
Computational Logic

320441 — Fall 2009

Michael Kohlhase

School of Engineering & Science
Jacobs University, Bremen Germany

m.kohlhase@jacobs-university.de
office: Room 62, Research 1, phone: x3140

c©:Michael Kohlhase 1

This document contains the course notes for the graduate course “Computational Logic” held
at Jacobs University, Bremen in the Fall Semsesters 2005, 2007, and 2009. The document mixes
the slides presented in class with comments of the instructor to give students a more complete
background reference.

This document is made available for the students of this course only. It is still an early draft,
and will develop over the course of the course. It will be developed further in coming academic
years.
This document is also an experiment in knowledge representation. Under the hood, it uses the

STEX package, a TEX/LATEX extension for semantic markup. Eventually, this will enable to export
the contents into eLearning platforms like Connexions (see http://cnx.rice.edu) or ActiveMath
(see http://www.activemath.org).

Comments and extensions are always welcome, please send them to the author.
Acknowledgments: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Rares Ambrus, Florian Rabe, Deyan Ginev.

1

m.kohlhase@jacobs-university.de
http://creativecommons.org/licenses/by-sa/2.5/
http://cnx.rice.edu
http://www.activemath.org

Contents

1 Administrativa 3

2 First-Order Logic 7
2.1 First-Order Logic . 7
2.2 First-Order Substitutions . 12
2.3 Alpha-Renaming for First-Order Logic . 14
2.4 Recap: General Properties of Logics and Calculi 15
2.5 First-Order Calculi . 17
2.6 Abstract Consistency and Model Existence . 21
2.7 A Completeness Proof for First-Order ND . 28
2.8 Limits of First-Order Logic . 30

3 First-Order Automated Theorem Proving with Tableaux 30
3.1 First-Order Tableaux . 30
3.2 Free Variable Tableaux . 33
3.3 Properties of First-Order Tableaux . 34

4 Higher-Order Logic and λ-Calculus 36
4.1 Higher-Order Predicate Logic . 36
4.2 Simply Typed λ-Calculus . 40
4.3 Simply Typed λ Calculus . 42
4.4 Computational Properties of λ-Calculus . 46

4.4.1 Termination of β-reduction . 47
4.5 Completeness of αβη-Equality . 50
4.6 λ-Calculus Properties . 52
4.7 The Curry-Howard Isomorphism . 52

5 Knowledge Representation 57
5.1 Introduction to Knowledge Representation . 57
5.2 Logic-Based Knowledge Representation . 62
5.3 A simple Description Logic: ALC . 68
5.4 ALC Extensions . 79

5.4.1 Functional Roles and Number Restrictions 79
5.4.2 Unique Names . 82
5.4.3 Qualified Number Restrictions . 83
5.4.4 Role Operators . 86
5.4.5 Role Axioms . 90
5.4.6 Features . 91
5.4.7 Concrete Domains . 93
5.4.8 Nominals . 96

5.5 The Semantic Web . 98
5.6 Description Logics and the Semantic Web . 101

2

Outline

Contents

c©:Michael Kohlhase 2

1 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between
the instructor and the students. Both have to keep their side of the deal to make learning and be-
coming Computer Scientists as efficient and painless as possible.

Textbooks, Handouts and Information, Forum

� No required textbook, but course notes, posted slides

� Course notes will be posted at http://kwarc.info/teaching/GenCS1.html

� Everything will be posted on Panta Rhei (Notes+assignments+course forum)

� announcements, contact information, course schedule and calendar

� discussion among your fellow students(careful, I will occasionally check for academic integrity!)

� http://panta-rhei.kwarc.info (use your precourse login and pwd)

� if there are problems send e-mail to c.mueller@jacobs-university.de

� The EECS Seminar (If you want to take a peek into EECS research)

see details at http://www.eecs.jacobs-university.de/seminar/

c©:Michael Kohlhase 3

No Textbook: Due to the special circumstances discussed above, there is no single textbook that
covers the course. Instead we have a comprehensive set of course notes (this document). They are
provided in two forms: as a large PDF that is posted at the course web page and on the Panta Rhei
system. The latter is actually the preferred method of interaction with the course materials, since
it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF
file is for printing and as a fallback, if the Panta Rhei system, which is still under development
develops problems.
The EECS seminar: The EECS seminar is the colloquium of the EECS&Logistics group at Jacobs
University. The seminar features talks by graduate students, Jacobs faculty and external research
collaborators. Even though much of the material covered in the talks will be beyond understanding
for most first-year students, the speakers usually give a general introduction which shows students
which research directions are currently being discussed. For students that want to get involved
into research early this is a valuable source of orientation.

3

http://creativecommons.org/licenses/by-sa/2.5/
http://kwarc.info/teaching/GenCS1.html
http://panta-rhei.kwarc.info
c.mueller@jacobs-university.de
http://www.eecs.jacobs-university.de/seminar/
http://creativecommons.org/licenses/by-sa/2.5/

Homework assignments

� Goal: Reinforce and apply what is taught in class.

� homeworks will be small individual problem/programming/proof assignments
(but take time to solve)

� admin: To keep things running smoothly

� Homeworks will be posted on Panta Rhei

� Homeworks are handed in electronically in grader (plain text, Postscript, PDF,. . .)

� go to the recitations, discuss with your TA (they are there for you!)

� Homework discipline

� start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen

� Humans will be trying to understand the text/code/math when grading it.

c©:Michael Kohlhase 4

Homework assignments are a central part of the course, they allow you to review the concepts
covered in class, and practice using them.
The next topic is very important, you should take this very seriously, even it you think that this
is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract
among its members, protect their interestes, and optimize the functioning of the society as a
whole. This is also true for the community of scientists worldwide. This society is special, since it
balances intense cooperation on joint issues with fierce competition. Most of the rules are largely
unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is
an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics,
i.e. to function as a member of the academic community. Even if you do not want to become
a scientist in the end, you should be aware that many of the people you are dealing with have
gone through an adademic education and expect that you (as a graduate of Jacobs) will behave
by these rules.

