Example 5.1.5 (First-Order Logic as a Logical System) Let L := wff o(Σ), K be the class
of first-order models, and M |= A :⇔ Iϕ(A) = T, then 〈L,K, |=〉 is a logical system in the sense
of Definition 5.1.1.

Note that central notions like the entailment relation (which is central for understanding reasoning
processes) can be defined independently of the concrete compositional setup we have used for first-
order logic, and only need the general assumptions about logical systems.

Let us now turn to the syntactical counterpart of the entailment relation: derivability in a calculus.
Again, we take care to define the concepts at the general level of logical systems.

5.1.2 Calculi, Derivations, and Proofs

The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Systems and Inference Rules

B Definition 5.1.6 Let S := 〈L,K, |=〉 be a logical system, then we call a relation ` ⊆
P(L)× L a derivation relation for S, if it

B is proof-reflexive, i.e. H ` A, if A ∈ H;

B is proof-transitive, i.e. if H ` A and H′ ∪ {A} ` B, then H ∪H′ ` B;

B admits weakening, i.e. H ` A and H ⊆ H′ imply H′ ` A.

B Definition 5.1.7 We call 〈L,K, |=,`〉 a formal system, iff S := 〈L,K, |=〉 is a logical
system, and ` a derivation relation for S.

B Definition 5.1.8 Let L be a formal language, then an inference rule over L

A1 · · · An

C
N

where A1, . . . ,An and C are formula schemata for L and N is a name.
The Ai are called assumptions, and C is called conclusion.

B Definition 5.1.9 An inference rule without assumptions is called an axiom (schema).

B Definition 5.1.10 Let S := 〈L,K, |=〉 be a logical system, then we call a set C of inference
rules over L a calculus for S.

©: Michael Kohlhase 30

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A ⇒ B represents the
set of formulae whose head is ⇒.
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Derivations and Proofs

B Definition 5.1.11 Let S := 〈L,K, |=〉 be a logical system and C a calculus for S, then
a C-derivation of a formula C ∈ L from a set H ⊆ L of hypotheses (write H `C C) is a
sequence A1, . . . ,Am of L-formulae, such that

B Am = C, (derivation culminates in C)

B for all 1 ≤ i ≤ m, either Ai ∈ H, or (hypothesis)

B there is an inference rule
Al1 · · · Alk

Ai
in C with lj < i for all j ≤ k. (rule application)

Observation: We can also see a derivation as a tree, where the Alj are the children of the
node Ak.

BB

Example 5.1.12 In the propositional
Hilbert calculus H0 we have the deriva-
tion P `H0 Q⇒ P : the sequence is
P ⇒ Q⇒ P , P ,Q⇒ P and the corresponding
tree on the right.

K
P ⇒ Q⇒ P P

MP
Q⇒ P

B Observation 5.1.13 Let S := 〈L,K, |=〉 be a logical system and C a calculus for S, then
the C-derivation relation `D defined in Definition 5.1.11is a derivation relation in the sense
of Definition 5.1.6.2

B Definition 5.1.14 Correspondingly, we call 〈L,K, |=, C〉 a formal system, iff S := 〈L,K, |=〉
is a logical system, and C a calculus for S.

B Definition 5.1.15 A derivation ∅ `C A is called a proof of A and if one exists (write
`C A) then A is called a C-theorem.

B Definition 5.1.16 an inference rule I is called admissible in C, if the extension of C by I
does not yield new theorems.
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bEdNote: MK: this should become a view!

Inference rules are relations on formulae represented by formula schemata (where boldface, upper-
case letters are used as meta-variables for formulae). For instance, in Example 5.1.12the inference

rule
A⇒ B A

B
was applied in a situation, where the meta-variables A and B were instantiated

by the formulae P and Q⇒ P .

As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in Example 5.1.12.

5.1.3 Properties of Calculi

In general formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the deduction
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

http://creativecommons.org/licenses/by-sa/2.5/
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Soundness and Completeness

B Definition 5.1.17 Let S := 〈L,K, |=〉 be a logical system, then we call a calculus C for S

B sound (or correct), iff H |= A, whenever H `C A, and

B complete, iff H `C A, whenever H |= A.

B Goal: ` A iff |=A (provability and validity coincide)

B To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])
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Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

Of course, the logics we have studied so far are very simple, and not able to express interesting
facts about the world, but we will study them as a simple example of the fundamental problem of
Computer Science: How do the formal representations correlate with the real world.

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human).
Such derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The miracle of logics

B Purely formal derivations are true in the real world!
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If a logic is correct, the conclusions one can prove are true (= hold in the real world) whenever
the premises are true. This is a miraculous fact (think about it!)

5.2 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert-style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction
calculus that makes certain meta-proofs simpler to push through3. EdN:3

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.

5.2.1 Propositional Natural Deduction Calculus

We will now introduce the “natural deduction” calculus for propositional logic. The calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

Rather than using a minimal set of inference rules, the natural deduction calculus provides
two/three inference rules for every connective and quantifier, one “introduction rule” (an inference

3EdNote: say something about cut elimination/analytical calculi somewhere
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rule that derives a formula with that symbol at the head) and one “elimination rule” (an inference
rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gen35])

B Idea: ND0 tries to mimic human theorem proving behavior (non-minimal)

B Definition 5.2.1 The propositional natural deduction calculus ND0 has rules for the intro-
duction and elimination of connectives

Introduction Elimination Axiom

A B

A ∧B
∧I A ∧B

A
∧El

A ∧B

B
∧Er

A ∨ ¬A
TND

[A]1

B

A⇒ B
⇒I1 A⇒ B A

B
⇒E

B TND is used only in classical logic (otherwise constructive/intuitionistic)
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The most characteristic rule in the natural deduction calculus is the ⇒I rule. It corresponds to
the mathematical way of proving an implication A⇒ B: We assume that A is true and show B
from this assumption. When we can do this we discharge (get rid of) the assumption and conclude
A⇒ B. This mode of reasoning is called hypothetical reasoning. Note that the local hypothesis
is discharged by the rule ⇒I , i.e. it cannot be used in any other part of the proof. As the ⇒I
rules may be nested, we decorate both the rule and the corresponding assumption with a marker
(here the number 1).

Let us now consider an example of hypothetical reasoning in action.

Natural Deduction: Examples

B Inference with local hypotheses

[A ∧B]1

∧Er
B

[A ∧B]1

∧El
A
∧I

B ∧A
⇒I1

A ∧B⇒ B ∧A

[A]
1

[B]
2

A
⇒I2

B ⇒ A
⇒I1

A⇒ B ⇒ A
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One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.
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A Deduction Theorem for ND0

B Theorem 5.2.2 H,A `ND0 B, iff H `ND0 A⇒ B.

B Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒ B by ⇒I , and

P.2 If H `ND0 A⇒ B, then H,A `ND0 A⇒ B by weakening and H,A `ND0 B by ⇒E.
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Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from Definition 5.2.1 for
disjunction, negation and falsity.

More Rules for Natural Deduction

B Definition 5.2.3 ND0 has the following additional rules for the remaining connectives.

A

A ∨B
∨Il

B

A ∨B
∨Ir

A ∨B

[A]
1

...
C

[B]
1

...
C

C
∨E1

[A]
1

...
F
¬A

¬I1 ¬¬A

A
¬E

¬A A

F
FI

F

A
FE
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To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gen35])

B Rules for propositional connectives just as always

B Definition 5.2.4 (New Quantifier Rules) The first-order natural deduction calculusND1

extends ND0 by the following four rules

http://creativecommons.org/licenses/by-sa/2.5/
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A

∀X A
∀I∗ ∀X A

[B/X](A)
∀E

[B/X](A)

∃X A
∃I

∃X A

[[c/X](A)]
1

...
C

C
∃E1

∗ means that A does not depend on any hypothesis in which X is free.
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The intuition behind the rule ∀I is that a formula A with a (free) variable X can be generalized to
∀X A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about X. The
∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X in A. The
∃I rule says if we have a witness B for X in A (i.e. a concrete term B that makes A true), then
we can existentially close A. The ∃E rule corresponds to the common mathematical practice,
where we give objects we know exist a new name c and continue the proof by reasoning about this
concrete object c. Anything we can prove from the assumption [c/X](A) we can prove outright if
∃X A is known.

One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

B Theorem 5.2.5 H,A `ND0 B, iff H `ND0 A⇒ B.

B Proof: We show the two directions separately

P.1 If H,A `ND0 B, then H `ND0 A⇒ B by ⇒I , and

P.2 If H `ND0 A⇒ B, then H,A `ND0 A⇒ B by weakening and H,A `ND0 B by ⇒E.
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This is the classical formulation of the calculus of natural deduction. To prepare the things we
want to do later (and to get around the somewhat un-licensed extension by hypothetical reasoning
in the calculus), we will reformulate the calculus by lifting it to the “judgements level”. Instead
of postulating rules that make statements about the validity of propositions, we postulate rules
that make state about derivability. This move allows us to make the respective local hypotheses
in ND derivations into syntactic parts of the objects (we call them “sequents”) manipulated by
the inference rules.

Natural Deduction in Sequent Calculus Formulation

B Idea: Explicit representation of hypotheses (lift calculus to judgments)

B Definition 5.2.6 A judgment is a meta-statement about the provability of propositions

B Definition 5.2.7 A sequent is a judgment of the form H ` A about the provability of the
formula A from the set H of hypotheses.

http://creativecommons.org/licenses/by-sa/2.5/
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B Idea: Reformulate ND rules so that they act on sequents

B Example 5.2.8

A ∧B ` A ∧B ∧Er
A ∧B ` B

A ∧B ` A ∧B ∧El
A ∧B ` A

∧I
A ∧B ` B ∧A

⇒I
∅ ` A ∧B⇒ B ∧A

B Note: Even though the antecedent of a sequent is written like a sequence, it is actually a
set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

B Definition 5.2.9 The following inference rules make up the sequent calculus

Γ,A ` A
Ax

Γ ` B

Γ,A ` B
weaken

Γ ` A ∨ ¬A
TND

Γ ` A Γ ` B

Γ ` A ∧B
∧I

Γ ` A ∧B

Γ ` A
∧El

Γ ` A ∧B

Γ ` B
∧Er

Γ ` A

Γ ` A ∨B
∨Il

Γ ` B

Γ ` A ∨B
∨Ir

Γ ` A ∨B Γ,A ` C Γ,B ` C

Γ ` C
∨E

Γ,A ` B

Γ ` A⇒ B
⇒I

Γ ` A⇒ B Γ ` A

Γ ` B
⇒E

Γ,A ` F

Γ ` ¬A
¬I

Γ ` ¬¬A
A

¬E

Γ ` ¬A Γ ` A

Γ ` F
FI

Γ ` F

Γ ` A
FE
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First-Order Natural Deduction in Sequent Formulation

B Rules for propositional connectives just as always

B Definition 5.2.10 (New Quantifier Rules)

Γ ` A X 6∈ free(Γ)

Γ ` ∀X A
∀I Γ ` ∀X A

Γ ` [B/X](A)
∀E

Γ ` [B/X](A)

Γ ` ∃X A
∃I Γ ` ∃X A Γ, [c/X](A) ` C c ∈ Σsk0 new

Γ ` C
∃E

©: Michael Kohlhase 42

We leave the soundness result for the first-order natural deduction calculus to the reader and turn
to the complenesss result, which is much more involved and interesting.
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5.3 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by
Jaako Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of
similar constructions that were used in completeness arguments in the decades before.4EdN:4

The basic intuition for this method is the following: typically, a logical system S = 〈L,K, |=〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

B Definition: Abstract consistency

B Definition: Hintikka set (maximally abstract consistent)

B Theorem: Hintikka sets are satisfiable

B Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

B Corollary: If Φ is abstract consistent, then Φ is satisfiable

B Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract consistent.

B Corollary: C is complete.
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The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.

To carry out the “model-existence”/”abstract consistency” method, we will first have to look at
the notion of consistency.

4EdNote: cite the original papers!
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Consistency and refutability are very important notions when studying the completeness for cal-
culi; they form syntactic counterparts of satisfiability.

Consistency

B Let C be a calculus

B Definition 5.3.1 Φ is called C-refutable, if there is a formula B, such that Φ `C B and
Φ `C ¬B.

B Definition 5.3.2 We call a pair A and ¬A a contradiction.

B So a set Φ is C-refutable, if C can derive a contradiction from it.

B Definition 5.3.3 Φ is called C-consistent, iff there is a formula B, that is not derivable
from Φ in C.

B Definition 5.3.4 We call a calculus C reasonable, iff implication elimination and conjunction
introduction are admissible in C and A ∧ ¬A⇒ B is a C-theorem.

B Theorem 5.3.5 C-inconsistency and C-refutability coincide for reasonable calculi

©: Michael Kohlhase 44

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |=〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.

The notion of an “abstract consistency class” provides the a calculus-independent notion of “con-
sistency”: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member
of an abstract consistency class ∇.

Abstract Consistency

B Definition 5.3.6 Let ∇ be a family of sets. We call ∇ closed under subsets, iff for each
Φ ∈ ∇, all subsets Ψ ⊆ Φ are elements of ∇.

B Notation 5.3.7 We will use Φ ∗A for Φ ∪ {A}.

B Definition 5.3.8 A family ∇ ⊆ wff o(Σ) of sets of formulae is called a (first-order) abstract
consistency class, iff it is closed under subsets, and for each Φ ∈ ∇

∇c) A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∧) (A ∧B) ∈ Φ implies (Φ ∪ {A,B}) ∈ ∇
∇∨) ¬(A ∧B) ∈ Φ implies Φ ∗ ¬A ∈ ∇ or Φ ∗ ¬B ∈ ∇
∇∀) If (∀X A) ∈ Φ, then Φ ∗ [B/X](A) ∈ ∇ for each closed term B.

∇∃) If ¬(∀X A) ∈ Φ and c is an individual constant that does not occur in Φ, then
Φ ∗ ¬[c/X](A) ∈ ∇
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The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we
should be able to extend it by A without losing this property; in other words, a complete calculus
should be able to recognize A and ¬¬A to be equivalent.

We will carry out the proof here, since it gives us practice in dealing with the abstract consistency
properties.

Actually we are after abstract consistency classes that have an even stronger property than just
being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

B Definition 5.3.9 We call a collection ∇ of sets compact, iff for any set Φ we have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

B Lemma 5.3.10 If ∇ is compact, then ∇ is closed under subsets.

B Proof:

P.1 Suppose S ⊆ T and T ∈ ∇.

P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.

P.4 Thus S ∈ ∇.
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The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a family ∇ by testing
all their finite subsets (which is much simpler).

The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract consis-
tency classes are compact in the first place (otherwise we pass to the compact extension).

Compact Abstract Consistency Classes

B Lemma 5.3.11 Any first-order abstract consistency class can be extended to a compact
one.

B Proof:

P.1 We choose ∇′ := {Φ ⊆ cwff o(Σι) | every finite subset of Φis in ∇}.
P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset of Φ is in ∇

and thus Φ ∈ ∇′. Hence ∇ ⊆ ∇′.
P.3 Let us now show that each ∇′ is compact.

P.3.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.3.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.3.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
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P.3.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.3.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so Φ ∈ ∇′. Thus

∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

P.5 Next we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that {A,¬A} ⊆ Φ.

Then {A,¬A} ∈ ∇ contradicting ∇c.
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′.
P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := ((Ψ\{A}) ∗ ¬¬A).

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.

P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get Θ ∗A ∈ ∇ by ∇¬.

P.5.2.4 We know that Ψ ⊆ Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.

P.5.2.5 Thus every finite subset Ψ of Φ ∗A is in ∇ and therefore by definition Φ ∗A ∈ ∇′.
P.5.3 the other cases are analogous to ∇¬.
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Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

∇-Hintikka Set

B Definition 5.3.12 Let ∇ be an abstract consistency class, then we call a set H ∈ ∇ a
∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H ∗A ∈ ∇ we already have
A ∈ H.

B Theorem 5.3.13 (Hintikka Properties) Let ∇ be an abstract consistency class and H
be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σ) we have A 6∈ H or ¬A 6∈ H.

H¬) If ¬¬A ∈ H then A ∈ H.

H∧) If (A ∧B) ∈ H then A,B ∈ H.

H∨) If ¬(A ∧B) ∈ H then ¬A ∈ H or ¬B ∈ H.

H∀) If (∀X A) ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬(∀X A) ∈ H then ¬[B/X](A) ∈ H for some term closed term B.

Proof:

B P.1 We prove the properties in turn

Hc goes by induction on the structure of A

P.2P.2.1 A atomic: Then A 6∈ H or ¬A 6∈ H by ∇c.
P.2.2 A = ¬B:

P.2.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,

P.2.2.2 then H ∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.2.2.3 So {B,¬B} ⊆ H, which contradicts the inductive hypothesis.
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P.2.3 A = B ∨C: similar to the previous case

We prove H¬ by maximality of H in ∇.

P.3P.3.1 If ¬¬A ∈ H, then H ∗A ∈ ∇ by ∇¬.

P.3.2 The maximality of H now gives us that A ∈ H.

The other H∗ are similar
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The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

P.4 Extension Theorem

B Theorem 5.3.14 If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then there is a
∇-Hintikka set H with Φ ⊆ H.

B Proof: Wlog. assume that ∇ compact (else use compact extension)

P.1 Choose an enumeration A1,A2, . . . of cwff o(Σι) and c1, c2, . . . of Σsk0 .

P.2 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn ∗An 6∈ ∇
Hn ∪ {An,¬[cn/X](B)} if Hn ∗An ∈ ∇ and An = ¬(∀X B)

Hn ∗An else

P.3 Note that all Hi ∈ ∇, choose H :=
⋃
i∈NH

i

P.4 Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,

P.5 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.6 Let H ∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and Hj+1 ⊆ H
P.7 Thus H is ∇-maximal
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Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent5 with Φ, then depending on which one is first in the enumeration H, will containEdN:5
that one; with all the consequences for subsequent choices in the construction process.

Valuation

B Definition 5.3.15 A function ν : cwff o(Σι)→ Do is called a (first-order) valuation, iff

B ν(¬A) = T, iff ν(A) = F

B ν(A ∧B) = T, iff ν(A) = T and ν(B) = T

5EdNote: introduce this above
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B ν(∀X A) = T, iff ν([B/X](A)) = T for all closed terms B.

B Lemma 5.3.16 If ϕ : Vι → D is a variable assignment, then Iϕ : cwff o(Σι) → Do is a
valuation.

B Proof Sketch: Immediate from the definitions
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Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.6 EdN:6

Valuation and Satisfiability

B Lemma 5.3.17 If ν : cwff o(Σι)→ Do is a valuation and Φ ⊆ cwff o(Σι) with ν(Φ) = {T},
then Φ is satisfiable.

B Proof: We construct a model for Φ.

P.1 Let Dι := cwff ι(Σι), and

B I(f) : Dιk 7→ Dι〈A1, . . . ,Ak〉f(A1, . . . ,Ak) for f ∈ Σf

B I(p) : Dιk 7→ Do〈A1, . . . ,Ak〉ν(p(A1, . . . ,An)) for p ∈ Σp.

P.2 Then variable assignments into Dι are ground substitutions.

P.3 We show Iϕ(A) = ϕ(A) for A ∈ wff ι(Σι) by induction on A

P.3.1 A = X: then Iϕ(A) = ϕ(X) by definition.

P.3.2 A = f(A1, . . . ,An): then Iϕ(A) = I(f)(Iϕ(A1), . . . , Iϕ(An)) = I(f)(ϕ(A1), . . . , ϕ(An)) =
f(ϕ(A1), . . . , ϕ(An)) = ϕ(f(A1, . . . ,An)) = ϕ(A)

P.4 We show Iϕ(A) = ν(ϕ(A)) for A ∈ wff o(Σ) by induction on A

P.4.1 A = p(A1, . . . ,An): then Iϕ(A) = I(p)(Iϕ(A1), . . . , Iϕ(An)) = I(p)(ϕ(A1), . . . , ϕ(An)) =
ν(p(ϕ(A1), . . . , ϕ(An))) = ν(ϕ(p(A1, . . . ,An))) = ν(ϕ(A))

P.4.2 A = ¬B: then Iϕ(A) = T, iff Iϕ(B) = ν(ϕ(B)) = F, iff ν(ϕ(A)) = T.

P.4.3 A = B ∧C: similar

P.4.4 A = ∀X B: then Iϕ(A) = T, iff Iψ(B) = ν(ψ(B)) = T, for all C ∈ Dι, where
ψ = ϕ, [C/X]. This is the case, iff ν(ϕ(A)) = T.

P.5 Thus Iϕ(A) = ν(ϕ(A)) = ν(A) = T for all A ∈ Φ.

P.6 Hence M |= A for M := 〈Dι, I〉.
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Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

B Theorem 5.3.18 (Hintikka-Lemma) If ∇ is an abstract consistency class and H a ∇-
Hintikka set, then H is satisfiable.

6EdNote: I think that we only get a semivaluation, look it up in Andrews.
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B Proof:

P.1 we define ν(A) := T, iff A ∈ H,

P.2 then ν is a valuation by the Hintikka set properties.

P.3 We have ν(H) = {T}, so H is satisfiable.

B Theorem 5.3.19 (Model Existence) If ∇ is an abstract consistency class and Φ ∈ ∇,
then Φ is satisfiable.

Proof:

B P.1 There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)

We know that H is satisfiable. (Hintikka-Lemma)

In particular, Φ ⊆ H is satisfiable.

©: Michael Kohlhase 52

5.4 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that ND-consistency is an
abstract consistency property.

P.2 P.3 Consistency, Refutability and Abstract Consistency

B Theorem 5.4.1 (Non-Refutability is an Abstract Consistency Property) Γ :=
{Φ ⊆ cwff o(Σι) |Φ not ND1−refutable} is an abstract consistency class.

B Proof: We check the properties of an ACC

P.1 If Φ is non-refutable, then any subset is as well, so Γ is closed under subsets.

P.2 We show the abstract consistency conditions ∇∗ for Φ ∈ Γ.

P.2.1 ∇c: We have to show that A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

P.2.1.2 Equivalently, we show the contrapositive: If {A,¬A} ⊆ Φ, then Φ 6∈ Γ.

P.2.1.3 So let {A,¬A} ⊆ Φ, then Φ is ND1-refutable by construction.

P.2.1.4 So Φ 6∈ Γ.

P.2.2 ∇¬: We show the contrapositive again

P.2.2.2 Let ¬¬A ∈ Φ and Φ ∗A 6∈ Γ

P.2.2.3 Then we have a refutation D : Φ ∗A `ND1 F

P.2.2.4 By prepending an application of ¬E for ¬¬A toD, we obtain a refutationD′ : Φ `ND1

F .

P.2.2.5 Thus Φ 6∈ Γ.

P.2.3 other ∇∗ similar:
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This directly yields two important results that we will use for the completeness analysis.
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Henkin’s Theorem

B Corollary 5.4.2 (Henkin’s Theorem) EveryND1-consistent set of sentences has a model.

B Proof:

P.1 Let Φ be a ND1-consistent set of sentences.

