

This document contains the course notes for the graduate course "Computational Logic" held at Jacobs University, Bremen in the Fall Semsesters 2005, 2007, and 2009. The document mixes the slides presented in class with comments of the instructor to give students a more complete background reference.

This document is made available for the students of this course only. It is still an early draft, and will develop over the course of the course. It will be developed further in coming academic years.

This document is also an experiment in knowledge representation. Under the hood, it uses the ST_EX package, a T_EX/IAT_EX extension for semantic markup. Eventually, this will enable to export the contents into eLearning platforms like Connexions (see http://cnx.rice.edu) or ActiveMath (see http://www.activemath.org).

Comments and extensions are always welcome, please send them to the author.

Acknowledgments: The following students have submitted corrections and suggestions to this and earlier versions of the notes: Rares Ambrus, Florian Rabe, Deyan Ginev.

Contents

1	Administrativa	3
2	First-Order Logic2.1First-Order Logic2.2First-Order Substitutions2.3Alpha-Renaming for First-Order Logic2.4Recap: General Properties of Logics and Calculi2.5First-Order Calculi2.6Abstract Consistency and Model Existence2.7A Completeness Proof for First-Order ND2.8Limits of First-Order Logic	7 12 14 15 17 21 28 30
3	First-Order Automated Theorem Proving with Tableaux3.1First-Order Tableaux3.2Free Variable Tableaux3.3Properties of First-Order Tableaux	30 30 33 34
4	Higher-Order Logic and λ -Calculus4.1Higher-Order Predicate Logic4.2Simply Typed λ -Calculus4.3Simply Typed λ Calculus4.4Computational Properties of λ -Calculus4.4.1Termination of β -reduction4.5Completeness of $\alpha\beta\eta$ -Equality4.6 λ -Calculus Properties4.7The Curry-Howard Isomorphism	36 36 40 42 46 47 50 52 52
5	Knowledge Representation5.1Introduction to Knowledge Representation5.2Logic-Based Knowledge Representation5.3A simple Description Logic: ALC5.4ALC Extensions5.4.1Functional Roles and Number Restrictions5.4.2Unique Names5.4.3Qualified Number Restrictions5.4.4Role Operators5.4.5Role Axioms5.4.6Features5.4.7Concrete Domains5.4.8Nominals5.5The Semantic Web5.6Description Logics and the Semantic Web	57 62 68 79 79 82 83 86 90 91 93 96 98 101

Outline			
Contents			
SUMMERIGENES RESERVED	©: Michael Kohlhase	2	

1 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between the instructor and the students. Both have to keep their side of the deal to make learning and becoming Computer Scientists as efficient and painless as possible.

Textbooks, Handouts and Information, Forum				
No required textbook, but course notes, posted slides				
\triangleright Course notes wi	ll be posted at http://kwarc.i	.nfo/teaching/GenCS1.	html	
ho Everything will I	oe posted on Panta Rhei	(Notes+assignments+	course forum)	
 announcements, contact information, course schedule and calendar discussion among your fellow students(careful, I will occasionally check for academic int http://panta-rhei.kwarc.info (use your precourse login and pwd) if there are problems send e-mail to c.mueller@jacobs-university.de 			for academic integrity! ogin and pwd) .de	
⊳ The EECS Semi	nar (If you w	ant to take a peek into E	ECS research)	
see details at ht	tp://www.eecs.jacobs-unive	rsity.de/seminar/		
SOME RIGHIS RESERVED	©: Michael Kohlhase	3		

No Textbook: Due to the special circumstances discussed above, there is no single textbook that covers the course. Instead we have a comprehensive set of course notes (this document). They are provided in two forms: as a large PDF that is posted at the course web page and on the Panta Rhei system. The latter is actually the preferred method of interaction with the course materials, since it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the Panta Rhei system, which is still under development develops problems.

The EECS seminar: The EECS seminar is the colloquium of the EECS&Logistics group at Jacobs University. The seminar features talks by graduate students, Jacobs faculty and external research collaborators. Even though much of the material covered in the talks will be beyond understanding for most first-year students, the speakers usually give a general introduction which shows students which research directions are currently being discussed. For students that want to get involved into research early this is a valuable source of orientation.

Homework assignments are a central part of the course, they allow you to review the concepts covered in class, and practice using them.

The next topic is very important, you should take this very seriously, even it you think that this is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract among its members, protect their interestes, and optimize the functioning of the society as a whole. This is also true for the community of scientists worldwide. This society is special, since it balances intense cooperation on joint issues with fierce competition. Most of the rules are largely unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics, i.e. to function as a member of the academic community. Even if you do not want to become a scientist in the end, you should be aware that many of the people you are dealing with have gone through an adademic education and expect that you (as a graduate of Jacobs) will behave by these rules.

To understand the rules of academic societies it is central to realize that these communities are driven by economic considerations of their members. However, in academic societies, the the primary good that is produced and consumed consists in ideas and knowledge, and the primary currency involved is academic reputation¹. Even though academic societies may seem as altruistic — scientists share their knowledge freely, even investing time to help their peers understand the concepts more deeply — it is useful to realize that this behavior is just one half of an economic transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of course, this can only work if ideas and facts are attributed to their original creators (who gain reputation by being cited). You will see that scientists can become quite fierce and downright nasty when confronted with behavior that does not respect other's intellectual property.

One special case of academic rules that affects students is the question of cheating, which we will cover next.

 $^{^{1}}$ Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may get a well-paying job at a good university,...

We are fully aware that the border between cheating and useful and legitimate collaboration is difficult to find and will depend on the special case. Therefore it is very difficult to put this into firm rules. We expect you to develop a firm intuition about behavior with integrity over the course of stay at Jacobs.

Software/Hardware tools							
⊳ You	will	need	computer (come see me if	access Fyou do not P	for nave a cor	this nputer of y	course our own)
⊳ we reco	\triangleright we recommend the use of standard software tools						
▷ the emacs and vi text editor					verful, fle>	kible, availa	ble, free)
⊳ UNIX (linux, MacOSX, cygwin)						(prevale	nt in CS)
⊳ FireFox				(ju	ist a better	browser)	
▷ learn how to touch-type NOW			(reap	the benef	its earlier, 1	not later)	
SOME RIGHTS RESERVED		©: Mic	hael Kohlhase		7		

Touch-typing: You should not underestimate the amount of time you will spend typing during your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you a factor two in speed. This ability will save you at least half an hour per day, once you master it. Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will re-gain your two-finger speed and from then on start saving time. There are various free typing tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan recommends the TypingMaster program. You can download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like "learn to touch-type". (goto http: //www.google.com and type these search terms).

Next we come to a special project that is going on in parallel to teaching the course. I am using the course materials as a research object as well. This gives you an additional resource, but may affect the shape of the coures materials (which now server double purpose). Of course I can use all the help on the research project I can get.

Experiment: E-Learning with OMDoc/ActiveMath/SWiM				
\triangleright My research area: deep representation formats for	(mathematical) knowledge			
▷ Application: E-learning systems	(represent knowledge to transport it)			
\triangleright Experiment: Start with this course	(Drink my own medicine)			
\triangleright Re-Represent the slide materials in $OMDoc$ (C)pen Math Documents)			
Feed it into the ActiveMath system	(http://www.activemath.org)			
⊳ Try it on you all	(to get feedback from you)			
▷ Tasks (Unfortunately, I	cannot pay you for this; maybe later)			
\triangleright help me complete the material on the slides	(what is missing/would help?)			
${\scriptstyle \vartriangleright}$ I need to remember "what I say", examples on	the board. (take notes)			
▷ Benefits for you	(so why should you help?)			
ho you will be mentioned in the acknowledgement	s (for all that is worth)			
\triangleright you will help build better course materials	(think of next-year's freshmen)			
©: Michael Kohlhase	8 Revenues of the second secon			

2 First-Order Logic

2.1 First-Order Logic

History of Ideas (abbreviated): Propositional Logic				
⊳ General Logic	([ancient Greece, e.g. Aristoteles])			
+ conceptual separation of syntax and semantics				
+ system of inference rules	("Syllogisms")			
 no formal language, no formal semantics 				
$ ho$ Propositional Logic [Boole ~ 1850]				
+ functional structure of formal language	(propositions + connectives)			
+ mathematical semantics	(∼→ Boolean Algebra)			
- abstraction from internal structure of propositions	5			
©: Michael Kohlhase	9 QACOBS			

History of Ideas (continued): Predicate Logic					
⊳ Begriffsschrift	⊳ Begriffsschrift [Frege 1879]				
+ functional structure of formal language(terms, atomic formulae, connectives, quantifier					quantifiers
 weird graphical syntax, no mathematical semantics 					
– paradoxes	e.g.	Russell's (the set of se	Paradox ts that do not c	[R. contain the	1901] mselves)
$ ho$ modern form of predicate logic [Peano \sim 1889]					
+ modern notation for predicate logic (\lor , \land , \Rightarrow , \forall , \exists)					
SOME RIGHTS RESERVED	©: Michael	Kohlhase	10		V JACOBS UNIVERSITY

History of Ideas (continued): First-Order Predicate Logic ⊳ Types ([Russell 1908]) - restriction to well-types expression + paradoxes cannot be written in the system ([Whitehead, Russell 1910]) + Principia Mathematica \triangleright Identification of first-order Logic ([Skolem, Herbrand, Gödel \sim 1920 – '30]) - quantification only over individual variables (cannot write down induction principle) + correct, complete calculi, semi-decidable ([Tarski 1936]) + set-theoretic semantics © Some rights reserved ©: Michael Kohlhase 11

History of Ideas (continued): Foundations	s of Mathematics
> Hilbert's Programme: find logical system and calculus	s, $([Hilbert \sim 1930])$
▷ that formalizes all of mathematics	
b that admits correct and complete calculi	
\triangleright whose consistence is provable in the system itself	
▷ Hilbert's Programm is impossible!	([Gödel 1931])
Let ${\mathcal L}$ be a logical system that formalizes arithmetics (1	$(\mathbb{N},+,*)$,
$ ho$ then ${\cal L}$ is incomplete	
$_{\vartriangleright}$ then the consistence of ${\cal L}$ cannot be proven in ${\cal L}.$	
©: Michael Kohlhase	12 Jacobs UNIVERSIT

History of Ideas (continued): λ -calc	ulus, set theory
$ hightarrow$ simply typed λ -calculus	([Church 1940])
$+$ simplifies Russel's types, λ -operator for fur	octions
+ comprehension as eta -equality	(can be mechanized)
+ simple type-driven semantics	(standard semantics \rightsquigarrow incompleteness)
\triangleright Axiomatic set theory	
+- type-less representation	(all objects are sets)
+ first-order logic with axioms	
+ restricted set comprehension	(no set of sets)
- functions and relations are derived objects	
©: Michael Kohlhase	13 ROBS

First-Order P	redicate Lo	ogic (PL	.1)			
⊳ Coverage: We can talk about					(All hun	nans are mortal)
⊳ individual t	hings and denc	te them by	variable	s or cons	stants	
▷ properties of	of individuals,				(e.g. being h	numan or mortal)
▷ relations of	individuals,				(e.g. sibling	_of relationship)
⊳ functions o	n individuals,				(e.g. the fat	her_of function)
We can also state the existance of an individual with a certain property, or the universality of a property.						
\triangleright but we cannot	state assertior	is like				
\triangleright There is a	surjective fund	ction from	the nati	ıral num	bers into the	reals.
⊳ First-Order	Predicate (co	Logic mplete calc	has uli, com	many pactness,	good unitary, linea	properties r unification,)
\triangleright but too weak f	for formalizing	:				
\triangleright natural numbers, torsion groups, calculus,						
▷ generalized	quantifiers (m	ost, at leas	st three,	some,	.)	
SOME FILEHTIS RESERVED	©: Mich	iael Kohlhase			14	

PL^1 Syntax (Signature and Variables)	
\triangleright PL1 talks about two kinds of objects:	(so we have two kinds of symbols)
 ▷ <i>o</i> for truth values ▷ Type <i>ι</i> for individuals 	(like in PL0) (numbers, foxes, Pokémon,)
▷ Definition 2.1: A first-order signature consists of	(all disjoint; $k\in\mathbb{N}$)
$\triangleright \text{ connectives: } \Sigma^o = \{T, F, \neg, \lor, \land, \Rightarrow, \Leftrightarrow, \ldots\}$	(functions on truth values)
\triangleright function constants: $\Sigma_k^f = \{f, g, h, \ldots\}$	(functions on individuals)
$ ho$ predicate constants: $\Sigma_k^p = \{p, q, r \dots\}$	(relations among inds.)
\triangleright (Skolem constants: $\Sigma_k^{sk} = \{f_1^k, f_2^k, \ldots\}$)	(witness constants; countably ∞)
\triangleright We take the signature Σ to all of these together: $\Sigma^* := \bigcup_{k \in \mathbb{N}} \Sigma_k^*.$	$\Sigma:=\Sigma^o\cup\Sigma^f\cup\Sigma^p\cup\Sigma^{sk},$ where
\triangleright Definition 2.2: For first-order Logic (PL^1), we assume	e a set of
\triangleright individual variables: $\mathcal{V}_{\iota} = \{X_{\iota}, Y_{\iota}, Z, X_{\iota}^{1}, X^{2}, \ldots\}$	(countably ∞)
© C: Michael Kohlhase	15 Victors

 PL^1 Syntax (Formulae) \triangleright Definition 2.3: terms: $\mathbf{A}_{\iota} \in wff_{\iota}(\Sigma_{\iota})$ (denote individuals: type ι) $\triangleright \mathcal{V}_{\iota} \subseteq wff_{\iota}(\Sigma_{\iota}),$ $\triangleright \text{ if } f \in \Sigma_k^f \text{ and } \mathbf{A}^i \in w\!f\!f_\iota(\Sigma_\iota) \text{ for } i \leq k \text{, then } f(\mathbf{A}^1, \dots, \mathbf{A}^k) \in w\!f\!f_\iota(\Sigma_\iota).$ \triangleright Definition 2.4: propositions: $\mathbf{A}_o \in wff_o(\Sigma)$ (denote truth values: type o) \triangleright if $p \in \Sigma_k^p$ and $\mathbf{A}^i \in wff_{\iota}(\Sigma_{\iota})$ for $i \leq k$, then $p(\mathbf{A}^1, \dots, \mathbf{A}^k) \in wff_o(\Sigma)$ $\triangleright \text{ If } \mathbf{A}, \mathbf{B} \in wf\!f_o(\Sigma) \text{, then } T, (\mathbf{A} \wedge \mathbf{B}), \neg \mathbf{A}, (\forall X_{\iota}.\mathbf{A}) \in wf\!f_o(\Sigma)$ \triangleright Definition 2.5: We define the connectives $F, \lor, \Rightarrow, \Leftrightarrow$ via the abbreviations $\mathbf{A} \lor \mathbf{B} :=$ $\neg(\neg \mathbf{A} \land \neg \mathbf{B}), \ \mathbf{A} \Rightarrow \mathbf{B} := \neg \mathbf{A} \lor \mathbf{B}, \ \mathbf{A} \Leftrightarrow \mathbf{B} := (\mathbf{A} \Rightarrow \mathbf{B}) \land (\mathbf{B} \Rightarrow \mathbf{A}), \ \text{and} \ F := \mathbf{A} \lor \mathbf{A}$ $\neg \mathbf{A} \wedge \mathbf{A}.$ We will use them like the primary connectives \wedge and \neg \triangleright Definition 2.6: We use $\exists X_{\iota}$. A as an abbreviation for $\neg(\forall X_{\iota}.\neg A)$ (existential quantifier) ▷ Definition 2.7: Formulae without connectives or quantifiers are called atomic else complex. V JACOBS UNIVERS CC Some rights reserved ©: Michael Kohlhase 16

$\begin{array}{l} \textbf{Semantics (PL1 continued)} \\ & \triangleright \ \, \text{The value function } \mathcal{I}_{\varphi} \ \text{recursively defined} \\ & \triangleright \ \, \mathcal{I}_{\varphi} \colon wf\!f_{\iota}(\Sigma_{\iota}) \to \mathcal{D}_{\iota} \ \text{assigns values to terms.} \\ & \triangleright \ \, \mathcal{I}_{\varphi}(X_{\iota}) \coloneqq \varphi(X_{\iota}) \ \text{and} \\ & \triangleright \ \, \mathcal{I}_{\varphi}(f(\mathbf{A}_{1},\ldots,\mathbf{A}_{k})) \coloneqq \mathcal{I}(f)(\mathcal{I}_{\varphi}(\mathbf{A}_{1}),\ldots,\mathcal{I}_{\varphi}(\mathbf{A}_{k})) \\ & \triangleright \ \, \mathcal{I}_{\varphi} \colon wf\!f_{o}(\Sigma) \to \mathcal{D}_{o} \ \text{assigns values to formulae} \\ & \triangleright \ \, \text{e.g. } \ \, \mathcal{I}_{\varphi}(\neg \mathbf{A}) = \mathcal{I}(\neg)(\mathcal{I}_{\varphi}(\mathbf{A})) \qquad (\text{just as in Pl0}) \\ & \triangleright \ \, \mathcal{I}_{\varphi}(p(\mathbf{A}^{1},\ldots,\mathbf{A}^{k})) \coloneqq \mathsf{T}, \ \, \text{iff } \langle \mathcal{I}_{\varphi}(\mathbf{A}^{1}),\ldots,\mathcal{I}_{\varphi}(\mathbf{A}^{k})\rangle \in \mathcal{I}(p) \\ & \triangleright \ \, \mathcal{I}_{\varphi}(\forall X_{\iota}.\mathbf{A}) \coloneqq \mathsf{T}, \ \, \text{iff } \ \, \mathcal{I}_{\varphi,[a/X]}(\mathbf{A}) = \mathsf{T} \ \text{for all } a \in \mathcal{D}_{\iota}. \end{array}$

Free and Bound Variables

 \triangleright Definition 2.9: We call an occurrence of a variable X bound in a formula A, iff it is in a subterm $\forall X.B$ of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free) variables of A, i.e. variables that have a free/bound occurrence in A.

 \triangleright Definition 2.10: We can inductively define the set free(A) of free variables of a formula A:

 $\begin{aligned} & \mathbf{free}(X) := \{X\} \\ & \mathbf{free}(f(\mathbf{A}_1, \dots, \mathbf{A}_n)) := \bigcup_{1 \leq i \leq n} \mathbf{free}(\mathbf{A}_i) \\ & \mathbf{free}(p(\mathbf{A}_1, \dots, \mathbf{A}_n)) := \bigcup_{1 \leq i \leq n} \mathbf{free}(\mathbf{A}_i) \\ & \mathbf{free}(\neg \mathbf{A}) := \mathbf{free}(\mathbf{A}) \\ & \mathbf{free}(\mathbf{A} \wedge \mathbf{B}) := \mathbf{free}(\mathbf{A}) \cup \mathbf{free}(\mathbf{B}) \\ & \mathbf{free}(\forall X.\mathbf{A}) := \mathbf{free}(\mathbf{A}) \setminus \{X\} \end{aligned}$

 \triangleright Definition 2.11: We call a formula A closed or ground, iff $\mathbf{free}(\mathbf{A}) = \emptyset$. We call a closed proposition a sentence, and denote the set of all ground terms with $cwff_{\iota}(\Sigma_{\iota})$ and the set of sentences with $cwff_{o}(\Sigma_{\iota})$.