4

http://creativecommons.org/licenses/by-sa/2.5/

The Code of Academic Integrity

� Jacobs has a “Code of Academic Integrity”

� this is a document passed by the faculty (our law of the university)

� you have signed it last week (we take this seriously)

� It mandates good behavior and penalizes bad from both faculty and students

� honest academic behavior (we don’t cheat)

� respect and protect the intellectual property of others (no plagiarism)

� treat all Jacobs members equally (no favoritism)

� this is to protect you and build an atmosphere of mutual respect

� academic societies thrive on reputation and respect as primary currency

� The Reasonable Person Principle (one lubricant of academia)

� we treat each other as reasonable persons

� the other’s requests and needs are reasonable until proven otherwise

c©:Michael Kohlhase 5

To understand the rules of academic societies it is central to realize that these communities are
driven by economic considerations of their members. However, in academic societies, the the
primary good that is produced and consumed consists in ideas and knowledge, and the primary
currency involved is academic reputation1. Even though academic societies may seem as altruistic
— scientists share their knowledge freely, even investing time to help their peers understand the
concepts more deeply — it is useful to realize that this behavior is just one half of an economic
transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of
course, this can only work if ideas and facts are attributed to their original creators (who gain
reputation by being cited). You will see that scientists can become quite fierce and downright
nasty when confronted with behavior that does not respect other’s intellectual property.
One special case of academic rules that affects students is the question of cheating, which we will
cover next.

1Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at
work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may
get a well-paying job at a good university,. . .

5

http://creativecommons.org/licenses/by-sa/2.5/

Cheating [adapted from CMU:15-211 (P. Lee, 2003)]

� There is no need to cheat in this course!! (hard work will do)

� cheating prevents you from learning (you are cutting your own flesh)

� if you are in trouble, come and talk to me (I am here to help you)

� We expect you to know what is useful collaboration and what is cheating

� you will be required to hand in your own original code/text/math for all assignments

� you may discuss your homeworks with others, but if doing so impairs your ability to
write truly original code/text/math, you will be cheating

� copying from peers, books or the Internet is plagiarism unless properly attributed
(even if you change most of the actual words)

� more on this as the semester goes on . . .

� There are data mining tools that monitor the originality of text/code.

c©:Michael Kohlhase 6

We are fully aware that the border between cheating and useful and legitimate collaboration is
difficult to find and will depend on the special case. Therefore it is very difficult to put this into
firm rules. We expect you to develop a firm intuition about behavior with integrity over the course
of stay at Jacobs.

Software/Hardware tools

� You will need computer access for this course
(come see me if you do not have a computer of your own)

� we recommend the use of standard software tools

� the emacs and vi text editor (powerful, flexible, available, free)

� UNIX (linux, MacOSX, cygwin) (prevalent in CS)

� FireFox (just a better browser)

� learn how to touch-type NOW (reap the benefits earlier, not later)

c©:Michael Kohlhase 7

Touch-typing: You should not underestimate the amount of time you will spend typing during
your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you
a factor two in speed. This ability will save you at least half an hour per day, once you master it.
Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will
re-gain your two-finger speed and from then on start saving time. There are various free typing
tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about
programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan recommends the TypingMaster program. You can download a demo version
from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like ”learn to touch-type”. (goto http:
//www.google.com and type these search terms).
Next we come to a special project that is going on in parallel to teaching the course. I am using
the coures materials as a research object as well. This gives you an additional resource, but may

6

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://typingsoft.com/all_typing_tutors.htm
http://www.typingmaster.com/index.asp?go=tutordemo
http://www.google.com
http://www.google.com

affect the shape of the coures materials (which now server double purpose). Of course I can use
all the help on the research project I can get.

Experiment: E-Learning with OMDoc/ActiveMath/SWiM

� My research area: deep representation formats for (mathematical) knowledge

� Application: E-learning systems (represent knowledge to transport it)

� Experiment: Start with this course (Drink my own medicine)

� Re-Represent the slide materials in OMDoc (Open Math Documents)

� Feed it into the ActiveMath system (http://www.activemath.org)

� Try it on you all (to get feedback from you)

� Tasks (Unfortunately, I cannot pay you for this; maybe later)

� help me complete the material on the slides (what is missing/would help?)

� I need to remember “what I say”, examples on the board. (take notes)

� Benefits for you (so why should you help?)

� you will be mentioned in the acknowledgements (for all that is worth)

� you will help build better course materials (think of next-year’s freshmen)

c©:Michael Kohlhase 8

2 First-Order Logic

2.1 First-Order Logic

History of Ideas (abbreviated): Propositional Logic

� General Logic ([ancient Greece, e.g. Aristoteles])

+ conceptual separation of syntax and semantics

+ system of inference rules (“Syllogisms”)

– no formal language, no formal semantics

� Propositional Logic [Boole ∼ 1850]

+ functional structure of formal language (propositions + connectives)

+ mathematical semantics (; Boolean Algebra)

– abstraction from internal structure of propositions

c©:Michael Kohlhase 9

7

http://www.activemath.org
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

History of Ideas (continued): Predicate Logic

� Begriffsschrift [Frege 1879]

+ functional structure of formal language(terms, atomic formulae, connectives, quantifiers)

– weird graphical syntax, no mathematical semantics

– paradoxes e.g. Russell’s Paradox [R. 1901]
(the set of sets that do not contain themselves)

� modern form of predicate logic [Peano ∼ 1889]

+ modern notation for predicate logic (∨,∧,⇒,∀,∃)

c©:Michael Kohlhase 10

History of Ideas (continued): First-Order Predicate Logic

� Types ([Russell 1908])

– restriction to well-types expression

+ paradoxes cannot be written in the system

+ Principia Mathematica ([Whitehead, Russell 1910])

� Identification of first-order Logic ([Skolem, Herbrand, Gödel ∼ 1920 – ’30])

– quantification only over individual variables (cannot write down induction principle)