P.2 The class of sets of ND1-consistent propositions constitute an abstract consistency class

P.3 Thus the model existence theorem guarantees a model for Φ.

B Corollary 5.4.3 (Löwenheim&Skolem Theorem) Satisfiable set Φ of first-order sen-
tences has a countable model.

B Proof Sketch: The model we constructed is countable, since the set of ground terms is.
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Now, the completeness result for first-order natural deduction is just a simple argument away. We
also get a compactness theorem (almost) for free: logical systems with a complete calculus are
always compact.

Completeness and Compactness

B Theorem 5.4.4 (Completeness Theorem for ND1) If Φ |= A, then Φ `ND1 A.

B Proof: We prove the result by playing with negations.

P.1 If A is valid in all models of Φ, then Φ ∗ ¬A has no model

P.2 Thus Φ ∗ ¬A is inconsistent by (the contrapositive of) Henkins Theorem.

P.3 So Φ `ND1 ¬¬A by ¬I and thus Φ `ND1 A by ¬E.

B Theorem 5.4.5 (Compactness Theorem for first-order logic) If Φ |= A, then there
is already a finite set Ψ ⊆ Φ with Ψ |= A.

Proof: This is a direct consequence of the completeness theorem

B P.1 We have Φ |= A, iff Φ `ND1 A.

As a proof is a finite object, only a finite subset Ψ ⊆ Φ can appear as leaves in the
proof.
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5.5 Limits of First-Order Logic

We will now come to the limits of first-order Logic.7 EdN:7

P.2 Gödel’s Incompleteness Theorem

7EdNote: MK: also present the theorem (whose name I forgot) that show that FOL is the “strongest logic” for
first-order models. Maybe also the interpolation theorem.
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B Theorem 5.5.1 No logical system that can Peano-Arithmetic (N, s, 0,+, ∗) admits com-
plete calculi.

B Proof: (Sketch)

P.1 Let L := 〈S, C〉 be such a system. We show that there is a valid S-sentence AC , that is
no C-theorem.

P.2 Encode the syntax of S and the C in Peano-arithmetic

P.3 We can now talk about S and C in S itself.

P.4 E.g. there is a S-sentence B with the meaning: A is a C-theorem.

P.5 Choose AC as “AC is no C-theorem” (cf. Russell’s set)

P.6 Obviously: AC ist valid in all standard models.

P.7 So C is either not correct or cannot derive AC .
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Chapter 6

First-Order Inference with
Tableaux

6.1 First-Order Tableaux

Test Calculi: Tableaux and Model Generation

B Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

B Example 6.1.1 Tableau Calculi try to construct models.

Tableau Refutation (Validity) Model generation (Satisfiability)
|=P ∧Q⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

P ∧Q⇒ Q ∧ P F

P ∧QT

Q ∧ P F

PT

QT

P F

⊥
QF

⊥

P ∧ (Q ∨ ¬R) ∧ ¬QT

P ∧ (Q ∨ ¬R)T

¬QT

QF

PT

Q ∨ ¬RT

QT

⊥
¬RT

RF

No Model Herbrand Model {PT, QF, RF}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

Algorithm: Fully expand all possible tableaux, (no rule can be applied)

B B Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a

43
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closed branch and an open one, which corresponds a model).
Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

B formula is analyzed in a tree to determine satisfiability

B branches correspond to valuations (models)

B one per connective

A ∧BT

AT

BT

T0∧
A ∧BF

AF

∣∣∣ BF
T0∨

¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α 6= β

⊥ T0cut

B Use rules exhaustively as long as they contribute new material

B Definition 6.1.2 Call a tableau saturated, iff no rule applies, and a branch closed, iff it
ends in ⊥, else open. (open branches in saturated tableaux yield models)

B Definition 6.1.3 (T0-Theorem/Derivability) A is a T0-theorem (`T0 A), iff there is
a closed tableau with AF at the root.

Φ ⊆ wff o(Vo) derives A in T0 (Φ `T0 A), iff there is a closed tableau starting with AF and
ΦT.
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These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 6.1.4 We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.

The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.

Definition 6.1.5 We will call a tableau refutation for AF a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?sec.hilbert?it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.

We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒ B as ¬A ∨B,. . . .)

We will now extend the propositional tableau techiques to first-order logic. We only have to add
two new rules for the universal quantifiers (in positive and negative polarity).
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First-Order Standard Tableaux (T1)

B Refutation calculus based on trees of labeled formulae

B Tableau-Rules: propositional tableau rules plus

∀X AT C ∈ cwff ι(Σι)

[C/X](A)T
T1:∀ ∀X AF c ∈ (Σsk0 \H)

[c/X](A)F
T1:∃
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The rule T1:∀ rule operationalizes the intuition that a universally quantified formula is true, iff
all of the instances of the scope are. To understand the T1:∃ rule, we have to keep in mind that
∃X A abbreviates ¬(∀X ¬A), so that we have to read ∀X AF existentially — i.e. as ∃X ¬AT,
stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
[c/X](¬A)T = [c/X](A)F holds, and this is just the conclusion of the T1:∃ rule.

Note that the T1:∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C ∈ wff ι(Σι) for X. This makes the rule
infinitely branching.

6.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the T1:∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f1 )

B Refutation calculus based on trees of labeled formulae

B Tableau rules

∀XAT Y new

[Y/X](A)T
T f1 :∀ ∀XAF free(∀XA) = {X1, . . . , Xk} f ∈ Σskk

[f(X1, . . . , Xk)/X](A)F
T f1 :∃

B Generalized cut rule T f1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σ(A) = σ(B)

⊥
T f1 :⊥

Advantage: no guessing necessary in T f1 :∀-rule

BB New: find suitable substitution (most general unifier)
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Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in
the T1:∀ rule, T f1 :∀ instantiates it with a new meta-variable Y , which will be instantiated by need
in the course of the derivation.
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Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the
treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 :∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 :∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.

Instantiating Metavariables: Finally, the T f1 :⊥ rule completes the treatment of meta-variables, it
allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

6.3 First-Order Unification

We will now look into the problem of finding a substitution σ that make two terms equal (we
say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theo-
retical computer science.

A transformation-based view of algorithms: The “transformation-based” view of algorithms di-
vides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan8EdN:8

computation = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.

In fact we will only concern ourselves with the “logical” analysis of unification here.

The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

B Problem: For given terms A and B find a substitution σ, such that σ(A) = σ(B).

B Notation 6.3.1 We write term pairs as A =? B e.g. f(X) =? f(g(Y ))

B Solutions (e.g. [g(a)/X], [a/Y ], [g(g(a))/X], [g(a)/Y ], or [g(Z)/X], [Z/Y ]) are called uni-
fiers, U(A =? B) := {σ |σ(A) = σ(B)}

B Idea: find representatives in U(A =? B), that generate the set of solutions

B Definition 6.3.2 Let σ and θ be substitutions and W ⊆ Vι, we say that a substitution
σ is more general than θ (on W write σ ≤ θ[W ]), iff there is a substitution ρ, such that
θ = ρ ◦ σ[W ], where σ = ρ[W ], iff σ(X) = ρ(X) for all X ∈W .

B Definition 6.3.3 σ is called a most general unifier of A and B, iff it is minimal in U(A =? B)
wrt. ≤ [free(A) ∪ free(B)].

8EdNote: find the reference, and see what he really said
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The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.

Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of a most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not
have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).

Now that we have defined the problem, we can turn to the unification algorithm itself. We will
define it in a way that is very similar to logic programming: we first define a calculus that generates
“solved forms” (formulae from which we can read off the solution) and reason about control later.
In this case we will reason that control does not matter.

Unification (Equational Systems)

B Idea: Unification is equation solving.

B Definition 6.3.4 We call a formula A1 =? B1 ∧ . . . ∧An =? Bn an equational system iff
Ai,Bi ∈ wff ι(Σι,Vι).

B We consider equational systems as sets of equations (∧ is ACI), and equations as two-element
multisets (=? is C).

B Definition 6.3.5 We call a pair A =? B solvedn a unification problem E , iff A = X,
E = X =? A ∧ cE, and X 6∈ (free(A) ∪ free(E)). We call an unification problem E a solved
form, iff all its pairs are solved.

B Lemma 6.3.6 Solved forms are of the form X1 =? B1 ∧ . . . ∧Xn =? Bn where the Xi are
distinct and Xi 6∈ free(Bj).

B Lemma 6.3.7 If E = X1 =? B1 ∧ . . . ∧Xn =? Bn is a solved form, then E has the unique
most general unifier σE := [B1/X1], . . ., [Bn/Xn].

B Proof: Let θ ∈ U(E)

P.1 then θ(Xi) = θ(Bi) = θ ◦ σE(Xi)

P.2 and thus θ = θ ◦ σE [supp(σ)].

Note: we can rename the introduced variables in most general unifiers!
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In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
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(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

It is essential to our “logical” analysis of the unification algorithm that we arrive at equa-
tional problems whose unifiers we can read off easily. Solved forms serve that need perfectly
as Lemma 6.3.7shows.

Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

B Unification Algorithm

B Definition 6.3.8 Inference system U

E ∧ f(A1, . . . ,An) =? f(B1, . . . ,Bn)

E ∧A1 =? B1 ∧ . . . ∧An =? Bn
Udec

E ∧A =? A

E
Utriv

E ∧X =? A X 6∈ free(A) X ∈ free(E)

[A/X](E) ∧X =? A
Uelim

B Lemma 6.3.9 U is correct: E `U F implies U(F) ⊆ U(E)

B Lemma 6.3.10 U is complete: E `U F implies U(E) ⊆ U(F)

B Lemma 6.3.11 U is confluent: the order of derivations does not matter

B Corollary 6.3.12 First-Order Unification is unitary: i.e. most general unifiers are unique
up to renaming of introduced variables.

B Proof Sketch: the inference system U is trivially branching
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The decomposition rule Udec is completely straightforward, but note that it transforms one unifi-
cation pair into multiple argument pairs; this is the reason, why we have to directly use unification
problems with multiple pairs in U .

Note furthermore, that we could have restricted the Utriv rule to variable-variable pairs, since
for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the Udec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in Uelim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the
second one is a termination condition that prevents the rule to be applied twice.

The notion of completeness and correctness is a bit different than that for calculi that we compare
to the entailment relation. We can think of the “logical system of unifiability” with the model
class of sets of substitutions, where a set satisfies an equational problem E , iff all of its members
are unifiers. This view induces the soundness and completeness notions presented above.

The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we leave
the proofs as an exercise to the reader.

We now fortify our intuition about the unification calculus by two examples. Note that we only
need to pursue one possible U derivation since we have confluence.

Unification Examples
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Example 6.3.13 Two similar unification problems:

f(g(x, x), h(a)) =? f(g(a, z), h(z))
Udec

g(x, x) =? g(a, z) ∧ h(a) =? h(z)
Udec

x=? a ∧ x=? z ∧ h(a) =? h(z)
Udec

x=? a ∧ x=? z ∧ a=? z
Uelim

x=? a ∧ a=? z ∧ a=? z
Uelim

x=? a ∧ z =? a ∧ a=? a
Utriv

x=? a ∧ z =? a

f(g(x, x), h(a)) =? f(g(b, z), h(z))
Udec

g(x, x) =? g(b, z) ∧ h(a) =? h(z)
Udec

x=? b ∧ x=? z ∧ h(a) =? h(z)
Udec

x=? b ∧ x=? z ∧ a=? z
Uelim

x=? b ∧ b=? z ∧ a=? z
Uelim

x=? a ∧ z =? a ∧ a=? b

MGU: [a/x], [a/z] a=? b not unifiable
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We will now convince ourselves that there cannot be any infinite sequences of transformations in
U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set 〈S,≺〉 where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there
were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of 〈S,≺〉.

The crucial step in in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that 〈N, <〉 is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite-dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

Unification (Termination)

B Definition 6.3.14 Let S and T be multisets and ≺ a partial ordering on S ∪ T . Then we
define (S ≺m T ), iff S = C ] T ′ and T = C ] {t}, where s ≺ t for all s ∈ S′. We call ≺m
the multiset ordering induced by ≺.

B Lemma 6.3.15 If ≺ is total/terminating on S, then ≺m is total/terminating on P(S).

B Lemma 6.3.16 U is terminating (any U-derivation is finite)

B Proof: We prove termination by mapping U transformation into a Noetherian space.

P.1 Let µ(E) := 〈n,N〉, where

B m is the number of unsolved variables in E
B N is the multiset of term depths in E

P.2 The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.

P.2.1 Udec and Utriv decrease the multiset of term depths without increasing the unsolved
variables
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P.2.2 Uelim decreases the number of unsolved variables (by one), but may increase term
depths.
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But it is very simple to create terminating calculi, e.g. by having no inference rules. So there is
one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

Unification (decidable)

B Definition 6.3.17 We call an equational problem E U-reducible, iff there is a U-step E `U F
from E .

B Lemma 6.3.18 If E is unifiable but not solved, then it is U-reducible

B Proof: We assume that E is unifiable but unsolved and show the U rule that applies.

P.1 There is an unsolved pair A =? B in E = E ′ ∧A =? B.

P.2 we have two cases

P.2.1 A,B 6∈ Vι: then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is applica-
ble

P.2.2 A = X ∈ free(E): then Uelim (if B 6= X) or Utriv (if B = X) is applicable.

B Corollary 6.3.19 Unification is decidable in PL1.

B Proof Idea: U-irreducible sets of equations can be obtained in finite time by Lemma 6.3.16and
are either solved or unsolvable by Lemma 6.3.18, so they provide the answer.
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6.4 Efficient Unification

Complexity of Unification

B Observation: Naive unification is exponential in time and space.

B consider the terms

sn = f(f(x0, x0), f(f(x1, x1), f(. . . , f(xn−1, xn−1)) . . .))

tn = f(x1, f(x2, f(x3, f(. . . , xn) . . .)))

B The most general unifier of sn and tn is

[f(x0, x0)/x1], [f(f(x0, x0), f(x0, x0))/x2], [f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0)))/x3], . . .

B it contains
∑n
i=1 2i = 2n+1 − 2 occurrences of the variable x0. (exponential)

B Problem: the variable x0 has been copied too often
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B Idea: Find a term representation that re-uses subterms
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Directed Acyclic Graphs (DAGs)

B use directed acyclic graphs for the term representation

B variables my only occur once in the DAG

B subterms can be referenced multiply

B Observation 6.4.1 Terms can be transformed into DAGs in linear time

B Example 6.4.2 s3, t3, σ3(s3)

x1 x2 x3

x0 f f

ff

f f

f

s3 t3

x0

f

f

f

f

f

σ3(t3)
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DAG Unification Algorithm

B Definition 6.4.3 We say that X1 =? B1 ∧ . . . ∧Xn =? Bn is a DAG solved form, iff the
Xi are distinct and Xi 6∈ free(Bj) for i ≤ j

B Definition 6.4.4 The inference system DU contains rules Udec and Utriv from U plus the
following:

E ∧X =? A ∧X =? B A,B 6∈ Vι
|A| ≤ |B|

E ∧X =? A ∧A =? BDUmerge

E ∧X =? Y X 6= Y X, Y ∈ free(E)

[Y/X](E) ∧X =? Y
DUevar

where |A| is the number of symbols in A.
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Unification by DAG-chase

B Idea: Extend the Input-DAGs by edges that represent unifiers.
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B write n.a, if a is the symbol of node n.

B auxiliary procedures: (all linear or constant time)

B find(n) follows the path from n and returns the end node

B union(n,m) adds an edge between n and m.

B occur(n,m) determines whether n.x occurs in the DAG with root m.
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Algorithm unify

B Input: symmetric pairs of nodes in DAGs

fun unify(n,n) = true
| unify(n.x,m) = if occur(n,m) then true else union(n,m)
| unify(n.f,m.g) = if g!=f then false

else forall (i,j) => unify(find(i),find(j)) (chld m,chld n)
end

B linear in space, since no new nodes are created, and at most one link per variable.

B consider terms f(sn, f(t′n, xn)), f(tn, f(s′n, yn))), where s′n = [yi/xi](sn) und t′n = [yi/xi](tn).

B unify needs exponentially many recursive calls to unify the nodes xn and yn. (they are unified after n calls, but checking needs the time)

B Idea: Also bind the function nodes, if the arguments are unified.

unify(n.f,m.g) = if g!=f then false
else union(n,m);

forall (i,j) => unify(find(i),find(j)) (chld m,chld n)
end

B this only needs linearly many recursive calls as it directly returns with true or makes a node
inaccessible for find.

B linearly many calls to linear procedures give quadratic runtime.
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Now that we understand basic unification theory, we can come to the meta-theoretical properties
of the tableau calculus, which we now discuss to make the understanding of first-order inference
complete.

6.5 Soundness and Completeness of First-Order Tableaux

For the soundness result, we recap the definition of soundness for test calculi from the propositional
case.

Soundness (Tableau)

B Idea: A test calculus is sound, iff it preserves satisfiability and the goal formulae are unsatis-
fiable.
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B Definition 6.5.1 A labeled formula Aα is valid under ϕ, iff Iϕ(A) = α.

B Definition 6.5.2 A tableau T is satisfiable, iff there is a satisfiable branch P in T , i.e. if
the set of formulae in P is satisfiable.

B Lemma 6.5.3 Tableau rules transform satisfiable tableaux into satisfiable ones.

B Theorem 6.5.4 (Soundness) A set Φ of propositional formulae is valid, if there is a closed
tableau T for ΦF.

B Proof: by contradiction: Suppose Φ is not valid.

P.1 then the initial tableau is satisfiable (ΦF satisfiable)

P.2 T satisfiable, by our Lemma.

P.3 there is a satisfiable branch (by definition)

P.4 but all branches are closed (T closed)
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Thus we only have to prove Lemma 6.5.3, this is relatively easy to do. For instance for the first
rule: if we have a tableau that contains A ∧BT and is satisfiable, then it must have a satisfiable
branch. If A ∧BT is not on this branch, the tableau extension will not change satisfiability, so we
can assue that it is on the satisfiable branch and thus Iϕ(A ∧B) = T for some variable assignment
ϕ. Thus Iϕ(A) = T and Iϕ(B) = T, so after the extension (which adds the formulae AT and BT

to the branch), the branch is still satisfiable. The cases for the other rules are similar.

The soundness of the first-order free-variable tableaux calculus can be established a simple induc-
tion over the size of the tableau.

Soundness of T f1
B Lemma 6.5.5 Tableau rules transform satisfiable tableaux into satisfiable ones.

B Proof:

P.1 we examine the tableau rules in turn

P.1.1 propositional rules: as in propositional tableaux

P.1.2 T f1 :∃: by Lemma 6.5.7

P.1.3 T f1 :⊥: by Lemma 4.2.12(substitution value lemma)

P.1.4 T f1 :∀:

P.1.4.1 Iϕ(∀X A) = T, iff Iψ(A) = T for all a ∈ Dι
P.1.4.2 so in particular for some a ∈ Dι 6= ∅.

B Corollary 6.5.6 T f1 is correct.
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The only interesting steps are the cut rule, which can be directly handled by the substitution value
lemma, and the rule for the existential quantifier, which we do in a separate lemma.
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Soundness of T f1 :∃

B Lemma 6.5.7 T f1 :∃ transforms satisfiable tableaux into satisfiable ones.

B Proof: Let T ′ be obtained by applying T f1 :∃ to ∀X AF in T , extending it with [f(X1, . . . , Xn)/X](A)F,
where W := free(∀X A) = {X1, . . . , Xk}

P.1 Let T be satisfiable in M := 〈D, I〉, then Iϕ(∀X A) = F.

P.2 We need to find a model M′ that satisfies T ′ (find interpretation for f)

P.3 By definition Iϕ,[a/X](A) = F for some a ∈ D (depends on ϕ|W )

P.4 Let g : Dk → D be defined by g(a1, . . . , ak) := a, if ϕ(Xi) = ai

P.5 choose M′ = 〈D, I ′〉 with I ′ := I, [g/f ], then by subst. value lemma

I ′ϕ([f(X1, . . . , Xk)/X](A)) = I ′ϕ,[I′ϕ(f(X1,...,Xk))/X](A) = I ′ϕ,[a/X](A) = F

P.6 So [f(X1, . . . , Xk)/X](A)F satisfiable in M′
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This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the axiom
of choice at the meta-level to choose a meaning for the Skolem function symbol.

Armed with the Model Existence Theorem for first-order logic (Theorem 5.3.19), the complete-
ness of first-order tableaux is similarly straightforward. We just have to show that the collec-
tion of tableau-irrefutable sentences is an abstract consistency class, which is a simple proof-
transformation exercise in all but the universal quantifier case, which we postpone to its own
Lemma.

Completeness of (T f1 )

B Theorem 6.5.8 T f1 is refutation complete.

B Proof: We show that ∇ := {Φ |ΦT has no closed Tableau} is an abstract consistency class

P.1 (∇c, ∇¬, ∇∨, and ∇∧)as for propositional case.

P.2 (∇∀)by the lifting lemma below

P.3 (∇∃)Let T be a closed tableau for ¬(∀X A) ∈ Φ and ΦT ∗ [c/X](A)F ∈ ∇.

ΨT

∀X AF

[c/X](A)F

Rest

ΨT

∀X AF

[f(X1, . . . , Xk)/X](A)F

[f(X1, . . . , Xk)/c](Rest)
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So we only have to treat the case for the universal quantifier. This is what we usually call a “lifting
argument”, since we have to transform (“lift”) a proof for a formula θ(A) to one for A. In the
case of tableaux we do that by an induction on the tableau refutation for θ(A) which creates a
tableau-isomorphism to a tableau refutation for A.
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Tableau-Lifting

B Theorem 6.5.9 If Tθ is a closed tableau for a st θ(Φ) of formulae, then there is a closed
tableau T for Φ.

B Proof: by induction over the structure of Tθ we build an isomorphic tableau T , and a tableau-
isomorphism ω : T → Tθ, such that ω(A) = θ(A).

P.1 only the tableau-substitution rule is interesting.

P.2 Let θ(Ai)T and θ(Bi)F cut formulae in the branch Θi
θ of Tθ

P.3 there is a joint unifier σ of θ(A1) =? θ(B1) ∧ . . . ∧ θ(An) =? θ(Bn)

P.4 thus σ ◦ θ is a unifier of A and B

P.5 hence there is a most general unifier ρ of A1 =? B1 ∧ . . . ∧An =? Bn

P.6 so Θ is closed
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Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.

http://creativecommons.org/licenses/by-sa/2.5/


56 CHAPTER 6. FIRST-ORDER INFERENCE WITH TABLEAUX



Part II

Higher-Order Logic and
λ-Calculus
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In this part we set the stage for a deeper discussions of the logical foundations of mathematics by
introducing a particular higher-order logic, which gets around the limitations of first-order logic
— the restriction of quantification to individuals. This raises a couple of questions (paradoxes,
comprehension, completeness) that have been very influential in the development of the logical
systems we know today.

Therefore we use the discussion of higher-order logic as an introduction and motivation for the
λ-calculus, which answers most of these questions in a term-level, computation-friendly system.