	©: Michael Kohlhase
SUBL MISTIS MEETING	

19

JACOBS UNIVERSIT

2.2 First-Order Substitutions

Substitutions

- \triangleright Intuition: If **B** is a term and X is a variable, then we denote the result of systematically replacing all variables in a term **A** by **B** with $[\mathbf{B}/X]\mathbf{A}$.
- \triangleright Problem: What about [Z/Y], [Y/X]X, is that Y or Z?
- $\succ \text{ Folklore: } [Z/Y], [Y/X]X = Y, \text{ but } [Z/Y][Y/X](X) = Z \text{ of course.}$ (Parallel application)
- \triangleright Definition 2.12: We call $\sigma: wff_{\iota}(\Sigma_{\iota}) \to wff_{\iota}(\Sigma_{\iota})$ a substitution, iff $\sigma f(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}) = f(\sigma \mathbf{A}_{1}, \ldots, \sigma \mathbf{A}_{n})$ and the support $\operatorname{supp}(\sigma) := (\{X \mid \sigma X \neq X\})$ of σ is finite.
- \triangleright Notation 2.13: Note that a substitution σ is determined by its values on variables alone, thus we can write σ as $\sigma|_{\mathcal{V}} = (\{[\sigma X/X] \mid X \in \mathbf{supp}(\sigma)\}).$
- \triangleright Example 2.14: [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).
- \triangleright Definition 2.15: We call $intro(\sigma) := \bigcup_{X \in supp(\sigma)} free(\sigma X)$ the set of variables introduced by σ .

```
CC
Some Rights Reserved
```

©: Michael Kohlhase

20

JACOBS UNIVERSIT

Substitution Extension ▷ Notation 2.16: (Substitution Extension) Let be substitution, $\sigma, [\mathbf{A}/X]$ σ а then we denote with the function $(\{\langle Y, \mathbf{A} \rangle \in \sigma \mid Y \neq X\}) \cup \{\langle X, \mathbf{A} \rangle\}.$ $(\sigma, [\mathbf{A}/X]$ coincides with σ off X, and gives the result A there.) \triangleright Note: If σ is a substitution, then σ , $[\mathbf{A}/X]$ is also a substitution. \triangleright Definition 2.17: If σ is a substitution, then we call σ , $[\mathbf{A}/X]$ the extension of σ by $[\mathbf{A}/X].$ V JACOBS ©: Michael Kohlhase 21

Substitutions on Propositions

- \triangleright Problem: We want to extend substitutions to propositions, in particular to quantified formulae: What is $\sigma(\forall X.\mathbf{A})$?
- \triangleright Idea: σ should not instantiate bound variables:
- \triangleright Definition 2.18: $\sigma(\forall X.\mathbf{A}) := (\forall X.\sigma_{-X}\mathbf{A})$, where $\sigma_{-X} := \sigma, [X/X]$
- \triangleright Problem: This can lead to variable capture: $[f(X)/Y](\forall X.p(X,Y))$ would evaluate to $\forall X.p(X, f(X))$, where the second occurrence of X is bound after instantiation, whereas it was free before.
- \triangleright Definition 2.19: Let $\mathbf{B} \in wff_{\iota}(\Sigma_{\iota})$ and $\mathbf{A} \in wff_{o}(\Sigma)$, then we call \mathbf{B} substitutible for X in \mathbf{A} , iff \mathbf{A} has no occurrence of X in a subterm $\forall Y.\mathbf{C}$ with $Y \in \mathbf{free}(\mathbf{B})$.
- \triangleright Solution: forbid substitution $[\mathbf{B}/X]\mathbf{A}$, when **B** is not substitutible for X in **A**
- ▷ Better Solution: rename away the bound variable X in $\forall X.p(X,Y)$ before applying the substitution. (see alphabetic renaming later.)

©: Michael Kohlhase

22

JACOBS UNIVERSITY

Substitution Value Lemma for Terms Let A and B be terms, then $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\psi}(\mathbf{A})$, where $\psi =$ ⊳ **Lemma** 2.20: $\varphi, [\mathcal{I}_{\varphi}(\mathbf{B})/X]$ \triangleright **Proof**: by induction on the depth of **A**: **P.1.1 depth=0**: **P.1.1.1** Then **A** is a variable (say Y), or constant, so we have three cases **P.1.1.1.1** $\mathbf{A} = Y = X$: then $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\varphi}([\mathbf{B}/X]X) = \mathcal{I}_{\varphi}(\mathbf{B}) = \psi(X) = \psi(X)$ $\mathcal{I}_{\psi}(X) = \mathcal{I}_{\psi}(\mathbf{A}).$ $\textbf{P.1.1.1.2 A} = Y \neq X: \quad \text{then } \mathcal{I}_{\varphi}([\textbf{B}/X]\textbf{A}) = \mathcal{I}_{\varphi}([\textbf{B}/X]Y) = \mathcal{I}_{\varphi}(Y) = \varphi(Y) = \varphi(Y) = \varphi(Y)$ $\psi(Y) = \mathcal{I}_{\psi}(Y) = \mathcal{I}_{\psi}(\mathbf{A}).$ **P.1.1.1.3 A** is a constant: analogous to the preceding case $(Y \neq X)$ **P.1.1.2** This completes the base case (depth = 0). **P.1.2** depth > 0: then $\mathbf{A} = f(\mathbf{A}_1, \dots, \mathbf{A}_n)$ and we have $\mathcal{I}_{\omega}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}(f)(\mathcal{I}_{\omega}([\mathbf{B}/X]\mathbf{A}_{1}), \dots, \mathcal{I}_{\omega}([\mathbf{B}/X]\mathbf{A}_{n}))$ $= \mathcal{I}(f)(\mathcal{I}_{\psi}(\mathbf{A}_1),\ldots,\mathcal{I}_{\psi}(\mathbf{A}_n))$ $= \mathcal{I}_{\psi}(\mathbf{A}).$ by inductive hypothesis P.1.2.2 This completes the inductive case, and we have proven the assertion V JACOBS SOME FIGHTS RESERVED (C): Michael Kohlhase 23

2.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts for first-order logic: the names of bound variables do not matter; they can be renamed at liberty without changing the meaning of a formula.

Alphabetic Renaming \triangleright Lemma 2.22: Bound variables can be renamed: If Y is substitutible for X in A, then $\mathcal{I}_{\varphi}(\forall X.\mathbf{A}) = \mathcal{I}_{\varphi}(\forall Y.[Y/X]\mathbf{A})$ \triangleright **Proof**: by the definitions: **P.1** $\mathcal{I}_{(2)}(\forall X.\mathbf{A}) = \mathsf{T}$, iff **P.2** $\mathcal{I}_{\varphi,[a/X]}(\mathbf{A}) = \mathsf{T}$ for all $a \in \mathcal{D}_{\iota}$, iff **P.3** $\mathcal{I}_{\varphi, \lceil a/Y \rceil}([Y/X]\mathbf{A}) = \mathsf{T}$ for all $a \in \mathcal{D}_{\iota}$, iff (by substitution value lemma) **P.4** $\mathcal{I}_{\omega}(\forall Y.[Y/X]\mathbf{A}) = \mathsf{T}.$ \triangleright Definition 2.23: We call two formulae A and B alphabetical variants (or α -equal; write $\mathbf{A} =_{\alpha} \mathbf{B}$), iff $\mathbf{A} = \forall X.\mathbf{C}$ and $\mathbf{B} = \forall Y.[Y/X]\mathbf{C}$ for some variables X and Y. JACOBS UNIVERSITY CC Some richts reserved (c): Michael Kohlhase 25

We have seen that naive substitutions can lead to variable capture. As a consequence, we always have to presuppose that all instanciations respect a substitutibility condition, which is quite tedious. We will now come up with an improved definition of substitution application for first-order logic that does not have this problem.

2.4 Recap: General Properties of Logics and Calculi

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical system consists of a formal language, a class of models, and a satisfaction relation between models and expressions of the formal lanugage. The satisfaction relation tells us when a expression is deemed true in this model.

Logical Systems

- \triangleright Definition 2.26: logical system is a triple $S := \langle \mathcal{L}, \mathcal{K}, \models \rangle$, where \mathcal{L} is a formal language, \mathcal{K} is a set and $\models \subseteq \mathcal{K} \times \mathcal{L}$. Member of \mathcal{L} are called formulae of S, members of \mathcal{K} models for S, and \models the satisfaction relation
- \triangleright Definition 2.27: Let $S := \langle \mathcal{L}, \mathcal{K}, \models \rangle$ be a logical system, $\mathcal{M} \in \mathcal{K}$ be a model and $\mathbf{A} \in \mathcal{L}$ a formula, then we call \mathbf{A}
 - \triangleright satisfied by \mathcal{M} , iff $\mathcal{M} \models \mathbf{A}$
 - \triangleright falsified by \mathcal{M} , iff $\mathcal{M} \not\models \mathbf{A}$
 - \triangleright satisfiable in \mathcal{K} , iff $\mathcal{M} \models \mathbf{A}$ for some model $\mathcal{M} \in \mathcal{K}$.
 - $\triangleright \text{ valid in } \mathcal{K}, \text{ iff } \mathcal{M} \models \mathbf{A} \text{ for all models } \mathcal{M} \in \mathcal{K}$
 - $\succ \text{ falsifiable in } \mathcal{K}, \text{ iff } \mathcal{M} \not\models \mathbf{A} \text{ for some } \mathcal{M} \in \mathcal{K}.$
 - $\triangleright \text{ unsatisfiable in } \mathcal{K}, \text{ iff } \mathcal{M} \not\models \mathbf{A} \text{ for all } \mathcal{M} \in \mathcal{K}.$
- $\triangleright \mbox{ Definition 2.28: Let $\mathcal{S}:=\langle \mathcal{L}, \mathcal{K}, \models \rangle$ be a logical system, then we define the entailment relation <math display="inline">\models \subseteq \mathcal{L} \times \mathcal{L}.$ We say that A entails B (written A \models B), iff we have $\mathcal{M} \models B$ for all models $\mathcal{M} \in \mathcal{K}$ with $\mathcal{M} \models A$.

 \triangleright Theorem 2.29: $\mathbf{A} \models \mathbf{B}$ and $\mathcal{M} \models \mathbf{A}$ imply $\mathcal{M} \models \mathbf{B}$.

©: Michael Kohlhase

Derivations and Proofs \triangleright Definition 2.33: A derivation of a formula C from a set \mathcal{H} of hypotheses (write $\mathcal{H} \vdash C$) is a sequence A_1, \ldots, A_m of formulae, such that $\triangleright \mathbf{A}_m = \mathbf{C}$ (derivation culminates in C) \triangleright for all $1 \leq i \leq m$, either $\mathbf{A}_i \in \mathcal{H}$ (hypothesis) or there is an inference rule $\frac{\mathbf{A}_{l_1}, \dots, \mathbf{A}_{l_k}}{\mathbf{A}_i} \mathcal{N}$, where $l_j < i$ for all $j \leq k$. $\frac{\overline{\mathbf{A} \Rightarrow \mathbf{B} \Rightarrow \mathbf{A}} Ax}{\mathbf{B} \Rightarrow \mathbf{A}} \Rightarrow E$ \triangleright Example 2.34: $\mathbf{A} \vdash (\mathbf{B} \Rightarrow \mathbf{A})$ \triangleright Definition 2.35: A derivation $\emptyset \vdash_{\mathcal{C}} \mathbf{A}$ is called a proof of \mathbf{A} and if one exists ($\vdash_{\mathcal{C}} \mathbf{A}$) then \mathbf{A} is called a C-theorem. \triangleright Definition 2.36: an inference rule \mathcal{I} is called admissible in \mathcal{C} , if the extension of \mathcal{C} by \mathcal{I} does not yield new theorems. JACOBS UNIVERST ©: Michael Kohlhase 29

2.5 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by Gerhard Gentzen in the 1930's and are very much related. The "natural deduction" calculus was created in order to model the natural mode of reasoning e.g. in everyday mathematical practice. This calculus was intended as a counter-approach to the well-known Hilbert'style calculi, which were mainly used as theoretical devices for studying reasoning in principle, not for modeling particular reasoning styles.

The "sequent calculus" was a rationalized version and extension of the natural deduction calculus that makes certain meta-proofs simpler to push through¹.

Both calculi have a similar structure, which is motivated by the human-orientation: rather than using a minimal set of inference rules, they provide two inference rules for every connective and quantifier, one "introduction rule" (an inference rule that derives a formula with that symbol at the head) and one "elimination rule" (an inference rule that acts on a formula with this head and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and then extend this to a calculus for first-order logic by adding rules for the quantifiers.

 $^{1}\mathrm{EdNOTE:}$ say something about cut elimination/analytical calculi somewhere

EdNote(1)

V	JACOBS UNIVERSITY

 \rhd Rules for propositional connectives just as always

▷ Definition 2.41: (New Quantifier Rules)

$$\frac{\mathbf{A}}{\forall X.\mathbf{A}} \forall I^* \qquad \frac{\forall X.\mathbf{A}}{[\mathbf{B}_{\iota}/X]\mathbf{A}} \forall E$$

$$\frac{[\mathbf{B}/X]\mathbf{A}}{\exists X.\mathbf{A}} \exists I \qquad \frac{\exists X.\mathbf{A}}{\mathbf{C}} \frac{[[c/X]\mathbf{A}]}{\exists E}$$

JACOBS UNIVERSIT

* means that A does not depend on any hypothesis in which X is free.

 First-Order Natural Deduction in Sequent Formulation

 \triangleright Rules for propositional connectives just as always

 \triangleright Definition 2.42: (New Quantifier Rules)

 $\frac{\Gamma \vdash \mathbf{A} \quad X \notin \mathbf{free}(\Gamma)}{\Gamma \vdash \forall X. \mathbf{A}} \forall I$
 $\frac{\Gamma \vdash [\mathbf{B}/X]\mathbf{A}}{\Gamma \vdash \exists X. \mathbf{A}} \exists I$
 $\frac{\Gamma \vdash \exists X. \mathbf{A} \quad \Gamma, [c/X]\mathbf{A} \vdash \mathbf{C} \quad c \in \Sigma_0^{sk} \text{ new}}{\Gamma \vdash \mathbf{C}} \exists E$

 Image: Constraint of the second sec

2.6 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the "abstract consistency"/"model existence" method. This method for analyzing calculi was developed by Jaako Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of similar constructions that were used in completeness arguments in the decades before.

The basic intuition for this method is the following: typically, a logical system $S = \langle \mathcal{L}, \mathcal{K} \rangle$ has multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones like the automated theorem proving calculi. All of these need to be analyzed for completeness (as a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent sets.

In this situation the "abstract consistency"/"model existence" method encapsulates the model construction process into a meta-theorem: the "model existence" theorem. This provides a set of syntactic ("abstract consistency") conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consistency property (a purely syntactic task that can be done by a C-proof transformation argument) to obtain a completeness result for C.

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka's original idea for completeness proofs was that for every complete calculus C and every C-consistent set one can induce a Hintikka set, from which a model can be constructed. This can be considered as a first model existence theorem. However, the process of obtaining a Hintikka set for a set C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the existence of Hintikka sets in the form of "abstract consistency properties" by isolating the calculusindependent parts of the Hintikka set construction. His technique allows to reformulate Hintikka sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction as a maximizing limit process.

To carry out the "model-existence"/"abstract consistency" method, we will first have to look at the notion of consistency.

Consistency and refutability are very important notions when studying the completeness for calculi; they form syntactic counterparts of satisfiability.

Consistency \triangleright Let C be a calculus \triangleright Definition 2.43: Φ is called C-refutable, if there is a formula \mathbf{B} , such that $\Phi \vdash_C \mathbf{B}$ and $\Phi \vdash_C \neg (\mathbf{B})$. \triangleright Definition 2.44: We call a pair \mathbf{A} and $\neg \mathbf{A}$ a contradiction. \triangleright So a set Φ is C-refutable, if C can derive a contradiction from it. \triangleright Definition 2.45: Φ is called C-consistent, iff there is a formula \mathbf{B} , that is not derivable from Φ in C. \triangleright Definition 2.46: We call a calculus C reasonable, iff Modus Ponens is admissible in C and $\mathbf{A} \land \neg \mathbf{A} \Rightarrow \mathbf{B}$ is a C-theorem. \triangleright Theorem 2.47: C-inconsistency and C-refutability coincide for reasonable calculi \bigcirc \bigcirc Michael Kohlhase

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability, which is a property of formulae that is at the heart of semantics. Note that the former specify the calculus (a syntactic device) while the latter does not. In fact we should actually say S-satisfiability, where $S = \langle \mathcal{L}, \mathcal{K}, \models \rangle$ is the current logical system.

Even the word "contradiction" has a syntactical flavor to it, it translates to "saying against each other" from its latin root.

The notion of an "abstract consistency class" provides the a calculus-independent notion of "consistency": A set Φ of sentences is considered "consistent in an abstract sense", iff it is a member of an abstract consistency class ∇ .

Abstract Consistency

© Some rights reserved

- \triangleright Definition 2.48: Let ∇ be a family of sets of propositional formulae. We call ∇ closed under subsets, iff for each $\Phi \in \nabla$, all subsets $\Psi \subseteq \Phi$ are elements of ∇ .
- \triangleright Notation 2.49: We will use $\Phi * \mathbf{A}$ for $\Phi \cup \{\mathbf{A}\}$.
- \triangleright Definition 2.50: A family ∇ of sets of formulae is called a (first-order) abstract consistency class, iff it is closed under subsets, and for each $\Phi \in \nabla$
 - ∇_c) $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$ for atomic $\mathbf{A} \in wff_o(\Sigma)$.
 - ∇_{\neg}) $\neg \neg \mathbf{A} \in \Phi$ implies $\Phi * \mathbf{A} \in \nabla$
 - $\nabla_{\!\wedge}$) $(\mathbf{A} \wedge \mathbf{B}) \in \Phi$ implies $(\Phi \cup {\mathbf{A}, \mathbf{B}}) \in \nabla$
 - $\nabla_{\!\!\vee}$) \neg ($\mathbf{A} \land \mathbf{B}$) $\in \Phi$ implies $\Phi * \neg \mathbf{A} \in \nabla$ or $\Phi * \neg \mathbf{B} \in \nabla$
 - ∇_{\forall}) If $(\forall X.\mathbf{A}) \in \Phi$, then $\Phi * [\mathbf{B}/X](\mathbf{A}) \in \nabla$ for each closed term \mathbf{B} .
 - ∇_{\exists}) If $\neg(\forall X.\mathbf{A}) \in \Phi$ and c is an individual constant that does not occur in Φ , then $\Phi * \neg [c/X](\mathbf{A}) \in \nabla$

40

JACOBS UNIVERS The conditions are very natural: Take for instance ∇_c , it would be foolish to call a set Φ of sentences "consistent under a complete calculus", if it contains an elementary contradiction. The next condition ∇_{\neg} says that if a set Φ that contains a sentence $\neg \neg \mathbf{A}$ is "consistent", then we should be able to extend it by \mathbf{A} without losing this property; in other words, a complete calculus should be able to recognize \mathbf{A} and $\neg \neg \mathbf{A}$ to be equivalent.