+ correct, complete calculi, semi-decidable

+ set-theoretic semantics ([Tarski 1936])

c©:Michael Kohlhase 11

History of Ideas (continued): Foundations of Mathematics

� Hilbert’s Programme: find logical system and calculus, ([Hilbert ∼ 1930])

� that formalizes all of mathematics

� that admits correct and complete calculi

� whose consistence is provable in the system itself

� Hilbert’s Programm is impossible! ([Gödel 1931])

Let L be a logical system that formalizes arithmetics (N,+, ∗),

� then L is incomplete

� then the consistence of L cannot be proven in L.

c©:Michael Kohlhase 12

8

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

History of Ideas (continued): λ-calculus, set theory

� simply typed λ-calculus ([Church 1940])

+ simplifies Russel’s types, λ-operator for functions

+ comprehension as β-equality (can be mechanized)

+ simple type-driven semantics (standard semantics ; incompleteness)

� Axiomatic set theory

+– type-less representation (all objects are sets)

+ first-order logic with axioms

+ restricted set comprehension (no set of sets)

– functions and relations are derived objects

c©:Michael Kohlhase 13

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling of relationship)

� functions on individuals, (e.g. the father of function)

We can also state the existance of an individual with a certain property, or the universality
of a property.

� but we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties
(complete calculi, compactness, unitary, linear unification,. . .)

� but too weak for formalizing :

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, at least three, some,. . .)

c©:Michael Kohlhase 14

9

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

PL1 Syntax (Signature and Variables)

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� o for truth values (like in PL0)

� Type ι for individuals (numbers, foxes, Pokémon,. . .)

� Definition 2.1: A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σo = {T, F,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (functions on individuals)

� predicate constants: Σpk = {p, q, r . . .} (relations among inds.)

� (Skolem constants: Σskk = {fk1 , fk2 , . . .}) (witness constants; countably ∞)

� We take the signature Σ to all of these together: Σ := Σo ∪ Σf ∪ Σp ∪ Σsk, where
Σ∗ :=

⋃
k∈N Σ∗k.

� Definition 2.2: For first-order Logic (PL1), we assue a set of

� individual variables: Vι = {Xι, Yι, Z,X
1
ι , X

2, . . .} (countably ∞)

c©:Michael Kohlhase 15

PL1 Syntax (Formulae)

� Definition 2.3: terms: Aι ∈ wff ι(Σι) (denote individuals: type ι)

� Vι ⊆ wff ι(Σι),

� if f ∈ Σfk and Ai ∈ wff ι(Σι) for i ≤ k, then f(A1, . . . ,Ak) ∈ wff ι(Σι).

� Definition 2.4: propositions: Ao ∈ wff o(Σ) (denote truth values: type o)

� if p ∈ Σpk and Ai ∈ wff ι(Σι) for i ≤ k, then p(A1, . . . ,Ak) ∈ wff o(Σ)

� If A,B ∈ wff o(Σ), then T, (A ∧B),¬A, (∀Xι.A) ∈ wff o(Σ)

� Definition 2.5: We define the connectives F,∨,⇒,⇔ via the abbreviations A ∨B :=
¬(¬A ∧ ¬B), A⇒ B := ¬A ∨B, A⇔ B := (A⇒ B) ∧ (B⇒ A), and F :=
¬A ∧A. We will use them like the primary connectives ∧ and ¬

� Definition 2.6: We use ∃Xι.A as an abbreviation for ¬(∀Xι.¬A)(existential quantifier)

� Definition 2.7: Formulae without connectives or quantifiers are called atomic else com-
plex.

c©:Michael Kohlhase 16

10

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Semantics (PL1)

� Universe Do = {T,F} of truth values

� Arbitrary universe Dι 6= ∅ of individuals

� interpretation I assigns values to constants, e.g.

� I(¬) : Do → Do with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk → F(Dιk;Dι) (interpret function symbols as arbitrary functions)

� I : Σpk → P(Dιk) (interpret predicates as arbitrary relations)

� Definition 2.8: variable assignment ϕ : Vι → Dι assigns values to variables.

c©:Michael Kohlhase 17

Semantics (PL1 continued)

� The value function Iϕ recursively defined

� Iϕ : wff ι(Σι)→ Dι assigns values to terms.

� Iϕ(Xι) := ϕ(Xι) and

� Iϕ(f(A1, . . . ,Ak)) := I(f)(Iϕ(A1), . . . , Iϕ(Ak))

� Iϕ : wff o(Σ)→ Do assigns values to formulae

� e.g. Iϕ(¬A) = I(¬)(Iϕ(A)) (just as in Pl0)

� Iϕ(p(A1, . . . ,Ak)) := T, iff 〈Iϕ(A1), . . ., Iϕ(Ak)〉 ∈ I(p)
� Iϕ(∀Xι.A) := T, iff Iϕ,[a/X](A) = T for all a ∈ Dι.

� Model: M = 〈Dι, I〉 varies in Dι and I.

c©:Michael Kohlhase 18

Free and Bound Variables

� Definition 2.9: We call an occurrence of a variable X bound in a formula A, iff it is in
a subterm ∀X.B of A. We call a variable occurrence free otherwise.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free) variables
of A, i.e. variables that have a free/bound occurrence in A.

� Definition 2.10: We can inductively define the set free(A) of free variables of a formula
A:

free(X) : = {X}
free(f(A1, . . . ,An)) : =

S
1≤i≤n free(Ai)

free(p(A1, . . . ,An)) : =
S

1≤i≤n free(Ai)

free(¬A) : = free(A)
free(A ∧B) : = free(A) ∪ free(B)
free(∀X.A) : = free(A) \ {X}

� Definition 2.11: We call a formula A closed or ground, iff free(A) = ∅. We call a
closed proposition a sentence, and denote the set of all ground terms with cwff ι(Σι) and
the set of sentences with cwff o(Σι).

c©:Michael Kohlhase 19

11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.2 First-Order Substitutions

Substitutions

� Intuition: If B is a term and X is a variable, then we denote the result of systematically
replacing all variables in a term A by B with [B/X]A.