The formal development of the simply typed λ-calculus and the establishment of its (meta-
logical) properties will be the body of work in this part. Once we have that we can reconstruct a
clean version of higher-order logic by adding special provisions for propositions.
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Chapter 7

Higher-Order Predicate Logic

The main motivation for higher-order logic is to allow quantification over classes of objects that
are not individuals — because we want to use them as functions or predicates, i.e. apply them to
arguments in other parts of the formula.

Higher-Order Predicate Logic (PLΩ)

B Quantification over functions and Predicates: ∀P ∃F P (a) ∨ ¬P (F (a))

B Comprehension: (Existence of Functions)
∃F ∀X FX = A e.g. f(x) = 3x2 + 5x− 7

B Extensionality: (Equality of functions and truth values)
∀F ∀G (∀X FX = GX)⇒ F = G
∀P ∀Q (P ⇔ Q)⇔ P = Q

B Leibniz Equality: (Indiscernability)
A = B for ∀P PA⇒ PB

©: Michael Kohlhase 77

Indeed, if we just remove the restriction on quantification we can write down many things that are
essential on everyday mathematics, but cannot be written down in first-order logic. But the naive
logic we have created (BTW, this is essentially the logic of Frege [Fre79]) is much too expressive,
it allows us to write down completely meaningless things as witnessed by Russell’s paradox.

Problems with PLΩ

B Problem: Russell’s Antinomy: ∀QM(Q)⇔ ¬Q(Q)

B the set M of all sets that do not contain themselves

B Question: Is M∈M? Answer: M∈M iff M 6∈ M.

B What has happened? the predicate Q has been applied to itself

B Solution for this course: Forbid self-applications by types!!

B ι, o (type of individuals, truth values), α→ β (function type)

B right associative bracketing: α→ β → γ abbreviates α→ (β → γ)

61
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B vector notation: αn → β abbreviates α1 → . . .→ αn → β

B Well-typed formulae (prohibits paradoxes like ∀QM(Q)⇔ ¬Q(Q))

B Other solution: Give it a non-standard semantics (Domain-Theory [Scott])
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The solution to this problem turns out to be relatively simple with the benefit of hindsight: we
just introduce a syntactic device that prevents us from writing down paradoxical formulae. This
idea was first introduced by Russell and Whitehead in their Principia Mathematica [WR10].

Their system of “ramified types” was later radically simplified by Alonzo Church to the form we
use here in [Chu40]. One of the simplifications is the restriction to unary functions that is made
possible by the fact that we can re-interpret binary functions as unary ones using a technique
called “Currying” after the Logician Haskell Brooks Curry (∗1900, †1982). Of course we can
extend this to higher arities as well. So in theory we can consider n-ary functions as syntactic
sugar for suitable higher-order functions. The vector notation for types defined above supports
this intuition.

Types

B Types are semantic annotations for terms that prevent antinomies

B Definition 7.0.10 Given a set BT of base types, construct function types: α → β is the
type of functions with domain type α and range type β. We call the closure T of BT under
function types the set of types over BT .

B Definition 7.0.11 We will use ι for the type of individuals and o for the type of truth
values.

B The type constructor is used as a right-associative operator, i.e. we use α→ β → γ as an
abbreviation for α→ (β → γ)

B We will use a kind of vector notation for function types, abbreviating α1 → . . .→ αn → β
with αn → β.
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Armed with a system of types, we can now define a typed higher-order logic, by insisting that all
formulae of this logic be well-typed. One advantage of typed logics is that the natural classes of
objects that have otherwise to be syntactically kept apart in the definition of the logic (e.g. the
term and proposition levels in first-order logic), can now be distinguished by their type, leading to
a much simpler exposition of the logic. Another advantage is that concepts like connectives that
were at the language level e.g. in PL0, can be formalized as constants in the signature, which again
makes the exposition of the logic more flexible and regular. We only have to treat the quantifiers
at the language level (for the moment).

Well-Typed Formulae (PLΩ)

B signature Σ =
⋃
α∈T Σα with

B connectives: ¬ ∈ Σo→o {∨,∧,⇒,⇔ . . .} ⊆ Σo→o→o

B variables VT =
⋃
α∈T Vα, such that every Vα countably infinite.
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B well-typed formulae wff α(Σ,VT ) of type α

B Vα ∪ Σα ⊆ wff α(Σ,VT )

B If C ∈ wff (α→β)(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

B If A ∈ wff o(Σ,VT ), then (∀Xα A) ∈ wff o(Σ,VT )

B first-order terms have type ι, formulae (propositions) the type o.

B there is no type annotation such that ∀QM(Q)⇔ ¬Q(Q) is well-typed.
Q needs type α as well as α→ o.
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The semantics is similarly regular: We have universes for every type, and all functions are “typed
functions”, i.e. they respect the types of objects. Other than that, the setup is very similar to
what we already know.

Standard Semantics

B Definition 7.0.12 The universe of discourse (also carrier)

B arbitrary, non-empty set of individuals Dι
B fixed set of truth values Do = {T,F}
B function universesy Dα→β = F(Dα;Dβ)

B interpretation of constants: typed mapping I : Σ→ D (i.e. I(Σα) ⊆ Dα)

B Definition 7.0.13 We call a structure 〈D, I〉, where D is a universe and I an interpretation
of constants a standard model of PLΩ.

B variable assignment: typed mapping ϕ : VT → D

B Definition 7.0.14 value function: typed mapping Iϕ : wff T (Σ,VT )→ D

B Iϕ|VT = ϕ Iϕ|ΣT
= I

B Iϕ(AB) = Iϕ(A)(Iϕ(B))

B Iϕ(∀Xα A) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα.

B Ao valid under ϕ, iff Iϕ(A) = T.
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We now go through a couple of examples of what we can express in PLΩ, and that works out very
straightforwardly. For instance, we can express equality in PLΩ by Leibniz equality, and it has
the right meaning.

Equality

B “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o PA⇔ PB

B not that ∀Pα→o PA⇒ PB(get the other direction by instantiating P with Q, where QX ⇔ ¬PX)

B Theorem 7.0.15 If M = 〈D, I〉 is a standard model, then Iϕ(Qα) is the identity relation
on Dα.
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B Notation 7.0.16 We write A = B for QAB(A and B are equal, iff there is no property P that can tell them apart.)

B Proof:

P.1 Iϕ(QAB) = Iϕ(∀P PA⇒ PB) = T, iff
Iϕ,[r/P ](PX ⇒ PY ) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P ](PA) = r(Iϕ(A)) = F or Iϕ,[r/P ](PA) = r(Iϕ(A)) = T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P ](PA⇒ PB) = F, since Iϕ,[r/P ](PA) = r(Iϕ(A)) = T and
Iϕ,[r/P ](PB) = r(Iϕ(B)) = F.
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Another example are the Peano Axioms for the natural numbers, though we omit the proofs of
adequacy of the axiomatization here.

Example: Peano Axioms for the Natural Numbers

B Σ = {[N : ι→ o], [0 : ι], [s : ι→ ι]}

B N0 (0 is a natural number)

B ∀Xι NX ⇒ N(sX) (the successor of a natural number is natural)

B ¬(∃Xι NX ∧ sX = 0) (0 has no predecessor)

B ∀Xι ∀Yι (sX = sY )⇒ X = Y (the successor function is injective)

B ∀Pι→o P0⇒ (∀Xι NX ⇒ PX ⇒ P (sX))⇒ (∀Yι NY ⇒ P (Y ))
induction axiom: all properties P , that hold of 0, and with every n for its successor s(n), hold
on all N
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Finally, we show the expressivity of PLΩ by formalizing a version of Cantor’s theorem.

Expressive Formalism for Mathematics

B Example 7.0.17 (Cantor’s Theorem) The cardinality of a set is smaller than that of
its power set.

B smaller-card(M,N) := ¬(∃F surjective(F,M,N))

B surjective(F,M,N) := ∀X ∈M ∃Y ∈ N FY = X

Simplified Formalization: ¬∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G

B Standard-Benchmark for higher-order theorem provers

B can be proven by Tps and Leo (see below)
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The next concern is to find a calculus for PLΩ.

We start out with the simplest one we can imagine, a Hilbert-style calculus that has been adapted
to higher-order logic by letting the inference rules range over PLΩ formulae and insisting that
substitutions are well-typed.

Hilbert-Calculus

B Definition 7.0.18 (HΩ Axioms) B ∀Po, Qo P ⇒ Q⇒ P

B ∀Po, Qo, Ro (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R

B ∀Po, Qo (¬P ⇒ ¬Q)⇒ P ⇒ Q

B Definition 7.0.19 (HΩ Inference rules)

Ao ⇒ Bo A

B

∀Xα A

[B/Xα](A)

A

∀Xα A

X 6∈ free(A) ∀Xα A ∧B

A ∧ (∀Xα B)

B Theorem 7.0.20 Sound, wrt. standard semantics

B Also Complete?
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Not surprisingly, HΩ is sound, but it shows big problems with completeness. For instance, if we
turn to a proof of Cantor’s theorem via the well-known diagonal sequence argument, we will have
to construct the diagonal sequence as a function of type ι → ι, but up to now, we cannot in
HΩ. Unlike mathematical practice, which silently assumes that all functions we can write down
in closed form exists, in logic, we have to have an axiom that guarantees (the existence of) such
a function: the comprehension axioms.

Hilbert-Calculus HΩ (continued)

B valid sentences that are not HΩ-theorems:

B Cantor’s Theorem:
¬(∃Fι→ι→ι ∀Gι→ι (∀Kι (NK)⇒ N(GK))⇒ (∃Jι (NJ) ∧ FJ = G))
(There is no surjective mapping from N into the set F(N; ,)N of natural number sequences)

B proof attempt fails at the subgoal ∃Gι→ι ∀XιGX = s(fXX)

B Comprehension ∃Fα→β ∀Xα FX = Aβ (for every variable Xα and every term A ∈ wff β(Σ,VT ))

B extensionality
Extαβ ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G
Exto ∀Fo ∀Go (F ⇔ G)⇔ F = G

B correct! complete? cannot be!! [Göd31]
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Actually it turns out that we need more axioms to prove elementary facts about mathematics:
the extensionality axioms. But even with those, the calculus cannot be complete, even though
empirically it proves all mathematical facts we are interested in.
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Way Out: Henkin-Semantics

B Gödel’s incompleteness theorem only holds for standard semantics

B find generalization that admits complete calculi:

B Idea: generalize so that the carrier only contains those functions that are requested by the
comprehension axioms.

B Theorem 7.0.21 (Henkin 1950) HΩ is complete wrt. this semantics.

B Proof Sketch: m

ore models  less valid sentences (these are HΩ-theorems)

B Henkin-models induce sensible measure of completeness for higher-order logic.

©: Michael Kohlhase 87

Actually, there is another problem with PLΩ: The comprehension axioms are computationally
very problematic. First, we observe that they are equality axioms, and thus are needed to show
that two objects of PLΩ are equal. Second we observe that there are countably infinitely many of
them (they are parametric in the term A, the type α and the variable name), which makes dealing
with them difficult in practice. Finally, axioms with both existential and universal quantifiers are
always difficul to reason with.

Therefore we would like to have a formulation of higher-order logic without comprehension axioms.
In the next slide we take a close look at the comprehension axioms and transform them into a
form without quantifiers, which will turn out useful.

From Comprehension to β-Conversion

B ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A ∈ wff β(Σ,VT )
(for each term A and each variable X there is a function f ∈ Dα→β , with f(ϕ(X)) = Iϕ(A))

B schematic in α, β, Xα and Aβ , very inconvenient for deduction

B Transformation in HΩ

B ∃Fα→β ∀Xα FX = Aβ

B ∀Xα (λXαA)X = Aβ (∃E)
Call the function F whose existence is guaranteed “(λXαA)”

B (λXαA)B = [B/X]Aβ (∀E), in particular for B ∈ wff α(Σ,VT ).

B Definition 7.0.22 Axiom of β-equality: (λXαA)B = [B/X](Aβ)

B new formulae (λ-calculus [Church 1940])
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In a similar way we can treat (functional) extensionality.

From Extensionality to η-Conversion

B Definition 7.0.23 Extensionality Axiom: ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G
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B Idea: Maybe we can get by with a simplified equality schema here as well.

B Definition 7.0.24 We say that A and λXαAX are η-equal, (write Aα→β =η λXαAX,
if), iff X 6∈ free(A).

B Theorem 7.0.25 η-equality and Extensionality are equivalent

B Proof: We show that η-equality is special case of extensionality; the converse entailment is
trivial

P.1 Let ∀Xα AX = BX, thus AX = BX with ∀E
P.2 λXαAX = λXαBX, therefore A = B with η

P.3 Hence ∀Fo ∀Go (F ⇔ G)⇔ F = G

B Axiom of truth values: ∀Fo ∀Go (F ⇔ G)⇔ F = G unsolved.
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The price to pay is that we need to pay for getting rid of the comprehension and extensionality
axioms is that we need a logic that systematically includes the λ-generated names we used in the
transformation as (generic) witnesses for the existential quantifier. Alonzo Church did just that
with his “simply typed λ-calculus” which we will introduce next.
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Chapter 8

Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

B Signature Σ =
⋃
α∈T Σα (includes countably infinite Signatures ΣSkα of Skolem contants).

B VT =
⋃
α∈T Vα, such that Vα are countably infinite

B Definition 8.0.26 We call the set wff α(Σ,VT ) defined by the rules

B Vα ∪ Σα ⊆ wff α(Σ,VT )

B If C ∈ wff (α→β)(Σ,VT ) and A ∈ wff α(Σ,VT ), then (CA) ∈ wff β(Σ,VT )

B If A ∈ wff α(Σ,VT ), then (λXβ A) ∈ wff (β→α)(Σ,VT )

the set of well-typed formulae of type α over the signature Σ and use wff T (Σ,VT ) :=⋃
α∈T wff α(Σ,VT ) for the set of all well-typed formulae.

B Definition 8.0.27 We will call all occurrences of the variable X in A bound in λXA.
Variables that are not bound in B are called free in B.

B Substitutions are well-typed, i.e. σ(Xα) ∈ wff α(Σ,VT ) and capture-avoiding.

B Definition 8.0.28 (Simply Typed λ-Calculus) The simply typed λ-calculus Λ→ over
a signature Σ has the formulae wff T (Σ,VT ) (they are called λ-terms) and the following
equalities:

B α conversion: λXA =α λY [Y/X](A)

B β conversion: (λXA)B =β [B/X](A)

B η conversion: λXAX =η A
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The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→: The first rule (α-conversion) just says that we can
rename bound variables as we like. β-conversion codifies the intuition behind function application
by replacing bound variables with argument. The equality relation induced by the η-reduction is
a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible
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arguments a): If we apply both sides of the transformation to the same argument – say B and
then we arrive at the right hand side, since λXαAXB =β AB.

We will use a set of bracket elision rules that make the syntax of Λ→ more palatable. This makes Λ→

expressions look much more like regular mathematical notation, but hides the internal structure.
Readers should make sure that they can always reconstruct the brackets to make sense of the
syntactic notions below.

Simply typed λ-Calculus (Notations)

B Notation 8.0.29 (Application is left-associative) We abbreviate (((FA1)A2). . .)An

with FA1. . .An eliding the brackets and further with FAn in a kind of vector notation.

B A stands for a left bracket whose partner is as far right as is consistent with existing brackets;
i.e. A (BC) abbreviates A(BC).

B Notation 8.0.30 (Abstraction is right-associative) We abbreviate λX1 λX2 · · ·λXnA · · ·
with λX1. . .XnA eliding brackets, and further to λXnA in a kind of vector notation.

B Notation 8.0.31 (Outer brackets) Finally, we allow ourselves to elide outer brackets
where they can be inferred.
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Intuitively, λXA is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.9EdN:9

In this presentation of the simply typed λ-calculus we build-in α-equality and use capture-avoiding
substitutions directly. A clean introduction would followed the steps in Chapter3by introducing
substitutions with a substitutability condition like the one in Definition 4.2.10, then establishing
the soundness of α conversion, and only then postulating defining capture-avoiding substitution
application as in Definition 4.3.3. The development for Λ→ is directly parallel to the one for
PL1, so we leave it as an exercise to the reader and turn to the computational properties of the
λ-calculus.

Computationally, the λ-calculus obtains much of its power from the fact that two of its three
equalities can be oriented into a reduction system. Intuitively, we only use the equalities in one
direction, i.e. in one that makes the terms “simpler”. If this terminates (and is confluent), then
we can establish equality of two λ-terms by reducing them to normal forms and comparing them
structurally. This gives us a decision procedure for equality. Indeed, we have these properties in
Λ→ as we will see below.

αβη-Equality (Overview)

B reduction with

{
β : (λXA)B→β [B/X](A)
η : λXAX →η A

under =α :
λXA

=α

λY [Y/X](A)

B Theorem 8.0.32 βη-reduction is well-typed, terminating and confluent in the presence of
=α-conversion.

B Definition 8.0.33 (Normal Form) We call a λ-term A a normal form (in a reduction
system E), iff no rule (from E) can be applied to A.

B Corollary 8.0.34 βη-reduction yields unique normal forms (up to α-equivalence).

9EdNote: rationalize the semantic macros for syntax!
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We will now introduce some terminology to be able to talk about λ-terms and their parts.

Syntactic Parts of λ-Terms

B Definition 8.0.35 (Parts of λ-Terms) We can always write a λ-term in the form T =
λX1 . . . XkHA1 . . .An, where H is not an application. We call

B H the syntactic head of T

B hA1. . .An the matrix of T, and

B λX1. . .Xk the binder of T

B Definition 8.0.36 Head Reduction always has a unique β redex

λXn (λY A)B1. . .Bn →h
β λX

n [B1/Y ](A)B2. . .Bn

B Theorem 8.0.37 The syntactic heads of β-normal forms are constant or variables.

B Definition 8.0.38 Let A be a λ-term, then the syntactic head of the β-normal form of A
is called the head symbol of A and written as head(A). We call a λ-term a j-projection, iff
its head is the jth bound variable.

B Definition 8.0.39 We call a λ-term a η-long form, iff its matrix has base type.

B Definition 8.0.40 η-Expansion: η
[
λX1. . .XnA

]
:= λX1. . .XnY 1. . .Y mAY 1. . .Y m

B Definition 8.0.41 Long βη-normal form, iff it is β-normal and η-long.
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η long forms are structurally convenient since for them, the structure of the term is isomorphic
to the structure of its type (argument types correspond to binders): if we have a term A of type
αn → β in η-long form, where β ∈ BT , then A must be of the form λXn

α B, where B has type β.
Furthermore, the set of η-long forms is closed under β-equality, which allows us to treat the two
equality theories of Λ→ separately and thus reduce argumentational complexity.
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Chapter 9

Computational Properties of
λ-Calculus

As we have seen above, the main contribution of the λ-calculus is that it casts the comprehension
and (functional) extensionality axioms in a way that is more amenable to automation in reasoning
systems, since they can be oriented into a confluent and terminating reduction system. In this
chapter we prove the respective properties. We start out with termination, since we will need it
later in the proof of confluence.

9.1 Termination of β-reduction

We will use the termination of β reduction to present a very powerful proof method, called the
“logical relations method”, which is one of the basic proof methods in the repertoire of a proof
theorist, since it can be extended to many situations, where other proof methods have no chance
of succeeding.

Before we start into the termination proof, we convince ourselves that a straightforward induction
over the structure of expressions will not work, and we need something more powerful.

Termination of β-Reduction

B only holds for the typed case
(λXXX)(λXXX)→β (λXXX)(λXXX)

B Theorem 9.1.1 (Typed β-Reduction terminates) For all A ∈ wff α(Σ,VT ), the chain
of reductions from A is finite.

B proof attempts:

B Induction on the structure A must fail, since this would also work for the untyped case.

B Induction on the type of A must fail, since β-reduction conserves types.

B combined induction on both: Logical Relations [Tait 1967]
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The overall shape of the proof is that we reason about two relations: SR and LR between λ-terms
and their types. The first is the one that we are interested in, LR(A, α) essentially states the
property that βη reduction terminates at A. Whenever the proof needs to argue by induction on
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types it uses the “logical relation” LR, which is more “semantic” in flavor. It coincides with SR
on base types, but is defined via a functionality property”.

Relations SR and LR

B Definition 9.1.2 A is called strongly reducing at type α (write SR(A, α)), iff each chain
β-reductions from A terminates.

B We define a logical relation LR inductively on the structure of the type

B α base type: LR(A, α), iff SR(A, α)

B LR(C, α→ β), iff LR(CA, β) for all A ∈ wff α(Σ,VT ) with LR(A, α).

Proof: Termination Proof

B P.1 LR ⊆ SR (Lemma 9.1.4b))

A ∈ wff α(Σ,VT ) implies LR(A, α) (Theorem 9.1.6with σ = ∅)
also SR(A, α)

P.2 P.3B Lemma 9.1.3 (SR is closed under subterms) If SR(A, α) and Bβ is a subterm of A,
then SR(B, β).

B Proof Idea: Every infinite β-reduction from B would be one from A.
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The termination proof proceeds in two steps, the first one shows that LR is a sub-relation of SR,
and the second that LR is total on λ-terms. Togther the give the termination result.

The next result proves two important technical side results for the termination proofs in a joint
induction over the structure of the types involved. The name “rollercoaster lemma” alludes to the
fact that the argument starts with base type, where things are simple, and iterates through the
two parts each leveraging the proof of the other to higher and higher types.

LR ⊆ SR (Rollercoaster Lemma)

B Lemma 9.1.4 (Rollercoaster Lemma)

a) If h is a constant or variable of type αn → α and SR(Ai, αi), then LR(hAn, α).

b) LR(A, α) implies SR(A, α).

Proof: we prove both assertions by simultaneous induction on α

B P.1.1 α base type:

P.1.1.1.1 a): hAn is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.2 so LR(hAn, α) as α is a base type (SR = LR)

P.1.1.1.2 b): by definition

α = β → γ:

P.1.2P.1.2.1.1 a): Let LR(B, β).

P.1.2.1.1.2 by IH b) we have SR(B, β), and LR((hAn)B, γ) by IH a)

P.1.2.1.1.3 so LR(hAn, β) by definition.
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P.1.2.1.2 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.2.1.2.2 LR(X,β) by IH a) with n = 0, thus LR(AX, γ) by definition.

P.1.2.1.2.3 By IH b) we have SR(AX, γ) and by Lemma 9.1.3SR(A, α).

©: Michael Kohlhase 96

The part of the rollercoaster lemma we are really interested in is part b). But part a) will become
very important for the case where n = 0; here it states that constants and variables are LR.

A ∈ wff α(Σ,VT ) implies LR(A, α)

B Definition 9.1.5 We write LR(σ) if LR(σ(Xα), α) for all X ∈ supp(σ).

B Theorem 9.1.6 If A ∈ wff α(Σ,VT ), then LR(σ(A), α) for any substitution σ with LR(σ).

B Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σ(A), α) by assumption

P.1.2 A = X /∈ supp(σ): then σ(A) = A and LR(A, α) by Lemma 9.1.4with n = 0.