We now come to a very technical condition that will allow us to carry out a limit construction in the Hintikka set extension argument later.

The main result here is that abstract consistency classes can be extended to compact ones. The proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract consistency classes are compact in the first place (otherwise we pass to the compact extension).

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated as maximally consistent sets i.e. sets that already contain everything that can be consistently added to them.

∇ -Hintikka Set

The following theorem is one of the main results in the "abstract consistency"/"model existence" method. For any abstract consistent set Φ it allows us to construct a Hintikka set \mathcal{H} with $\Phi \in \mathcal{H}$.

Note that the construction in the proof above is non-trivial in two respects. First, the limit construction for \mathcal{H} is not executed in our original abstract consistency class ∇ , but in a suitably extended one to make it compact — the original would not have contained \mathcal{H} in general. Second, the set \mathcal{H} is not unique for Φ , but depends on the choice of the enumeration of $cwff_o(\Sigma_t)$. If we pick a different enumeration, we will end up with a different \mathcal{H} . Say if \mathbf{A} and $\neg \mathbf{A}$ are both ∇ -consistent² with Φ , then depending on which one is first in the enumeration \mathcal{H} , will contain that one; with all the consequences for subsequent choices in the construction process.

EdNote(2)

Valuation $\triangleright \text{ Definition 2.57: A function } \nu : cwff_o(\Sigma_{\iota}) \to \mathcal{D}_o \text{ is called a (first-order) valuation, iff}$ $\triangleright \nu(\neg \mathbf{A}) = \mathsf{T}, \text{ iff } \nu(\mathbf{A}) = \mathsf{F}$ $\triangleright \nu(\mathbf{A} \land \mathbf{B}) = \mathsf{T}, \text{ iff } \nu(\mathbf{A}) = \mathsf{T} \text{ and } \nu(\mathbf{B}) = \mathsf{T}$ $\triangleright \nu(\forall X.\mathbf{A}) = \mathsf{T}, \text{ iff } \nu([\mathbf{B}/X]\mathbf{A}) = \mathsf{T} \text{ for all closed terms } \mathbf{B}.$ $\triangleright \text{ Lemma 2.58: } If \varphi : \mathcal{V}_o \to \mathcal{D}_o \text{ is a variable assignment, then } \mathcal{I}_{\varphi} : cwff_o(\Sigma_{\iota}) \to \mathcal{D}_o \text{ is a valuation.}$ $\triangleright \text{ Proof: Immediate from the definitions}$

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also true, even though the proof of this result is much more involved: The existence of a first-order valuation that makes a set of sentences true entails the existence of a model that satisfies it.

 $^{^{2}\}mathrm{EdNOTE}$: introduce this above

Valuation and Satisfiability \triangleright Lemma 2.59: If $\nu : cwff_o(\Sigma_{\iota}) \to \mathcal{D}_o$ is a valuation and $\Phi \subseteq cwff_o(\Sigma_{\iota})$ with $\nu(\Phi) = \{\mathsf{T}\}$, then Φ is satisfiable. \triangleright **Proof**: We construct a model for Φ . **P.1** Let $\mathcal{D}_{\iota} := cwff_{\iota}(\Sigma_{\iota})$, and $\triangleright \mathcal{I}(f) : \mathcal{D}_{\iota}^{k} \to \mathcal{D}_{\iota}; \langle \mathbf{A}_{1}, \dots, \mathbf{A}_{k} \rangle \mapsto f(\mathbf{A}_{1}, \dots, \mathbf{A}_{k}) \text{ for } f \in \Sigma^{f}$ $\triangleright \mathcal{I}(p): \mathcal{D}_{\iota}^{k} \to \mathcal{D}_{o}; \langle \mathbf{A}_{1}, \dots, \mathbf{A}_{k} \rangle \mapsto \nu(p(\mathbf{A}_{1}, \dots, \mathbf{A}_{n})) \text{ for } p \in \Sigma^{p}.$ **P.2** Then variable assignments into \mathcal{D}_i are ground substitutions. **P.3** We show $\mathcal{I}_{\varphi}(\mathbf{A}) = \varphi \mathbf{A}$ for $\mathbf{A} \in wff_{\iota}(\Sigma_{\iota})$ by induction on \mathbf{A} **P.3.1** $\mathbf{A} = X$: then $\mathcal{I}_{\varphi}(\mathbf{A}) = \varphi X$ by definition. = **P.4** We show $\mathcal{I}_{\varphi}(\mathbf{A}) = \nu(\varphi \mathbf{A})$ for $\mathbf{A} \in wff_{o}(\Sigma)$ by induction on \mathbf{A} **P.4.1** $\mathbf{A} = p(\mathbf{A}_1, \dots, \mathbf{A}_n)$: then $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathcal{I}(p)(\mathcal{I}_{\varphi}(\mathbf{A}_1), \dots, \mathcal{I}_{\varphi}(\mathbf{A}_n))$ = $\mathcal{I}(p)(\varphi \mathbf{A}_1, \dots, \varphi \mathbf{A}_n) = \nu(p(\varphi \mathbf{A}_1, \dots, \varphi \mathbf{A}_n)) = \nu(\varphi p(\mathbf{A}_1, \dots, \mathbf{A}_n)) = \nu(\varphi \mathbf{A})$ **P.4.2** $\mathbf{A} = \neg \mathbf{B}$: then $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathsf{T}$, iff $\mathcal{I}_{\varphi}(\mathbf{B}) = \nu(\varphi \mathbf{B}) = \mathsf{F}$, iff $\nu(\varphi \mathbf{A}) = \mathsf{T}$. **P.4.3** $\mathbf{A} = \mathbf{B} \wedge \mathbf{C}$: similar **P.4.4** $\mathbf{A} = \forall X.\mathbf{B}$: then $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathsf{T}$, iff $\mathcal{I}_{\psi}(\mathbf{B}) = \nu(\psi \mathbf{B}) = \mathsf{T}$, for all $\mathbf{C} \in \mathcal{D}_{\iota}$, where $\psi = \varphi$, $[\mathbf{C}/X]$. This is the case, iff $\nu(\varphi \mathbf{A}) = \mathsf{T}$. **P.5** Thus $\mathcal{I}_{\varphi}(\mathbf{A}) = \nu(\varphi \mathbf{A}) = \nu(\mathbf{A}) = \mathsf{T}$ for all $\mathbf{A} \in \Phi$. **P.6** Hence $\mathcal{M} \models \mathbf{A}$ for $\mathcal{M} := \langle \mathcal{D}_{\iota}, \mathcal{I} \rangle$. JACOBS UNIVERSIT ©: Michael Kohlhase 46

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

2.7 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for first-order natural deduction is rather simple, we only have to check that ND-consistency is an abstract consistency property.

Henkin's Theorem

▷ Corollary 2.63: (Henkin's Theorem) Every ND-consistent set of sentences has a model.
⊳ Proof:
${f P.1}$ Let Φ be a ${\cal ND}$ -consistent set of sentencens.
$\mathbf{P.2}$ The class of sets of $\mathcal{ND}\text{-}consistent$ propositions constitute an abstract consistency class
${f P.3}$ Thus the model existence theorem guarantees a countable model for $\Phi.$ \Box
⊳ Corollary 2.64: (Löwenheim&Skolem Theorem)
Satisfiable set Φ of first-order sentences has a countable model.
\triangleright Proof: The model we constructed is countable, since the set of ground terms is.
©: Michael Kohlhase 49

2.8 Limits of First-Order Logic

We will now come to the limits of first-order Logic.

3 First-Order Automated Theorem Proving with Tableaux

3.1 First-Order Tableaux

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on when a formula can be made true (or false). Therefore the formulae are decorated with exponents that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the intended truth value F). Both branches contain an elementary contradiction \perp .

On the right we have a model generation tableau, which analyzes a positive formula (it is decorated with the intended truth value T. This tableau uses the same rules as the refutation tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

These inference rules act on tableaux have to be read as follows: if the formulae over the line appear in a tableau branch, then the branch can be extended by the formulae or branches below the line. There are two rules for each primary connective, and a branch closing rule that adds the special symbol \perp (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new material to the branch. This ensures termination of the tableau procedure for propositional logic (every rule eliminates one primary connective).

Definition 3.4: We will call a closed tableau with the signed formula \mathbf{A}^{α} at the root a tableau refutation for \mathcal{A}^{α} .

The saturated tableau represents a full case analysis of what is necessary to give \mathbf{A} the truth value α ; since all branches are closed (contain contradictions) this is impossible.

Definition 3.5: We will call a tableau refutation for \mathbf{A}^{F} a tableau proof for \mathbf{A} , since it refutes the possibility of finding a model where \mathbf{A} evaluates to F . Thus \mathbf{A} must evaluate to T in all models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the calculus in section ?? it does not prove a theorem **A** by deriving it from a set of axioms, but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally negative calculi have computational advanages over positive ones, since they have a built-in sense of direction.

We have rules for all the necessary connectives (we restrict ourselves to \wedge and \neg , since the others can be expressed in terms of these two via the propositional identities above. For instance, we can write $\mathbf{A} \vee \mathbf{B}$ as $\neg(\neg \mathbf{A} \wedge \neg \mathbf{B})$, and $\mathbf{A} \Rightarrow \mathbf{B}$ as $\neg \mathbf{A} \vee \mathbf{B}, \ldots$.)

We will now extend the propositional tableau techiques to first-order logic. We only have to add two new rules for the universal quantifiers (in positive and negative polarity).

The rule \mathcal{T}_1 : \forall rule operationalizes the intuition that a universally quantified formula is true, iff all of the instances of the scope are. To understand the \mathcal{T}_1 : \exists rule, we have to keep in mind that $\exists X.\mathbf{A}$ abbreviates $\neg(\forall X.\neg \mathbf{A})$, so that we have to read $\forall X.\mathbf{A}^{\mathsf{F}}$ existentially — i.e. as $\exists X.\neg \mathbf{A}^{\mathsf{T}}$, stating that there is an object with property $\neg \mathbf{A}$. In this situation, we can simply give this object a name: c, which we take from our (infinite) set of witness constants Σ_0^{sk} , which we have given ourselves expressly for this purpose when we defined first-order syntax. In other words $[c/X]\neg \mathbf{A}^{\mathsf{T}} = [c/X]\mathbf{A}^{\mathsf{F}}$ holds, and this is just the conclusion of the \mathcal{T}_1 : \exists rule.

Note that the $\mathcal{T}_1:\forall$ rule is computationally extremely inefficient: we have to guess an (i.e. in a search setting to systematically consider all) instance $\mathbf{C} \in wff_{\iota}(\Sigma_{\iota})$ for X. This makes the rule infinitely branching.

3.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the $\mathcal{T}_1: \forall$ rule. We do this by delaying the choice in the universal rule.

 Free variable Tableaux (\mathcal{T}_{1}^{f})

 > Refutation calculus based on trees of labeled formulae

 > Tableau rules

 $\frac{\forall X. \mathbf{A}^{\mathsf{T}} \quad Y \text{ new}}{[Y/X] \mathbf{A}^{\mathsf{T}}} \mathcal{T}_{1}^{f} : \forall$ $\frac{\forall X. \mathbf{A}^{\mathsf{F}} \quad \text{free}(\forall X. \mathbf{A}) = \{X^{1}, \dots, X^{k}\} \quad f \in \Sigma_{k}^{sk}}{[f(X^{1}, \dots, X^{k})/X] \mathbf{A}^{\mathsf{F}}} \mathcal{T}_{1}^{f} : \exists$

 > Generalized cut rule $\mathcal{T}_{1}^{f} : \bot$ instantiates the whole tableau by σ .
 $\frac{\mathbf{A}^{\alpha}}{\mathbf{B}^{\beta}} \quad \alpha \neq \beta \quad \sigma \mathbf{A} = \sigma \mathbf{B}$
 $\mathbf{B}^{\beta} \quad \alpha \neq \beta \quad \sigma \mathbf{A} = \sigma \mathbf{B}$ $\mathcal{T}_{1}^{f} : \bot$

 > Advantage: no guessing necessary in $\mathcal{T}_{1}^{f} : \forall$ -rule
 (most general unifier)

 \mathbf{N} (most general unifier)
 \mathbf{N}

Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in the $\mathcal{T}_1: \forall$ rule, $\mathcal{T}_1^f: \forall$ instantiates it with a new meta-variable Y, which will be instantiated by need in the course of the derivation.

Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name, since the meaning of the body **A** may contain meta-variables introduced by the \mathcal{T}_1^f : \forall rule. As we do not know their values yet, the witness for the existential statement in the antecedent of the \mathcal{T}_1^f : \exists rule needs to depend on that. So witness it using a witness term, concretely by applying a Skolem function to the meta-variables in **A**.

Instantiating Metavariables: Finally, the $\mathcal{T}_1^f : \perp$ rule completes the treatment of meta-variables, it allows to instantiate the whole tableau in a way that the current branch closes. This leaves us with the problem of finding substitutions that make two terms equal.

3.3 Properties of First-Order Tableaux

Correctness of \mathcal{T}_1^f

 \triangleright Lemma 3.6: T_1^f : \exists transforms satisfiable tableaux into satisfiable ones.

 \triangleright Proof: Let \mathcal{T}' be obtained by applying $\mathcal{T}_1^f:\exists$ to $\forall X.\mathbf{A}^\mathsf{F}$ in \mathcal{T} , extending it with $[f(X^1,\ldots,X^n)/X]\mathbf{A}^\mathsf{F}$, where $W := \mathbf{free}(\forall X.\mathbf{A}) = \{X^1,\ldots,X^k\}$

P.1 Let \mathcal{T} be satisfiable in $\mathcal{M} := \langle \mathcal{D}, \mathcal{I} \rangle$, then $\mathcal{I}_{\varphi}(\forall X.\mathbf{A}) = \mathsf{F}$.

P.2 We need to find a model \mathcal{M}' that satisfies \mathcal{T}' (find interpretation for f)

P.3 By definition $\mathcal{I}_{\varphi,[a/X]}(\mathbf{A}) = \mathsf{F}$ for some $a \in \mathcal{D}$ (depends on $\varphi|_W$)

P.4 Let $g \colon \mathcal{D}^n \to \mathcal{D}$ be defined by $g(a_1, \ldots, a_k) := a$, if $\varphi(X^i) = a_i$

©: Michael Kohlhase

P.5 choose $\mathcal{M}'=\langle \mathcal{D}, \mathcal{I}'\rangle$ with $\mathcal{I}':=\mathcal{I}, [g/f]$, then by subst. value lemma

$$\mathcal{I}'_{\varphi}([f(X^1,\ldots,X^k)/X]\mathbf{A}) = \mathcal{I}'_{\varphi,[\mathcal{I}'_{\varphi}(f(X^1,\ldots,X^k))/X]}(\mathbf{A}) = \mathcal{I}'_{\varphi,[a/X]}(\mathbf{A}) = \mathsf{F}$$

56

JACOBS UNIVERSI

 $\mathbf{P.6} \ \mathrm{So} \ [f(X^1,\ldots,X^k)/X] \mathbf{A}^{\mathrm{F}} \ \mathrm{satisfiable} \ \mathrm{in} \ \mathcal{M}'$

CC Some rights reserved

Tableau-Lifting

 $\triangleright \text{ Theorem 3.10:} \quad \text{If } \mathcal{T}_{\theta} \text{ is a closed tableau for a st } \theta \Phi \text{ of formulae, then there is a closed tableau } \mathcal{T} \text{ for } \Phi. \\ \triangleright \text{ Proof: by induction over the structure of } \mathcal{T}_{\theta} \text{ we build an isomorphic tableau } \mathcal{T}, \text{ and a tableau-isomorphism } \omega: \mathcal{T} \to \mathcal{T}_{\theta}, \text{ such that } \omega(\mathbf{A}) = \theta \mathbf{A}. \\ \text{P.1 only the tableau-substitution rule is interesting.} \\ \text{P.2 Let } \theta \mathbf{A}^{i^{\mathsf{T}}} \text{ and } \theta \mathbf{B}^{i^{\mathsf{F}}} \text{ cut formulae in the branch } \Theta_{\theta}^{i} \text{ of } \mathcal{T}_{\theta} \\ \text{P.3 there is a joint unifier } \sigma \text{ of } \theta(\mathbf{A}^{1}) = {}^{?}\theta(\mathbf{B}^{1}) \land \ldots \land \theta(\mathbf{A}^{n}) = {}^{?}\theta(\mathbf{B}^{n}) \\ \text{P.4 thus } \sigma \circ \theta \text{ is a unifier of } \mathbf{A} \text{ and } \mathbf{B} \\ \text{P.5 hence there is a most general unifier } \rho \text{ of } \mathbf{A}^{1} = {}^{?}\mathbf{B}^{1} \land \ldots \land \mathbf{A}^{n} = {}^{?}\mathbf{B}^{n} \\ \text{P.6 so } \Theta \text{ is closed} \\ \square \\ \textcircled{C: Michael Kohlhase} \qquad 59 \qquad \blacksquare$

4 Higher-Order Logic and λ -Calculus

4.1 Higher-Order Predicate Logic

Standard Semantics

Example: Peano Axioms for the Natural Numbers $\triangleright \Sigma = \{ [\mathbb{N} \colon \iota \to o], [0 \colon \iota], [s \colon \iota \to \iota] \}$ $\triangleright \mathbb{N}0$ (0 is a natural number) $\rhd \forall X_{\iota}.\mathbb{N}X \Rightarrow \mathbb{N}(sX)$ (the successor of a natural number is natural) $\vartriangleright \neg (\exists X_t . \mathbb{N}X \land sX = 0)$ (0 has no predecessor) $\triangleright \forall X_{\iota}.\forall Y_{\iota}.(sX = sY) \Rightarrow X = Y$ (the successor function is injective) $\triangleright \forall P_{\iota \to o}.P0 \Rightarrow (\forall X_{\iota}.\mathbb{N}X \Rightarrow PXP(sX)) \Rightarrow (\forall Y_{\iota}.\mathbb{N}Y \Rightarrow P(Y))$ induction axiom: all properties P, that hold of 0, and with every n for its successor s(n), hold on all \mathbb{N} © JACOBS UNIVERSI ©: Michael Kohlhase 63

Expressive Formalism for Mathematics

▷ Example 4.3: (Cantor's Theorem)

The cardinality of a set is smaller than that of its power set.