� Problem: What about [Z/Y], [Y/X]X, is that Y or Z?

� Folklore: [Z/Y], [Y/X]X = Y , but [Z/Y][Y/X](X) = Z of course.
(Parallel application)

� Definition 2.12: We call σ : wff ι(Σι)→ wff ι(Σι) a substitution, iff σf(A1, . . . ,An) =
f(σA1, . . . , σAn) and the support supp(σ) := ({X | σX 6= X}) of σ is finite.

� Notation 2.13: Note that a substitution σ is determined by its values on variables alone,
thus we can write σ as σ

∣∣
Vι

= ({[σX/X] | X ∈ supp(σ)}).

� Example 2.14: [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

� Definition 2.15: We call intro(σ) :=
⋃
X∈supp(σ) free(σX) the set of variables intro-

duced by σ.

c©:Michael Kohlhase 20

Substitution Extension

� Notation 2.16: (Substitution Extension)

Let σ be a substitution, then we denote with σ, [A/X]
the function ({〈Y,A〉 ∈ σ | Y 6= X}) ∪ {〈X,A〉}.

(σ, [A/X] coincides with σ off X, and gives the result A there.)

� Note: If σ is a substitution, then σ, [A/X] is also a substitution.

� Definition 2.17: If σ is a substitution, then we call σ, [A/X] the extension of σ by
[A/X].

c©:Michael Kohlhase 21

12

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to quantified
formulae: What is σ(∀X.A)?

� Idea: σ should not instantiate bound variables:

� Definition 2.18: σ(∀X.A) := (∀X.σ−XA), where σ−X := σ, [X/X]

� Problem: This can lead to variable capture: [f(X)/Y](∀X.p(X,Y)) would evaluate to
∀X.p(X, f(X)), where the second occurrence of X is bound after instantiation, whereas
it was free before.

� Definition 2.19: Let B ∈ wff ι(Σι) and A ∈ wff o(Σ), then we call B substitutible for
X in A, iff A has no occurrence of X in a subterm ∀Y.C with Y ∈ free(B).

� Solution: forbid substitution [B/X]A, when B is not substitutible for X in A

� Better Solution: rename away the bound variable X in ∀X.p(X,Y) before applying the
substitution. (see alphabetic renaming later.)

c©:Michael Kohlhase 22

Substitution Value Lemma for Terms

� Lemma 2.20: Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where ψ =
ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A:

P.1.1 depth=0:

P.1.1.1 Then A is a variable (say Y), or constant, so we have three cases

P.1.1.1.1 A = Y = X: then Iϕ([B/X]A) = Iϕ([B/X]X) = Iϕ(B) = ψ(X) =
Iψ(X) = Iψ(A).

P.1.1.1.2 A = Y 6= X: then Iϕ([B/X]A) = Iϕ([B/X]Y) = Iϕ(Y) = ϕ(Y) =
ψ(Y) = Iψ(Y) = Iψ(A).

P.1.1.1.3 A is a constant: analogous to the preceding case (Y 6= X)

P.1.1.2 This completes the base case (depth = 0).

P.1.2 depth> 0: then A = f(A1, . . . ,An) and we have

Iϕ([B/X]A) = I(f)(Iϕ([B/X]A1), . . . , Iϕ([B/X]An))
= I(f)(Iψ(A1), . . . , Iψ(An))
= Iψ(A).

by inductive hypothesis

P.1.2.2 This completes the inductive case, and we have proven the assertion

c©:Michael Kohlhase 23

13

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Substitution Value Lemma for Propositions

� Lemma 2.21: Let B ∈ wff ι(Σι) be substitutible for X in A ∈ wff o(Σ), then
Iϕ([B/X]A) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the number n of connectives and quantifiers in A

P.1.1 n = 0: then A is an atomic proposition, and we can argue like in the inductive
case of the substitution value lemma for terms.

P.1.2 n > 0 and A = ∀X.C: then Iψ(A) = Iψ(∀X.C) = T, iff Iψ,[a/X](C) =
Iϕ,[a/X](C) = T, for all a ∈ Dι, which is the case, iff Iϕ(∀X.C) = Iϕ([B/X]A) =
T.

P.1.3 n > 0 and A = ∀Y.C where X 6= Y : then Iψ(A) = Iψ(∀Y.C) = T, iff
Iψ,[a/Y](C) = Iϕ,[a/Y]([B/X]C) = T, by inductive hypothesis. So Iψ(A) =
Iϕ(∀Y.[B/X]C) = Iϕ([B/X](∀Y.C)) = Iϕ([B/X]A)

P.1.4 n > 0 and A = ¬B or A = C ◦D:

P.1.4.1 Here we argue like in the inductive case of the term lemma

c©:Michael Kohlhase 24

2.3 Alpha-Renaming for First-Order Logic

Armed with the substitution value lemma we can now prove one of the main representational facts
for first-order logic: the names of bound variables do not matter; they can be renamed at liberty
without changing the meaning of a formula.

Alphabetic Renaming

� Lemma 2.22: Bound variables can be renamed: If Y is substitutible for X in A, then
Iϕ(∀X.A) = Iϕ(∀Y.[Y/X]A)

� Proof: by the definitions:

P.1 Iϕ(∀X.A) = T, iff

P.2 Iϕ,[a/X](A) = T for all a ∈ Dι, iff

P.3 Iϕ,[a/Y]([Y/X]A) = T for all a ∈ Dι, iff (by substitution value lemma)

P.4 Iϕ(∀Y.[Y/X]A) = T.

� Definition 2.23: We call two formulae A and B alphabetical variants (or α-equal; write
A =α B), iff A = ∀X.C and B = ∀Y.[Y/X]C for some variables X and Y .

c©:Michael Kohlhase 25

We have seen that naive substitutions can lead to variable capture. As a consequence, we always
have to presuppose that all instanciations respect a substitutibility condition, which is quite te-
dious. We will now come up with an improved definition of substitution application for first-order
logic that does not have this problem.