P.1.3 A ∈ Σ: then σ(A) = A as above

P.1.4 A = BC: by IH LR(σ(B), γ → α) and LR(σ(C), γ)

P.1.4.2 so LR(σ(B)σ(C), α) by definition of LR.

P.1.5 A = λXβ Cγ : Let LR(B, β) and θ := σ, [B/X], then θ meets the conditions of the
IH.

P.1.5.2 Moreover σ(λXβ Cγ)B→β σ, [B/X](C) = θ(C).

P.1.5.3 Now, LR(θ(C), γ) by IH and thus LR(σ(A)B, γ) by Lemma 9.1.8.

P.1.5.4 So LR(σ(A), α) by definition of LR.
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β-Expansion Lemma

B Lemma 9.1.7 If LR([B/X](A), α) and LR(B, β) forXβ 6∈ free(B), then LR((λXαA)B, α).

B Proof:

P.1 Let α = γi → δ where δ base type and LR(Ci, γi)

P.2 It is sufficient to show that SR(((λXA)B)C, δ), as δ base type

P.3 We have LR([B/X](A)C, δ) by hypothesis and definition of LR.

P.4 thus SR([B/X](A)C, δ), as δ base type.

P.5 in particular SR([B/X](A), α) and SR(Ci, γi) (subterms)

P.6 SR(B, β) by hypothesis and Lemma 9.1.4
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P.7 So an infinite reduction from ((λXA)B)C cannot solely consist of redexes from [B/X](A)
and the Ci.

P.8 so an infinite reduction from ((λXA)B)C must have the form

((λXA)B)C →∗β ((λXA′)B′)C′

→1
β [B′/X](A′)C′

→∗β . . .

where A→∗β A′, B→∗β B′ and Ci →∗β Ci′

P.9 so we have [B/X](A)→∗β [B′/X](A′)

P.10 so we have the infinite reduction

[B/X](A)C →∗β [B′/X](A′)C′

→∗β . . .

which contradicts our assumption

B Lemma 9.1.8 (LR is closed under β-expansion)
If C→β D and LR(D, α), so is LR(C, α).
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This was the last result we needed to complete the proof of termiation of β-reduction.

Remark: If we are only interested in the termination of head reductions, we can get by with a much
simpler version of this lemma, that basically relies on the uniqueness of head β reduction.

Closure under Head β-Expansion (weakly reducing)

B Lemma 9.1.9 (LR is closed under head β-expansion) If C →h
β D and LR(D, α),

so is LR(C, α).

B Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition

P.1.1.2 so SR(C, α), since head reduction is unique

P.1.1.3 and thus LR(C, α).

P.1.2 α = β → γ:

P.1.2.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.2.2 but CB→h
β DB, so LR(CB, γ) by IH

P.1.2.3 and LR(C, α) by definition.

Note: This result only holds for weak reduction (any chain of β head reductions terminates)
for strong reduction we need a stronger Lemma.
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For the termination proof of head β-reduction we would just use the same proof as above, just

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


9.2. CONFLUENCE OF βη CONVERSION 77

for a variant of SR, where SRAα that only requires that the head reduction sequence out of
A terminates. Note that almost all of the proof except Lemma 9.1.3(which holds by the same
argument) is invariant under this change. Indeed Rick Statman uses this observation in [Sta85] to
give a set of conditions when logical relations proofs work.

9.2 Confluence of βη Conversion

B η-Reduction ist terminating and confluent

B Lemma 9.2.1 η-Reduction ist terminating

B Proof: by a simple counting argument

B Lemma 9.2.2 η-Reduction ist confluent

B Proof Idea: by diagram chase
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Newman’s Lemma

B Definition 9.2.3 (Confluence)

We call a rewrite relation R ⊆ A2 confluent iff for every
a, b, c ∈ A with a→R b a→R c there is a d ∈ A with
b→R d and c→R d

a

b c

d

* *

* *

B Definition 9.2.4 (Weak Confluence)

We call a rewrite relation R ⊆ A2 weakly confluent iff
for every a, b, c ∈ A with a →R b a →R c there is a
d ∈ A with b→∗R d and c→∗R d.

a

b c

d* *

B Theorem 9.2.5 (Newman’s Lemma) If a relation is terminating and weakly confluent,
then it is also confluent.
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β is confluent

B Lemma 9.2.6 β-Reduction ist weakly confluent

B Proof Idea: by diagram chase

B Corollary 9.2.7 β-Reduction ist confluent

B Proof Idea: by Newman’s Lemma
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βη is confluent

B Lemma 9.2.8 →∗β and →∗η commute.

B Proof Sketch: diagram chase
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Chapter 10

The Semantics of the Simply
Typed λ-Calculus

The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
(we call them “algebras”, since we do not have truth values in Λ→) is a pair 〈D, I〉, where D is the
universe of discourse and I is the interpretation of constants.

Semantics of Λ→

B Definition 10.0.9 We call a collection DT := {Dα |α ∈ T } a typed collection (of sets)
and a collection fT : DT → ET , a typed function, iff fα : Dα → Eα.

B Definition 10.0.10 A typed collection DT is called a frame, iff Dα→β ⊆ Dα → Dβ

B Definition 10.0.11 Given a frame DT , and a typed function I : Σ → D, then we call
Iϕ : wff T (Σ,VT )→ D the value function induced by I, iff

B Iϕ|VT = ϕ, Iϕ|Σ = I
B Iϕ(AB) = Iϕ(A)(Iϕ(B))

B Iϕ(λXαA) is that function f ∈ Dα→β , such that f(a) = Iϕ,[a/X](A) for all a ∈ Dα

B Definition 10.0.12 We call a frame 〈D, I〉 comprehension-closed or a Σ-algebra, iff Iϕ : wff T (Σ,VT )→
D is total. (every λ-term has a value)
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10.1 Soundness of the Simply Typed λ-Calculus

We will now show is that αβη-reduction does not change the value of formulae, i.e. if A =αβη B,
then Iϕ(A) = Iϕ(B), for all D and ϕ. We say that the reductions are sound. As always, the main
tool for proving soundess is a substitution value lemma. It works just as always and verifies that
we the definitions are in our semantics plausible.

Substitution Value Lemma for λ-Terms

B Lemma 10.1.1 (Substitution Value Lemma) Let A and B be terms, then Iϕ([B/X](A)) =
Iψ(A), where ψ = ϕ, [Iϕ(B)/X]
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B Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iϕ([B/X](A)) = Iϕ([B/X](X)) = Iϕ(B) = ψ(X) = Iψ(X) =
Iψ(A).

P.1.2 A = Y 6= X and Y ∈ VT : then Iϕ([B/X](A)) = Iϕ([B/X](Y )) = Iϕ(Y ) =
ϕ(Y ) = ψ(Y ) = Iψ(Y ) = Iψ(A).

P.1.3 A ∈ Σ: This is analogous to the last case.

P.1.4 A = CD: then Iϕ([B/X](A)) = Iϕ([B/X](CD)) = Iϕ([B/X](C)[B/X](D)) =
Iϕ([B/X](C))(Iϕ([B/X](D))) = Iψ(C)(Iψ(D)) = Iψ(CD) = Iψ(A)

P.1.5 A = λYαC:

P.1.5.1 We can assume that X 6= Y and Y /∈ free(B)

P.1.5.2 Thus for all a ∈ Dα we have Iϕ([B/X](A))(a) = Iϕ([B/X](λY C))(a) = Iϕ(λY [B/X](C))(a) =
Iϕ,[a/Y ]([B/X](C)) = Iψ,[a/Y ](C) = Iψ(λY C)(a) = Iψ(A)(a)
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Soundness of αβη-Equality

B Theorem 10.1.2 Let A := 〈D, I〉 be a Σ-algebra and Y 6∈ free(A), then Iϕ(λXA) =
Iϕ(λY [Y/X]A) for all assignments ϕ.

B Proof: by substitution value lemma

Iϕ(λY [Y/X]A)@a = Iϕ,[a/Y ]([Y/X](A))
= Iϕ,[a/X](A)
= Iϕ(λXA)@a

B Theorem 10.1.3 IfA := 〈D, I〉 is a Σ-algebra andX not bound in A, then Iϕ((λXA)B) =
Iϕ([B/X](A)).

B Proof: by substitution value lemma again

Iϕ((λXA)B) = Iϕ(λXA)@Iϕ(B)
= Iϕ,[Iϕ(B)/X](A)
= Iϕ([B/X](A))
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Soundness of αβη (continued)

B Theorem 10.1.4 If X 6∈ free(A), then Iϕ(λXAX) = Iϕ(A) for all ϕ.
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B Proof: by calculation

Iϕ(λXAX)@a = Iϕ,[a/X](AX)
= Iϕ,[a/X](A)@Iϕ,[a/X](X)
= Iϕ(A)@Iϕ,[a/X](X) as X 6∈ free(A).
= Iϕ(A)@a

B Theorem 10.1.5 αβη-equality is sound wrt. Σ-algebras. (if A =αβη B, then Iϕ(A) =
Iϕ(B) for all assignments ϕ)
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10.2 Completeness of αβη-Equality

We will now show is that αβη-equality is complete for the semantics we defined, i.e. that whenever
Iϕ(A) = Iϕ(B) for all variable assignments ϕ, then A =αβη B. We will prove this by a model
existence argument: we will construct a modelM := 〈D, I〉 such that if A 6=αβη B then Iϕ(A) 6=
Iϕ(B) for some ϕ.

As in other completeness proofs, the model we will construct is a “ground term model”, i.e. a
model where the carrier (the frame in our case) consists of ground terms. But in the λ-calculus,
we have to do more work, as we have a non-trivial built-in equality theory; we will construct the
“ground term model” from sets of normal forms. So we first fix some notations for them.

Normal Forms in the simply typed λ-calculus

B Definition 10.2.1 We call a term A ∈ wff T (Σ,VT ) a β normal form iff there is no B ∈
wff T (Σ,VT ) with A→β B.
We call N a β normal form of A, iff N is a β-normal form and A→β N .
We denote the set of β-normal forms with wff T (Σ,VT )

y
βη

.

B We have just proved that βη-reduction is terminating and confluent, so we have

B Corollary 10.2.2 (Normal Forms) Every A ∈ wff T (Σ,VT ) has a unique β normal form
(βη, long βη normal form), which we denote by A↓β (A↓βη A↓lβη)
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The term frames will be a quotient spaces over the equality relations of the λ-calculus, so we
introduce this construction generally.

Frames and Quotients

B Definition 10.2.3 Let D be a frame and ∼ a typed equivalence relation on D, then we call
∼ a congruence on D, iff f ∼ f ′ and g ∼ g′ imply f(g) ∼ f ′(g′).

B Definition 10.2.4 We call a congruence ∼ functional, iff for all f, g ∈ Dα→β the fact that
f(a) ∼ g(a) holds for all a ∈ Dα implies that f ∼ g.

B Example 10.2.5 =β (=βη) is a (functional) congruence on cwff T (Σ) by definition.

B Theorem 10.2.6 Let D be a Σ-frame and ∼ a functional congruence on D, then the
quotient space D/∼ is a Σ-frame.
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B Proof:

P.1 D/∼ = {[f ]∼ | f ∈ D}, define [f ]∼([a]∼) := [f(a)]∼.

P.2 This only depends on equivalence classes: Let f ′ ∈ [f ]∼ and a′ ∈ [a]∼.

P.3 Then [f(a)]∼ = [f ′(a)]∼ = [f ′(a′)]∼ = [f(a′)]∼

P.4 To see that we have [f ]∼ = [g]∼, iff f ∼ g, iff f(a) = g(a) since ∼ is functional.

P.5 This is the case iff [f(a)]∼ = [g(a)]∼, iff [f ]∼([a]∼) = [g]∼([a]∼) for all a ∈ Dα and
thus for all [a]∼ ∈ D/∼.
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To apply this result, we have to establish that βη-equality is a functional congruence.

We first establish βη as a functional congruence on wff T (Σ,VT ) and then specialize this result to
show that is is also functional on cwff T (Σ) by a grounding argument.

βη-Equivalence as a Functional Congruence

B Lemma 10.2.7 βη-equality is a functional congruence on wff T (Σ,VT ).

B Proof: Let AC =βη BC for all C and X ∈ (Vγ\(free(A) ∪ free(B))).

P.1 then (in particular) AX =βη BX, and

P.2 λXAX =βη λXBX, since βη-equality acts on subterms.

P.3 By definition we have A=ηλXαAX=βηλXαBX=ηB.

B Definition 10.2.8 We call an injective substitution σ : free(C) → Σ a grounding substi-
tution for C ∈ wff T (Σ,VT ), iff no σ(X) occurs in C.

Observation: They always exist, since all Σα are infinite and free(C) is finite.

BB Theorem 10.2.9 βη-equality is a functional congruence on cwff T (Σ).

B Proof: We use Lemma 10.2.7

P.1 Let A,B ∈ cwff (α→β)(Σ), such that A 6=βη B.

P.2 As βη is functional on wff T (Σ,VT ), there must be a C with AC 6=βη BC.

P.3 Now let C′ := σ(C), for a grounding substitution σ.

P.4 Any βη conversion sequence for AC′ 6=βη BC′ induces one for AC 6=βη BC.

P.5 Thus we have shown that A 6=βη B entails AC′ 6=βη BC′.
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Note that: the result for cwff T (Σ) is sharp. For instance, if Σ = {cι}, then λXX 6=βη λX c,
but (λXX)c=βηc=βη(λX c)c, as {c} = cwff ι(Σ) (it is a relatively simple exercise to extend this
problem to more than one constant). The problem here is that we do not have a constant dι that
would help distinguish the two functions. In wff T (Σ,VT ) we could always have used a variable.

This completes the preparation and we can define the notion of a term algebra, i.e. a Σ-algebra
whose frame is made of βη-normal λ-terms.
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A Herbrand Model for Λ→

B Definition 10.2.10 We call Tβη := 〈cwff T (Σ)
y
βη
, Iβη〉 the Σ term algebra, if Iβη = IdΣ.

B The name “term algebra” in the previous definition is justified by the following

B Theorem 10.2.11 Tβη is a Σ-algebra

B Proof: We use the work we did above

P.1 Note that cwff T (Σ)
y
βη

= cwff T (Σ)/=βη and thus a Σ-frame by Theorem 10.2.6and

Lemma 10.2.7.

P.2 So we only have to show that the value function Iβη = IdΣ is total.

P.3 Let ϕ be an assignment into cwff T (Σ)
y
βη

.

P.4 Note that σ := ϕ|free(A) is a substitution, since free(A) is finite.

P.5 A simple induction on the structure of A shows that Iβηϕ (A) = σ(A)
y
βη

.

P.6 So the value function is total since substitution application is.
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And as always, once we have a term model, showing completeness is a rather simple exercise.

We can see that αβη-equality is complete for the class of Σ-algebras, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
Σ-algebras.

Completetness of αβη-Equality

B Theorem 10.2.12 A = B is valid in the class of Σ-algebras, iff A =αβη B.

B Proof: For A, B closed this is a simple consequence of the fact that Tβη is a Σ-algebra.

P.1 If A = B is valid in all Σ-algebras, it must be in Tβη and in particular A↓βη = Iβη(A) =

Iβη(B) = B↓βη and therefore A =αβη B.

P.2 If the equation has free variables, then the argument is more subtle.

P.3 Let σ be a grounding substitution for A and B and ϕ the induced variable assignment.

P.4 Thus Iβηϕ(A) = Iβηϕ(B) is the βη-normal form of σ(A) and σ(B).

P.5 Since ϕ is a structure preserving homomorphism on well-formed formulae, ϕ−1(Iβηϕ(A))
is the is the βη-normal form of both A and B and thus A =αβη B.
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Theorem 10.2.12and Theorem 10.1.5 complete our study of the sematnics of the simply-typed
λ-calculus by showing that it is an adequate logic for modeling (the equality) of functions and
their applications.
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Chapter 11

Higher-Order Unification

We now come to a very important (if somewhat non-trivial and under-appreciated) algorithm:
higher-order unification, i.e. unification in the simply typed λ-calculus, i.e. unification modulo
αβη equality.

11.1 Higher-Order Unifiers

Before we can start solving the problem of higher-order unification, we have to become clear about
the terms we want to use. It turns out that “most general αβη unifiers may not exist (there may
be infinitely descending chains of unifiers that become more an more general), so we will have to
generalize our concepts a bit here.

HOU: Complete Sets of Unifiers

B Question: Are there most general higher-order Unifiers?

B Answer: What does that mean anyway?

B Definition 11.1.1 σ =βη ρ[W ], iff σ(X) =αβη ρ(X) for all X ∈ W . σ =βη ρ[E ] iff
σ =βη ρ[free(E)]

B Definition 11.1.2 σ is more general than θ on W (σ ≤βη θ[W ]), iff there is a substitution
ρ with θ =βη ρ ◦ σ[W ].

B Definition 11.1.3 Ψ ⊆ U(E) is a complete set of unifiers, iff for all unifiers θ ∈ U(E) there
is a σ ∈ Ψ, such that σ ≤βη θ[E ].

B Definition 11.1.4 If Ψ ⊆ U(E) is complete, then ≤βη-minimal elements σ ∈ Ψ are most
general unifiers of E .
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The definition of a solved form in Λ→ is just as always; even the argument that solved forms are
most general unifiers works as always, we only need to take αβη equality into account at every
level.

Unification

B Definition 11.1.5 X1 =? B1 ∧ . . . ∧Xn =? Bn is in solved form, if the Xi are distinct free

85
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variables Xi 6∈ free(Bj) and Bj does not contain Skolem constants for all j.

B Lemma 11.1.6 If E = X1 =? B1 ∧ . . . ∧Xn =? Bn is in solved form, then σE := [B1/X1], . . ., [Bn/Xn]
is the unique most general unifier of E

B Proof:

P.1 σ(Xi) =αβη σ(Bi), so σ ∈ U(E)

P.2 Let θ ∈ U(E), then θ(Xi) =αβη θ(B
i) = θ ◦ σ(Xi)

P.3 so θ ≤βη θ ◦ σ[E ].

©: Michael Kohlhase 114

11.2 Higher-Order Unification Transformations

We are now in a position to introduce the higher-order unifiation transformations. We proceed
just like we did for first-order unification by casting the unification algorithm as a set of unification
inference rules, leaving the control to a second layer of development.

We first look at a group of transformations that are (relatively) well-behaved and group them under
the concept of “simplification”, since (like the first-order transformation rules they resemble) have
good properties. These are usually implemented in a group and applied eagerly.

Simplification SIM

B Definition 11.2.1 The higher-order simplification transformations SIM consist of the
rules below.

(λXαA) =? (λYαB) ∧ E s ∈ ΣSkα new
SIM:α

[s/X](A) =? [s/Y ](B) ∧ E

(λXαA) =? B ∧ E s ∈ ΣSkα new
SIM:η

[s/X](A) =? Bs ∧ E

hUn =? hVn ∧ E h ∈ (Σ ∪ ΣSk ∪ VT )
SIM:dec

U1 =? V1 ∧ . . . ∧Un =? Vn ∧ E

E ∧X =? A X 6∈ free(A) A ∩ ΣSk = ∅ X ∈ free(E)
SIM:elim

[A/X](E) ∧X =? A

After rule applications all λ-terms are reduced to head normal form.
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The main new feature of these rules (with respect to their first-order counterparts) is the handling
of λ-binders. We eliminate them by replacing the bound variables by Skolem constants in the
bodies: The SIM : α standardizes them to a single one using α-equality, and SIM : η first η-
expands the right-hand side (which must be of functional type) so that SIM :α applies. Given
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that we are setting bound variables free in this process, we need to be careful that we do not use
them in the SIM:elim rule, as these would be variable-capturing.

Consider for instance the higher-order unification problem (λXX) =? (λY W ), which is un-
solvable (the left hand side is the identity function and the right hand side some constant function
– whose value is given by W ). So after an application of SIM :α, we have c=? W , which looks
like it could be a solved pair, but the elimination rule prevents that by insisting that instances
may not contain Skolem Variables.

Conceptually, SIM is a direct generalization of first-order unification transformations, and shares
it properties; even the proofs go correspondingly.

B Lemma 11.2.2 (Properties of SIM) SIM generalizes first-order unification.

B SIM is terminating and confluent up to α-conversion

B Unique SIM normal forms exist (all pairs have the form hUn =? kVm)

B Lemma 11.2.3 If E `SIM E ′, then U(E) ≤βη U(E ′)[E ]. (correct, complete)
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Now that we have simplifiation out of the way, we have to deal with unification pairs of the form
hUn =? kVm. Note that the case where both h and k are contstants is unsolvable, so we can
assume that one of them is a variable. The unification problem F(α→α)a =? a is a particularly
simple example; it has solutions [λXα a/F ] and [λXαX/F ]. In the first, the solution comes by
instantiating F with a λ-term of type α → α with head a, and in the second with a 1-projection
term of type α → α, which projects the head of the argument into the right position. In both
cases, the solution came from a term with a given type and an appropriate head. We will look at
the problem of finding such terms in more detail now.

General Bindings

B Problem: Find all formulae of given type α and head h.

B sufficient: long βη head normal form, most general

B General Bindings: Gh
α(Σ) := λXk

α h(H1X) . . . (HnX)

B where α = αk → β, h : γn → β and β ∈ BT
B and Hi : αk → γi new variables.

B Observation 11.2.4 General bindings are unique up to choice of names for Hi.

B Definition 11.2.5 If the head h is jth bound variable in Gh
α(Σ), call Gh

α(Σ) j-projection
binding (and write Gj

α(Σ)) else imitation binding

B clearly Gh
α(Σ) ∈ wff α(Σ,VT ) and head(Gh

α(Σ)) = h
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For the construction of general bindings, note that their construction is completely driven by the
intended type α and the (type of) the head h. Let us consider some examples.

Example 11.2.6 The following general bindings may be helpful: Gaι
ι→ι(Σ) = λXι a, Gaι

ι→ι→ι(Σ) =
λXιYι a, and Gaι→ι

ι→ι→ι(Σ) = λXιYι a(HXY ), where H is of type ι→ ι→ ι

We will now show that the general bindings defined in Definition 11.2.5are indeed the most general
λ-terms given their type and head.
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Approximation Theorem

B Theorem 11.2.7 If A ∈ wff α(Σ,VT ) with head(A) = h, then there is a general binding
G = Gh

α(Σ) and a substitution ρ with ρ(G) =αβη A and dp(ρ) < dp(A).

B Proof: We analyze the term structure of A

P.1 If α = αk → β and h : γn → β where β ∈ BT , then the long head normal form of A
must be λXk

α hUn.

P.2 G = Gh
α(Σ) = λXk

α h(H1X) . . . (HnX) for some variables Hi : αk → γi.

P.3 Choose ρ := [(λXk
αU1)/H1], . . ., [(λXk

αUn)/Hn].