- $\rhd \mathsf{smaller} \mathsf{card}(M, N) := \neg(\exists F.\mathsf{surjective}(F, M, N))$
- $\rhd \mathsf{ surjective}(F,M,N) := (\forall X \in M. \exists Y \in N. FY = X)$

Simplified Formalization: $\neg \exists F_{\iota \to \iota \to \iota} . \forall G_{\iota \to \iota} . \exists J_{\iota} . FJ = G$

▷ Standard-Benchmark for higher-order theorem provers

 \triangleright can be proven by TPS and LEO (see below)

©: Michael Kohlhase

Hilbert-Calculus

 $\triangleright \text{ Definition 4.4: } (\mathcal{H}_{\Omega} \text{ Axioms})$ $\triangleright \forall P_o, Q_o, P \Rightarrow Q \Rightarrow P$ $\triangleright \forall P_o, Q_o, R_o. P \Rightarrow Q \Rightarrow R \Rightarrow P \Rightarrow Q \Rightarrow P \Rightarrow R$ $\triangleright \forall P_o, Q_o, \neg P \Rightarrow \neg Q \Rightarrow P \Rightarrow Q$ $\triangleright \text{ Definition 4.5: } (\mathcal{H}_{\Omega} \text{ Inference rules})$ $\frac{\mathbf{A}_o \Rightarrow \mathbf{B}_o \quad \mathbf{A}}{\mathbf{B}} \quad \frac{\forall X_{\alpha}. \mathbf{A}}{[\mathbf{B}/X_{\alpha}]\mathbf{A}} \quad \frac{\mathbf{A}}{\forall X_{\alpha}. \mathbf{A}} \quad \frac{X \notin \text{free}(\mathbf{A}) \quad \forall X_{\alpha}. \mathbf{A} \land \mathbf{B}}{\mathbf{A} \land (\forall X_{\alpha}. \mathbf{B})}$ $\triangleright \text{ Theorem 4.6: } \text{ Correct wrt. standard semantics}$ $\triangleright \text{ Also Complete?}$ $\textcircled{C: Michael Kohlhase} \qquad 65$

JACOBS UNIVERS

64

Way Out: Henkin-Semantics

Equality

 \triangleright "Leibniz equality" (Indiscernability) $\mathbf{Q}^{\alpha} \mathbf{A}_{\alpha} \mathbf{B}_{\alpha} = \forall P_{\alpha \to o} P \mathbf{A} \Leftrightarrow P \mathbf{B}$ \triangleright not that $\forall P_{\alpha \to o}. P \mathbf{A} \Rightarrow P \mathbf{B}$ (get the other direction by instantiating P with Q, where $Q X \Leftrightarrow \neg P X$) \triangleright Theorem 4.8: If $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a standard model, then $\mathcal{I}_{\omega}(\mathbf{Q}^{\alpha})$ is the identity relation on \mathcal{D}_{α} . \triangleright Notation 4.9: We write $\mathbf{A} = \mathbf{B}$ for $\mathbf{QAB}(\mathbf{A} \text{ and } \mathbf{B} \text{ are equal, iff there is no property } P$ that can tell them apart.) \triangleright Proof: $\begin{array}{l} \mathbf{P.1} \ \mathcal{I}_{\varphi}(\mathbf{QAB}) = \mathcal{I}_{\varphi}(\forall P.P\mathbf{A} \Rightarrow P\mathbf{B}) = \mathsf{T}, \ \mathsf{iff} \\ \mathcal{I}_{\varphi,[r/P]}(PX \Rightarrow PY) = \mathsf{T} \ \mathsf{for} \ \mathsf{all} \ r \in \mathcal{D}_{\alpha \to o}. \end{array}$ **P.2** For $\mathbf{A} = \mathbf{B}$ we have $\mathcal{I}_{\omega,[r/P]}(P\mathbf{A}) = r(\mathcal{I}_{\omega}(\mathbf{A})) = \mathsf{F}$ or $\mathcal{I}_{\omega,[r/P]}(P\mathbf{A}) = r(\mathcal{I}_{\omega}(\mathbf{A})) = r(\mathcal{I}_{\omega}(\mathbf{A}))$ Τ. **P.3** Thus $\mathcal{I}_{\omega}(\mathbf{QAB}) = \mathsf{T}$. **P.4** Let $\mathcal{I}_{\omega}(\mathbf{A}) \neq \mathcal{I}_{\omega}(\mathbf{B})$ and $r = {\mathcal{I}_{\omega}(\mathbf{A})}$ **P.5** so $r(\mathcal{I}_{\omega}(\mathbf{A})) = \mathsf{T}$ and $r(\mathcal{I}_{\omega}(\mathbf{B})) = \mathsf{F}$ $\mathbf{P.6} \ \mathcal{I}_{\varphi}(\mathbf{QAB}) = \mathsf{F}, \text{ as } \mathcal{I}_{\varphi,[r/P]}(P\mathbf{A} \Rightarrow P\mathbf{B}) = \mathsf{F}, \text{ since } \mathcal{I}_{\varphi,[r/P]}(P\mathbf{A}) = r(\mathcal{I}_{\varphi}(\mathbf{A})) = \mathsf{T}$ and $\mathcal{I}_{\varphi,[r/P]}(P\mathbf{B}) = r(\mathcal{I}_{\varphi}(\mathbf{B})) = \mathsf{F}.$ SOME FIGHTS RESERVED (c): Michael Kohlhase 68

4.2 Simply Typed λ -Calculus

In this section we will present a logic that can deal with functions – the simply typed λ -calculus. It is a typed logic, so everything we write down is typed (even if we do not always write the types down).

Simply typed λ -Calculus (Syntax) \triangleright Signature $\Sigma = \bigcup_{\alpha \in \mathcal{T}} \Sigma_{\alpha}$ $\triangleright \mathcal{V}_{\mathcal{T}} = \bigcup_{\alpha \in \mathcal{T}} \mathcal{V}_{\alpha}$, such that \mathcal{V}_{α} are countably infinite \triangleright Definition 4.10: We call the set $wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ defined by the rules $\triangleright \mathcal{V}_{\alpha} \cup \Sigma_{\alpha} \subseteq wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ \triangleright If $\mathbf{C} \in wff_{(\alpha \to \beta)}(\Sigma, \mathcal{V}_{\mathcal{T}})$ and $\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$, then $(\mathbf{C}\mathbf{A}) \in wff_{\beta}(\Sigma, \mathcal{V}_{\mathcal{T}})$ \triangleright If $\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$, then $(\lambda X_{\beta} \cdot \mathbf{A}) \in wff_{(\beta \to \alpha)}(\Sigma, \mathcal{V}_{\mathcal{T}})$ the set of well-typed formulae of type α over the signature Σ and use $wff_{\mathcal{T}}(\Sigma, \mathcal{V}_{\mathcal{T}}) := \bigcup_{\alpha \in \mathcal{T}} wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ for the set of all well-typed formulae. \triangleright Definition 4.11: We will call all occurrences of the variable X in \mathbf{A} bound in $\lambda X \cdot \mathbf{A}$. Variables that are not bound in \mathbf{B} are called free in \mathbf{B} .

Intuitively, $\lambda X.\mathbf{A}$ is the function f, such that $f(\mathbf{B})$ will yield \mathbf{A} , where all occurrences of the formal parameter X are replaced by \mathbf{B}^4 .

EdNote(4)

The intuitions about functional structure of λ -terms and about free and bound variables are encoded into three transformation rules Λ^{\rightarrow} :

The first rule (α -conversion) just says that we can rename bound variables as we like. The β -reduction rule codifies the intuition behind function application by replacing bound variables with argument. The third rule is a special case of the extensionality principle for functions (f = g iff f(a) = g(a) for all possible arguments a): If we apply both sides of the transformation to

 $^{^4\}mathrm{EdNOTE:}$ rationalize the semantic macros for syntax!

the same argument – say **B** and β -reduce the left side, then we arrive at the right hand side $\lambda X_{\alpha} \cdot \mathbf{A} X \mathbf{B} \rightarrow_{\beta} \mathbf{A} \mathbf{B}$.

The semantics of Λ^{\rightarrow} is structured around the types. Like the models we discussed before, a model \mathcal{M} is a pair $\langle \mathcal{D}, \mathcal{I} \rangle$, where \mathcal{D} is the universe of discourse and \mathcal{I} is the interpretation of constants.

Semantics of Λ \triangleright Definition 4.19: We call a collection $\mathcal{D}_{\mathcal{T}} := (\{\mathcal{D}_{\alpha} \mid \alpha \in \mathcal{T}\})$ a typed collection (of sets) and a collection $f_{\mathcal{T}} : \mathcal{D}_{\mathcal{T}} \to \mathcal{E}_{\mathcal{T}}$, a typed function, iff $f_{\alpha} : \mathcal{D}_{\alpha} \to \mathcal{E}_{\alpha}$. \triangleright Definition 4.20: A typed collection $\mathcal{D}_{\mathcal{T}}$ is called a frame, iff $\mathcal{D}_{\alpha \to \beta} \subseteq \mathcal{D}_{\alpha} \to \mathcal{D}_{\beta}$ \triangleright Definition 4.21: Given a frame $\mathcal{D}_{\mathcal{T}}$, and a typed function $\mathcal{I}: \Sigma \to \mathcal{D}$, then we call $\mathcal{I}_{\varphi} \colon wff_{\mathcal{T}}(\Sigma, \mathcal{V}_{\mathcal{T}}) \to \mathcal{D}$ the value function induced by \mathcal{I} , iff $\triangleright \mathcal{I}_{\varphi}\big|_{\mathcal{V}_{\mathcal{T}}} = \varphi, \qquad \qquad \mathcal{I}_{\varphi}\big|_{\Sigma} = \mathcal{I}$ $\triangleright \mathcal{I}_{\varphi}(\mathbf{AB}) = \mathcal{I}_{\varphi}(\mathbf{A})(\mathcal{I}_{\varphi}(\mathbf{B}))$ $\triangleright \mathcal{I}_{\varphi}(\lambda X_{\alpha} \mathbf{A})$ is that function $f \in \mathcal{D}_{(\alpha \to \beta)}$, such that $f(a) = \mathcal{I}_{\varphi,[a/X]}(\mathbf{A})$ for all $a \in \mathcal{D}_{\alpha}$ \triangleright Definition 4.22: We call a pair $\langle \mathcal{D}, \mathcal{I} \rangle$ a Σ -model, iff $\mathcal{I}_{\varphi} \colon wff_{\mathcal{T}}(\Sigma, \mathcal{V}_{\mathcal{T}}) \to \mathcal{D}$ is total. (comprehension-closed) Such modes are also called generalized models ([Henkin 1950]) JACOBS UNIVERSI ©: Michael Kohlhase 72

4.3 Simply Typed λ Calculus

Types

> Types are semantic annotations for terms that prevent antinomies

 \triangleright Definition 4.23: Given a set \mathcal{BT} of base types, construct function types: $\alpha \to \beta$ is the type of functions with domain type α and range type β . We call the closure \mathcal{T} of \mathcal{BT} under function types the set of types over \mathcal{BT} .

 \triangleright Definition 4.24: (iotypes.def)

We will use ι for the type of individuals and o for the type of truth values.

- \triangleright Right Associativity: The type constructor is used as a right-associative operator, i.e. we use $\alpha \rightarrow \beta \rightarrow \gamma$ as an abbreviation for $\alpha \rightarrow (\beta \rightarrow \gamma)$
- \triangleright Vector Notation: We will use a kind of vector notation for function types, abbreviating $\alpha_1 \rightarrow \ldots \rightarrow \alpha_n \rightarrow \beta$ with $\overline{\alpha_n} \rightarrow \beta$.

CC Some eightistersterwed

74

Substitution Value Lemma for λ -Terms	
\triangleright Lemma 4.25: (Substitution Value Lemma) Let A and B be terms, then $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\psi}(\mathbf{A})$, where $\psi = \varphi, [\mathcal{I}_{\varphi}(\mathbf{B})/X]$	
\triangleright Proof: by induction on the depth of A	
P.1 we have five cases	
P.1.1 $\mathbf{A} = X$: Then $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\varphi}([\mathbf{B}/X]X) = \mathcal{I}_{\varphi}(\mathbf{B}) = \psi(X) = \mathcal{I}_{\psi}(X) = \mathcal{I}_{\psi}(X)$.	=
P.1.2 $\mathbf{A} = Y \neq X$ and $Y \in \mathcal{V}_T$: then $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\varphi}([\mathbf{B}/X]Y) = \mathcal{I}_{\varphi}(Y) = \varphi(Y) = \mathcal{I}_{\psi}(Y) = \mathcal{I}_{\psi}(\mathbf{A}).$	=
P.1.3 $\mathbf{A} \in \Sigma$: This is analogous to the last case.	
$ \begin{array}{l} \textbf{P.1.4 } \mathbf{A} = \textbf{CD}: \text{then } \mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}) = \mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{CD}) = \mathcal{I}_{\varphi}([\mathbf{B}/X](\mathbf{C})[\mathbf{B}/X](\mathbf{D})) = \\ \mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{C})(\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{D})) = \mathcal{I}_{\psi}(\mathbf{C})(\mathcal{I}_{\psi}(\mathbf{D})) = \mathcal{I}_{\psi}(\mathbf{CD}) = \mathcal{I}_{\psi}(\mathbf{A}) \end{array} $	
P.1.5 $\mathbf{A} = \lambda Y_{\alpha} \cdot \mathbf{C}$:	
$\mathbf{P.1.5.1}$ We can assume that $X eq Y$ and $Y otin \mathbf{free}(\mathbf{B})$	
P.1.5.2 Thus for all $a \in \mathcal{D}_{\alpha}$ we have $\mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A})(a) = \mathcal{I}_{\varphi}([\mathbf{B}/X]\lambda Y.\mathbf{C})(a) = \mathcal{I}_{\varphi}(\lambda Y.[\mathbf{B}/X](\mathbf{C}))(a) = \mathcal{I}_{\varphi,[a/Y]}([\mathbf{B}/X]\mathbf{C}) = \mathcal{I}_{\psi,[a/Y]}(\mathbf{C}) = \mathcal{I}_{\psi}(\lambda Y.\mathbf{C})(a) = \mathcal{I}_{\psi}(\mathbf{A})(a)$	=
©: Michael Kohlhase 75 🗸	ISITY

Correctness of $\alpha\beta\eta$ -Equality

 $\triangleright \text{ Theorem 4.26: } \text{Let } \mathcal{A} := \langle \mathcal{D}, \mathcal{I} \rangle \text{ be a Henkin model and } Y \notin \text{free}(\mathbf{A}), \text{ then } \mathcal{I}_{\varphi}(\lambda X.\mathbf{A}) = \mathcal{I}_{\varphi}(\lambda Y.[Y/X]\mathbf{A}) \text{ for all assignments } \varphi.$

 \triangleright **Proof**: by substitution value lemma

$$\begin{array}{rcl} \mathbf{P.1} & \mathcal{I}_{\varphi}(\lambda Y.[Y/X]\mathbf{A}) @ \mathbf{a} &= & \mathcal{I}_{\varphi,[a/Y]}([Y/X]\mathbf{A}) \\ &= & \mathcal{I}_{\varphi,[a/X]}(\mathbf{A}) \\ &= & \mathcal{I}_{\varphi}(\lambda X.\mathbf{A}) @ \mathbf{a} \end{array}$$

 \triangleright Theorem 4.27: If $\mathcal{A} := \langle \mathcal{D}, \mathcal{I} \rangle$ is a Henkin model and X not bound in \mathbf{A} , then $\mathcal{I}_{\varphi}((\lambda X.\mathbf{A})\mathbf{B}) = \mathcal{I}_{\varphi}([\mathbf{B}/X]\mathbf{A}).$

 \triangleright **Proof**: by substitution value lemma

Correctness of $\alpha\beta\eta$ (continued) \triangleright Theorem 4.28: If $X \notin \text{free}(\mathbf{A})$, then $\mathcal{I}_{\varphi}(\lambda X.\mathbf{A}X) = \mathcal{I}_{\varphi}(\mathbf{A})$ for all φ . \triangleright Proof: $\mathcal{I}_{\varphi}(\lambda X.\mathbf{A}X)@a = \mathcal{I}_{\varphi,[a/X]}(\mathbf{A}X)$ $= \mathcal{I}_{\varphi}(\mathbf{A})@\mathcal{I}_{\varphi,[a/X]}(X)$ $= \mathcal{I}_{\varphi}(\mathbf{A})@a$ as $X \notin \text{free}(\mathbf{A})$. \triangleright Theorem 4.29: $\alpha\beta\eta$ -equality is correct wrt. Henkin models. (if $\mathbf{A} =_{\alpha\beta\eta} \mathbf{B}$, then $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathcal{I}_{\varphi}(\mathbf{B})$ for all assignments φ) \square \square (\square Michael Kohlhase 77 \square

 $\beta\eta$ -Equality by Inference Rules: One-Step Reduction \triangleright One-step Reduction $(+ \in \{\alpha, \beta, \eta\})$ $\overline{+}$ ($(\lambda X.\mathbf{A})\mathbf{B}$) \rightarrow_{β}^{1} [\mathbf{B}/X](\mathbf{A}) $\overline{+}$ ($(\lambda X.\mathbf{A})\mathbf{B}$) \rightarrow_{β}^{1} [\mathbf{B}/X](\mathbf{A}) ψ ($(\lambda X.\mathbf{A})\mathbf{B}$) \rightarrow_{β}^{1} [\mathbf{B}/X](\mathbf{A}) ψ ($(\lambda X.\mathbf{A})\mathbf{A}$) \rightarrow_{β}^{1} (\mathbf{A}) ψ ($(\lambda X.\mathbf{A})\mathbf{B}$) ψ ($(\lambda X.\mathbf{A})\mathbf{C}$) ψ ($(\lambda X.\mathbf{A})\mathbf{C}$) ψ ((λC)) ψ ($(\lambda X.\mathbf{A})$) $((\lambda X.\mathbf{A}))$ (

4.4 Computational Properties of λ -Calculus

From Extensionality to η -Conversion $\triangleright \text{ Definition 4.30: Extensionality Axiom: } \forall F_{\alpha \to \beta} . \forall G_{\alpha \to \beta} . (\forall X_{\alpha} . FX = GX) \Rightarrow F = G$ $\triangleright \text{ Theorem 4.31: } \eta \text{-equality and Extensionality are equivalent}}$ $\triangleright \text{ Proof: We show that } \eta \text{-equality } (\mathbf{A}_{\alpha \to \beta} =_{\eta} \lambda X_{\alpha} . \mathbf{A}X, \text{ if } X \notin \mathbf{free}(\mathbf{A})) \text{ is special case} of extensionality; the converse entailment is trivial}$ $P.1 \text{ Let } \forall X_{\alpha} . \mathbf{A}X = \mathbf{B}X, \text{ thus } \mathbf{A}X = \mathbf{B}X \text{ with } \forall E$ $P.2 \lambda X_{\alpha} . \mathbf{A}X = \lambda X_{\alpha} . \mathbf{B}X, \text{ therefore } \mathbf{A} = \mathbf{B} \text{ with } \eta$ $P.3 \text{ Hence } \forall F_o . \forall G_o . (F \Leftrightarrow G) \Leftrightarrow F = G$ $\triangleright \text{ Axiom of truth values: } \forall F_o . \forall G_o . (F \Leftrightarrow G) \Leftrightarrow F = G \text{ unsolved.}$ O: Michael Kohlhase

4.4.1 Termination of β -reduction

The second result is that β reduction terminates. We will use this to present a very powerful proof method, called the "logical relations method", which is one of the basic proof methods in the repertoire of a proof theorist.