14

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Avoiding Variable Capture by Built-in α-renaming

� Idea: Given alphabetic renaming, we will consider alphabetical variants as identical

� So: Bound variable names in formulae are just as a representational device
(we rename bound variables wherever necessary)

� Formally: Take cwff o(Σι) (new) to be the quotient set of cwff o(Σι) (old) modulo =α.
(formulae as syntactic representatives of equivalence classes)

� Definition 2.24: (Capture-Avoiding Substitution Application)

Let σ be a substitution, A a formula, and A′ an alphabetical variant of A, such that
intro(σ) ∩BVar(A) = ∅. Then [A]=α = [A′]=α and we can define σ[A]=α :=
[σ(A′)]=α .

� Notation 2.25: After we have understood the quotient construction, we will neglect
making it explicit and write formulae with and substitutions with the understanding that
they act on quotients.

c©:Michael Kohlhase 26

2.4 Recap: General Properties of Logics and Calculi

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a
logical system consists of a formal language, a class of models, and a satisfaction relation between
models and expressions of the formal lanugage. The satisfaction relation tells us when a expression
is deemed true in this model.

Logical Systems

� Definition 2.26: logical system is a triple S := 〈L,K, |=〉, where L is a formal language,
K is a set and |= ⊆ K × L. Member of L are called formulae of S, members of K models
for S, and |= the satisfaction relation

� Definition 2.27: Let S := 〈L,K, |= 〉 be a logical system, M ∈ K be a model and
A ∈ L a formula, then we call A

� satisfied by M, iff M |= A

� falsified by M, iff M 6|= A

� satisfiable in K, iff M |= A for some model M∈ K.

� valid in K, iff M |= A for all models M∈ K
� falsifiable in K, iff M 6|= A for some M∈ K.

� unsatisfiable in K, iff M 6|= A for all M∈ K.

� Definition 2.28: Let S := 〈L,K, |=〉 be a logical system, then we define the entailment
relation |= ⊆ L× L. We say that A entails B (written A |= B), iff we have M |= B
for all models M∈ K with M |= A.

� Theorem 2.29: A |= B and M |= A imply M |= B.

c©:Michael Kohlhase 27

15

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Inference Rules and Calculi

� Definition 2.30: Let S := 〈L,K, |=〉 be a logical system, then we call a relation ` ⊆
P(L)× L a calculus for S, if it

� is proof-reflexive, i.e. H ` A, if A ∈ H,

� is proof-transitive, i.e. (H′ ∪H′′) ` A, if H ` A and H′ ` A′, where A′ ∈ H and
H′′ = H\{A}.

� admits weakening, i.e. H ` A and H ⊆ H′ imply H′ ` A.

� Definition 2.31: A calculus C is usually given as a set of inference rules
A1, . . . ,An

C
N ,

where A1, . . . ,An and C are formula schemata and N is a name.
The Ai are called assumptions, and C is called conclusion.

� Definition 2.32: An inference rule without assumptions is called an axiom (schema).

c©:Michael Kohlhase 28

Derivations and Proofs

� Definition 2.33: A derivation of a formula C from a set H of hypotheses (write H ` C)
is a sequence A1, . . . ,Am of formulae, such that

� Am = C (derivation culminates in C)

� for all 1 ≤ i ≤ m, either Ai ∈ H (hypothesis)

or there is an inference rule
Al1 , . . . ,Alk

Ai
N , where lj < i for all j ≤ k.

� Example 2.34: A ` (B⇒ A)

Ax
A⇒ B⇒ A A

⇒ E
B⇒ A

� Definition 2.35: A derivation ∅ `C A is called a proof of A and if one exists (`C A)
then A is called a C-theorem.

� Definition 2.36: an inference rule I is called admissible in C, if the extension of C by I
does not yield new theorems.

c©:Michael Kohlhase 29

16

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Properties of Calculi (Theoretical Logic)

� Correctness: (provable implies valid)

� H ` B implies H |= B (equivalent: ` A implies |= B)

� Completeness: (valid implies provable)

� H |= B implies H ` B (equivalent: |= A implies ` B)

� Goal: ` A iff |= A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

c©:Michael Kohlhase 30

2.5 First-Order Calculi

In this section we will introduce two reasoning calculi for first-order logic, both were invented by
Gerhard Gentzen in the 1930’s and are very much related. The “natural deduction” calculus was
created in order to model the natural mode of reasoning e.g. in everyday mathematical practice.
This calculus was intended as a counter-approach to the well-known Hilbert’style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles.

The “sequent calculus” was a rationalized version and extension of the natural deduction
calculus that makes certain meta-proofs simpler to push through1. EdNote(1)

Both calculi have a similar structure, which is motivated by the human-orientation: rather
than using a minimal set of inference rules, they provide two inference rules for every connective
and quantifier, one “introduction rule” (an inference rule that derives a formula with that symbol
at the head) and one “elimination rule” (an inference rule that acts on a formula with this head
and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and
then extend this to a calculus for first-order logic by adding rules for the quantifiers.

1EdNote: say something about cut elimination/analytical calculi somewhere

17

http://creativecommons.org/licenses/by-sa/2.5/

Calculi: Natural Deduction (ND) [Gentzen’30]

� tries to mimic human theorem proving behavior (non- minimal)

� rules for the introduction and elimination of all connectives

Introduction Elimination Axiom

A B
∧I

A ∧B

A ∧B ∧El
A

A ∧B ∧Er
B

TND
A ∨ ¬A

[A]1

B
⇒ I1

A⇒ B

A⇒ B A
⇒ E

B

� only in classical logic (otherwise constructive/intuitionistic)

c©:Michael Kohlhase 31

Natural Deduction: Examples

� Inference with local hypotheses

[A ∧B]1
∧Er

B

[A ∧B]1
∧El

A
∧I

B ∧A
⇒ I1

A ∧B⇒ B ∧A

c©:Michael Kohlhase 32

18

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Natural Deduction in Sequent Calculus Formulation

� Idea: Explicit representation of hypotheses (lift calculus to judgments)

� Definition 2.37: A judgment is a meta-statement about the provability of propositions

� Definition 2.38: A sequent is a judgment of the form H ` A about the provability of
the formula A from the set H hypotheses.