P.4 Then we have ρ(G) = λXk
α h(λXk

αU1X) . . . (λXk
αUnX)

=βη λXk
α hUn

=βη A

P.5 The depth condition can be read off as dp(λXk
αU1) ≤ dp(A)− 1.
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With this result we can state the higher-order unification transformations.

Higher-Order Unification (HOU)

B Recap: After simplification, we have to deal with pairs where one (flex/rigid) or both heads
(flex/flex) are variables

B Definition 11.2.8 Let G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1 ≤ j ≤ n}, then HOU
consists of the transformations (always reduce to SIM normal form)

B Rule for flex/rigid pairs:
FαU =? hV ∧ E

HOU :fr
F =? G ∧ FU =? hV ∧ E

B Rules for flex/flex pairs:
FαU =? HV ∧ E

HOU :ff
F =? G ∧ FU =? HV ∧ E
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Let us now fortify our intuition with a simple example.

HOU Example

Example 11.2.9 Let Q,w : ι→ ι, l : ι→ ι→ ι, and j : ι, then we have the following deriva-
tion tree in HOU .
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Q(j) =? l(j, w(j))

j =? l(j, w(j)) l(H(j),K(j)) =? l(j, w(j))

H(j) =? j ∧K(j) =? w(j)

j =? j ∧K(j) =? w(j)j =? j ∧K(j) =? w(j)

j =? j ∧K′(j) =? jj =? j ∧K′(j) =? j

j
.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= jj

.
= j; j

.
= j

Q = λX l(X,w(X)) λX l(X,w(j)) λX l(j, w(X)) λX l(j, w(j))

Q=λX l(H(X),K(X))Q=λXX

H=λXX H=λX j

K=λX w(K′(X))
K=λXX

K=λX w(K′(X))
K=λXX

K′=λXX K′=λX j K′=λXX K′=λX j
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The first thing that meets the eye is that higher-order unification is branching. Indeed, for flex/-
rigid pairs, we have to systematically explore the possibilities of binding the head variable the
imitation binding and all projection bindings. On the initial node, we have two bindings, the
projection binding leads to an unsolvable unification problem, whereas the imitation binding leads
to a unification problem that can be decomposed into two flex/rigid pairs. For the first one of
them, we have a projection and an imitation binding, which we systematically explore recursively.
Eventually, we arrive at four solutions of the initial problem.

11.3 Properties of Higher-Order Unification

We will now establish the properties of the higher-order unification problem and the algorithms
we have introduced above.

Undecidability of Higher-Order Unification

B Theorem 11.3.1 (Goldfarb ’82) Second-order unification is undecidable

B Proof Sketch: Reduction to Hilbert’s tenth problem (known to be undecidable)

B Definition 11.3.2 Diophantine equations over N.

B xi · xj = xk

B xi + xj = xk

B xi = cj where cj ∈ N

B Theorem 11.3.3 The general solution of Diophantine equations is undecidable.
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Undecidability (Reduction by Church numerals)
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B Diophantine equations become unification pairs,

B Definition 11.3.4 (Church Numerals) We define closed λ-terms of type ν := (α→ α)→ α→ α

B Numberss: n := λSα→α λOαS(S . . . S︸ ︷︷ ︸
n

(O) . . .)(n-fold iteration of arg1 starting from arg2)

B Addition + := λNνMν λSα→α λOαNS(MSO) (N -fold iteration of S from N)

B Multiplication: · := λNνMν λSα→α λOαN(MS)O (N -fold iteration of MS (=+m) from O)

B Subtraction and division by higher-order unification.
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Properties of HO-Unification

B Theorem 11.3.5 If σ ∈ U(E), then there is a HOU-derivation E `HOU E ′, such that

B E ′ = X1 =? A1 ∧ . . . ∧Xn =? An is in solved form,

B θ = [A1/X1], . . ., [An/Xn] ∈ U(E)

B θ is more general than σ.

B HOU is undecidable, HOU need not have most general unifiers

B HOU :ff gives enormous degree of indeterminism

B HOU is intractable =⇒ consider restricted fragments where it is!

B HO Matching (up to order 4 decidable), HO Patterns (unitary, linear). . .
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HOU is Correct

B Lemma 11.3.6 If E `HOU:fr E ′ or E `HOU:ff E ′, then U(E ′) ⊆ U(E).

B Proof Sketch: HOU :fr and HOU :ff only add new pair.

B completeness cannot be expected since a binding is fixed (choice of solutions)

B Corollary 11.3.7 HOU is correct: If E `HOU E ′, then U(E ′) ⊆ U(E).

B We know that Unification in Λ→ is not decidable,

B therefore, HOU cannot be terminating!

©: Michael Kohlhase 124

Completeness of HOU (Measure)

B Definition 11.3.8 We call µ(E , θ) := 〈µ1(E , θ), µ2(θ)〉 the unification measure for E and
θ, if
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B µ1(E , θ) is the multiset of term depths of θ(X) for the unsolved X ∈ supp(θ).

B µ2(E) the multiset of term depths in E .

B ≺ is the strict lexicographic order on pairs: (〈a, b〉 ≺ 〈c, d〉, if a < c or a = c and b < d)

B Component orderings are multiset orderings: (M ∪ {m} < M ∪N iff n < m for all
n ∈ N)

B Lemma 11.3.9 ≺ is well-founded.
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Completeness of HOU (Semi-Termination)

B Theorem 11.3.10 If θ ∈ U(E), then there is a unification problem E ′ with E `HOU E ′ and
a substitution θ′ ∈ U(E ′) , such that

B θ =βη θ
′[E ]

B µ(E ′, θ′) ≺ µ(E , θ).

we call such a HOU-step a µ-prescribed

B Corollary 11.3.11 If E is unifiable without µ-prescribed HOU-steps, then E is solved.

B Theorem 11.3.12 If E is a unsolved UP and θ ∈ U(E), then there is a HOU-derivation
E `HOU σσ, with σ ≤βη θ[E ].

B Proof: Let D : E `HOU F a maximal µ-prescribed HOU-derivation from E .

P.1 This must be finite, since ≺ is well-founded (ind. over length n of D)

P.2 If n = 0, then E is solved and σE most general unifier

P.3 thus σE ≤βη θ[E ]

P.4 If n > 0, then there is a µ-prescribed step E `HOU E ′ and a substitution θ′ as in
Theorem 11.3.10.

P.5 by IH there is a HOU-derivation E ′ `HOU F with σF ≤βη θ′[E ′].
P.6 by correctness σF ∈ U(E ′) ⊆ U(E).

P.7 rules of HOU only expand free variables, so σF ≤βη θ′[E ′]
P.8 Thus σF ≤βη θ′[E ],

P.9 This completes the proof, since θ′ =βη θ[E ] by ?prescribed.thm?.
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Proof of Theorem 11.3.10

B Proof:

P.1 Let A =? B be an unsolved pair of the form FU =? GV in F .

P.2 E is a SIM normal form, so F and G must be constants or variables,

P.3 but not the same constant, since otherwise SIM:dec would be applicable.
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P.4 We can also exclude A =αβη B, as SIM:triv would be be appliccable.

P.5 If F = G is a variable not in supp(θ), then SIM :dec appliccable. By correctness we
have θ ∈ U(E ′) and µ(E ′, θ) ≺ µ(E , θ), as µ1(E ′, θ) � µ1(E , θ) and µ2(E ′) ≺ µ2(E).

P.6 Otherwise we either have F 6= G or F = G ∈ supp(θ).

P.7 In both cases F or G is an unsolved variable F ∈ supp(θ) of type α, since E is unsolved.

P.8 Without loss of generality we choose F = F.

P.9 By Theorem 11.2.7there is a general binding G = Gf
α(Σ) and a substitution ρ with

ρ(G) =αβη θ(F ). So,

B if head(G) 6∈ supp(θ), then HOU :fr is appliccable,

B if head(G) ∈ supp(θ), then HOU :ff is appliccable.

P.10 Choose θ′ := θ ∪ ρ. Then θ =βη θ
′[E ] and θ′ ∈ U(E ′) by correctness.

P.11 HOU : ff and HOU : fr solve F ∈ supp(θ) and replace F by supp(ρ) in the set of
unsolved variable of E .

P.12 so µ1(E ′, θ′) ≺ µ1(E , θ) and thus µ(E ′, θ′) ≺ µ(E , θ).
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11.4 Pre-Unification

Pre-Unification

B HOU :ff has a giant branching factor in the search space for unifiers.(makes HOU impracticable)

B In most situations, we are more interested in solvability of unification problems than in the
unifiers themselves.

B More liberal treatment of flex/flex pairs.

B Observation 11.4.1 flex/flex-pairs FUn =? GVm are always (trivially) solvable by [(λXnH)/F ], [(λY mH)/G],
where H is a new variable

B Idea: consider flex/flex-pairs as pre-solved.

B Definition 11.4.2 (Pre-Unification) For given terms A,B ∈ wff α(Σ,VT ) find a sub-
stitution σ, such that (σ(A) =p

βη σ(B)), where =p
βη is the equality theory that is induced by

βη and FU = GV.
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Pre-Unification Algorithm HOPU

B Definition 11.4.3 A unification problem is a pre-solved form, iff all of its pairs are solved
or flex/flex

B Lemma 11.4.4 If E is solved and P flex/flex, then σσ is a most general unifier of a pre-
solved form E ∧ P.

B Restrict all HOU rule so that they cannot be applied to pre-solved pairs.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


11.5. APPLICATIONS OF HIGHER-ORDER UNIFICATION 93

B In particular, remove HOU :ff!

B HOPU only consists of SIM and HOU :fr.

B Theorem 11.4.5 HOPU is a correct and complete pre-unification algorithm

B Proof Sketch: with exactly the same methods as higher-order unification
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11.5 Applications of Higher-Order Unification

Application of HOL in NL Semantics: Ellipsis

B Example 11.5.1 John loves his wife. George does too

B love(john,wife of(john)) ∧Q(george)

B “George has property some Q, which we still have to determine”

Idea: If John has property Q, then it is that he loves his wife.

BB Equation: Q(john) =αβη love(john,wife of(john))

B Solutions (computed by HOU):

B Q = λz love(z,wife of(z)) and Q = λz love(z,wife of(john))

* Q = λz love(john,wife of(z)) and Q = λz love(john,wife of(john))

B Readings: George loves his own wife. and George loves Johns wife.

©: Michael Kohlhase 130
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Chapter 12

Simple Type Theory
(Higher-Order Logic based on the
Simply Typed λ-Calculus)

In this chapter we will revisit the higher-order predicate logic introduced in Chapter6with the
base given by the simply typed λ-calculus. It turns out that we can define a higher-order logic by
just introducing a type of propositions in the λ-calculus and extending the signatures by logical
constants (connectives and quantifiers).

Higher-Order Logic Revisited

B Idea: introduce special base type o for truth values

B Definition 12.0.2 We call a Σ-algebra 〈D, I〉 a Henkin model, iff Do = {T,F}.

B Ao valid under ϕ, iff Iϕ(A) = T

B connectives in Σ: ¬ ∈ Σo→o and {∨,∧,⇒,⇔, . . .} ⊆ Σo→o→o (with the intuitive I-values)

B quantifiers: Πα ∈ Σ(α→o)→o with I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα.

B quantified formulae: ∀Xα A stands for Πα(λXαA)

B Iϕ(∀Xα A) = I(Πα)(Iϕ(λXαA)) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα

B looks like PLΩ (Call any such system HOL→)
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There is a more elegant way to treat quantifiers in HOL→. It builds on the realization that
the λ-abstraction is the only variable binding operator we need, quantifiers are then modeled
as second-order logical constants. Note that we do not have to change the syntax of HOL→ to
introduce quantifiers; only the “lexicon”, i.e. the set of logical constants. Since Πα and Σα are
logical constants, we need to fix their semantics.

Higher-Order Abstract Syntax

B Idea: In HOL→, we already have variable binder: λ, use that to treat quantification.

95
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B Definition 12.0.3 We assume logical constants Πα and Σα of type α→ o→ o.

Regain quantifiers as abbreviations:

∀Xα A := Πα(λXαA) ∃Xα A := Σα(λXαA)

B Definition 12.0.4 We must fix the semantics of logical constants:

1. I(Πα)(p) = T, iff p(a) = T for all a ∈ Dα (i.e. if p is the universal set)

2. I(Σα)(p) = T, iff p(a) = T for some a ∈ Dα (i.e. iff p is non-empty)

B With this, we re-obtain the semantics we have given for quantifiers above:

Iϕ(∀Xι A) = Iϕ(Πι(λXιA)) = I(Πι)(Iϕ(λXιA)) = T

iff Iϕ(λXιA)(a) = I[a/X],ϕ(A) = T for all a ∈ Dα
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But there is another alternative of introducing higher-order logic due to Peter Andrews. Instead
of using connectives and quantifiers as primitives and defining equality from them via the Leibniz
indiscernability principle, we use equality as a primitive logical constant and define everything else
from it.

Alternative: HOL=

B only one logical constant qα ∈ Σα→α→o with I(qα)(a, b) = T, iff a = b.

B Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα

D T for qo = qo

D F for λXo T = λXoXo

D Πα for q(α→o)(λXα T )
N ∀Xα A for Πα(λXαA)
D ∧ for λXo λYo λGo→o→oGTT = λGo→o→oGXY
N A ∧B for ∧AoBo

D ⇒ for λXo λYoX = X ∧ Y
N A⇒ B for ⇒AoBo

D ¬ for qoF
D ∨ for λXo λYo¬(¬X ∧ ¬Y )
N A ∨B for ∨AoBo

D ∃Xα Ao for ¬(∀Xα ¬A)
N Aα 6= Bα for ¬(qαAαBα)

B yield the intuitive meanings for connectives and quantifiers.
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In a way, this development of higher-order logic is more foundational, especially in the context of
Henkin semantics. There, Theorem 7.0.15does not hold (see [And72] for details). Indeed the proof
of Theorem 7.0.15needs the existence of “singleton sets”, which can be shown to be equivalent to
the existence of the identity relation. In other words, Leibniz equality only denotes the equality
relation, if we have an equality relation in the models. However, the only way of enforcing this
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(remember that Henkin models only guarantee functions that can be explicitly written down as
λ-terms) is to add a logical constant for equality to the signature.

We will conclude this section with a discussion on two additional “logical constants” (constants
with a fixed meaning) that are needed to make any progress in mathematics. Just like above,
adding them to the logic guarantees the existence of certain functions in Henkin models. The
most important one is the description operator that allows us to make definite descriptions like “the
largest prime number” or “the solution to the differential equation f ′ = f .

More Axioms for HOL→

B Definition 12.0.5 unary conditional w ∈ Σα→o→α
wAoBα means: “If A, then B”

B Definition 12.0.6 binary conditional if ∈ Σα→α→o→α
ifAoBαCα means: “if A, then B else C”.

B Definition 12.0.7 description operator ι ∈ Σ(α→o)→α
if P is a singleton set, then ιP(α→o) is the element in P,

B Definition 12.0.8 choice operator γ ∈ Σ(α→o)→α
if P is non-empty, then γP(α→o) is an arbitrary element from P

B Formalization
∀Xα A⇒ wAX = X
∀Xα, Yα, Zα (A⇒ ifAXY = X) ∧ (¬A⇒ ifAZX = X)
∀Pα→o (∃1Xα PX)⇒ (∀Yα PY ⇒ ιP = Y )
∀Pα→o (∃Xα PX)⇒ (∀Yα PY ⇒ γP = Y )

B Ensure a much larger supply of functions in Henkin models.
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More on the Description Operator

B ι is a weak form of the choice operator (only works on singleton sets)

B Alternative Axiom of Descriptions: ∀Xα ι
α(=X) = X.

B use that I[a/X](=X) = {a}
B we only need this for base types 6= o

B Define ιo := =(λXoX) or ιo := λGo→oGT or ιo := =(=T )

B ια→β := λH(α→β)→oXα ι
βλZβ (∃Fα→β (HF ) ∧ (FX) = Z)

©: Michael Kohlhase 135
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Chapter 13

Higher-Order Tableaux

Tableau-Rules (T sω )

B Definition 13.0.9 The rules of T sω consist of the propositional tableau rules of T0 together
with

ΠαAT

T sω :∀
ACT

ΠαAF c ∈ (Σsk0 \H)
T sω :∃

AcF
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Higher-Order Free-Variable Tableaus (Tω first try)

B Definition 13.0.10 The Tω calclus consists of the propositional tableau rules plus

ΠαAT

Tω:∀
AXα

T

ΠαAF free(A) = {Y 1
α1
, . . . , Y nαn} f ∈ ΣSkαn→α new

Tω:∃
A(fY n)

F

B Problem: Unification in Λ→ is undecidable, so we need more

B Idea: explicit rule that residuates the unification problem

Aα

Bβ

Tω:cut
A =? B

and adapt the HOU rules to tableux (DNF instead of CNF)

©: Michael Kohlhase 137
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Tω (Unification)

B we can use SIM :α, SIM :η, and SIM : triv directly, for SIM : dec and SIM : elim we
integrate into tableau setting more closely, obtaining

hUn =? hVn h ∈ (Σ ∪ ΣSk ∪ VT )
Tω :dec

U1 =? V1
∣∣∣ . . . ∣∣∣ Un =? Vn

FαU =? hV
Tω :fr

F =? G
∣∣∣ FU =? hV

X =? A X 6∈ free(A) A ∩ ΣSk = ∅
Tω :elim

⊥

where G = Gh
α(Σ) (imitation) or G ∈ {Gj

α(Σ) | 1 ≤ j ≤ n}
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Example: Cantor’s Theorem

B Theorem 13.0.11 There is no surjective function from the natural numbers into the se-
quences of natural numbers.

B Formally: ¬(∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)

B For the proof we use

B ∀Xι ¬X = sX (the successor function has no fixed points)

B an extensionality axiom

©: Michael Kohlhase 139

Tω-Proof (Cantor’s Theorem)
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B First the propositional part (analyzing formula structure)

¬(∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = G)
F

∃Fι→ι→ι ∀Gι→ι ∃Jι FJ = GT

∀Gι→ι ∃Jι fι→ι→ιJ = GT

∃Jι fJ = GT

f(jG) = GT

H = K ⇒ (∀NιHN = KN)
T

H = KF

H = K =? f(jG) = G
H =? f(jG)

⊥
K =? G
⊥

HN = KNT

f(jG)N = GNT

X = sXF

(X = sX) =? (f(jG)N = GN)

B then we continue with unification

(X = sX) =? (f(jG)N = GN)

GN =? s(f(jG)N)

s(H1N) =? s(f(jG)N)

H1N =? f(jG)N

f(H2N)(H3N) =? f(jG)N

X =? f(jG)N

G=? (λYι s(H
1Y ))

H1 =? (λYι f(H2Y )(H3Y ))

H2N =? jG H3N =? N

H2 =? (λYι Y ) N =? jG H3 =? (λYι Y ) jG=? jG

⊥ ⊥ ⊥ ⊥
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Problem for Tω
B Theorem 13.0.12 There is a valid vormula (∃XoX)

B This is clearly valid, (eg. ∨A,¬A)

B Tω attempt

¬(∀Xo ¬X)
F

∀Xo ¬XT

¬XT

XF

B we are stuck!

B Observation: We have to instantiate X further, e.g. by [¬Qo/X].
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B then we can continue
XF

¬QF

QT

X =? Q

close with [Q/X].

©: Michael Kohlhase 141

Primitive Substitutions

B Unification is not sufficient for Tω

B We need a rule that instantiates head variables with terms that introduce logical constants.

B Definition 13.0.13 If T contains a term XUnα, and G ∈ Gk
α(Σ) for k ∈ ({∧,¬} ∪ {Πβ |β ∈ T }),

then instantiate the tableau with [G/X].
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Another Example

B A = ¬(c(o→o)bo) ∨ (c¬¬b) is valid

B Tω proof attempt
¬cb ∨ c(¬¬b)F

¬cbF

c(¬¬b)F

cbT

cb=? c(¬¬b)
b=? ¬¬b

and we are stuck (again)

B Idea: theory unification with Xo = ¬¬Xo

B But the problem is more general: if A⇔ B valid, then ¬cA ∧ cB must be Tω-refutable

B Solution: Recursive call to the theorem prover
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http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/


Part III

Knowledge Representation
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In the third and final part of the course, we will look into logic-based formalisms for kwnowledge
representation and their application in the “Semantic Web”.

The field of “Knowledge Representation” is usualy taken to be an area in Artificial Intelligence
that studies the representation of knowledge in formal system and how to leverage inferencing
techniques to generate new knowledge items from existing ones.

Note that this definition coincides with with what we know as “logical systems” in this course.
This is the view taken by the subfield of “description logics”, but restricted to the case, where the
logical systems have a entailment relation to ensure appliccability.
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Chapter 14

Introduction to Knowledge
Representation

Before we start into the development of description logics, we set the stage by looking into alter-
natives for knowledge representation.

To approach the question of knowledge representation, we first have to ask ourselves, what knowl-
edge might be. This is a difficult question that has kept philosophers occupied for millennia. We
will not answer this question in this course, but only allude to and discuss some aspects that are
relevant to our cause of knowledge representation.

What is knowledge? Why Representation?

B According to Probst/Raub/Romhardt [PRR97]

For the purposes of this course: Knowledge is the information necessary to support intelligent
reasoning

B

representation can be used to determine

set of words whether a word is admissible
list of words the rank of a word
a lexicon translation or grammatical function

structure function
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According to an influential view of [PRR97], knowledge is appears in layers. Staring with a
character set that defines a set of glyphs, we can add syntax that turns mere strings into data.
Adding context information gives information, and finally, by relating the information to other
information allows to draw conclusions, turning information into knowledge.

Note that we already have aspects of representation and function in the diagram at the top of the
slide. In this, the additional functions added in the successive layers give the representations more

107
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and more function, until we reach the knowledge level, where the function is given by inferencing.
In the second example, we can see that representations determine possible functions.

Let us now strengthen our intuition about knowledge by contrasting knowledge representations
from “regular” data structures in computation.

Knowledge Representation vs. Data Structures

B Representation as structure and function.

B the representation determines the content theory (what is the data?)

B the function determines the process model (what do we do with the data?)

B Why do we use the term “knowledge representation” rather than

B data structures? (sets, lists, ... above)

B information representation? (it is information)

B no good reason other than AI practice, with the intuition that

B data is simple and general (supports many algorithms)

B knowledge is complex (has distinguished process model)
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As knowledge is such a central notion in artificial intelligence, it is not surprising that there are
multiple approaches to dealing with it. We will only deal with the first one and leave the others
to self-study.

Some Paradigms for AI/NLP

B GOFAI (good old-fashioned AI)

B symbolic knowledge representation, process model based on heuristic search

B statistical, corpus-based approaches.

B symbolic representation, process model based on machine learning

B knowledge is divided into symbolic- and statistical (search) knowledge

B connectionist approach (not in this course)

B sub-symbolic representation, process model based on primitive processing elements (nodes)
and weighted links

B knowledge is only present in activation patters, etc.
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When assessing the relative strengths of the respective approaches, we should evaluate them with
respect to a pre-determined set of criteria.