Termination of β -Reduc	tion		
\triangleright only holds for the typed case $(\lambda X.XX)(\lambda X.XX) \rightarrow_{\beta} (\lambda X.XX)$	$XX)(\lambda X.XX)$		
\triangleright Theorem 4.35: (Typed β -Red	uction terminates)		
For all $\mathbf{A} \in \mathit{wff}_{lpha}(\Sigma,\mathcal{V}_{\mathcal{T}})$, the	chain of reductions from ${f A}$	is finite.	
\triangleright proof attempts:			
 Induction on the structure case. 	e ${f A}$ must fail, since this we	ould also work for the	untyped
\triangleright Induction on the type of A	A must fail, since eta -reduction	on conserves types.	
\triangleright combined induction on both:	Logical Relations [Tait 196	7]	
©: Mich	ael Kohlhase	84	JACOBS UNIVERSITY

Relations SR and LR \triangleright Definition 4.36: A is called strongly reducing at type α (write $\mathcal{SR}(\mathbf{A}, \alpha)$), iff each chain β -reductions from A terminates. \triangleright Lemma 4.37: (Lemma 1) If $\mathcal{SR}(\mathbf{C}, \alpha)$ and \mathbf{B}_{β} is a subterm of \mathbf{A} , then $\mathcal{SR}(\mathbf{B}, \beta)$. \triangleright Proof Idea: Every infinite β -reduction from **B** would be one from **A**. \square \triangleright We define a logical relation \mathcal{LR} inductively on the structure of the type $\triangleright \alpha$ base type: $\mathcal{LR}(\mathbf{A}, \alpha)$, iff $\mathcal{SR}(\mathbf{A}, \alpha)$ $\triangleright \mathcal{LR}(\mathbf{C}, \alpha \to \beta)$, iff $\mathcal{LR}(\mathbf{CA}, \beta)$ for all $\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ with $\mathcal{LR}(\mathbf{A}, \alpha)$. ▷ **Proof**: Termination Proof $P.1 \ \mathcal{LR} \subseteq \mathcal{SR}$ (Lemma 2b) **P.2** $\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ implies $\mathcal{LR}(\mathbf{A}, \alpha)$ **P.3** also $\mathcal{SR}(\mathbf{A}, \alpha)$ JACOBS UNIVERSIT SOME FIGHTS RESERVED ©: Michael Kohlhase 85

$\mathcal{LR} \subseteq \mathcal{SR}$ (Rollercoaster Lemma) ▷ Lemma 4.38: (Lemma 2) a) If h is a constant or variable of type $\overline{\alpha_n} \to \beta$ and $\mathcal{SR}(\mathbf{A}^i, \alpha^i)$, then $\mathcal{LR}(h\overline{\mathbf{A}^n}, \beta)$. b) $\mathcal{LR}(\mathbf{A}, \alpha)$ implies $\mathcal{SR}(\mathbf{A}, \alpha)$. \triangleright Proof: we prove both assertions by simultaneous induction on α **P.1.1** α base type: **P.1.1.1.1** a): $h\overline{\mathbf{A}^n}$ is strongly reducing, since the \mathbf{A}^i are (brackets!) **P.1.1.1.1.2** so $\mathcal{LR}(h\overline{\mathbf{A}^n},\beta)$ as α is a base type ($\mathcal{SR} = \mathcal{LR}$) P.1.1.1.2 b): by definition **P.1.2** $\alpha = \beta \rightarrow \gamma$: **P.1.2.1.1** a): Let $\mathcal{LR}(\mathbf{B},\beta)$. **P.1.2.1.1.2** by the second IH we have $\mathcal{SR}(\mathbf{B},\beta)$, and $\mathcal{LR}(h\overline{\mathbf{A}^n}\mathbf{B},\gamma)$ by the first IH **P.1.2.1.1.3** so $\mathcal{LR}(h\overline{\mathbf{A}^n},\beta)$ by definition. **P.1.2.1.2 b)**: Let $\mathcal{LR}(\mathbf{A}, \alpha)$ and $X_{\beta} \notin \mathbf{free}(\mathbf{A})$. **P.1.2.1.2.2** by the first IH (with n = 0) we have $\mathcal{LR}(X,\beta)$, thus $\mathcal{LR}(\mathbf{A}X,\gamma)$ by definition. **P.1.2.1.2.3** By the second IH we have $\mathcal{SR}(\mathbf{A}X,\gamma)$ and by Lemma 1 $\mathcal{SR}(\mathbf{A},\alpha)$. JACOBS UNIVERSIT © Some rights reserved (C): Michael Kohlhase 86

β -Expansion-Lemma

⊳ **Lemma** 4.39: If $\mathcal{LR}([\mathbf{B}/X]\mathbf{A}, \alpha)$ and $\mathcal{LR}(\mathbf{B}, \beta)$ for $X_{\beta} \notin \mathbf{free}(\mathbf{A})$, then $\mathcal{LR}((\lambda X_{\alpha}.\mathbf{A})\mathbf{B},\alpha).$ \triangleright Proof: **P.1** Let $\alpha = \overline{\gamma_i} \to \delta$ where δ base type and $\mathcal{LR}(\mathbf{C}^i, \gamma^i)$ **P.2** It is sufficient to show that $\mathcal{SR}((\lambda X.\mathbf{A})\mathbf{B}\overline{\mathbf{C}}, \delta)$, as δ base type **P.3** We have $\mathcal{LR}([\mathbf{B}/X](\mathbf{A})\overline{\mathbf{C}}, \delta)$ by hypothesis and definition of \mathcal{LR} . **P.4** thus $\mathcal{SR}([\mathbf{B}/X](\mathbf{A})\overline{\mathbf{C}},\delta)$, as δ base type. **P.5** in particular $\mathcal{SR}([\mathbf{B}/X]\mathbf{A},\alpha)$ and $\mathcal{SR}(\mathbf{C}^i,\gamma^i)$ (subterms) **P.6** $\mathcal{SR}(\mathbf{B},\beta)$ by hypothesis and Lemma 2 **P.7** So an infinite reduction from $(\lambda X.\mathbf{A})\mathbf{B}\overline{\mathbf{C}}$ cannot solely consist of redexes from $[\mathbf{B}/X]\mathbf{A}$ and the \mathbf{C}^i . ${\bf P.8}$ so an infinite reduction from $(\lambda X.{\bf A}){\bf B}\overline{{\bf C}}$ must have the form $\begin{array}{ll} (\lambda X.\mathbf{A})\mathbf{B}\overline{\mathbf{C}} & \rightarrow^*_\beta & (\lambda X.\mathbf{A}')\mathbf{B}'\overline{\mathbf{C}'} \\ & \rightarrow^1_\beta & [\mathbf{B}'/X](\mathbf{A}')\overline{\mathbf{C}'} \\ & \rightarrow^*_\beta & \dots \end{array}$ where $\mathbf{A} \rightarrow^*_{\beta} \mathbf{A}'$, $\mathbf{B} \rightarrow^*_{\beta} \mathbf{B}'$ and $\mathbf{C}^i \rightarrow^*_{\beta} \mathbf{C}^{i'}$ $\mathbf{P.9}$ so we have $[\mathbf{B}/X](\mathbf{A}) \rightarrow^*_\beta [\mathbf{B}'/X](\mathbf{A}')$ P.10 so we have the infinite reduction
$$\begin{split} [\mathbf{B}/X](\mathbf{A})\overline{\mathbf{C}} & \rightarrow^*_\beta \quad [\mathbf{B}'/X](\mathbf{A}')\overline{\mathbf{C}'} \\ & \rightarrow^*_\beta \quad \dots \end{split}$$
which contradicts our assumption JACOBS UNIVERSIT © Some Rights Reserved (C): Michael Kohlhase 87

Closure under β -Expansion (weakly rec	lucing)	
⊳ Lemma 4.40: (Lemma 3)		
If $\mathbf{C} \to^{h}_{\beta} \mathbf{D}$ and $\mathcal{LR}(\mathbf{D}, \alpha)$, so is $\mathcal{LR}(\mathbf{C}, \alpha)$.		
\rhd Proof: by induction over the structure of α		
P.1.1 α base type:		
$\mathbf{P.1.1.1}$ we have $\mathcal{S\!R}(\mathbf{D}, \alpha)$ by definition		
P.1.1.2 so $\mathcal{SR}(\mathbf{C}, \alpha)$, since head reduction is uniq	ue	
P.1.1.3 and thus $\mathcal{LR}(\mathbf{C}, \alpha)$.		
P.1.2 $\alpha = \beta \rightarrow \gamma$:		
P.1.2.1 Let $\mathcal{LR}(\mathbf{B},\beta)$, by definition we have $\mathcal{LR}(\mathbf{I},\beta)$	$\mathbf{DB}, \gamma).$	
P.1.2.2 but $\mathbf{CB} \rightarrow^h_\beta \mathbf{DB}$, so $\mathcal{LR}(\mathbf{CB}, \gamma)$ by IH		
P.1.2.3 and $\mathcal{LR}(\mathbf{C}, \alpha)$ by definition.		
Note: This Lemma only holds for weak reduction (nates) for strong reduction we need a stronger Len	any chain of eta heac nma.	l reductions termi-
©: Michael Kohlhase	88	
		• 011110111
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}})$ implies $\mathcal{LR}(\mathbf{A}, \alpha)$		• 0.11120411
$\mathbf{A} \in wf\!\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{LR}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} \text{If } \mathcal{LR}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \mathbf{su}$ $\mathcal{LR}(\sigma \mathbf{A}, \alpha).$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$	$vff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}), then$
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \mathbf{su}$ $\mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$	$vff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}), then$
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \mathbf{sup} \ \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \mathbf{supp}(\sigma): \text{ then } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ assumption	
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in supp(\sigma).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in supp(\sigma): \text{ then } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin supp(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\!\mathcal{R}$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ assumption $\mathbf{P}(\mathbf{A}, lpha)$ by Lemma 2	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then 2 with $n = 0$. \Box
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{LR}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{LR}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{LR}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{LR}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{LR}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ assumption $\mathbf{A}(\mathbf{A}, \alpha)$ by Lemma 2	wff _{α} (Σ , \mathcal{V}_T), then 2 with $n = 0$.
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \mathbf{sup} \ \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \mathbf{supp}(\sigma): \text{ then } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \mathbf{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\!\mathcal{R}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A})$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ essumption $\mathbf{A}(\mathbf{A}, \alpha)$ by Lemma 2 $\mathbf{\sigma} \mathbf{C}, \gamma)$	wff _{α} ($\Sigma, \mathcal{V}_{\mathcal{T}}$), then 2 with $n = 0$.
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} I\!f \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in supp(\sigma A, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in supp(\sigma): \text{ then } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin supp(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\!\mathcal{R}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by definition of } \mathcal{L}\!\mathcal{R}.$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ assumption $\mathbf{A}(\mathbf{A}, \alpha)$ by Lemma 2 $\mathbf{\sigma}\mathbf{C}, \gamma)$	$eff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}), \text{ then}$ 2 with $n = 0.$
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{L}\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{L}\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\mathcal{R}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{L}\mathcal{R}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{L}\mathcal{R}(\sigma \mathbf{P.1.4}, \mathbf{C}) \text{ by definition of } \mathcal{L}\mathcal{R}.$ $\mathbf{P.1.5} \ \mathbf{A} = \lambda X_{\beta}.\mathbf{C}_{\gamma}: \text{ Let } \mathcal{L}\mathcal{R}(\mathbf{B}, \beta) \text{ and } \theta := \sigma, [\mathbf{I} \text{ the IH.}$	$\mathbf{pp}(\sigma)$ and $\mathbf{A} \in u$ assumption $\mathbf{A}(\mathbf{A}, \alpha)$ by Lemma 2 $\mathbf{\sigma} \mathbf{C}, \gamma)$ $\mathbf{B}/X]$, then θ meets	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then 2 with $n = 0$.
$\mathbf{A} \in wf\!f_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\!\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\!\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\!\mathcal{R}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{L}\!\mathcal{R}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{L}\!\mathcal{R}(\sigma)$ $\mathbf{P.1.5} \ \mathbf{A} = \lambda X_{\beta}.\mathbf{C}_{\gamma}: \text{ Let } \mathcal{L}\!\mathcal{R}(\mathbf{B}, \beta) \text{ and } \theta := \sigma, [\mathbf{I} \text{ the IH.}$ $\mathbf{P.1.5.2} \text{ Moreover } \sigma(\lambda X_{\beta}.\mathbf{C}_{\gamma})\mathbf{B} \to_{\beta} \sigma, [\mathbf{B}/X](\mathbf{C})$	$pp(\sigma)$ and $\mathbf{A} \in u$ assumption (\mathbf{A}, α) by Lemma 2 $\sigma \mathbf{C}, \gamma)$ $\mathbf{B}/X]$, then θ meets $= \theta(\mathbf{C})$.	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then 2 with $n = 0$.
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{LR}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{LR}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{LR}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{LR}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{LR}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{LR}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{LR}(\sigma)$ $\mathbf{P.1.5} \ \mathbf{A} = \lambda X_{\beta}.\mathbf{C}_{\gamma}: \text{ Let } \mathcal{LR}(\mathbf{B}, \beta) \text{ and } \theta := \sigma, [\mathbf{I} \text{ the IH.}$ $\mathbf{P.1.5.2} \text{ Moreover } \sigma(\lambda X_{\beta}.\mathbf{C}_{\gamma})\mathbf{B} \to_{\beta} \sigma, [\mathbf{B}/X](\mathbf{C})$ $\mathbf{P.1.5.3} \text{ Now, } \mathcal{LR}(\theta \mathbf{C}, \gamma) \text{ by IH and thus } \mathcal{LR}(\sigma(\mathbf{A}))$	$pp(\sigma)$ and $\mathbf{A} \in u$ assumption (\mathbf{A}, α) by Lemma 2 $\sigma \mathbf{C}, \gamma)$ $\mathbf{B}/X]$, then θ meets $= \theta(\mathbf{C})$. (\mathbf{B}, γ) by Lemma 3.	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then 2 with $n = 0$.
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{L}\mathcal{R}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{L}\mathcal{R}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{L}\mathcal{R}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{L}\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{L}\mathcal{R}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{L}\mathcal{R}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{L}\mathcal{R}(\sigma)$ $\mathbf{P.1.5} \ \mathbf{A} = \lambda X_{\beta}.\mathbf{C}_{\gamma}: \text{ Let } \mathcal{L}\mathcal{R}(\mathbf{B}, \beta) \text{ and } \theta := \sigma, [\mathbf{I} \text{ the IH.}$ $\mathbf{P.1.5.2} \text{ Moreover } \sigma(\lambda X_{\beta}.\mathbf{C}_{\gamma})\mathbf{B} \to_{\beta} \sigma, [\mathbf{B}/X](\mathbf{C})$ $\mathbf{P.1.5.4} \text{ So } \mathcal{L}\mathcal{R}(\sigma \mathbf{A}, \alpha) \text{ by definition of } \mathcal{L}\mathcal{R}.$	$pp(\sigma)$ and $\mathbf{A} \in u$ assumption (\mathbf{A}, α) by Lemma 2 $\sigma \mathbf{C}, \gamma)$ $\mathbf{B}/X]$, then θ meets $= \theta(\mathbf{C})$. (\mathbf{B}, γ) by Lemma 3.	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then with $n = 0$.
$\mathbf{A} \in wff_{\alpha}(\Sigma, \mathcal{V}_{\mathcal{T}}) \text{ implies } \mathcal{LR}(\mathbf{A}, \alpha)$ $\triangleright \text{ Theorem 4.41:} If \ \mathcal{LR}(\sigma X_{\alpha}, \alpha) \text{ for all } X \in \text{sup} \ \mathcal{LR}(\sigma \mathbf{A}, \alpha).$ $\triangleright \text{ Proof: by induction on the structure of } \mathbf{A}$ $\mathbf{P.1.1} \ \mathbf{A} = X_{\alpha} \in \text{supp}(\sigma): \text{ then } \mathcal{LR}(\sigma \mathbf{A}, \alpha) \text{ by a}$ $\mathbf{P.1.2} \ \mathbf{A} = X \notin \text{supp}(\sigma): \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ and } \mathcal{LR}$ $\mathbf{P.1.3} \ \mathbf{A} \in \Sigma: \text{ then } \sigma \mathbf{A} = \mathbf{A} \text{ as above}$ $\mathbf{P.1.4} \ \mathbf{A} = \mathbf{BC}: \text{ by IH } \mathcal{LR}(\sigma \mathbf{B}, \gamma \to \alpha) \text{ and } \mathcal{LR}(\sigma)$ $\mathbf{P.1.5} \ \mathbf{A} = \lambda X_{\beta} \cdot \mathbf{C}_{\gamma}: \text{ Let } \mathcal{LR}(\mathbf{B}, \beta) \text{ and } \theta := \sigma, [\mathbf{I} \text{ the IH.}$ $\mathbf{P.1.5.2} \text{ Moreover } \sigma(\lambda X_{\beta} \cdot \mathbf{C}_{\gamma}) \mathbf{B} \to_{\beta} \sigma, [\mathbf{B}/X](\mathbf{C})$ $\mathbf{P.1.5.3} \text{ Now, } \mathcal{LR}(\theta \mathbf{C}, \gamma) \text{ by IH and thus } \mathcal{LR}(\sigma(\mathbf{A}))$ $\mathbf{P.1.5.4} \text{ So } \mathcal{LR}(\sigma \mathbf{A}, \alpha) \text{ by definition of } \mathcal{LR}.$	pp (σ) and $\mathbf{A} \in u$ assumption (\mathbf{A}, α) by Lemma 2 $\sigma \mathbf{C}, \gamma)$ $\mathbf{B}/X]$, then θ meets $= \theta(\mathbf{C})$. (\mathbf{B}, γ) by Lemma 3.	wff $_{\alpha}(\Sigma, \mathcal{V}_{T})$, then 2 with $n = 0$.