� Idea: Reformulate ND rules so that they act on sequents

� Example 2.39:

[A ∧B] ` B
∧Er

[A,B] ` B

[A ∧B] ` A
∧El

[A,B] ` A
∧I

[A ∧B] ` B ∧A
⇒ I

∅ ` A ∧B⇒ B ∧A

� Note: Even though the antecedent of a sequent is written like a sequence, it is actually
a set. In particular, we can permute and duplicate members at will.

c©:Michael Kohlhase 33

Sequent-Style Rules for Natural Deduction

� Definition 2.40: The following inference rules make up the sequent calculus

Ax
Γ,A ` A

Γ ` B
weaken

Γ,A ` B
TND

Γ ` A ∨ ¬A

Γ ` A Γ ` B
∧I

Γ ` A ∧B

Γ ` A ∧B
∧El

Γ ` A

Γ ` A ∧B
∧Er

Γ ` B

Γ ` A
∨Il

Γ ` A ∨B

Γ ` B
∨Ir

Γ ` A ∨B

Γ ` A ∨B Γ,A ` C Γ,B ` C
∨E

Γ ` C

Γ,A ` B
⇒ I

Γ ` A⇒ B

Γ ` A⇒ B Γ ` A
⇒ E

Γ ` B

Γ,A ` F
¬I

Γ ` ¬A

Γ ` ¬¬A
¬E

A

Γ ` ¬A Γ ` A
FI

Γ ` F

Γ ` F
FE

Γ ` A

c©:Michael Kohlhase 34

19

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

First-Order Natural Deduction

� Rules for propositional connectives just as always

� Definition 2.41: (New Quantifier Rules)

A
∀I∗

∀X.A
∀X.A

∀E
[Bι/X]A

[B/X]A
∃I

∃X.A

∃X.A

[[c/X]A]

C
∃E

C

∗ means that A does not depend on any hypothesis in which X is free.

c©:Michael Kohlhase 35

First-Order Natural Deduction in Sequent Formulation

� Rules for propositional connectives just as always

� Definition 2.42: (New Quantifier Rules)

Γ ` A X 6∈ free(Γ)
∀I

Γ ` ∀X.A
Γ ` ∀X.A

∀E
Γ ` [Bι/X]A

Γ ` [B/X]A
∃I

Γ ` ∃X.A

Γ ` ∃X.A Γ, [c/X]A ` C c ∈ Σsk0 new
∃E

Γ ` C

c©:Michael Kohlhase 36

Linearized Notation for ND [Andrews]

� Linearized version of sequents

1. H1 ` A1 (J1)
2. H2 ` A2 (J2)
3. H3 ` A3 (R1, 2)

corresponds to
H1 ` A1 H2 ` A2

R
H3 ` A3

� Example:

1. 1 ` A ∧B (Hyp)
2. 1 ` B (∧Er 1)
3. 1 ` A (∧El 1)
4. 1 ` B ∧A (∧I 2 3)
Thm. ` A ∧B⇒ B ∧A (⇒ I 4)

c©:Michael Kohlhase 37

20

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

2.6 Abstract Consistency and Model Existence

We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by
Jaako Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of
similar constructions that were used in completeness arguments in the decades before.
The basic intuition for this method is the following: typically, a logical system S = 〈L,K〉 has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable

� Application: Let C be a calculus

� Theorem: If Φ is C-consistent, then Φ is abstract consistent.

� Corollary: C is complete.

c©:Michael Kohlhase 38

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae
with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka’s
original idea for completeness proofs was that for every complete calculus C and every C-consistent
set one can induce a Hintikka set, from which a model can be constructed. This can be considered
as a first model existence theorem. However, the process of obtaining a Hintikka set for a set
C-consistent set Φ of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus-
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/”abstract consistency” method, we will first have to look at
the notion of consistency.

21

http://creativecommons.org/licenses/by-sa/2.5/

Consistency and refutability are very important notions when studying the completeness for cal-
culi; they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus

� Definition 2.43: Φ is called C-refutable, if there is a formula B, such that Φ `C B and
Φ `C ¬(B).

� Definition 2.44: We call a pair A and ¬A a contradiction.

� So a set Φ is C-refutable, if C can derive a contradiction from it.

� Definition 2.45: Φ is called C-consistent, iff there is a formula B, that is not derivable
from Φ in C.

� Definition 2.46: We call a calculus C reasonable, iff Modus Ponens is admissible in C
and A ∧ ¬A⇒ B is a C-theorem.

� Theorem 2.47: C-inconsistency and C-refutability coincide for reasonable calculi

c©:Michael Kohlhase 39

It is very important to distinguish the syntactic C-refutability and C-consistency from satlisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former specify
the calculus (a syntactic device) while the latter does not. In fact we should actually say S-
satisfiability, where S = 〈L,K, |= 〉 is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its latin root.
The notion of an “abstract consistency class” provides the a calculus-independent notion of “con-
sistency”: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member
of an abstract consistency class ∇.

Abstract Consistency

� Definition 2.48: Let ∇ be a family of sets of propositional formulae. We call ∇ closed
under subsets, iff for each Φ ∈ ∇, all subsets Ψ ⊆ Φ are elements of ∇.

� Notation 2.49: We will use Φ ∗A for Φ ∪ {A}.

� Definition 2.50: A family ∇ of sets of formulae is called a (first-order) abstract consis-
tency class, iff it is closed under subsets, and for each Φ ∈ ∇

∇c) A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

∇¬) ¬¬A ∈ Φ implies Φ ∗A ∈ ∇
∇∧) (A ∧B) ∈ Φ implies (Φ ∪ {A,B}) ∈ ∇
∇∨) ¬(A ∧B) ∈ Φ implies Φ ∗ ¬A ∈ ∇ or Φ ∗ ¬B ∈ ∇
∇∀) If (∀X.A) ∈ Φ, then Φ ∗ [B/X](A) ∈ ∇ for each closed term B.