KR Approaches/Evaluation Criteria
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B Expressive Adequacy: What can be represented, what distinctions are supported.

B Reasoning Efficiency: can the representation support processing that generates results in
acceptable speed?

B Primitives: what are the primitive elements of representation, are they intuitive, cognitively
adequate?

B Meta-representation: knowledge about knowledge

B Incompleteness: the problems of reasoning with knowledge that is known to be incomplete.
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14.1 Semantic Networks

To get a feeling for early knowledge representation approaches from which description logics de-
veloped, we take a look at “semantic networks” and contrast them to logical approaches.

Semantic networks are a very simple way of arranging concepts and their relations in a graph.

Semantic Networks [CQ69]

B Definition 14.1.1 A semantic network is a graph structure for representing knowledge:

B nodes represent concepts (e.g. bird, John, robin)

B links represent relations between these (isa, father of, belongs to)

B Example 14.1.2 A semantic net for birds and persons:

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa

Problem: how do we do inference from such a network?

BB Idea: encode taxonomic information about concepts and individuals

B in “isa” links (inclusion of concepts)

B in “inst” links (concept memberships)

B use property inheritance along “isa” and “inst” in the process model
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Even though the network in Example 14.1.2is very intuitive (we immediately understand the
concepts depicted), it is unclear how we (and more importantly a machine that does not asso-
ciate meaning with the labels of the nodes and edges) can draw inferences from the “knowledge”
represented.

Another problem is that the semantic net in Example 14.1.2confuses two kinds of concepts: in-
dividuals (represented by proper names like John and Jack) and concepts (nouns like robin and
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bird). Even though the “isa” and “inst” links already acknowledge this distinction, the “has part”
and “loves” relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

B Example 14.1.3 From the network

ClydeRexRoy

elephant graytigerstriped

higher animal

headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has parthas part

isaisa

can

eat

eat
eat

infer that elephants have legs and that Clyde is gray.

B Definition 14.1.4 We call the subgraph of a semantic network N spanned by the “isa”
relations the terminology (or TBox, or the famous Isa-Hierarchy) and the subgraph spanned
by the “inst” relation the assertions (or ABox) of N .
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But there are sever shortcomings of semantic networks: the suggestive shape and node names give
(humans) a false sense of meaning, and the inference rules are only given in the process model
(the implementation of the semantic network processing system).

This makes it very difficult to assess the strength of the inference system and make assertions
e.g. about completeness.

Limitations of Semantic Networks

B What is the meaning of a link?

B link names are very suggestive (misleading for humans)

B meaning of link types defined in the process model (no denotational semantics)

Problem: No distinction of optional and defining traits

BB Example 14.1.5 Consider a robin that has lost its wings in an accident

wings

robin

bird

jack

has part

isa

inst

wings

robin

joe

bird
has part

inst

isa
cancel
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Cancel-links have been proposed, but their status and process model are debatable.
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To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

Another Notation for Semantic Networks

B Idea: use function/argument notation

B Interpret nodes as arguments (reification to individuals)

B Interpret links as functions (logical relations)

B Example 14.1.6

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner of(John, robin)
loves(John,Mary)

B Evaluation:

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in ProLog)

– worse locality properties (networks are associative)
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Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple
(English) sentences. This will play a role in the “semantic web” later.

Building on the function/argument notation from above, we can now give a formal semantics for
semantic networks: we translate into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

B Extension: take isa/inst concept/individual distinction into account

wings

Mary

John

robin

bird Jack

has part

loves

owner of

instisa robin ⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner of(John, Jack)
loves(John,Mary)

B Observation: this looks like first-order logic, if we take

B A ⊆ B to mean ∀X A(X)⇒ B(X)

B a ∈ S to mean S(a)
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B haspart(A,B) to mean ∀X A(X)⇒ (∃Y B(Y ) ∧ part of(X,Y ))

B Idea: Take first-order deduction as process model (gives inheritance for free)
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Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning
to the semantic networks. Note that this only holds only for the features of semantic networks
that are representable in this way, e.g. the cancel links shown above are not (and that is a feature,
not a bug).

But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

Before we go on, let us have a look at an important application of knowledge representation
technologies: the Semantic Web.

14.2 The Semantic Web

The Semantic Web

B Definition 14.2.1 The semantic web is a collaborative movement led by the W3C that
promotes the inclusion of semantic content in web pages with the aim of t converting the
current web, dominated by unstructured and semi-structured documents into a machine-
understandable “web of data”.

B Idea: Move web content up the ladder, use inference to make connections.

B Example 14.2.2 We want to find information that is not explicitly represented (in one place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . . ] John F. Kennedy (starting January 20)

Humans can read (and understand) the text and combine the information to get the answer.
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The term “Semantic Web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).
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To see that problems have to be solved, to arrive at the “Semantic Web”, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.
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But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce
S〈e∇ato\Wa〉‖〉‖〉Hotel
Ho\olulu⇔Hawa〉〉⇔USA
7↖∞∞Ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce↙

S√ea‖e∇∫co\{〉∇med

T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔
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Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et↙
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Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

Solution: XML markup with “meaningful” Tags

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</participants>

</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈I\te∇\at〉o\al

Wo∇ldW〉deWebCo\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et<speaker>

</program>
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What can we do with this?

B Example 14.2.3 Consider the following fragments:

<title>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</place>
<date>7↖∞∞Ma†∈′′∈</date>

Given the markup above, we can

B parse 7↖∞∞Ma†∈′′∈ as the date May 7-11 2002 and add this to the user’s calendar.

B parse S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA as a destination and find flights.

But: do not be deceived by your ability to understand English
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We have to obfuscate the markup as well, since it does not carry any meaning to the machine
intrinsically either.
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BWhat the machine sees of the XML

<t〉tle>WWW∈′′∈
T〈eeleve\t〈I\te∇\at〉o\alWo∇ldW〉deWebCo\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉HotelHo\olulu⇔Hawa〉〉⇔USA</√lace>

<date>7↖∞∞Ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

Au∫t∇al〉a⇔Ca\ada⇔C〈〉leDe\ma∇‖⇔F∇a\ce⇔Ge∇ma\†⇔G〈a\a⇔Ho\}Ko\}⇔I\d〉a⇔
I∇ela\d⇔Ital†⇔Ja√a\⇔Malta⇔NewZeala\d⇔T〈eNet〈e∇la\d∫⇔No∇wa†⇔

S〉\}a√o∇e⇔Sw〉t‡e∇la\d⇔t〈eU\〉tedK〉\}dom⇔t〈eU\〉tedState∫⇔V〉et\am⇔Za〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈I\te∇\at〉o\alWo∇ld

W〉deWebCo\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mBe∇\e∇∫↖Lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>

<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et<∫√ea‖e∇>

</√∇o}∇am>
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So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from knowledge representation come into play

To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web

B Resources: identified by URI’s, un-
typed

B Links: href, src, . . . limited, non-
descriptive

B User: Exciting world - semantics of
the resource, however, gleaned from
content

B Machine: Very little information
available - significance of the links
only evident from the context around
the anchor.
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Let us now contrast this with the envisioned semantic web.

The Semantic Web
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B Resources: Globally Identified by
URI’s or Locally scoped (Blank), Ex-
tensible, Relational

B Links: Identified by URI’s, Extensi-
ble, Relational

B User: Even more exciting world,
richer user experience

B Machine: More processable informa-
tion is available (Data Web)

B Computers and people: Work, learn
and exchange knowledge effectively
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Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with
that.

The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techiques.

Need to add “Semantics”

B External agreement on meaning of annotations E.g., Dublin Core

B Agree on the meaning of a set of annotation tags

B Problems with this approach: Inflexible, Limited number of things can be expressed

B Use Ontologies to specify meaning of annotations

B Ontologies provide a vocabulary of terms

B New terms can be formed by combining existing ones

B Meaning (semantics) of such terms is formally specified

B Can also specify relationships between terms in multiple ontologies

B Inference with annotations and ontologies (get out more than you put in!)

B Standardize annotations in RDF [KC04] or RDFa [HASB13] and ontologies on OWL [OWL09]

B Harvest RDF and RDFa in to a triplestore or OWL reasoner.

B Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?

DBPedia: John F. Kennedy (was president in August 1961)

©: Michael Kohlhase 161
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14.3 Other Knowledge Representation Approaches

Now that we know what semantic networks mean, let us look at a couple of other approaches that
were influential for the development of knowledge representation. We will just mention them for
reference here, but not cover them in any depth.

Frame Notation as Logic with Locality

B Predicate Logic: (where is the locality?)

catch 22 ∈ catch object There is an instance of catching
catcher(catch 22, jack 2) Jack did the catching
caught(catch 22, ball 5) He caught a certain ball

B Frame Notation (group everything around the object)

(catch_object catch_22

(catcher jack_2)

(caught ball_5))

+ Once you have decided on a frame, all the information is local

+ easy to define schemes for concepts (aka. types in feature structures)

– how to determine frame, when to choose frame (log/chair)
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KR involving Time (Scripts [Shank ’77])

B Idea: organize typical event sequences, actors and props into representation structure

B Example 14.3.1 getting your hair
cut (at a beauty parlor)

B props, actors as “script variables”

B events in a (generalized) sequence

B use script material for

B anaphors, bridging references

B default common ground

B to fill in missing material into sit-
uations

big tip small tip

happy unhappy

pay

Beautician cuts hair

tell receptionist you’re here

go into beauty parlor

make appointment
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Other Representation Formats (not covered)

B Procedural Representations (production systems)

B analogical representations (interesting but not here)
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B iconic representations (interesting but very difficult to formalize )

B If you are interested, come see me off-line

©: Michael Kohlhase 164
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Chapter 15

Logic-Based Knowledge
Representation

We now turn to knowledge representation approaches that are based on some kind of logical
system. These have the advantage that we know exactly what we are doing: as they are based
on symbolic representations and declaratively given inference calculi as process models, we can
inspect them thoroughly and even prove facts about them.

Logic-Based Knowledge Representation

B Logic (and related formalisms) have a well-defined semantics

B explicitly (gives more understanding than statistical/neural methods)

B transparently (symbolic methods are monotonic)

B systematically (we can prove theorems about our systems)

B Problems with logic-based approaches

B Where does the world knowledge come from? (Ontology problem)

B How to guide search induced by log. calculi (combinatorial explosion)

One possible answer: Description Logics. (next couple of times)
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But of course logic-based approaches have big drawbacks as well. The first is that we have to obtain
the symbolic representations of knowledge to do anything – a non-trivial challenge, since most
knowledge does not exist in this form in the wild, to obtain it, some agent has to experience the
word, pass it through its cognitive apparatus, conceptualize the phenomena involved, systematize
them sufficiently to form symbols, and then represent those in the respective formalism at hand.

The second drawback is that the process models induced by logic-based approaches (inference
with calculi) are quite intractable. We will see that all inferences can be played back to satisfiability
tests in the underlying logical system, which are exponential at best, and undecidable or even
incomplete at worst.

Therefore a major thrust in logic-based knowledge representation is to investigate logical sys-
tems that are expressive enough to be able to represent most knowledge, but still have a decidable
– and maybe even tractable in practice – satisfiability problem. Such logics are called “description
logics”. We will study the basics of such logical systems and their inference procedures in the
following.

119
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15.1 Propositional Logic as a Set Description Language

Before we look at “real” description logics in Chapter16, we will make a “dry run” with a logic we
already understand: propositional logic, which we will re-interpret the system as a set description
language by giving a new, non-standard semantics. This allows us to already preview most of
the inference procedures and knowledge services of knowledge representation systems in the next
section.

B Propositional Logic as Set Description Language

B Idea: use propositional logic as a set description language

B variant syntax: u=̂∧ (intersection), t=̂∨ (union), · =̂¬ (complement), v =̂ ⇒ (subsump-
tion)

B Example 15.1.1

Example Set Semantics

son v child
daughter v child
son u daughter
child v (son t daughter)

daughterssons

children

B Definition 15.1.2 (Formal Semantics) let D be a given set (called the domain) and
ϕ : Vo → ℘(D), then

B [[P ]] := ϕ(P ) ⊆ D,

B [[A tB]] = [[A]] ∪ [[B]] and
[[

A
]]

= D\[[A]]. . .
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Effects of the Axioms in this example

B Idea: use logical axioms to describe the world(Axioms restrict the class of admissible domain structures)

B Example 15.1.3

Axioms Effect

son v child
daughter v child

daughterssons

children

son u daughter
child v (son t daughter)

daughterssons
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Predicate-Logic Formulation

Propositional Logic Predicate Logic

son v child ∀x son(x)⇒ child(x)
daughter v child ∀x daughter(x)⇒ child(x)

son u daughter ∀x¬(son(x) ∧ daughter(x))
child v (son t daughter) ∀x child(x)⇒ son(x) ∨ daughter(x)
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Set-Theoretic Semantics

B Definition 15.1.4 A model M = 〈D, I〉 consists of a interpretation I over a non-empty
domain D is a mapping [[·]]:

Operator Meaning formula semantics

1 [[p]] ⊂ D
2 [[ · ]] = complement

[[
A
]]

= [[A]] := =D\[[A]]
3 [[u]] = ∩ [[A uB]] = [[A]] ∩ [[B]]
4 [[t]] = ∪ [[A tB]] = [[A]] ∪ [[B]]

5 [[v]] =⊆R [[A v B]] = [[A]] ∪ [[B]]

6 [[≡]] = set equality [[A ≡ B]] = [[A]] ∩ [[B]] ∪ ([[A]] ∪ [[B]])

B Justification for 5: A⇒ B = ¬(A) ∨B

B Justification for 6: A⇔ B = ∨A ∧B,¬A ∧ ¬B = ∨A ∧B,¬∨A,B
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Set-Theoretic Semantics of Axioms

B Set-Theoretic Semantics of ‘true’ and ‘false’ (> = ϕ t ϕ ⊥ = ϕ u ϕ)

[[⊥]] = [[p]] ∪ [[p]] = [[p]] ∪ [[p]] = D Analogously: [[⊥]] = ∅

B Set-Theoretic Semantics of Axioms: A is true in M = 〈D, I〉 , iff [[A]] = D
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Axioms Semantics

son v child is true iff
[[son]] ∪ [[child]] = D iff [[son]] ⊆
[[child]]

daughterssons

son v child [[son]] ⊆ [[child]]

daughter v child [[daughter]] ⊆ [[child]]

son u daughter [[son]] ∩ [[daughter]] = D
child v (son t daughter) [[child]] ⊆ [[son]] ∪ [[daughter]]
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Set-Theoretic Semantics and Predicate Logic

B use logical operators u,t,v,≡ instead of ∧,∨,⇒,⇔ if we are using PL0 with set-theoretic
semantics.

B Translation into PL1

B recursively add argument
variable x

B change back u,t,v,≡ to
∧,∨,⇒,⇔

B universal closure for x at
formula level.

Definition Comment

pfo(x) := p(x)

(A)
fo(x)

:= ¬Afo(x)

(A uB
fo(x)

) := A
fo(x) ∧B

fo(x) ∧ vs. u
(A tB

fo(x)
:= A

fo(x) ∨B
fo(x) ∨ vs. t

(A v B)
fo(x)

:= A
fo(x) ⇒ B

fo(x) ⇒ vs. v
(A = B)

fo(x)
:= A

fo(x) ⇔ B
fo(x) ⇔ vs. =

A
fo

:= ∀xAfo(x)
for formulae
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Translation Examples

B Example 15.1.5

son v child
fo

= ∀x son(x)⇒ child(x)

daughter v child
fo

= ∀x daughter(x)⇒ child(x)

(son v daughter)
fo

= ∀x son(x) ∧ daughter(x)

child v (son t daughter)
fo

= ∀x child(x)⇒ son(x) ∨ daughter(x)

B What are the advantages of translation to PL1?

B theoretically: A better understanding of the semantics

B computationally: NOTHING
many tests are decidable for PL0, but not for PL1 (Description Logics?)

©: Michael Kohlhase 172
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15.2 Description Logics and Inference

Kinds of Inference in Description Logics

B Consistency test (is a concept definition satisfiable?)

B Subsumption test (does a concept subsume another?)

B Instance test (is an individual an example of a concept?)

B . . .

B Problem: decidability, complexity, algorithm
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Consistency Test

B Example 15.2.1 T-Box

woman = person u has Y person without y-chromosome
man = person u has Y person with y-chromosome

hermaphrodite = man u woman man and woman

B This specification is inconsistent, i.e. [[hermaphrodite]] = ∅ for all D, ϕ.

B Algorithm: propositional satisfiability test (NP-complete) we know how to do this, e.g.
tableau, resolution
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Subsumption Test

B Example 15.2.2 in this case trivial

Axioms entailed subsumption relation

woman = person u has Y woman v person
man = person u has Y man v person

Reduction to consistency test: (need to implement only one) Axioms⇒ A⇒ B is valid iff
Axioms ∧A ∧ ¬B is inconsistent.

BB Definition 15.2.3 A subsumes B (modulo an axiom set A)
iff [[B]] ⊆ [[A]] for all interpretations D, that satisfy A
iff Axioms⇒ B⇒ A is valid ‘

B in our example: person subsumes woman and man

©: Michael Kohlhase 175
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Classification

B The subsumption relation among all concepts (subsumption graph)

B Visualization of the Subsumption graph for inspection (plausibility)

B Definition 15.2.4 Classification is the computation of the subsumption graph.

B Example 15.2.5 (not always so trivial)

male student female student boy girl

man woman student professor child

person

object
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Instance Test

B Example 15.2.6 (will explain TBox and ABox with ALC later)

T-Box (terminological Box)

woman = person u has Y
man = person u has Y

A-Box (assertional Box, data base)

tony : person Tony is a person
tony : has Y Tony has a y-chromosome

B This entails: tony : man (Tony is a man).
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Realization

B Definition 15.2.7 Realization is the computation of all instance relations between ABox
objects and TBox concepts.

B sufficient to remember the lowest concepts in the subsumption graph
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male student female student girl boy

man woman student professor child

person

object

Tony TimmyTerry

B if tony : male student is known, we do not need tony : man.

©: Michael Kohlhase 178
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Chapter 16

Description Logics and the
Semantic Web

Resource Description Framework

B Definition 16.0.8 The Resource Description Framework (RDF) is a framework for describ-
ing resources on the web. It is a XML vocabulary developed by the W3C.

B Note: RDF is designed to be read and understood by computers, not to be being displayed
to people

B Example 16.0.9 RDF can be used for describing

B properties for shopping items, such as price and availability

B time schedules for web events

B information about web pages (content, author, created and modified date)

B content and rating for web pictures

B content for search engines

B electronic libraries

©: Michael Kohlhase 179

Resources and URIs

B RDF describes resources with properties and property values.

B RDF uses Web identifiers (URIs) to identify resources.

B Definition 16.0.10 A resource is anything that can have a URI, such as http://www.

jacobs-university.de

B Definition 16.0.11 A property is a resource that has a name, such as author or homepage,
and a property value is the value of a property, such as Michael Kohlhase or http://kwarc.
info/kohlhase (a property value can be another resource)

B Definition 16.0.12 The combination of a resource, a property, and a property value forms
a statement (known as the subject, predicate and object of a statement).
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B Example 16.0.13 Statement: The [author]pred of [this slide]subj is [Michael Kohlhase]obj

©: Michael Kohlhase 180

XML Syntax for RDF

B RDF is a concrete XML vocabulary for writing statements

B Example 16.0.14 The following RDF document could describe the slides as a resource

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://svn.kwarc.info/.../slides/kr/en/rdf.tex">
<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:

B The subject of both is given in the about attribute of the rdf:Description element

B The predicates are given by the element names of its children

B The objects are given in the elements as URIs or literal content.

Intuitively: RDF is a way to write down ABox information in a web-scalable way.

©: Michael Kohlhase 181

B RDFa as an Inline RDF Markup Format

B Problem: RDF is a standoff markup format (annotate by URIs pointing into other files)

B Example 16.0.15 <div xmlns:dc="http://purl.org/dc/elements/1.1/">
<h2 property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 property="dc:creator">Michael Kohlhase</h3>
<em property="dc:date" datatype="xsd:date"

content="20091111">November 11., 2009</em>
</div>

https://svn.kwarc.info/.../slides/kr/en/rdfa.tex

RDFasanInlineRDFMarkupFormat

20091111 (xsd:date)

MichaelKohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator
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OWL as an Ontology Language for the Semantic Web

B Idea: Use Description Logics to talk about RDF triples.

B An RDF triple is an ABox entry for a role constraint hRs

B Example 16.0.16 h is the resource for Ian Horrocks, s is the resource for Ulrike Sattler,
and R is the the relation “hasColleague” in

<rdf:Description about="some.uri/person/ian_horrocks">
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

Idea: Now collect similar resources in classes, and state rules about them in a way, so that we
can use inference to make knowledge explicit that was implicit before(saves us lots of work!)

BB Idea: We know how to do this, this is just ALC+!!!

©: Michael Kohlhase 183

The OWL Language

B Three species of OWL

B OWL Full is union of OWL syntax and RDF

B OWL DL restricted to FOL fragment

B OWL Lite is ”easier to implement” subset of OWL DL

B Semantic layering

B OWL DL =̂ OWL Full within DL fragment

B DL semantics officially definitive

B OWL DL based on SHIQ Description Logic(ALC + number restrictions, transitive roles, inverse roles, role inclusions)

B OWL DL benefits from many years of DL research

B Well defined semantics, formal properties well understood (complexity, decidability)

B Known reasoning algorithms, Implemented systems (highly optimized)

©: Michael Kohlhase 184
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Chapter 17

A simple Description Logic: ALC

Motivation for ALC (Prototype Description Logic)

B Propositional logic (PL0) is not expressive enough

B Example 17.0.17 “mothers are women that have a child”

B Reason: there are no quantifiers in PL0 (existential (∃) and universal (∀))

B Idea: use first-order predicate logic (PL1)

∀xmother(x)⇔ woman(x) ∧ (∃y has child(x, y))

B Problem: complex algorithms, non-termination (PL1 is too expressive)

B Idea: Try to travel the middle ground
more expressive than PL0 (quantifiers) but weaker than PL1 (still tractable)

B Technique: Allow only “restricted quantification”, where quantified variables only range over
values that can be reached via a binary relation like has child.

©: Michael Kohlhase 185

Syntax of ALC

B Definition 17.0.18 (Concepts) (aka. “predicates” in PL1 or “propositional variables” in PL0)

concepts in DLs name classes of objects like in OOP.

B Definition 17.0.19 (Special concepts) The top concept > (for “true” or “all”) and the
bottom concept ⊥ (for “false” or “none”).

B Example 17.0.20 person, woman, man, mother, professor, student, car, BMW, computer,
computer program, heart attack risk, furniture, table, leg of a chair, . . .

B name binary relations (like in in PL1)

B Example 17.0.21 has child, has son, has daughter, loves, hates gives course, executes computer program,
has leg of table, has wheel, has motor, . . .