4.5 Completeness of $\alpha\beta\eta$ -Equality

 \triangleright

We will now show is that $\alpha\beta\eta$ -equality is complete for the semantics we defined, i.e. that whenever $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathcal{I}_{\varphi}(\mathbf{B})$ for all variable assignments φ , then $\mathbf{A} =_{\alpha\beta\eta} \mathbf{B}$. We will prove this by a model

existence argument: we will construct a model $\mathcal{M} := \langle \mathcal{D}, \mathcal{I} \rangle$ such that if $\mathbf{A} \neq_{\alpha\beta\eta} \mathbf{B}$ then $\mathcal{I}_{\varphi}(\mathbf{A}) \neq \mathcal{I}_{\varphi}(\mathbf{B})$ for some φ .

 \rhd The name term structure in the previous definition is justified by the following lemma.

91

 \triangleright Lemma 4.45: $T_{\beta\eta}$ is a Σ -model

© C: Michael Kohlhase

We can see that $\alpha\beta\eta$ -equality is complete for the class of Σ -models, i.e. if the equation $\mathbf{A} = \mathbf{B}$ is valid, then $\mathbf{A} =_{\alpha\beta\eta} \mathbf{B}$. Thus $\alpha\beta\eta$ equivalence fully characterizes equality in the class of all Σ -models, while additional η -equality characterizes functionality.

4.6 λ -Calculus Properties

We will now show is that $\alpha\beta\eta$ -reduction does not change the value of formulae, i.e. if $\mathbf{A} =_{\alpha\beta\eta} \mathbf{B}$, then $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathcal{I}_{\varphi}(\mathbf{B})$, for all \mathcal{D} and φ . We say that the reductions are sound. On the other hand, it can be shown that $\alpha\beta\eta$ -reduction is complete for this model class, i.e. if $\mathcal{I}_{\varphi}(\mathbf{A}) = \mathcal{I}_{\varphi}(\mathbf{B})$, for all \mathcal{D} and φ , then $\mathbf{A} =_{\alpha\beta\eta} \mathbf{B}$.

4.7 The Curry-Howard Isomorphism

Types for Conjunctions

 \triangleright new type constructor: \times (product type $\alpha \times \beta$)

 \vartriangleright new term constructors: $\langle\cdot,\cdot\rangle$, π_1 and π_2

 \triangleright new type inference rules

$$\frac{\Gamma \vdash_{\Sigma} \mathbf{A} : \alpha \quad \Gamma \vdash_{\Sigma} \mathbf{B} : \beta}{\Gamma \vdash_{\Sigma} \langle \mathbf{A}, \mathbf{B} \rangle : \alpha \times \beta} \text{ wff:pair } \frac{\Gamma \vdash_{\Sigma} \mathbf{A} : \alpha \times \beta}{\Gamma \vdash_{\Sigma} \pi_{1}(\mathbf{A}) : \alpha} \text{ wff:} \pi_{l} \quad \frac{\Gamma \vdash_{\Sigma} \mathbf{A} : \alpha \times \beta}{\Gamma \vdash_{\Sigma} \pi_{2}(\mathbf{A}) : \beta} \text{ wff:} \pi_{l}$$

▷ new reductions (gives canonical reduction system)

$$(\pi_1(\langle \mathbf{A}, \mathbf{B} \rangle) \to^1_\beta \mathbf{A}) \qquad (\pi_2(\langle \mathbf{A}, \mathbf{B} \rangle) \to^1_\beta \mathbf{B}) \qquad (\langle \pi_1(\mathbf{A}), \pi_2(\mathbf{A}) \rangle \to^1_\eta \mathbf{A})$$

JACOBS UNIVERSI

▷ Others: disjoint sum for disjunction, complement for negation,...
 (C): Michael Kohlhase

Proofs as Programs

$ ightarrow$ Remember: Proofs are λ -terms	& λ -terms are progra	ams	
ho Idea: Then proofs should be progra	ms	(well only constru	uctive ones)
▷ Example 4.50: (Sorting) a theory of ordered lists:			
$\triangleright \models perm(L, M), \text{ if } M \text{ is a perm}$ $\triangleright \models ord(L), \text{ if } L \text{ ordered wrt.} < \\ \triangleright X < L \text{ if } X < Y \text{ for all } Y \in L$	utation of L		
Theorems:			
$\succ \models min(L) < del(min(L), L)$ $\succ \models ord(L) \land x < L \Rightarrow ord([x L])$ $\triangleright \models perm(L \Rightarrow M) \Rightarrow perm([x L])$) $L], [x M])$		
\triangleright Theorem 4.51: $\forall L.\exists M.ord(L)pert$	m(L,M)		
\triangleright Proof : by induction on the structur	e of the list L		
P.1.1 If $L = []:$ choose $M = []$			
P.1.2 If $L \neq []$:			
P.1.2.1 by IH there is a list W , suc	th that $ord(W)perm(W)$	W, del(min(L), L)))
P.1.2.2 chose $M = [min(L) W]$			
Programm: \triangleright sort=(λ L (if L=[] then \perp else [m	in(L) sort(del(min(L),	L))]))	
\triangleright Note: the correcness of this program	m is ensured by the pr	oof	
▷ Note: different proofs yield differen	t programs		
\triangleright Note: the programs extracted from	automatically found	proofs are not alw	ays efficient (Slowsort!)
©: Michael Koł	nlhase	101	IACOBS UNIVERSITY

5 Knowledge Representation

Before we start into the development of description logics, we set the stage by looking into what alternatives for knowledge representation we know.

5.1 Introduction to Knowledge Representation

What is knowl	edge? Why	Representation	?			
▷ For the purpose intelligent reasor	es of this course ning (during NLP	: Knowledge is the)	information nece	ssary to support		
	representation	can be used to dete	rmine]		
	set of words	whether a word is a	dmissible			
	list of words the rank of a word					
	a lexicon	translation or gram	matical function			
	structure	function				
\triangleright Representation	as structure and	function.				
⊳ the represent	▷ the representation determines the content theory (what is the data?)					
▷ the function determines the process model (what do we do with the data?)						
SOMECIGATIS RESERVED	©: Michael Ł	Kohlhase	102			

Knowledge Repres	entation vs. Data	Structures			
\triangleright Why do we use the t	ho Why do we use the term "knowledge representation" rather than				
▷ data structures?		(sets, list	s, above)		
▷ information representation	sentation?	(it is i	nformation)		
ho no good reason other	r than AI practice, with th	e intuition that			
ho data is simple and	l general	(supports many	algorithms)		
⊳ knowledge is com	plex	(has distinguished pro	cess model)		
SOME RIGHTS RESERVED	©: Michael Kohlhase	103			

Some Parad	igms for AI/NLP				
⊳ GOFAI		(good old-fashioned A			
⊳ symbolic	knowledge representation, process r	model based on heuristic search			
⊳ statistical, co	orpus-based approaches.				
⊳ symbolic ⊳ knowledg	 symbolic representation, process model based on machine learning knowledge is divided into symbolic- and statistical (search) knowledge 				
⊳ connectionis	t approach	(not in this course			
 sub-symbolic representation, process model based on primitive processing elements (nodes) and weighted links 					
⊳ knowledg	e is only present in activation patter	ers, etc.			
SOME FIGHTS RESERVED	©: Michael Kohlhase	104 👽 access			

Frame Notation as Logic with Locality					
▷ Predicate Logic:		(where is the	locality?)		
$catch_{-22} \in catch_{-}object$ $catcher(catch_{-22}, jack_{-2})$ $caught(catch_{-22}, ball_{-5})$	There is an instance of Jack did the catching He caught a certain bal	catching			
\triangleright Frame Notation		(group everything around th	e object)		
(catch_object ca (c (c	tch_22 atcher jack_2) aught ball_5))				
+ Once you have decided on	a frame, all the informa	ation is local			
$+ {\rm easy} {\rm to} {\rm define} {\rm schemes} {\rm for}$	+ easy to define schemes for concepts (aka. types in feature structures)				
– how to determine frame, w	hen to choose frame	(10	og/chair)		
	ichael Kohlhase	111			

KR involving Time (Scripts [Shank '77])

 \triangleright Idea: organize typical event sequences, actors and props into representation structure

Other Representation Formats (not covered)					
▷ Procedural Represe	entations	(produ	ction systems)		
▷ analogical representations (interesting but not here					
⊳ iconic representatio	ons	(interesting but very difficult	to formalize)		
▷ If you are interested	d, come see me off-line				
SUMERIGETIS RESERVED	©: Michael Kohlhase	113	JACOBS UNIVERSITY		

5.2 Logic-Based Knowledge Representation

Predicate-Logic FormulationPropositional LogicPredicate Logicson \sqsubseteq child $\forall x. \operatorname{son}(x) \Rightarrow \operatorname{child}(x)$ daughter \sqsubseteq child $\forall x. \operatorname{son}(x) \Rightarrow \operatorname{child}(x)$ son \sqcap daughter $\forall x. \operatorname{on}(x) \land \operatorname{daughter}(x)$ child \sqsubseteq son \sqcup daughter $\forall x. \operatorname{child}(x) \Rightarrow \operatorname{son}(x) \lor \operatorname{daughter}(x)$ child \sqsubseteq son \sqcup daughter $\forall x. \operatorname{child}(x) \Rightarrow \operatorname{son}(x) \lor \operatorname{daughter}(x)$ ©: Michael Kohlhase

Set-Theoretic Semantics

 \triangleright Definition 5.3: A model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ consists of a Interpretation \mathcal{I} over a non-empty domain \mathcal{D} is a mapping [:]:

		Operator Meaning	f	ormula semantics	
	1		$\llbracket p \rrbracket \subset$	\mathcal{D}	
	2	$\llbracket \overline{\cdot} \rrbracket$ = compleme	$nt = [\overline{\mathbf{A}}] =$	$\overline{\llbracket \mathbf{A} rbracket} := = \mathcal{D} ackslash \llbracket \mathbf{A} rbracket$	
	3	[□] = ∩	$\mathbf{[}\mathbf{A} \sqcap \mathbf{B}\mathbf{]} =$	$\llbracket \mathbf{A} rbracket \cap \llbracket \mathbf{B} rbracket$	
	4	[∐] = ∪	$[\mathbf{A} \sqcup \mathbf{B}] =$	$\llbracket \mathbf{A} rbracket \cup \llbracket \mathbf{B} rbracket$	
	5	$\llbracket \sqsubseteq \rrbracket = \subseteq$	$[\mathbf{A} \sqsubseteq \mathbf{B}] =$	$\overline{\llbracket \mathbf{A} \rrbracket} \cup \llbracket \mathbf{B} \rrbracket$	
	6	$\llbracket \equiv rbracket = set equalit$	$y \mid \llbracket \mathbf{A} \equiv \mathbf{B} rbracket =$	$(\llbracket \mathbf{A} \rrbracket \cap \llbracket \mathbf{B} \rrbracket) \cup \overline{(\llbracket \mathbf{A} \rrbracket} \cup \llbracket \mathbf{B} \rrbracket)$	
⊳ Justific	catio	on for 5: $\mathbf{A} \Rightarrow \mathbf{B} = \neg$.	$\mathbf{A} \lor \mathbf{B}$		
hightarrow Justific	catio	on for 6: $\mathbf{A} \Leftrightarrow \mathbf{B} = \mathbf{A}$	$\wedge \mathbf{B} \vee \neg \mathbf{A} \wedge \neg \mathbf{B}$	$= \mathbf{A} \wedge \mathbf{B} \lor \neg (\mathbf{A} \lor \mathbf{B})$	
CC Some Rightis Reserved		©: Michael	Kohlhase	118	

Translation Examples

▷ Example 5.4:

 \triangleright What are the advantages of translation to PL1?

⊳ theoretica	Ily: A better understanding of the ser	mantics	
▷ computat many test	ionally: NOTHING s are decidable for PL0, but not for P	'L1	(Description Logics?)
SOMIA RIGHTS REASARVED	©: Michael Kohlhase	121	

Subsumption Test				
	A	xioms	entailed subs	sumption relation
\triangleright Example 5.6: in this case trivial	woman =	$person \sqcap \overline{has}_{Y}$	woman 드	person
	man =	person \sqcap has_Y	man 드	person
 ▷ Reduction to consistency test: (need to implement only one) Axioms ⇒ A ⇒ B is valid iff Axioms ∧ A ∧ ¬B is inconsistent. ▷ Definition 5.7: A subsumes B (modulo an axiom set A) 				
iff $\llbracket \mathbf{B} \rrbracket \subseteq \llbracket \mathbf{A} \rrbracket$ for all interpretations \mathcal{D} , that satisfy \mathcal{A} iff $Axioms \Rightarrow \mathbf{B} \Rightarrow \mathbf{A}$ is valid '				
©: Michae	l Kohlhase	124		Incodes University

5.3 A simple Description Logic: ALC

Syntax of 10	0			
Syntax OF AL				
▷ Concepts:	(aka. "predicates" in I	PL1 or "propositional v	ariables" in PL0)	
concepts in DL	s name classes of objects like in (JOP.		
▷ Special conce	pts: $ op$ (for "true" or "all") and $igstacksquare$	∟ (for "false" or "none'	').	
▷ Example 5.13: computer progr	person, woman, man, mother, p ram, heart attack risk, furniture, t	rofessor, student, car, l able, leg of a chair,	BMW, computer,	
⊳ Roles: name l	pinary relations		(like in in PL1)	
▷ Example 5.14 cutes_computer	: has_child, has_son, has_daug _program, has_leg_of_table, has_w	ghter, loves, hates g ⁄heel, has_motor,	ives_course, exe-	
Some Rights Reserved	©: Michael Kohlhase	129		
Syntax of $\mathcal{A}\mathcal{A}$	\mathcal{C} : Formulae $F_{\mathcal{A}\mathcal{L}}$			
\triangleright Grammar: $F_{\mathcal{A}}$	$\mathcal{X} :== C \mid \top \mid \bot \mid \overline{F_{\mathcal{A}\mathcal{X}}} \mid F_{\mathcal{A}\mathcal{X}} \sqcap H$	$F_{\mathcal{A}\mathcal{C}} \mid F_{\mathcal{A}\mathcal{C}} \sqcup F_{\mathcal{A}\mathcal{C}} \mid (\exists F)$	$R.F_{\mathcal{AC}}) \mid (\forall R.F_{\mathcal{AC}})$	
⊳ Example 5.15:				
\triangleright person \sqcap (\exists	$has_child.student)$	(par	rents of students)	
(The set of	persons that have a child which i	is a student)		
\triangleright person \sqcap (\exists	$has_child.\existshas_child.student)$	(grandpar	rents of students)	
⊳ person \sqcap (∃	has_child. \exists has_child.student \sqcup tea	acher)(grandparents of	students or teachers)	
\triangleright person \sqcap (\forall	$has_child.student)$ (parents whose children	are all students)	
\triangleright person \sqcap (\forall	haschild. \exists has_child.student) (gran	idparents, whose children	all have at least one child	that is a student)
SUMIE RICHTIS RESERVED	©: Michael Kohlhase	130		
More Exampl	es			
⊳ car ⊓ (∃has₋pa	art.∃made_in.ĒŪ)(cars that have a	at least one part that h	as not been made in the	EU)
\triangleright student \sqcap (\forall a	udits_course.graduatelevelcourse)(students, that only aud	lit graduate level courses	5)

\triangleright	$house\sqcap(\forall has_parking.off_street)$	(houses with off-street parking)
------------------	---	----------------------------------

\triangleright Note: $p \sqsubseteq q$ can still be used as an abbreviation for $p \sqcup q$.	\triangleright	Note:	$p \sqsubseteq$	q can	still be	used	as an	abbreviation	for	$\overline{\overline{p} \sqcup q}.$
--	------------------	-------	-----------------	-------	----------	------	-------	--------------	-----	-------------------------------------

\triangleright	student \sqcap (\forall audits_course.(\exists	$lhasrecitation.\top) \sqsubseteq (N)$	√has_TA.woman))
(students that	t only audit courses that either have	no recitation or recit	ations that are TAed by women)
œ			17
SOME RIGHTS RESERVED	©: Michael Kohlhase	131	V IACOBS UNIVERSITY

ACC Co	ACC Concept Definitions									
⊳ Defin	\triangleright Define new concepts from known ones: $(KD_{AC} :=$									
			Definition	rec						
	man	=	$person \sqcap (\exists has_chrom.Y_chrom)$	-						
	woman	=	$person \sqcap (\forall has_chrom.\overline{Y_chrom})$	-						
	mother	=	woman \sqcap (\exists has_child.person)	-						
	father	=	$man \sqcap (\exists has_child.person)$	-						
	grandparent	=	$person \sqcap (\exists has_child.mother \sqcup father)$	-						
	german	=	$person \sqcap (\exists has_parents.german)$	+						
	number_list	=	$empty_list \sqcup (\exists is_first.number) \sqcap (\exists is_rest.number_list)$	+						
Q										
SOME RIGHTS RESERVED		0): Michael Kohlhase 132	JACO UNIT	OBS IVERSITY					

Concept Axioms ▷ Definition 5.16: General DL formulae that are not concept definitions are called Concept Axioms. ▷ They normally contain additional information about concepts ▷ They normally contain additional information about concepts ▷ Example 5.17: ▷ person □ car ○ person □ car (persons and cars are disjoint) ▷ car □ motor_vehicle ○ motor_vehicle □ car □ truck □ motorcycle(motor vehicles are cars, trucks, or motorcycles)

TBoxes: "terminological Box" \triangleright Definition 5.18: finite set of concept definitions + finite set of concept axioms ▷ Definition 5.19: Acyclic TBox (mostly treated) TBox does not contain recursive definitions ▷ Definition 5.20: Normalized wrt. TBox (convenient) A formula A is called normalized wrt. T, iff it does not contain concept names defined in T. \triangleright Algorithm: (Input: A formula **A** and a TBox *T*.) (for arbitrary DLs) \triangleright While [A contains concept name c and T concept definition $c = \mathbf{C}$] \triangleright substitute c by C in A. ▷ Lemma 5.21: this algorithm terminates for acyclic TBoxes JACOBS UNIVERSIT ©: Michael Kohlhase 134

Normalization	Example	(normalizing	grandparent)						
grandparent → person ⊓ (∃has_child.mother ⊔ father) → person ⊓ (∃has_child.woman ⊓ (∃has_child.person), man, ∃has_child.person) → person ⊓ (∃has_child.person ⊓ (∃has_child.person) ⊓ (∃has_child.person) ⊓ (∃has_child.person))									
\triangleright Observation: normalization result can be exponential and redundant									
▷ Observation: need not terminate on cyclic TBoxes									
german ⊦	→ person \sqcap (∃has_pa	rents.german)							
ŀ	→ person \sqcap (\exists has_pa	rents.person $\sqcap (\exists has_{-}par)$	rents.german))						
\mapsto									
	©: Michael Kohlha	se 135							

Semantics of $\mathcal{A\!C}$

 \rhd $\mathcal{A\!C\!C}$ semantics is an extension of the set-semantics of propositional logic.