∇∃) If ¬(∀X.A) ∈ Φ and c is an individual constant that does not occur in Φ, then
Φ ∗ ¬[c/X](A) ∈ ∇

c©:Michael Kohlhase 40

22

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we
should be able to extend it by A without losing this property; in other words, a complete calculus
should be able to recognize A and ¬¬A to be equivalent.
We now come to a very technical condition that will allow us to carry out a limit construction in
the Hintikka set extension argument later.

Compact Collections

� Definition 2.51: We call a collection ∇ of sets compact, iff for any set Φ we have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma 2.52: If ∇ is compact, then ∇ is closed under subsets.

� Proof:

P.1 Suppose S ⊆ T and T ∈ ∇.

P.2 Every finite subset A of S is a finite subset of T .

P.3 As ∇ is compact, we know that A ∈ ∇.

P.4 Thus S ∈ ∇.

c©:Michael Kohlhase 41

The main result here is that abstract consistency classes can be extended to compact ones. The
proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).

23

http://creativecommons.org/licenses/by-sa/2.5/

Compact Abstract Consistency Classes

� Lemma 2.53: Any abstract consistency class can be extended to a compact one.

� Proof:

P.1 We choose ∇′ := ({Φ ⊆ wff o(Vo) | every finite subset of Φ is in ∇}).

P.2 Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset of Φ is
in ∇ and thus Φ ∈ ∇′. Hence ∇ ⊆ ∇′.

P.3 Next let us show that each ∇′ is compact.

P.4.1 Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.

P.4.2 By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
P.4.3 Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
P.4.4 On the other hand, suppose all finite subsets of Φ are in ∇′.
P.4.5 Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so Φ ∈ ∇′. Thus

∇′ is compact.

P.4 Note that ∇′ is closed under subsets by the Lemma above.

P.5 Next we show that if ∇ satisfies ∇∗, then ∇′ satisfies ∇∗.
P.5.1 To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that {A,¬A} ⊆ Φ.

Then {A,¬A} ∈ ∇ contradicting ∇c.
P.5.2 To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ ∗A ∈ ∇′. [noproofend]

P.5.2.1 Let Ψ be any finite subset of Φ ∗A, and Θ := (Ψ\{A}) ∗ ¬¬A.

P.5.2.2 Θ is a finite subset of Φ, so Θ ∈ ∇.

P.5.2.3 Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get Θ ∗A ∈ ∇ by
∇¬.

P.5.2.4 We know that Ψ ⊆ Θ ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.

P.5.2.5 Thus every finite subset Ψ of Φ∗A is in∇ and therefore by definition Φ ∗A ∈ ∇′.

P.5.3 the other cases are analogous to ∇¬.

c©:Michael Kohlhase 42

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

24

http://creativecommons.org/licenses/by-sa/2.5/

∇-Hintikka Set

� Definition 2.54: Let ∇ be an abstract consistency class, then we call a set H ∈ ∇ a
∇-Hintikka Set, iff H is maximal in ∇, i.e. for all A with H ∗A ∈ ∇ we already have
A ∈ H.

� Theorem 2.55: (Hintikka Properties)

Let ∇ be an abstract consistency class and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σ) we have A 6∈ H or ¬A 6∈ H.

H¬) If ¬¬A ∈ H then A ∈ H.

H∧) If (A ∧B) ∈ H then A,B ∈ H.

H∨) If ¬((A ∧B)) ∈ H then ¬A ∈ H or ¬B ∈ H.

H∀) If (∀X.A) ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬(∀X.A) ∈ H then ¬[B/X](A) ∈ H for some term closed term B.

� Proof:

P.1 We prove the properties in turn

P.1.1 Hc: by induction on the structure of A

P.1.1.1.1 A ∈ Vo: Then A 6∈ H or ¬A 6∈ H by ∇c.

P.1.1.1.2 A = ¬B:

P.1.1.1.2.1 Let us assume that ¬B ∈ H and ¬¬B ∈ H,

P.1.1.1.2.2 then B ∗ H ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.

P.1.1.1.2.3 So both B and ¬B are in H, which contradicts the inductive hypothesis.

P.1.1.1.3 A = B ∨C: similar to the previous case:

P.1.2 We prove H¬ by maximality of H in ∇.:

P.1.2.1 If ¬¬A ∈ H, then H ∗A ∈ ∇ by ∇¬.

P.1.2.2 The maximality of H now gives us that A ∈ H.

P.1.3 other H∗ are similar:

c©:Michael Kohlhase 43

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

25

http://creativecommons.org/licenses/by-sa/2.5/

Extension Theorem

� Theorem 2.56: If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then there is a
∇-Hintikka set H with Φ ⊆ H.

� Proof: Wlog. assume that ∇ compact (else use compact extension)

P.1 Choose an enumeration A1,A2, . . . of cwff o(Σι) and c1, c2, . . . of Σsk0 .

P.2 and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn iff Hn ∗An 6∈ ∇
Hn ∪ {An,¬[cn/X](B)} iff Hn ∗An ∈ ∇ and An = ¬(∀X.B)
Hn ∗An iff else

P.3 Note that all Hi ∈ ∇, choose H :=
⋃
i∈N H

i

P.4 Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,

P.5 so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.

P.6 Let H ∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and
Hj+1 ⊆ H

P.7 Thus H is ∇-maximal

c©:Michael Kohlhase 44

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent2 with Φ, then depending on which one is first in the enumeration H, will contain EdNote(2)
that one; with all the consequences for subsequent choices in the construction process.

Valuation

� Definition 2.57: A function ν : cwff o(Σι)→ Do is called a (first-order) valuation, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A ∧B) = T, iff ν(A) = T and ν(B) = T

� ν(∀X.A) = T, iff ν([B/X]A) = T for all closed terms B.