131
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©: Michael Kohlhase 186

Syntax of ALC: Formulae FALC

B FALC :== C | > | ⊥ | FALC | FALC u FALC | FALC t FALC | (∃RFALC) | (∀RFALC)

B Example 17.0.22 B person u (∃has child student) (parents of students)

(The set of persons that have a child which is a student)

B person u (∃has child ∃has child student) (grandparents of students)

B person u (∃has child ∃has child student t teacher) (grandparents of students or teachers)

B person u (∀has child student) (parents whose children are all students)

B person u (∀haschild ∃has child student) (grandparents, whose children all have at least one child that is a student)

©: Michael Kohlhase 187

More ALC Examples

B car u (∃has part ∃made in EU)(cars that have at least one part that has not been made in the EU)

B student u (∀audits course graduatelevelcourse)(students, that only audit graduate level courses)

B house u (∀has parking off street) (houses with off-street parking)

B Note: p v q can still be used as an abbreviation for p t q.

B student u (∀audits course (∃hastutorial>) v (∀has TA woman))(students that only audit courses that either have no tutorial or tutorials that are TAed by women)

©: Michael Kohlhase 188

ALC Concept Definitions

B Define new concepts from known ones: (KDALC :== C = FALC)

Definition rec?

man = person u (∃has chrom Y chrom) -

woman = person u (∀has chrom Y chrom) -
mother = woman u (∃has child person) -
father = man u (∃has child person) -
grandparent = person u (∃has child mother t father) -
german = person u (∃has parents german) +
number list = empty list t (∃is first number) u (∃is rest number list) +

©: Michael Kohlhase 189

Concept Axioms

B Definition 17.0.23 General DL formulae that are not concept definitions are called Concept
Axioms.
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B They normally contain additional information about concepts

B Example 17.0.24 B person u car (persons and cars are disjoint)

B car v motor vehicle (cars are motor vehicles)

B motor vehicle v (car t truck tmotorcycle)(motor vehicles are cars, trucks, or motorcycles)

©: Michael Kohlhase 190

TBoxes: “terminological Box”

B Definition 17.0.25 finite set of concept definitions + finite set of concept axioms

B Definition 17.0.26 Acyclic TBox (mostly treated)

TBox does not contain recursive definitions

B Definition 17.0.27 (Normalized wrt. TBox) A formula A is called normalized wrt.
T , iff it does not contain concept names defined in T . (convenient)

B Definition 17.0.28 (Algorithm) Input: A formula A and a TBox T . (for arbitrary DLs)

B While [A contains concept name c and T concept definition c = C]

B substitute c by C in A.

B Lemma 17.0.29 this algorithm terminates for acyclic TBoxes

©: Michael Kohlhase 191

Normalization Example (normalizing grandparent)

grandparent

7→ person u (∃has child mother t father)

7→ person u (∃has child woman u (∃has child person),man, ∃has child person)

7→ person u (∃has child person u (∃has chrom Y chrom) u (∃has child person) u person u (∃has chrom Y chrom) u (∃has child person))

B Observation: normalization result can be exponential and redundant

B Observation: need not terminate on cyclic TBoxes

german 7→ person u (∃has parents german)

7→ person u (∃has parents person u (∃has parents german))

7→ . . .

©: Michael Kohlhase 192

Semantics of ALC

B ALC semantics is an extension of the set-semantics of propositional logic.
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B Definition 17.0.30 An Interpretation I over a non-empty domain D is a mapping [[·]]:

Op. formula semantics

[[c]] ⊆ D = [[>]] [[⊥]] = ∅ [[r]] ⊆ D ×D
· [[ϕ]] = [[ϕ]] = D\[[ϕ]]
u [[ϕ u ψ]] = [[ϕ]] ∩ [[ψ]]
t [[ϕ t ψ]] = [[ϕ]] ∪ [[ψ]]
∃R [[∃Rϕ]] = {x ∈ D | ∃y 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}
∀R [[∀Rϕ]] = {x ∈ D | ∀y if 〈x, y〉 ∈ [[R]] then y ∈ [[ϕ]]}

©: Michael Kohlhase 193

Propositional Identities

Name for u for t
Idenpot. ϕ u ϕ = ϕ ϕ t ϕ = ϕ
Identity ϕ u > = ϕ ϕ t ⊥ = ϕ
Absorpt. ϕ t > = > ϕ u ⊥ = ⊥
Commut. ϕ u ψ = ψ u ϕ ϕ t ψ = ψ t ϕ
Assoc. ϕ u (ψ u θ) = (ϕ u ψ) u θ ϕ t (ψ t θ) = (ϕ t ψ) t θ
Distrib. ϕ u (ψ t θ) = ϕ u ψ t ϕ u θ ϕ t ψ u θ = (ϕ t ψ) u (ϕ t θ)
Absorpt. ϕ u (ϕ t θ) = ϕ ϕ t ϕ u θ = ϕ u θ
Morgan ϕ u ψ = ϕ t ψ ϕ t ψ = ϕ u ψ
dneg ϕ = ϕ

©: Michael Kohlhase 194

More ALC Identities

B
∃Rϕ = ∀Rϕ ∀Rϕ = ∃Rϕ
∀Rϕ u ψ = ∀Rϕ u (∀Rψ) ∃Rϕ t ψ = ∃Rϕ t (∃Rψ)

B Proof of 1[[
∃Rϕ

]]
= D\[[(∃Rϕ)]] = D\{x ∈ D | ∃y 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}

= {x ∈ D | not ∃y 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}
= {x ∈ D | ∀y if 〈x, y〉 ∈ [[R]] then y 6∈ [[ϕ]]}
= {x ∈ D | ∀y if 〈x, y〉 ∈ [[R]] then y ∈ (D\[[ϕ]])}
= {x ∈ D | ∀y if 〈x, y〉 ∈ [[R]] then y ∈ [[ϕ]]}
= [[∀Rϕ]]

©: Michael Kohlhase 195

Negation Normal Form

B Definition 17.0.31 (NNF) · directly in front of concept names in ALC formulae
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B Use the ALC rules to compute it. (in linear time)

example by rule

∃R (∀S e) u (∀S d)

7→ ∀R (∀S e) u (∀S d) ∃Rϕ 7→ ∀Rϕ

7→ ∀R (∀S e) t (∀S d) ϕ u ψ 7→ ϕ t ψ
7→ ∀R (∃S e) t (∀S d) ∀Rϕ 7→ ∀Rϕ
7→ ∀R (∃S e) t (∀S d) ϕ 7→ ϕ

©: Michael Kohlhase 196

TALC: A Tableau-Calculus for ALC

x : c
x : c

⊥
∗ x : ϕ u ψ

x : ϕ
x : ψ

u x : ϕ t ψ

x : ϕ
∣∣∣ x : ψ

t

x : ∀Rϕ
x R y

y : ϕ
∀ x : ∃Rϕ

x R y
y : ϕ

∃

B The tableau calculus acts on judgments of the form

B x : ϕ: (x is in the set ϕ)

B x R y: (x and y are in relation R)

©: Michael Kohlhase 197

Examples

1 x : ∀has child manu
∃has child man initial x : ∀has child manu

∃has child man initial
2 x : ∀has child man ul x : ∀has child man ul
3 x : ∃has child man ur x : ∃has child man ur
4 x has child y ∃r x has child y ∃r
5 y : man ∃s y : man ∃s
6 y : man ∀ open
7 ∗ ⊥

inconsistent

The right tableau has a model: there are two persons, x and y. y is the only child of x, y is a man

©: Michael Kohlhase 198

Another Example
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B Example 17.0.32

1 x : (∀has child ugrad t grad) u (∃has child ugrad)
2 x : ∀has child ugrad t grad ul
3 x : ∃has child ugrad ur
4 x has child y ∃s
5 y : ugrad ∃r
6 y : ugrad t grad ∀

7 y : ugrad y : grad t
8 * open

The left branch is closed, the right one represents a model: y is a child of x, y is a graduate
student, x hat exactly one child: y.

©: Michael Kohlhase 199

Properties of Tableau Calculi

B We study the following properties of a tableau calculus C:

Termination there are no infinite sequences of rule applications.

Correctness If ϕ is consistent, then C terminates with an open branch.

Completeness If ϕ is in consistent, then C terminates and all branches are closed.

Complexity of the algorithm

Complexity of the satisfiability itself

©: Michael Kohlhase 200

Termination

B Theorem 17.0.33 The Tableau Algorithm for ALC terminates

To prove termination of a tableau algorithm, find a well-founded measure (function) that is
decreased by all rules

B Proof: Sketch (full proof very technical)

P.1 any rule except ∀ can only be applied once to x : ψ.

P.2 rule ∀ applicable to x : ∀Rψ at most as the number of R-successors of x.(those y with x R y above)

P.3 the R-successors are generated by x : ∃R θ above,(number bounded by size of input formula)

P.4 every rule application to x : ψ generates constraints z : ψ′, where ψ′ a proper sub-formula
of ψ.

©: Michael Kohlhase 201

Correctness

B Lemma 17.0.34 If ϕ consistent, then T terminates on x : ϕ with open branch.

B Proof: Let M be a model for ϕ and w ∈ [[ϕ]].
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P.1 we define [[x]] := w and
= |= x : ψ iff [[x]] ∈ [[ψ]]
= |= x R y iff 〈x, y〉 ∈ [[R]]
= |= S iff = |= c for all c ∈ S

P.2 This gives us = |= x : ϕ (base case)

P.3 case analysis: if branch consistent, then either

B no rule applicable to leaf (open branch)

B or rule applicable and one new branch satisfiable (green inductive case)

P.4 consequence: there must be an open branch (by termination)

©: Michael Kohlhase 202

Case analysis on the rules

u applies , then = |= x : ϕ u ψ, i.e. [[x]] ∈ [[(ϕ u ψ)]]
so [[x]] ∈ [[ϕ]] and [[x]] ∈ [[ψ]], thus = |= x : ϕ and = |= x : ψ.

t applies , then = |= x : ϕ t ψ, i.e [[x]] ∈ [[(ϕ t ψ)]]
so [[x]] ∈ [[ϕ]] or [[x]] ∈ [[ψ]], thus = |= x : ϕ or = |= x : ψ,
wlog. = |= x : ϕ.

∀ applies , then = |= x : ∀Rϕ and = |= x R y, i.e. [[x]] ∈ [[(∀Rϕ)]] and 〈x, y〉 ∈ [[R]], so
[[y]] ∈ [[ϕ]]

∃ applies , then = |= x : ∃Rϕ, i.e [[x]] ∈ [[(∃Rϕ)]],
so there is a v ∈ D with 〈[[x]], v〉 ∈ [[R]] and v ∈ [[ϕ]].
We define [[y]] := v, then = |= x R y and = |= y : ϕ

©: Michael Kohlhase 203

Completeness of the Tableau Calculus

B Lemma 17.0.35 Open saturated tableau branches for ϕ induce models for ϕ.

B Proof: construct a model for the branch and verify for ϕ

P.1 (Model Construction)Let B be an open saturated branch

B we define

D : = {x |x : ψ ∈ B or z R x ∈ B}
[[c]] : = {x |x : c ∈ B}
[[R]] : = {〈x, y〉 |x R y ∈ Sn}

B well-defined since never x : c, x : c ∈ B (otherwise ⊥ applies)

B = satisfies all constraints x : c, x : c and x R y, (by construction)

P.2 (Induction)= |= y : ψ, for all y : ψ ∈ B (on k = size(ψ) next slide)

P.3 (Consequence)= |= x : ϕ.
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Case Analysis for Induction

case y : ψ = y : ψ1 u ψ2 Then {y : ψ1, y : ψ2} ⊆ B (u-rule, saturation)

so = |= y : ψ1 and = |= y : ψ2 and = |= y : ψ1 u ψ2 (IH, Definition)

case y : ψ = y : ψ1 t ψ2 Then y : ψ1 ∈ B or y : ψ2 ∈ B (t-rule, saturation)

so = |= y : ψ1 or = |= y : ψ2 and = |= y : ψ1 t ψ2 (IH, Definition)

case y : ψ = y : ∃R θ then {y R z, z : θ} ⊆ B (z new variable) (∃∗-rules, saturation)

so = |= z : θ and = |= y R z, thus = |= y : ∃R θ. (IH, Definition)

case y : ψ = y : ∀R θ Let 〈[[y]], v〉 ∈ [[R]] for some r ∈ =D
then v = z for some variable z with y R z ∈ B (construction of [[R]])

So z : θ ∈ B and = |= z : θ. (∀-rule, saturation, Def)

Since v was arbitrary we have = |= y : ∀R θ.
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Complexity

B Idea: We can organize the tableau procedure, so that the branches are worked off one after
the other. Therefore the size of the branches is relevant of the (space)-complexity of the
procedure.

B The size of the branches is polynomial in the size of the input formula(same reasons as for termination)

B every rule except ∀ is only applied to a constraint x : ψ.

B The ∀ is applied to constraints of the form x : ∀Rψ at most as often as there are R-
successors of x.

B The R-successors of x are generated by constraints x : ∃R θ, whose number is bounded by
the size of the input formula.

B Each application to a constraint x : ψ generates constraints z : ψ′ where ψ′ is a proper
subformula of ψ.

The total size is the size of the input formula plus number of ∃-formulae times number of
∀-formulae.

BB Theorem 17.0.36 The consistency problem for ALC is in PSPACE.

B Theorem 17.0.37 The consistency problem for ALC is PSPACE-Complete.

B Proof Sketch: r

educe a PSPACE-complete problem to ALC-consistency

B Theorem 17.0.38 (Time Complexity) The ALC-consistency problem is in EXPTIME
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B Proof Sketch: There can be exponentially many branches (already for propositional logic)

©: Michael Kohlhase 206

The functional Algorithm for ALC

B Observation: leads to treatment for ∃

B the ∃-rule generates the constraints x R y and y : ψ from x : ∃Rψ

B this triggers the ∀-rule for x : ∀R θi, which generate y : θ1, . . . , y : θn

B for y we have y : ψ and y : θ1, . . . y : θn. (do all of this in a single step)

B we are only interested in non-emptiness, not in the particular witnesses (leave them out)

consistent(S) =
if {c, c} ⊆ S then false\lec{inconsistent}
elseif ‘(ϕ u ψ)’ ∈ S
and (‘ϕ’ 6∈ S or ‘ψ’ 6∈ S)
then consistent(S ∪ {ϕ,ψ})
elseif ‘(ϕ t ψ)’ ∈ S
and {ϕ,ψ} 6∈ S

then
consistent(S ∪ {ϕ}) or consistent(S ∪ {ψ})
elseif forall ‘(∃Rψ)’ ∈ S
consistent({ψ} ∪ {θ | ‘(∀R θ)’ ∈ S})
else true

B relatively simple to implement (good implementations optimized)

B but: this is restricted to ALC. (extension to other DL difficult)

©: Michael Kohlhase 207

Extending the Tableau Algorithm by Concept Axioms

B Concept axioms, e.g. child v (son t daughter) could not be handled in tableau calculi

B Idea: Whenever a new variable y is introduced (by ∃-rule) add the information that axioms
hold for y.

B initialize tableau with {x : ϕ} ∪ CA (CA : = set of concept axioms)

B new ∃-rule:
x : ∃Rϕ α ∈ CA

y : α
∃CA (apply-co-exhaustively to ∃)

Problem: CA := {∃R c} and start tableau with x : d (non-termination)

©: Michael Kohlhase 208
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B Non-Termination of Tableau with Concept Axioms

x : d start
x : ∃R c in CA
x R y1 ∃
y1 : c ∃
y1 : ∃R c ∃CA
y1 R y2 ∃
y2 : c ∃
y2 : ∃R c ∃CA
. . .

Solution: Loop-Check:

B instead of a new variable y take
an old variable z, if we can guaran-
tee that whatever holds for y already
holds for z.

B we can only do this, iff the ∀-rule has
been exhaustively applied.
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ABoxes (Database Component of DL)

B Formula: a : ϕ (a is a ϕ) aRb (a stands in relation R to b)

property example

internally inconsistent tony : student, tony : student

inconsistent with a TBox
TBox: student u prof
ABox: tony : student, tony : prof

implicit info that is not ex-
plicit

Abox: tony : ∀has grad genius
tonyhas gradmary
|= mary : genius

info that can be combined
with TBox info

TBox: cont prof = prof u (∀has grad genius)
ABox: tony : cont prof, tonyhas gradmary
|= mary : genius
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Tableau-based Instance Test and Realization

B Query: do the ABox and TBox together entail a : ϕ (a ∈ ϕ?)

B Algorithm: test a : ϕ for consistency with ABox and TBox.10 (use our tableau)

B necessary changes: (no big deal)

B Normalize ABox wrt. TBox (definition expansion)

B initialize the tableau with ABox in NNF (so it can be used)

Example: add mary : genius to determine ABox, TBox |= mary : genius

TBox cont prof = prof u (∀has grad genius)
tony : prof u (∀has grad genius) Norm

tonyhas gradmary Norm
tony : prof u

tony : ∀has grad genius u
mary : genius ∀

* ∗

ABox
tony : cont prof
tonyhas gradmary
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B Note: The instance test is the base for the realization (remember?)

B extend to more complex ABox queries: (give me all instances of ϕ)

©: Michael Kohlhase 211

jEdNote: need to unify abox and tbox judgments.
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Chapter 18

ALC Extensions

Language Extensions

B ALC is much more expressive than propositional logic, (still not enough)

B Idea: study more expressive extensions

B Need to study:

B which new operators? (are some definable)

B translation into predicate logic

B are the inference problems decidable? (consistency, subsumption, instance test,. . . )

B what is the complexity of the decision problem?

B what do the algorithms look like?

©: Michael Kohlhase 212

18.1 Functional Roles and Number Restrictions

Functional Roles

B Example 18.1.1 CSR=̂ Car with glass sun roof

B In ALC: CSR = car u (∃has sun roof glass)

B potential unwanted interpretation: more than one sun roof.

B Problem: has sun roof is a relation in ALC (no partial function)

B Example 18.1.2 Humans have exactly one father and mother.

B in ALC: human v (∃has father human) u (∃has mother human)

B Problem: has father should be a total function (on the set of humans)

Solution: Number Restrictions (see next slide)

BB Example 18.1.3 Teenager = human between 13 and 19

143
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B teenager = human u (age < 20)age > 12 (not covered by ALC)

B Solution: concrete domains (outside the scope of this course)

©: Michael Kohlhase 213

Number Restrictions

B Example 18.1.4 Car = vehicle with at least four wheels

B Trick: InALC: model car using two new distinguishing concepts p1 and p2 vehicle u (∃has wheel p1 u p2) u (∃has wheel p1 u p2) u (∃has wheel p1 u p2) u (∃has wheel p1 u p2)

B Problem: city = town with at least 1,000,000 inhabitants (oh boy)

B Alternative: Operators for number restrictions.

©: Michael Kohlhase 214

(Unqualified) Number Restrictions

B ALC plus operators ∃n≥R and ∀n≤R (R role, n ∈ N)

B Example 18.1.5

car = vehicle u ∃4
≥has wheel (18.1)

city = town u ∃1,000,000
≥ has inhabitants (18.2)

small family = family u ∀2
≤has child (18.3)

B [[
∃n≥R

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]]}) ≥ n} (18.4)[[

∀n≤R
]]

= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]]}) ≤ n} (18.5)

B Intuitively: ∃n≥R is the set of objects that have at least n R-successors.

B Example 18.1.6 ∃1,000,000
≥ has inhabitants is the set of objects that have at least 1,000,000

inhabitants.

©: Michael Kohlhase 215

Translation into Predicate Logic

B Two extra rules for number restrictions: (very cumbersome)
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∃n≥R
fo(x) ∀n≤R

fo(x)

∃y1 R(x, y1)∧ . . . ∧∃yn R(x, yn) ¬∃y R(x, y)∨
∧y1 6= y2∧ . . . ∧y1 6= yn (∃y1 R(x, y1) ∧ . . . ∧ ∃yn R(x, yn)

∧ y2 6= y3∧ . . . ∧ y2 6= yn∧ ∀y R(x, y)⇒ (y = y1 ∨ . . . ∨ y = yn))
yn−1 6= yn

B Definable Operator:
n
= R := ∃n≥R u ∀n≤R

defines the set of objects that have exactly n R-successors.

B Example 18.1.7 car = vehicle u n
= has wheel (vehicles with exactly 4 wheels)

©: Michael Kohlhase 216

Functional Roles

B Example 18.1.8 CSR = car u 1
= has sun roof (CSR = car with sun roof)

has sun roof is a relation, but restricted to CSR it is a total function.

B Partial functions: Chd = computer u ∀1
≤has hd (computer with at most one hard drive)

has hd is a partial function on the set Chd

B Intuition: number restrictions can be used to encode partial and total functions, but not to
specify the range type.

©: Michael Kohlhase 217

Negation Rules

B Observation: to compute the negation normal form, need the rules for the new operators
∃n≥R 7→ ∀n−1

≤ R ∀n≤R 7→ ∃n+1
≥ R

B Proof Sketch: b

y the semantics of the operators

B Example 18.1.9
1: ∃5

≥has child = ∀4
≤has child

2: ∀5
≤has child = ∃6

≥has child

©: Michael Kohlhase 218

Tableaux Rules (without ABox Information)
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x R a1

...
x R an−k
x : ∃n≥R

y1, . . . , yk new

x R y1

...
x R yk

x R a1

...
x R am
x : ∀n≤R

m > n
1 ≤ i, j ≤ m

[aj/ai] everywhere

B Basic Intuition (but when do we fail? Can we always identify)

B ∃n≥R: Introduce as many R-successors as necessary

B ∀n≤R: Identify two R-successors if there are too many (repeat as needed)

©: Michael Kohlhase 219

18.2 Unique Names

Unique Name Assumption

B Problem: assuming UNA for ABox constants (but not always)

B Definition 18.2.1 (Unique Name Assumption) (UNA)

Different names for objects denote different objects, (cannot be equated)

B Example 18.2.2

Bob : gardener
Bob : gardener
UNAbomber : gardener

B Bill and Bob are different

B but the UNAbomber can be Bill or
Bob or someone else.

B Assumption: mark every ABox constant with ‘UNA’ or ‘UNA’

©: Michael Kohlhase 220

Tableau Rules (with ABox Information)
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B Definition 18.2.3

x R a1

...
x R an−k
x : ∃n≥R

y1, . . . , yk : UNA new
a1, . . . , an−k : UNA

x R y1

...
x R yk

x R a1

...
x R am
x : ∀n≤R

m > n
1 ≤ i, j ≤ m
ai : UNA

[aj/ai] everywhere

x R a1

...
x R am
x : ∀n≤R

m > n
a1, . . . , am : UNA

⊥

©: Michael Kohlhase 221

Example: Solving a Crime with Number Restrictions

B Example 18.2.4 Tony has observed (at most) two people. Tony observed a murderer that
had black hair. It turns out that Bill and Bob were the two people Tony observed. Bill is
blond, and Bob has black hair. (Who was the murderer.)