 \triangleright Definition 5.22: An Interpretation \mathcal{I} over a non-empty domain \mathcal{D} is a mapping $\llbracket \cdot \rrbracket$:

	Op.		form	ula semantics	
		$\llbracket c \rrbracket \subseteq$	$\mathcal{D} = \llbracket \top \rrbracket \llbracket$	$ \mathbb{L}]\!\!] = \emptyset [\![r]\!] \subseteq \mathcal{D} \times \mathcal{D} $	
		$\llbracket \overline{\varphi} \rrbracket =$	$\overline{\llbracket \varphi \rrbracket} = \mathcal{D} \backslash \llbracket$	φ]	
		$\llbracket \varphi \sqcap \psi \rrbracket =$	$\llbracket \varphi rbracket \cap \llbracket \psi rbracket$		
		$\llbracket \varphi \sqcup \psi \rrbracket =$	$\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$		
	∃R.	$\llbracket \exists R. \varphi \rrbracket =$	$(\{x \in \mathcal{D} \mid$	$\exists y. \langle x, y \rangle \in \llbracket R \rrbracket \text{ and } y \in \llbracket \varphi \rrbracket \})$	
	∀R.	$\llbracket \forall R. \varphi \rrbracket =$	$(\{x \in \mathcal{D} \mid$	$\forall y. \text{ if } \langle x, y \rangle \in \llbracket \mathbb{R} \rrbracket \text{ then } y \in \llbracket \varphi \rrbracket \})$	
COMERIGNIST RESERVED		©: Mich	ael Kohlhase	136	JACOBS UNIVERSITY

Prop	ositional	Identities	5					
	Name		for	Π		f	or ⊔	7
	Idenpot.	$\varphi \sqcap \varphi$	=	φ	$\varphi \sqcup \varphi$	=	φ	7
	Identity	$\varphi\sqcap\top$	=	φ	$\varphi \sqcup \bot$	=	arphi	
	Absorpt.	$\varphi \sqcup \top$	=	Т	$\varphi \sqcap \bot$	=	\perp	
	Commut.	$\varphi \sqcap \psi$	=	$\psi \sqcap \varphi$	$\varphi \sqcup \psi$	=	$\psi \sqcup \varphi$	
	Assoc.	$\varphi \sqcap (\psi \sqcap \theta)$	=	$(\varphi \sqcap \psi) \sqcap \theta$	$\varphi\psi\sqcup heta$	=	$(\varphi \sqcup \psi) \sqcup \theta$	
	Distrib.	$\varphi \sqcap (\psi \sqcup \theta)$	=	$\varphi \sqcap \psi \sqcup \varphi \sqcap \theta$	$\varphi \sqcup \psi \sqcap \theta$	=	$(\varphi \sqcup \psi) \sqcap (\varphi \sqcup \theta)$	
	Absorpt.	$\varphi \sqcap (\varphi \sqcup \theta)$	=	φ	$\varphi \sqcup \varphi \sqcap \theta$	=	$\varphi \sqcap \theta$	
	Morgan	$\overline{\varphi \sqcap \psi}$	=	$\overline{arphi}\sqcup\overline{\psi}$	$\overline{\varphi \sqcup \psi}$	=	$\overline{arphi} \sqcap \overline{\psi}$	
	dneg			$\overline{\overline{\varphi}}$	$=\varphi$			7
©: Michael Kohlhase 137						JACOBS UNIVERSIT		

Examples	5						
	$\begin{array}{c} 1 \\ 2 \end{array}$	$x: rac{\forall has_child.man\sqcap}{\exists has_child.man} x: \forall has_child.man$	initial \Box_l	x: ∀has_child.man⊓ ∃has_child.man x: ∀has_child.man	initial \Box_l		
	3	$x: \exists has_child.\overline{man}$	\square_r	$x: \exists has_child.man$	\sqcap_r		
	4	x has_child y	\exists_r	x has_child y	\exists_r		
	5	$y \colon \overline{man}$	\exists_s	$y \colon man$	\exists_s		
	6	$y \colon man$	\forall	open			
	7	*					
		inconsistent					
The righ	t	tableau has	a mo	odel: there	are	two	per-
sons, x	and	y. y is	the o	only child of <i>x</i>	;, <i>y</i>	is a	man
SOMERIGHTS RESERVED		©: Michael Ko	hlhase	141		, T	JACOBS UNIVERSITY

Properties of Tableau Calculi

 \triangleright We study the following properties of a tableau calculus \mathcal{C} :

Termination there are no infinite sequences of rule applications.

 $\mathbf{Correctness}$ If φ is consistent, then $\mathcal C$ terminates with an open branch.

Completeness If φ is in consistent, then C terminates and all branches are closed.

Complexity of the algorithm

Complexity of the satisfiability itself

©: Michael Kohlhase

143

Termination

▷ Theorem 5.24: The Tableau Algorithm for ALC terminates To prove termination of a tableau algorithm, find a well-founded measure (function) that is decreased by all rules ▷ **Proof**: Sketch (full proof very technical) **P.1** any rule except \forall can only be applied once to $x: \psi$. **P.2** rule \forall applicable to $x: \forall R.\psi$ at most as the number of R-successors of x. (those y with $x \ \mathsf{R} y$ above) **P.3** the $x: \exists \mathsf{R}.\theta$ R-successors are generated by above. (number bounded by size of input formula) **P.4** every rule application to $x: \psi$ generates constraints $z: \psi'$, where ψ' a proper subformula of ψ . © ©: Michael Kohlhase 144

Correctness

 \triangleright Lemma 5.25: If φ consistent, then \mathcal{T} terminates on $x: \varphi$ with open branch. \triangleright **Proof**: Let \mathcal{M} be a model for φ and $w \in \llbracket \varphi \rrbracket$. $\Im \models x \colon \psi \quad \text{iff} \quad \llbracket x \rrbracket \in \llbracket \psi \rrbracket$ **P.1** we define $\llbracket x \rrbracket := w$ and $\Im \models x \mathsf{R} y$ iff $\langle x, y \rangle \in \llbracket \mathsf{R} \rrbracket$ $\Im \models S$ iff $\Im \models c$ for all $c \in S$ **P.2** This gives us $\Im \models x \colon \varphi$ (base case) P.3 case analysis: if branch consistent, then either \triangleright no rule applicable to leaf (open branch) ▷ or rule applicable and one new branch satisfiable (green inductive case) **P.4** consequence: there must be an open branch (by termination) JACOBS UNIVERS œ ©: Michael Kohlhase 145

Case analysis on the rules

Completeness of the Tableau Calculus \triangleright lemma 5.26: Open saturated tableau branches for φ induce models for φ . \rhd Proof: construct a model for the branch and verify for φ **P.1** (Model Construction) Let \mathcal{B} be an open saturated branch $D \quad : = \quad (\{x \mid x \colon \psi \in \mathcal{B} \text{ or } z \mathsf{R} x \in \mathcal{B}\})$ $\llbracket c \rrbracket := (\{x \mid x : c \in \mathcal{B}\})$ ⊳ we define $\llbracket R \rrbracket \quad : = \quad (\{\langle x, y \rangle \mid x \mathsf{R} y \in S_n\})$ \triangleright well-defined since never $x \colon c, x \colon \overline{c} \in \mathcal{B}$ (otherwise \perp applies) \triangleright \Im satisfies all constraints $x : c, x : \overline{c}$ and $x \mathrel{\mathsf{R}} y$, (by construction) **P.2** (Induction) $\Im \models y \colon \psi$, for all $y \colon \psi \in \mathcal{B}$ (on $k = size(\psi)$ next slide) **P.3** (Consequence) $\Im \models x \colon \varphi$. V JACOBS UNIVERSITY © Some Richis Reserved ©: Michael Kohlhase 147

-			
Case A	nalysis for Induction		
case $y: \psi$	$y=y\colon \psi_1 \sqcap \psi_2 \;\; {\sf Then} \; \{y\colon \psi_1,y\colon \psi_2\} \subseteq {\cal B}$		$(\sqcap$ -rule, saturation)
so अ	$\mathfrak{T}\models y\colon\psi_1 ext{ und } \mathfrak{T}\models y\colon\psi_2 ext{ and } \mathfrak{T}\models y\colon\psi_1\sqcap\psi_2$		(IH, Definition)
case $y: \psi$	$y=y\colon \psi_1\sqcup\psi_2\;\; { m Then}\; y\colon \psi_1\in {f B}\; { m or}\; y\colon \psi_2\in {f B}$		(⊔-rule, saturation)
so अ	$\mathfrak{F}\models y\colon\psi_1 ext{ or } \mathfrak{F}\models y\colon\psi_2 ext{ and } \mathfrak{F}\models y\colon\psi_1\sqcup\psi_2$		(IH, Definition)
case $y: \psi$	$y=y\colon \exists R. heta$ then $\{y \; R \; z, z \colon heta\} \subseteq \mathbf{B}$ $(z \;$ new variable)		$(\exists_*$ -rules, saturation)
so अ	$\mathfrak{T}\models z\colon heta$ and $\mathfrak{T}\models y\;R\;z$, thus $\mathfrak{T}\models y\colon \existsR. heta.$		(IH, Definition)
$egin{array}{case y: \psi \ then \end{array}$	$y = y \colon \forall R.\theta \text{ Let } \langle \llbracket y \rrbracket, v \rangle \in \llbracket R \rrbracket \text{ for some } r \in \Im_D$ $v = z \text{ for some variable } z \text{ with } y R z \in \mathbf{B}$		(construction of [[R]])
So z	$x \colon heta \in \mathcal{B}$ and $\Im \models z \colon heta.$		(\forall -rule, saturation, Def)
Since	e v was arbitrary we have $\Im \models y \colon \forall R. \theta$.		
Some Rights Reserved	©: Michael Kohlhase	148	

Complexity

 \triangleright Idea: We can organize the tableau procedure, so that the branches are worked off one after the other. Therefore the size of the branches is relevant of the (space)-complexity of the procedure. > The size of the branches is *polynomial* in the size of the input formula (same reasons as for termination) \triangleright every rule except \forall is only applied to a constraint $x \colon \psi$. \triangleright The \forall is applied to constraints of the form $x: \forall \mathsf{R}.\psi$ at most as often as there are R-successors of x. \triangleright The R-successors of x are generated by constraints $x: \exists R.\theta$, whose number is bounded by the size of the input formula. \triangleright Each application to a constraint $x \colon \psi$ generates constraints $z \colon \psi'$ where ψ' is a proper subformula of ψ . The total size is the size of the input formula plus number of \exists -formulae times number of ∀-formulae. \bowtie Theorem 5.27: The consistent problem for ACC is in **PSPACE**. \triangleright Theorem 5.28: The consistency problem for ALC is PSPACE-Complete. \triangleright **Proof**: reduce a PSPACE-complete problem to \mathcal{AC} -consistency

▷ Theorem 5.29: (Time Complexity)

The \mathcal{AC} -consistency problem is in **EXPTIME**

▷ **Proof**: Sketch: There can be exponentially many branches(already for propositional logic)

©: Michael Kohlhase

149

JACOBS UNIVERS

 \triangleright

ABo	oxes (Database Compo	nent of DL)
⊳ F	Formula: $a: \varphi$ (a is a φ) aRb	b (a stands in relation R to b)
	property	example
	internally inconsistent	tony: student, tony: student
	inconsistent with a TBox	$TBox:$ student \sqcap prof
		ABox: tony: student, tony: prof
		$Abox$: tony: $\forall has_grad.genius$
	implicit info that is not ex-	tonyhas_gradmary
	plicit	⊨ mary: genius
		$TBox: cont_prof = prof \sqcap (\forall has_grad.genius)$
	info that can be combined	ABox : tony: cont_prof, tonyhas_gradmary
	with TBox info	\models mary: genius
	©: Michael k	Kohlhase 153 Vortestry

5.4 ALC Extensions

5.4.1 Functional Roles and Number Restrictions

Number Restrictions

⊳ Example 5.33:	Car = vehicle with at least for	our wheels	
▷ Trick: In Add vehicle □ (∃has_wh	$\mathcal{C}: model car using two n \\ eel.p_1 \sqcap p_2) \sqcap (\exists has_wheel.\overline{p_1} \sqcap p_2)$	new distinguishing $\Box (\exists has_wheel.p_1 \sqcap \overline{p_2})$	concepts p_1 and p_2) $\sqcap (\exists has_wheel.\overline{p_1} \sqcap \overline{p_2})$
▷ Problem: city =	= town with at least 1,000,000) inhabitants	(oh boy)
⊳ Alternative: Op	perators for number restrictions	5.	
COME RIGHTS RESERVED	©: Michael Kohlhase	157	

(Unqualified) Number Restrictions $\triangleright \mathcal{AC}$ plus operators $\exists_{\geq}^{n} R$ and $\forall_{\leq}^{n} R$ (R role, $n \in \mathbb{N}$) $car = vehicle \sqcap \exists_{\geq}^{4} has_wheel$ $\triangleright Example 5.34:$ city = town $\sqcap \exists_{\perp}^{1,000,000} has_{\perp}inhabitants$ $small_family = family \sqcap \forall_{\leq}^{2} has_{\perp}child$ \triangleright Semantics: $\begin{bmatrix} \exists_{\geq}^{n} R \\ \| \forall_{\leq}^{n} R \end{bmatrix} = (\{x \in \mathcal{D} \mid \#(\{y \mid \langle x, y \rangle \in [\![R]\!]\}) \ge n\})$ \triangleright Intuitively: $\exists_{\geq}^{n} R$ is the set of objects that have at least n R-successors. \triangleright Example 5.35: $\exists_{\geq}^{1,000,000} has_{\perp}inhabitants is the set of objects that have at least 1,000,000 inhabitants.<math>\blacksquare$ (\blacksquare : Michael Kohlhase

Functional Roles ▷ Example 5.37: CSR = car □ = has_sun_roof (CSR = car with sun roof) has_sun_roof is a relation, but restricted to CSR it is a total function. ▷ Partial functions: Chd = computer □ ∀1/2 has_hd (computer with at most one hard drive) has_hd is a partial function on the set Chd ▷ Intuition: number restrictions can be used to encode partial and total functions, but not to specify the range type. Image: C: Michael Kohlhase

5.4.2 Unique Names

Unique Name /	Assumption		
⊳ Problem: assumi	(but not always)		
\triangleright Definition 5.39:	(Unique Name Assumption	on)	
			(UNA)
Different names f	or objects denote different	t objects,	(cannot be equated)
	Bob: gardener	▷ Bill and Bob are diff	erent
⊳ Example 5.40:	Bob: gardener UNAbomber: gardener	▷ but the UNAbombe Bob or someone else	er can be Bill or
⊳ Assumption: ma	rk every ABox constant w	ith 'UNA' or 'UNA'	
SOME RIGHTS RESERVED	©: Michael Kohlhase	163	

5.4.3 Qualified Number Restrictions

Implementation by "Traces" \triangleright Algorithm SAT(φ) = sat($x_0, \{x_0: \varphi\}$) sat(x, S): allocate counter $\#r^S(x,\psi) := 0$ for all roles R and positive or negative subformulae ψ in S. apply rules \sqcap and \sqcup as long as possible If S contains an inconsistency, RETURN *. while $(\mapsto_{\geq} \text{ is applicable to } x)$ do: $S_{neu} := \{ \mathcal{T}_{ALC} \mathsf{R} xy, y \colon \varphi, y \colon \xi_1, \dots y \colon \xi_k \}$ where y is a new variable, $x: \exists_{>}^{n} \mathsf{R}.\varphi$ triggers rule $\mapsto_{>}$, $\{\psi_1, \ldots, \psi_k\} = (\{\psi \mid x : \exists_{\geq}^m \mathsf{R}. \psi \in \mathcal{B} \text{ or } x : \forall_{\leq}^m \mathsf{R}. \psi \in \mathcal{B}\}) \text{ and } \\ \xi_i = \psi \text{ oder } \xi = \neg \psi.$ $\text{For each } y \colon \psi \in S_{new} \colon \ \# r^S(x,\psi) + = 1 \qquad \text{If } x \colon \forall^m_< \mathsf{R}. \psi \in \mathcal{B} \text{ and } \ \# r^S(x,\psi) > m$ **RETURN** * If $sat(y, S_{neu}) = * \mathsf{RETURN} * \mathsf{od}$ RETURN "'consistent"'. JACOBS UNIVER: CC Some rights reserved ©: Michael Kohlhase 170

5.4.4 Role Operators

The DL-Zoo: Op	erator Types	
\triangleright Operators on role na	mes	(construct roles on the fly
hinspace role hierarchy and ro	le axioms	(knowledge about roles
\triangleright nominals		(names for domain elements
\triangleright features		(partial functions
\triangleright concrete domains		(e.g. $\mathbb{N}, \mathbb{Z}, trees$
⊳ external data structu	ires	(for programming
\triangleright epistemic operators		(belief,
$\triangleright \dots$		
SOME FIGHTIS RESERVED	©: Michael Kohlhase	172 V INVERS

Role Hierarchies

⊳ Idea: specificat	ion of subset relations among relation	15.	
⊳ Example 5.51:	role hierarchy as a directed graph ${\cal R}$	has_daughter ⊑ h has_son ⊑ has talks_to ⊑ communic calls ⊑ communica buys ⊑ obta steals ⊑ obta	as_child _child cates_with ates_with ins iins
SOME RIGHTS RESERVED	©: Michael Kohlhase	173	

ACC with Role hierarchies (without role operators)

 \triangleright Definition 5.52: T_{ALC} + complex roles instead of role names

©: Michael Kohlhase

$$\frac{x: \exists \mathsf{R}.\varphi}{\substack{x \; \mathsf{R} \; y \\ y: \varphi}} \exists \qquad \frac{x \; \mathsf{S} \; y}{x: \; \forall \mathsf{R}.\varphi} \; \; \mathsf{S} \sqsubseteq \mathsf{R} \in \mathcal{R} \\ \frac{y: \; \varphi}{y: \; \varphi} \; \forall \sqsubseteq$$

174

JACOBS UNIVERS

The \exists rule is the same as before

CC Some fights reserved

Special Relations 0	and 1			
	$R \sqcap \overline{R} = 0$	empty relation]	
	$R\sqcup\overline{R}=1$	universal relation]	
\triangleright Question: what does \forall	1.arphi mean?			
): Michael Kohlha	se	178	University

Converse Roles (\cdot^{-1}) ▷ Example 5.62: (set of objects whose parents are teachers)
$$\begin{split} \begin{bmatrix} \forall \mathsf{has_child}^{-1}.\mathsf{teacher} \end{bmatrix} &= (\{x \mid \forall y. \langle x, y \rangle \in \llbracket[\mathsf{has_child}^{-1}] \rrbracket \Rightarrow y \in \llbracket[\mathsf{teacher}] \}) \\ &= (\{x \mid \forall y. \langle y, x \rangle \in \llbracket[\mathsf{has_child}] \Rightarrow y \in \llbracket[\mathsf{teacher}] \}) \end{split}$$
 $= (\{x \mid \forall y. \langle x, y \rangle \in \llbracket \mathsf{has_parents} \rrbracket \Rightarrow y \in \llbracket \mathsf{teacher} \rrbracket \})$ $\triangleright \text{ Definition 5.63: } [[\mathsf{R}^{-1}]] = [[\mathsf{R}]]^{-1} = (\{\langle y, x \rangle \in \mathcal{D}^2 \mid \langle x, y \rangle \in [[\mathsf{R}]]\})$ has_child^{-1} = has_parents $\mathsf{is_part_of}^{-1}$ = contains_as_part \triangleright Example 5.64: owns^{-1} = belongs_to . . . JACOBS © Some Richis Reserved (c): Michael Kohlhase 180

Connect	ion to dynamic Logic	
⊳ Dynam	ic Logic is used for specification and v	verification of imperative programs (including non-deterministic, parallel)
⊳ Similar	to $\mathcal{A\!C\!C}$ with role terms	(role terms as program fragments)
⊳ Domai	n of interpretation of a DynL formula is $(\llbracket orall {R}. arphi rbracket =$ "in a	the set of states of the processes II states after executing R, φ holds")
R⊓S	parallel execution of R and S	
R⊔S	execution of R or S (nondeterministically)	
R ∘ S	execution of S after R	
R	execution of a program that is not R	
R^{-1}	execution of an undo operation	
$?\psi$	test whether ψ holds (not in $\mathcal{A\!L\!C}$)	
CC Some file fisher ved	©: Michael Kohlhase	

	Terms	alculus: $\mathcal{A\!C}$ + Role	Tableaux Calo
	role names	.66: complex roles instead of	▷ Definition 5.66
∀ _R	$\frac{\underset{x:\;\forallR.\varphi}{\mathcal{G}} \mathcal{B}\models x\;R\;y}{y:\;\varphi}$	$\begin{array}{c} x \colon \exists R.\varphi \\ x \mathrel{R} z \\ \hline x \mathrel{R} y \\ y \colon \varphi \end{array} \exists$	
\mathcal{B} is the current branch)	(/hat is $\mathcal{B} \models x \; R \; y$	⊳ Problem: What
	to converse roles \cdot^{-1} .	: no role composition \circ and r	⊳ Simple case: no
PL0 (decidable)	$) \cup \{\overline{R}\}$ inconsistent in	$= x R y, \text{ iff } (\{S \mid x S y \in \mathcal{B}\})$	$ ho$ then $\mathcal{B}\models x$
R)} inconsistent in PL1(undecidable in general)	$u \ S \ v \in \mathcal{B} \}) \cup \{tr^{x,y}($	e: $\mathcal{B} \models x R y$, iff ({tr ^{u,v} S	⊳ General case:
	183	©: Michael Kohlhase	CC Some Risking Reserved
		es for $\mathcal{B} \models x R y$	Special Cases
(decidable)		position \circ	⊳ no role compos
consistent in PL1 (as set	$\in \mathcal{B} \}) \cup \{ tr^{x,y}(\overline{R}) \}$ inc	$= x R y$, iff ({tr ^{x,y} S x S y d formulae).	$ ho$ then $\mathcal{B}\models x$ of ground fo
(decidable)		ment only for role names	⊳ role complemer
d tr ^{x,y} (\overline{R}) only contains	of ground formulae an	$r^{u,v}S \mid u S v \in \mathcal{B}\})$ is a set	\triangleright then $(\{tr^{u,v})$

▷ then $({tr^{x,v}S | u S v \in B})$ is a set of ground formulae and $tr^{x,y}(R)$ only contains constants and variables in the clause normal form.

 \vartriangleright The general case is undecidable, therefore the naive tableau approach is unsuitable

©: Michael Kohlhase 184

5.4.5 Role Axioms

Gene	ral Role Axioms		
	has_daughter 드 has_child	daughters are children	7
	$has_son \sqsubseteq has_child$	sons are children	
	has_daughter □ has_son	sons and daughters are disjoint	
	$has_child \sqsubseteq has_son \sqcup has_daughter$	children are either sons or daughters	
⊳ Tra	$\begin{aligned} \text{nslation of an axiom } \rho: \operatorname{trr}(\rho) &= \forall x, \\ & \operatorname{trr}(\operatorname{has_child} \sqsubseteq (\operatorname{has_son} \sqcup h) \\ &= \forall x, y.\operatorname{tr}^{x,y}(\operatorname{has_child} \sqsubseteq \operatorname{has_}) \\ &= \forall x, y.\operatorname{has_child}(x \Rightarrow y) \Rightarrow h \end{aligned}$	$\begin{array}{l} y.{\sf tr}^{x,y}(\rho) \\ {\sf has_daughter})) \\ {\sf son} \sqcup {\sf has_daughter}) \\ {\sf has_son}(x \lor y) \lor {\sf has_daughter}(x \lor y) \end{array}$	
	©: Michael Kohlhase	185	

5.4.6 Features

Examples \triangleright Example 5.69: persons, whose father is a teacher: person \sqcap had_father.teacher \triangleright Example 5.70: persons that have no father: person \sqcap had_father whose bosses have \triangleright Example 5.71: companies, nocompany car: company \sqcap has_boss \circ has_comp_car^ \triangleright Example 5.72: cars whose exterior color is the same as the interior color: $\operatorname{car} \sqcap \operatorname{color_exterior} = \operatorname{color_interior}$ \triangleright Example 5.73: cars whose exterior color is different from the interior color: $car \sqcap color_exterior \neq color_interior$ \triangleright Example 5.74: companies whose Bosses and Vice Presidents have the same company *car*: company \sqcap has_boss \circ has_comp_car = has_VP \circ has_comp_car JACOBS UNIVERSITY <u>____</u>

(C): Michael Kohlhase

N I				1.1	
IN	orn	nal	172	at i	on

▷ Normalization rules

 $\begin{array}{rccc} \overline{f.\varphi} & \to & f \uparrow \sqcup f.\varphi \\ \overline{\pi = \omega} & \to & (\pi \uparrow) \omega \uparrow \sqcup \pi \neq \omega \\ \overline{\pi \neq \omega} & \to & (\pi \uparrow) \omega \uparrow \sqcup \pi = \omega \\ f \circ \pi \uparrow & \to & f \uparrow \sqcup f \circ \pi \uparrow \end{array}$

188

189

 \triangleright Example 5.75: (for the last transformation)

 $has_boss \circ has_comp_car \circ has_sun_roof = \dots$

i.e. the set of objects that do not have a boss, plus the set of objects whose boss does not have a company car plus the set of objects whose bosses have company cars without sun roofs

e
SUME DIGUTE DESEONED

©: Michael Kohlhase

V JACOBS UNIVERSIT

5.4.7 Concrete Domains

ACC	with "concrete Domains" (Examples)		
[Formula	Concrete Domain	
[$person \sqcap age < 20$	real numbers	
[persons younger than 20]
[$company \sqcap has_CEO \circ has_comp_car \circ price) > \100000	natural numbers]
l	companies with CEOs with expensive car]
[$\operatorname{car} \sqcap \operatorname{height} > \operatorname{width}$	natural numbers	
l	cars that are higher than wide]
[$person \sqcap first_name < last_name$	strings]
[persons whose first name is lexicograppically smaller than their last name		
[$person \sqcap has_father \circ studiesbefore(has_mother \circ studies$	temporal interval logic]
[persons whose fathers have studied before their mothers		J
SUMERICHISTREERVE	©: Michael Kohlhase	192	JACOBS UNIVERSITY

Admissible Concrete Domains

 \triangleright Idea: concrete domains are admissible, iff \mathcal{P} is decidable.

▷ Definition 5.82: Let $\{P_1, ..., P_n\} \subseteq \mathcal{P}$, then conjunctions $P_1(x_1, ...) \land ... \land P_n(x_n, ...)$ are called satisfiable, iff there is a satisfying variable assignment $[a_i/x_i]$ with $a_i \in \mathcal{C}$. (the model is fixed in a concrete domain)

 \triangleright Example 5.83: C = real numbers

 $\begin{array}{|c|c|} \hline P_1(x,y) = \exists z.(x+z^2=y) \\ P_2(x,y) = P_1(x,y) \wedge x > y \end{array} \begin{array}{|c|} \text{satisfiable } (z=\sqrt{y-x}, \text{ e.g. } x=y=1, z=0) \\ \text{unsatisfiable} \end{array}$

 \triangleright Definition 5.84: A concrete domain $\langle C, P \rangle$ is called admissible, iff

1. the satisfiability problem for conjunctions is decidable

2. ${\mathcal P}$ is closed under negation and contains a name for ${\mathcal C}.$

JACOBS UNIVERS CC Some Rights Reserved ©: Michael Kohlhase 194

AC(C) \triangleright Syntax: F_{ACCC} :== $F_{ACCF} \mid P(\pi, \dots, \pi)$ ▷ Example 5.85: a female human under 21 can become a woman by having a child mother = human \sqcap female \sqcap (\exists has_child.human) woman = human \sqcap female \sqcap (mother \sqcup age ≥ 21) $(P = \lambda x. x \ge 21)$ here age $\geq 21 \in F_{ACC}$, since it is of the form P(age) \triangleright Semantics: Semantics of $\mathcal{AC}(\mathcal{D})$ $\triangleright \mathcal{D}$ and \mathcal{C} are disjoint. $\triangleright P(\pi_1, \dots, \pi_n) = \left\{ x \in \mathcal{D} \middle| \begin{array}{c} \text{there are } y_1 = \llbracket \pi_1 \rrbracket(x), \dots, y_n = \llbracket \pi_n \rrbracket(x) \in \mathcal{C} \\ \text{with } \langle y_1, \dots, y_n \rangle \in \llbracket P \rrbracket \end{array} \right\}$ Warning: $\llbracket \overline{\varphi} \rrbracket = \mathcal{D} \setminus \llbracket \varphi \rrbracket$, but not $\llbracket \overline{\varphi} \rrbracket = \mathcal{D} \cup \mathcal{C} \setminus \llbracket \varphi \rrbracket$ JACOBS UNIVERSITY ©: Michael Kohlhase 195 !

 \triangleright

 Negation Rules and Tableau Calculus

 > Let $\top_{\mathcal{C}}$ be the name for the concrete domain (as a set) and \overline{P} the negated predicate for P (\mathcal{C} is admissible)

 > New negation rule:
 $\overline{P(\pi_1, \dots, \pi_n)} \rightarrow \overline{P}(\pi_1, \dots, \pi_n) \sqcup (\forall \pi_1 . \top_{\mathcal{C}}) \sqcup \dots \sqcup (\forall \pi_n . \top_{\mathcal{C}})$

 > New tableau rule
 $P_1(x_{11}, \dots, x_{1n_1})$
 \vdots $\bigwedge_{1 \le i \le k} P_i(x_{i1}, \dots, x_{in_i})$ inconsistent

 $P_k(x_{k1}, \dots, x_{kn_k})$ $1 \le i \le k$

 *
 \downarrow^p

5.4.8 Nominals

Nominals
 Definition 5.86: (Idea) nominal are names for domain elements that can be used in the T-Box.
▷ Example 5.87: Students that study on Bremen or Hamburg: student □ (∃studies_in.{Bremen, Hamburg})
\triangleright Example 5.88: Students that have a friend with name Eva: student \sqcap (\exists has_friend \circ has_name.{ Eva })
▷ Example 5.89: persons that have phoned Bill, Bob, or the murderer: person \sqcap (∃has_phoned.{Bill, Bob, murderer})
\triangleright Example 5.90: <i>friends of Eva</i> : person \sqcap has_friend: <i>Eva</i>
\triangleright Example 5.91: companies whose employees all bank at Sparda Bank: company \sqcap (\forall has_empl.has_bank: Sparda)
$\label{eq:stample} \begin{array}{llllllllllllllllllllllllllllllllllll$
©: Michael Kohlhase 198

Example Language with Nominals

 \triangleright We consider the following language: \mathcal{AL} + unqualified number restrictions ($\exists_{>}^{n}\mathsf{R}, \forall_{<}^{n}\mathsf{R}$), some role operators (\Box , \circ , \cdot^{-1}), { a_1, \ldots, a_n }, R: a \triangleright Example 5.97: persons that have at most two friends among their neighbors and whose neighbors are Bill, Bob,or the gardener person $\sqcap \forall \leq (has_friend \sqcap has_neighbor) \sqcap (\forall has_neighbor.{Bill, Bob, Gardener})$ \triangleright Example 5.98: companies with at least 100 employees that have a car and live in $Bremen \text{ company} \sqcap \exists^{100}_{>} has_empl \circ has_comp_car \sqcap has_empl \circ lives_in: Bremen$ JACOBS UNIVERSITY <u>____</u> (c): Michael Kohlhase 200

5.5 The Semantic Web

The Current Web

- ▷ Resources: identified by URI's, untyped
- ▷ Links: href, src, ... limited, non-descriptive
- > User: Exciting world semantics of the resource, however, gleaned from content
- ▷ Machine: Very little information available significance of the links only evident from the context around the anchor.

The Semantic Web

- ▷ Resources: Globally Identified by URI's or Locally scoped (Blank), Extensible, Relational
- ▷ Links: Identified by URI's, Extensible, Relational
- ▷ User: Even more exciting world, richer user experience
- ▷ Machine: More processable information is available (Data Web)
- ▷ Computers and people: Work, learn and exchange knowledge effectively

203

202

What is the Ir	iformation a User sees?		
WWW2002 The eleventh Sheraton wail Honolulu, hay 7-11 may 200	international world wide web co kiki hotel vaii, USA 2	nference	
1 location 5 d	lays learn interact		
Registered pa australia, can ireland, italy, singapore, sw	rticipants coming from ada, chile denmark, france, germ japan, malta, new zealand, the r itzerland, the united kingdom, tl	nany, ghana, hong kong, india, netherlands, norway, he united states, vietnam, zaire	2
On the 7th M international Speakers con Tim Berners- Ian Foster: Ia	lay Honolulu will provide the bac world wide web conference. This ïrmed Lee: Tim is the well known inver n is the pioneer of the Grid, the	ckdrop of the eleventh s prestigious event ? ntor of the Web, ? next generation internet ?	
SOME FILEHIS RESERVED	©: Michael Kohlhase	204	JACOBS UNIVERSITY

What the machine sees			
	$\begin{split} & \mathcal{WWW} \in \mathcal{W} \in \\ \mathcal{T}(]] \downarrow] \sqcup \langle \rangle \sqcup] \nabla \backslash \dashv \sqcup \rangle \langle \backslash \dashv \downarrow \supseteq \rangle \nabla \downarrow [\supseteq \rangle [] \supseteq] \lfloor] \langle \backslash \{] \nabla] \backslash]] \\ & \mathcal{S}(] \nabla \dashv \sqcup \rangle \supseteq \dashv \rangle \rangle \rangle \langle \iota \sqcup] \downarrow \\ & \mathcal{H}(\backslash \downarrow \square \downarrow \square \Leftrightarrow \langle \dashv \supseteq \dashv \rangle) \Leftrightarrow \mathcal{USA} \\ & \land \infty \infty \downarrow \dashv \dagger \in \mathcal{W} \in \end{split}$		
	$\begin{split} \mathcal{R} \end{bmatrix} \\ \downarrow \Box \nabla \Box \left[\bigvee_{-1} \nabla \Box \downarrow \right] \\ \downarrow \downarrow \Box \cup \left[\bigvee_{-1} \nabla \Box \downarrow \right] \\ \downarrow \Box \cup \left[\bigvee_{-1} \nabla \Box \downarrow \right] \\ \downarrow \Box \cup \left[\neg \Box \cup \Box \cup \right] \\ \downarrow \Box \cup \left[\neg \Box \cup \Box$	$ \begin{array}{l} \neg \Leftrightarrow \langle i \setminus \} \ i \setminus \} \Leftrightarrow \rangle \setminus [\rangle \neg \Leftrightarrow \\ [f \Leftrightarrow \setminus i \nabla \supseteq \neg \uparrow \Leftrightarrow \\ f \Leftrightarrow \subseteq \rangle] \sqcup \setminus \neg \ddagger \Leftrightarrow \ddagger \neg \nabla] \end{array} $	
	$\mathcal{O} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Ш	
	$\begin{split} & \mathcal{S}_{1} \\ & \mathcal{S}_{2} \\ & \mathcal{S}_{1} \\ & \mathcal{S}_{2} \\ &$	ןע∖]חד	
SOME RIGHTS RE	©: Michael Kohlhase	205	V JACOBS UNIVERSITY

Solution: XML markup with "meaningful" Tags

<title>WWW∈#∈T(]]\$]⊑]\U()\U]∇\HU)?\H\$_??\$[])[]][]?\{]∇]\]</title>

5.6 Description Logics and the Semantic Web

${\rm XML}$ Syntax for RDF

 \triangleright

RDFa as an Inline RDF Markup Format			
▷ Problem: RDF is a standoff markup format (annotate by URIs pointing into other files)			
▷ Example 5.108:			
<pre><div xmlns:dc="http://purl.org/dc/elements/1.1/"></div></pre>			
https://svn.kwarc.info//slides/kr/en/rdfa.tex http://purl.org/dc/elements/1.1/title http://purl.org/dc/elements/1.1/date http://purl.org/dc/elements/1.1/creator RDFasanInlineRDFMarkupFormat 20091111 (xsd:date) MichaelKohlhase			
C: Michael Kohlhase 212			

OWL as an Ontology Language for the Semantic Web

▷ Idea: Use Description Logics to talk about RDF triples.

 \triangleright An RDF triple is an ABox entry for a role contraint hRs

 \triangleright Example 5.109: *h* is the resource for Ian Horrocks, *s* is the resource for Ulrike Sattler, and R is the the relation "hasColleague" in

Idea: Now collect similar resources in classes, and state rules about them in a way, so that we can use inference to make kwnowledge explicit that was implicit before (saves us lots of work!)

JACOBS UNIVERS

 ▷ Idea: We know how to do this, this is just ACC+!!!

 ○

 ○: Michael Kohlhase
 213

The OWL Language	
▷ Three species of OWL	
▷ OWL Full is union of OWL syntax and RDF	
> OWL DL restricted to FOL fragment	
\triangleright OWL Lite is "easier to implement" subset of OWL DL	
▷ Semantic layering	
\triangleright OWL DL \doteq OWL Full within DL fragment	
DL semantics officially definitive	
$ ho$ OWL DL based on SHIQ Description Logic($\mathcal{A\!C\!C}$ + nubmer restrictions, transitive roles,	inverse roles, role inclusior
> OWL DL benefits from many years of DL research	
> Well defined semantics, formal properties well understood (complexity, decidability)	
Known reasoning algorithms, Implemented systems (highly optimized)	
©: Michael Kohlhase 214	

References

[Tob00] Stephan Tobies. PSpace reasoning for graded modal logics. Journal of Logic and Computation, 11:85–106, 2000.