Bill : UNA, Bob : UNA, tony : UNA, muderer : UNA

tony : ∀2
≤observes

tony observes Bill
tony observes Bob

tony observes muderer
muderer : black hair

Bill : black hair
Bob : black hair

tony observes Bill
Bill : black hair

∗

tony observes Bob
Bob : black hair

©: Michael Kohlhase 222

18.3 Qualified Number Restrictions

Qualified Number Restrictions

B ALC plus operators ∃n≥Rϕ and ∀n≤Rϕ (R role, n ∈ N , ϕ formula)

B Example 18.3.1 person u ∀2
≤has child blond (persons with ≤ 2 blond kids)

B Example 18.3.2 comp u ∃5
≥has client car comp (company with at least 5 clients in the automobile industry)

B Special case: Unqualified Number restrictions (∃n≥R>, ∀n≤R>.)
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B[[
∃n≥Rϕ)

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≥ n}

[[
∀n≤Rϕ)

]]
= {x ∈ D |#({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≤ n}

©: Michael Kohlhase 223

Negation and Quantifier Elimination

B ∃n≥Rϕ = ∀n−1
≤ Rϕ ∀n≤Rϕ = ∃n+1

≥ Rϕ

B Example 18.3.3 ∃3
≥has child teacher = ∀2

≤has child teacher

B Example 18.3.4 ∀3
≤has child teacher = ∃4

≥has child teacher

B Quantifier elimination (regular quantifiers no longer necessary)

B ∃Rϕ = ∃1
≥Rϕ

B ∀Rϕ = ∃Rϕ = ∃1
≥Rϕ = ∀0

≤Rϕ

©: Michael Kohlhase 224

Optimizied Tableau Rules [Tob00]

B Definition 18.3.5 TALC rules plus:

B
x : ∃n≥r ϕ

#({y |x R y, y : ϕ ∈ B}) < n y new

x R y
y : ϕ
y : ξ1

...
y : ξk

where {ψ1, . . . , ψk} = {ψ |x : ∃m≥Rψ ∈ B or x : ∀m≤Rψ ∈ B} and ξi = ψ or ξ = ψ.

B
x : ∀n≤r ϕ

#({y |x R y, y : ϕ ∈ B}) > n

∗

©: Michael Kohlhase 225

Example Tableau
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B Example 18.3.6

x : ∃3
≥Rϕ u ∀1

≤Rψ u ∀1
≤Rψ

x : ∃3
≥Rϕ

x : ∀1
≤Rψ

x : ∀1
≤Rψ

x R y1

y1 : ϕ
y1 : ψ
x R y2

y2 : ϕ
y2 : ψ
∗

y2 : ψ
x R y3

y3 : ϕ
y3 : ψ
∗

y3 : ψ
∗

y1 : ψ
x R y2

y2 : ϕ
y2 : ψ
x R y3

y2 : ϕ
y3 : ψ
∗

y3 : ψ
∗

y2 : ψ
∗

B Problem: Naive Implementation: exponential path lengths

©: Michael Kohlhase 226

Implementation by “Traces”

B Algorithm SAT(ϕ) = sat(x0, {x0 : ϕ})

sat(x, S):

allocate counter #rS(x, ψ) := 0 for all roles R and positive or negative subformulae ψ in S.

apply rules u and t as long as possible

If S contains an inconsistency, RETURN ∗.
while(7→≥ is appliccable to x) do:

Sneu := {TALCRxy, y : ϕ, y : ξ1, . . . y : ξk}
where

y is a new variable,
x : ∃n≥Rϕ triggers rule 7→≥,
{ψ1, . . . , ψk} = {ψ |x : ∃m≥Rψ ∈ B or x : ∀m≤Rψ ∈ B} and
ξi = ψ oder ξ = ¬ψ.

For each y : ψ ∈ Snew: #rS(x, ψ)+ = 1 If x : ∀m≤Rψ ∈ B and #rS(x, ψ) > m
RETURN ∗

If sat(y, Sneu) = ∗ RETURN ∗ od
RETURN ”‘consistent”’.

©: Michael Kohlhase 227

Analysis

B Idea: Each R-successor of x triggers a recursive call of sat.
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B There may be exponentially many R-successor, but they are treated one-by-one, so their
space can be re-used.

B The chains of R-successors are at most as long as the nesting depth of operators (linear)

B Lemma 18.3.7 Space consumption is polynomial.

B Lemma 18.3.8 This algorithm is complete.

B Proof Sketch: T

he global counters #rS(x, ψ) count the R-successors and trigger rule 7→≤.

B Theorem 18.3.9 The algorithm is correct, complete and terminating, and PSPACE(no worse than ALC)

©: Michael Kohlhase 228

18.4 Role Operators

The DL-Zoo: Operator Types

B Operators on role names (construct roles on the fly)

B role hierarchy and role axioms (knowledge about roles)

B nominals (names for domain elements)

B features (partial functions)

B concrete domains (e.g. N,Z, trees)

B external data structures (for programming)

B epistemic operators (belief,. . . )

B . . .

©: Michael Kohlhase 229

Role Hierarchies

B Idea: specification of subset relations among relations.

B Example 18.4.1 role hierarchy as a directed graph R

has daughter v has child
has son v has child

talks to v communicates with
calls v communicates with

buys v obtains
steals v obtains

©: Michael Kohlhase 230
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ALC with Role hierarchies (without role operators)

B Definition 18.4.2 TALC + complex roles instead of role names

x : ∃Rϕ

x R y
y : ϕ

∃

x S y
x : ∀Rϕ

S v R ∈ R

y : ϕ
∀v

The ∃ rule is the same as before

©: Michael Kohlhase 231

Operators on Roles: Role Conjunction

B Example 18.4.3 person u (∃(has teacher u has friend) swiss)(persons that have a Swiss teacher that is also their friend)

B Example 18.4.4 com u (∃(has employee u has attorney) lawyer)(companies that have an employed attorney that is a lawyer)

B [[R u S]] = [[R]] ∩ [[S]] = {〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] and 〈x, y〉 ∈ [[S]]}

•

•

•

•

s

r

r

r

s u r

Inference Rules
(∀R u Sϕ) v (∀Rϕ) u (∀Sϕ)
(∃R u Sϕ) v (∃Rϕ) u (∃Sϕ)
∃n≥R u Sϕ v ∃n≥Rϕ u ∃n≥Sϕ

∀n+m
≤ R u Sϕ v ∃n≥Rϕ u ∃m≥Sϕ

©: Michael Kohlhase 232

Role Disjunction t

B Example 18.4.5 person u (∀has child t has friend teacher) (persons whose children and friends are all teachers)

B Example 18.4.6 com u (∃has employee t has consultant member of congress) (companies with an employee or consultant who is member of congress)

B [[R t S]] = [[R]] ∪ [[S]] = {〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] or 〈x, y〉 ∈ [[S]]}

•

•

•

•

s

r

r

s t r

s t r

s t r Inference Rules
∀R t Sϕ = (∀Rϕ) t (∀Sϕ)
∃R t Sϕ = (∃Rϕ) t (∃Sϕ)
∃n≥R t Sϕ =??
∀n≤R t Sϕ v ∀n≤Rϕ u ∀n≤Sϕ
∀n+m≤ R t Sϕ v ∀n≤Rϕ u ∀m≤Sϕ

∃max(n,m)
≥ R t Sϕ v (∃n≥Rϕ t ∃m≥Sϕ)

©: Michael Kohlhase 233

Role Complement ·

B Example 18.4.7 univ u (∀has employee u has prof unionized)(universities whose employees that are not professors are unionized)
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B Example 18.4.8 house u (∃resident u owner swiss)(houses whose residents that are not owners are Swiss)

B
[[

R
]]

= D2\[[R]] = {〈x, y〉 ∈ D2 | 〈x, y〉 6∈ [[R]]}

B Observation: u,t, · is a Boolean algebra (propositional logic)

We can compute with role terms built up from u,t, · exactly like with propositional formulae
built up from ∧,∨,¬.

B Example 18.4.9 ∀R u Sϕ = ∀R t Sϕ

B more rules: if R v S is a tautology, then (∀Sϕ) v (∀Rϕ) and (∃Rϕ) v (∃Sϕ)
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Special Relations 0 and 1

R u R = 0 empty relation

R t R = 1 universal relation

B Question: what does ∀1ϕ mean?

©: Michael Kohlhase 235

Role composition ◦

B Example 18.4.10 person u (∃has child ◦ has child prof)(persons that have grandchild that is a professor)

B Example 18.4.11 univ u (∀has student ◦ has Partner ◦ lives in) Texas)(universities whose students all have partners that live in Texas)

B [[R ◦ S]] = [[R]][[S]] = {〈x, z〉 ∈ D2 | ∃y 〈x, y〉 ∈ [[S]] and 〈y, z〉 ∈ [[R]]}

•

•
•

•

srr

•
•
•

•

•

r

r

r
r

s
s

s

s

s

s ◦ r
s ◦ r
s ◦ r
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Converse Roles (·−1)

B Example 18.4.12 (set of objects whose parents are teachers)
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[[
∀has child−1 teacher

]]
= {x | ∀y 〈x, y〉 ∈

[[
has child−1

]]
⇒ y ∈ [[teacher]]}

= {x | ∀y 〈y, x〉 ∈ [[has child]]⇒ y ∈ [[teacher]]}
= {x | ∀y 〈x, y〉 ∈ [[has parents]]⇒ y ∈ [[teacher]]}

B Definition 18.4.13
[[

R−1
]]

= [[R]]
−1

= {〈y, x〉 ∈ D2 | 〈x, y〉 ∈ [[R]]}

B Example 18.4.14

has child−1 = has parents

is part of−1 = contains as part

owns−1 = belongs to

. . .

©: Michael Kohlhase 237

Translation of Role Terms

B Definition 18.4.15 Translation Rules:

tr(R) := R(x, y)
tr(R u S) := tr(R) ∧ tr(S) tr(R t S) := tr(R) ∨ tr(S)
tr(R v S) := tr(R)⇒ tr(S) tr(R ◦ S) := (∃z tr(R), tr(S))

tr(R−1) := tr(R) tr(R) := ¬tr(R)

∀Rϕ
fo(x)

:= (∀y tr(R))⇒ ϕfo(y) ∃Rϕ
fo(x)

:= (∃y tr(R), ϕfo(y))

B Example 18.4.16

∀R ◦ S u T−1 c
fo(x)

= ∀y tr(R ◦ S u T−1)⇒ cfo(y)

= ∀y ¬tr(R ◦ S u T−1)⇒ c(y)

= ∀y ¬(∃z R(x ∧ z) ∧ tr(S u T−1))⇒ c(y)

= ∀y ¬(∃z R(x ∧ z) ∧ tr(S u T))⇒ c(y)

= ∀y ¬(∃z R(x ∧ z) ∧ S(y ∧ z) ∧ T(y ∧ z))⇒ c(y)

©: Michael Kohlhase 238

Connection to dynamic Logic

B Dynamic Logic is used for specification and verification of imperative programs(including non-deterministic, parallel)

B Similar to ALC with role terms (role terms as program fragments)
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B Domain of interpretation of a DynL formula is the set of states of the processes([[∀Rϕ]] = “in all states after executing R, ϕ holds”)

R u S parallel execution of R and S
R t S execution of R or S (nondeterministically)
R ◦ S execution of S after R
R execution of a program that is not R
R−1 execution of an undo operation
?ψ test whether ψ holds (not in ALC)

©: Michael Kohlhase 239

Tableaux Calculus: ALC + Role Terms

B Definition 18.4.17 complex roles instead of role names

x : ∃Rϕ
x R z

x R y
y : ϕ

∃

B
x : ∀Rϕ

B |= x R y

y : ϕ
∀R

B Problem: What is B |= x R y (B is the current branch)

B Simple case: no role composition ◦ and no converse roles ·−1.

B then B |= x R y, iff {S |x S y ∈ B} ∪ {R} inconsistent in PL0 (decidable)

B General case: B |= x R y, iff {tr(S) |u S v ∈ B} ∪ {tr(R)} inconsistent in PL1(undecidable in general)
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Special Cases for B |= x R y

B no role composition ◦ (decidable)

B then B |= x R y, iff {tr(S) |x S y ∈ B} ∪ {tr(R)} inconsistent in PL1 (as set of ground
formulae).

B role complement only for role names (decidable)

B then {tr(S) |u S v ∈ B} is a set of ground formulae and tr(R) only contains constants and
variables in the clause normal form.

B The general case is undecidable, therefore the naive tableau approach is unsuitable

©: Michael Kohlhase 241

18.5 Role Axioms
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General Role Axioms

has daughter v has child daughters are children
has son v has child sons are children
has daughter u has son sons and daughters are disjoint
has child v has son t has daughter children are either sons or daughters

B Translation of an axiom ρ: trr(ρ) = ∀x, y tr(ρ)

trr(has child v (has son t has daughter))

= ∀x, y tr(has child v has son t has daughter)

= ∀x, y has child(x⇒ y)⇒ has son(x ∨ y) ∨ has daughter(x ∨ y)

©: Michael Kohlhase 242

ALC + Role Terms + Role Axioms ρ

B Idea: Tableau like for ALC + role terms (B, ρ |= x R y instead of B |= x R y)

B Simple case: no role composition ◦ and no converse roles ·−1. (decidable)

B then B, ρ |= x R y iff {S |x S y ∈ B} ∪ ρ ∪ {R} inconsistent in PL0

B General case: B, ρ |= x R y, iff {tr(S) |u S v ∈ (B ∪ trr(ρ) ∪ {tr(R)})} inconsistent in PL1

(undecidable in general)

B no role composition ◦ (decidable)

B then B, ρ |= x R y, iff {tr(S) |x S y ∈ (S ∪ trr(ρ) ∪ {tr(R)})} inconsistent in PL1 (as set
of formulae without functions).

B role complement only for role names (decidable)

B then {tr(S) |u S v ∈ B} is a set of ground formulae and both tr(ρ) and tr(R) only contain
constants and variables in CNF

©: Michael Kohlhase 243

18.6 Features

ALCF : Features

B Features are partial functions.

B Idea: ALCF is ALC + features + special constraints on feature paths

B Definition 18.6.1 Let F := {f, g, f1, . . .} be a set of features, then we define the ALCF
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formulae by
FALCF :== FALC | R.FALCF | (π)↑ | π = π | π 6= π where π :== f | f ◦ π

B Definition 18.6.2 The semantics of the ALC part is as always.

1. The meaning of a feature f is a partial function [[f ]] : D ×D → D.

2. [[f ◦ π]](x) := [[π]]([[f ]](x))

3. [[(π)↑]] := D\dom([[π]])

4. [[f.ϕ]] := {x ∈ dom([[π]]) | [[f ]](x) ∈ [[ϕ]]}
5. [[ϕ = ω]] := {x ∈ (dom([[π]]) ∩ dom([[ω]])) | [[π]](x) = [[ω]](x)}
6. [[ϕ 6= ω]] := {x ∈ (dom([[π]]) ∩ dom([[ω]])) | [[π]](x) 6= [[ω]](x)}
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Examples

B Example 18.6.3 persons, whose father is a teacher: person u had father.teacher

B Example 18.6.4 persons that have no father: person u (had father)↑

B Example 18.6.5 companies, whose bosses have no company car: company u (has boss ◦ has comp car)↑

B Example 18.6.6 cars whose exterior color is the same as the interior color: car u color exterior = color interior

B Example 18.6.7 cars whose exterior color is different from the interior color: car u color exterior 6= color interior

B Example 18.6.8 companies whose Bosses and Vice Presidents have the same company
car: company u has boss ◦ has comp car = has VP ◦ has comp car
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Normalization

B Normalization rules

f.ϕ → (f)↑ t f.ϕ
π = ω → ((π)↑)(ω)↑ t π 6= ω

π 6= ω → ((π)↑)(ω)↑ t π = ω

(f ◦ π)↑ → (f)↑ t f ◦ (π)↑

B Example 18.6.9 (for the last transformation)

(has boss ◦ has comp car ◦ has sun roof)↑ = . . .

i.e. the set of objects that do not have a boss, plus the set of objects whose boss does not
have a company car plus the set of objects whose bosses have company cars without sun roofs

©: Michael Kohlhase 246
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Tableau Calculus

B Definition 18.6.10 The calculus is an extension of TALC.

x : f.ϕ

x f y
y : ϕ

x : π = ω

x π y
x ω y

x : π 6= ω

x π y
x ω z
y 6= z

x f ◦ π y
x f y
z π y

B
x f y
x f z

6= y, z

[y/z](B)

x : ⊥
∗

x : c
x : c

∗

x f y
x : (f)↑
∗

x 6= x

∗

B Theorem 18.6.11 The calculus is correct, complete and terminating.

B Theorem 18.6.12 It can be implemented in PSPACE
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Example

B Example 18.6.13 (has boss ◦ has comp car)↑ u has boss.has comp car.has sun roof.> is in-
consistent.

B Normalize: ((has boss)↑ t has boss.(has comp car)↑) u has boss.has comp car.has sun roof.>

B Tableau
x : (has boss)↑ t has boss.(has comp car)↑
x : has boss.has comp car.has sun roof.>

x has boss y
y : has comp car.has sun roof.>

y has comp car z
z : has sun roof.>

x : (has boss)↑
∗

x : has boss.(has comp car)↑
x has boss v

v : (has comp car)↑
y : (has comp car)↑ (y = v)

∗
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18.7 Concrete Domains

ALC with “concrete Domains” (Examples)
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Formula Concrete Domain

person u age < 20 real numbers

persons younger than 20

company u has CEO ◦ has comp car ◦ price) > $100000 natural numbers

companies with CEOs with expensive car

car u height > width natural numbers

cars that are higher than wide

person u first name < last name strings

persons whose first name is lexicographically smaller than their last name

person u has father ◦ studiesbefore(has mother ◦ studies temporal interval logic

persons whose fathers have studied before their mothers
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Concrete Domain

B Definition 18.7.1 A concrete domain is a pair 〈C,P〉, where C is a set and P a set of
predicates.

B Example 18.7.2 B C = N and P = {=, <,≤, >,≥} (natural numbers)

B C = R and P = {=, <,≤, >,≥} (real numbers)

B C = temporal intervals, P = {before, after, overlaps, . . .} (Allen’s interval logic)

B C = facts in a relational data base, P = SQL relations
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Admissible Concrete Domains

B Idea: concrete domains are admissible, iff P is decidable.

B Definition 18.7.3 Let {P1, . . . , Pn} ⊆ P, then conjunctions P1(x1, . . .) ∧ . . . ∧ Pn(xn, . . .)
are called satisfiable, iff there is a satisfying variable assignment [ai/xi] with ai ∈ C.(the model is fixed in a concrete domain)

B Example 18.7.4 C = real numbers

P1(x, y) = ∃z (x+ z2 = y) satisfiable (z =
√
y − x, e.g. x = y = 1, z = 0)

P2(x, y) = P1(x, y) ∧ x > y unsatisfiable

B Definition 18.7.5 A concrete domain 〈C,P〉 is called admissible, iff

1. the satisfiability problem for conjunctions is decidable

2. P is closed under negation and contains a name for C.
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ALC(C)

B FALC(C) :== FALCF | P (π, . . . , π)
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B Example 18.7.6 a female human under 21 can become a woman by having a child

mother = human u female u (∃has child human)

woman = human u female u (mother t age ≥ 21)

here age ≥ 21 ∈ FALC(C), since it is of the form P (age) (P = λx.x ≥ 21)

B Semantics of ALC(D)

B D and C are disjoint.

B P (π1, . . . , πn) = x ∈ Dthere are y1 = [[π1]](x), . . ., yn = [[πn]](x) ∈ C,with 〈y1, . . ., yn〉 ∈ [[P ]]

Warning: [[ϕ]] = D\[[ϕ]], but not [[ϕ]] = (D ∪ C)\[[ϕ]]
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!

B Negation Rules and Tableau Calculus

B Let >C be the name for the concrete domain (as a set) and P the negated predicate for P
(C is admissible)

B New negation rule: P (π1, . . . , πn)→ P (π1, . . . , πn) t (∀π1>C) t . . . t (∀πn>C)

B New tableau rule

P1(x11, . . . , x1n1
)

...
Pk(xk1, . . . , xknk)

∧
1≤i≤k Pi(xi1, . . . , xini) inconsistent

∗
⊥p
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Example:car u height = 2 u width = 1 v car u height > width

x : car u height = 2 u width = 1
x : car u width ≤ height

x : car
x : height = 2
x : width = 1

x : car
∗

x : width ≤ height
xheight y1

y1 = 2
x : width = y2

y2 = 1
x : width y3

x : height = y4

y3 ≤ y4

y1 ≤ y2

∗
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©: Michael Kohlhase 254

18.8 Nominals

Nominals

B Definition 18.8.1 (Idea) nominal are names for domain elements that can be used in the
T-Box.

B Example 18.8.2 Students that study on Bremen or Hamburg: student u (∃studies in {Bremen,Hamburg})

B Example 18.8.3 Students that have a friend with name Eva: student u (∃has friend ◦ has name {Eva})

B Example 18.8.4 persons that have phoned Bill, Bob, or the murderer: person u (∃has phoned {Bill, Bob,murderer})

B Example 18.8.5 friends of Eva: person u has friend : Eva

B Example 18.8.6 companies whose employees all bank at Sparda Bank: company u (∀has empl has bank : Sparda)

B Example 18.8.7 employees of Jacobs that bank at Sparda: employed at : Jacobs u has bank : Sparda
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Semantics

B Definition 18.8.8 [[{a1, . . . , an}]] is the set of objects with names a1, . . . an.

B Definition 18.8.9 [[R : a]] is the set of objects that have [[a]] as R-successor

[[{a1, . . . , an}]] = {[[a1]], . . ., [[an]]}
[[R : a]] = {x ∈ D | 〈x, [[a]]〉 ∈ [[R]]}

B Definition 18.8.10 (Negation Rules)

{a1, . . . , an} = invariant

R : a = ∀R {a}

B Example 18.8.11 had friend : Eva (the complement of the set of friends of Eva)

= ∀had friend {Eva} (the set of objects that do not have Eva as a friend)
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Example Language with Nominals

B We consider the following language: ALC + unqualified number restrictions (∃n≥R, ∀n≤R),

some role operators (u, ◦, ·−1), {a1, . . . , an}, R : a

B Example 18.8.12 persons that have at most two friends among their neighbors and
whose neighbors are Bill, Bob, or the gardener person u ∀2

≤(has friend u had neighbor) u (∀had neighbor {Bill, Bob,Gardener})
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B Example 18.8.13 companies with at least 100 employees that have a car and live in
Bremen company u ∃100

≥ has empl ◦ has comp car u has empl ◦ lives in : Bremen
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Tableaux Calculus (only T-Box)

B Definition 18.8.14 The calculus consists of the TALC rules together with:

a : {. . . , a, . . .}
∗

B
x : {a1, . . . , an}

[x/a1](B)
∣∣∣ . . . [x/an](B)

x : R : a

x R a

x R−1 y

y R x

x R u S y

x R y
x S y

x R ◦ S y

x R z
z S y

B Theorem 18.8.15 The calculus is correct, complete, and terminating

B Proof Sketch: v

ery technical but not terribly difficult using the techniques developed so far.
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