� Lemma 2.58: If ϕ : Vo → Do is a variable assignment, then Iϕ : cwff o(Σι) → Do is a
valuation.

� Proof: Immediate from the definitions

c©:Michael Kohlhase 45

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.

2EdNote: introduce this above

26

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Valuation and Satisfiability

� Lemma 2.59: If ν : cwff o(Σι)→ Do is a valuation and Φ ⊆ cwff o(Σι) with ν(Φ) = {T},
then Φ is satisfiable.

� Proof: We construct a model for Φ.

P.1 Let Dι := cwff ι(Σι), and

� I(f) : Dιk → Dι ; 〈A1, . . . ,Ak〉 7→ f(A1, . . . ,Ak) for f ∈ Σf

� I(p) : Dιk → Do; 〈A1, . . . ,Ak〉 7→ ν(p(A1, . . . ,An)) for p ∈ Σp.

P.2 Then variable assignments into Dι are ground substitutions.

P.3 We show Iϕ(A) = ϕA for A ∈ wff ι(Σι) by induction on A

P.3.1 A = X: then Iϕ(A) = ϕX by definition.

P.3.2 A = f(A1, . . . ,An): then Iϕ(A) = I(f)(Iϕ(A1), . . . , Iϕ(An)) =
I(f)(ϕA1, . . . , ϕAn) = f(ϕA1, . . . , ϕAn) = ϕf(A1, . . . ,An) = ϕA

P.4 We show Iϕ(A) = ν(ϕA) for A ∈ wff o(Σ) by induction on A

P.4.1 A = p(A1, . . . ,An): then Iϕ(A) = I(p)(Iϕ(A1), . . . , Iϕ(An)) =
I(p)(ϕA1, . . . , ϕAn) = ν(p(ϕA1, . . . , ϕAn)) = ν(ϕp(A1, . . . ,An)) = ν(ϕA)

P.4.2 A = ¬B: then Iϕ(A) = T, iff Iϕ(B) = ν(ϕB) = F, iff ν(ϕA) = T.

P.4.3 A = B ∧C: similar

P.4.4 A = ∀X.B: then Iϕ(A) = T, iff Iψ(B) = ν(ψB) = T, for all C ∈ Dι, where
ψ = ϕ, [C/X]. This is the case, iff ν(ϕA) = T.

P.5 Thus Iϕ(A) = ν(ϕA) = ν(A) = T for all A ∈ Φ.

P.6 Hence M |= A for M := 〈Dι, I〉.

c©:Michael Kohlhase 46

Now, we only have to put the pieces together to obtain the model existence theorem we are
after.

27

http://creativecommons.org/licenses/by-sa/2.5/

Model Existence

� Theorem 2.60: (Hintikka-Lemma)

If ∇ is an abstract consistency class and H a ∇-Hintikka set, then H is satisfiable.

� Proof:

P.1 we define ν(A) := T, iff A ∈ H,

P.2 then ν is a valuation by the Hintikka set properties.

P.3 We have ν(H) = {T}, so H is satisfiable.

� Theorem 2.61: (Model Existence)

If ∇ is an abstract consistency class and Φ ∈ ∇, then Φ is satisfiable.

� Proof:

P.1 There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)

P.2 We know that H is satisfiable. (Hintikka-Lemma)

P.3 In particular, Φ ⊆ H is satisfiable.

c©:Michael Kohlhase 47

2.7 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that ND-consistency is an
abstract consistency property.

28

http://creativecommons.org/licenses/by-sa/2.5/

Consistency, Refutability and Abstract Consistency

� Theorem 2.62: (Non-Refutability is an Abstract Consistency Property)

Γ := ({Φ ⊆ cwff o(Σι) | Φ not ND−refutable}) is an abstract conistency class.

� Proof: We check the properties of an ACC

P.1 If Φ is non-refutable, then any subset is as well, so Γ is closed under subsets.

P.2 We show the abstract consistency conditions ∇∗ for Φ ∈ Γ.

P.2.1 ∇c:
P.2.1.1 We have to show that A 6∈ Φ or ¬A 6∈ Φ for atomic A ∈ wff o(Σ).

P.2.1.2 Equivalently, we show the contrapositive: If {A,¬A} ⊆ Φ, then Φ 6∈ Γ.

P.2.1.3 So let {A,¬A} ⊆ Φ, then Φ is ND-refutable by construction.

P.2.1.4 So Φ 6∈ Γ.

P.2.2 ∇¬: We show the contrapositive again:

P.2.2.1 Let ¬¬A ∈ Φ and Φ ∗A 6∈ Γ

P.2.2.2 Then we have a refutation D : Φ ∗A `ND F
P.2.2.3 By prepending an application of ¬E for ¬¬A to D, we obtain a refutation

D′ : Φ `ND F .

P.2.2.4 Thus Φ 6∈ Γ.

P.2.3 other ∇∗ similar:

c©:Michael Kohlhase 48

Henkin’s Theorem

� Corollary 2.63: (Henkin’s Theorem)

Every ND-consistent set of sentences has a model.

� Proof:

P.1 Let Φ be a ND-consistent set of sentencens.

P.2 The class of sets of ND-consistent propositions constitute an abstract consistency
class

P.3 Thus the model existence theorem guarantees a countable model for Φ.

� Corollary 2.64: (Löwenheim&Skolem Theorem)

Satisfiable set Φ of first-order sentences has a countable model.

� Proof: The model we constructed is countable, since the set of ground terms is.

c©:Michael Kohlhase 49

29

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Completeness and Compactness

� Theorem 2.65: (Completeness Theorem for ND)

If Φ |= A, then Φ `ND A.

� Proof:

P.1 If A is valid in all models of Φ, then Φ ∗ ¬A has no model

P.2 Thus Φ ∗ ¬A is inconsistent by Henkins Theorem.

P.3 So Φ `ND ¬(¬A)3

P.4 So Φ `ND A by ¬E.

� Theorem 2.66: (Compactness Theorem for first-order logic)

If Φ |= A, then there is already a finite set Ψ ⊆ Φ with Ψ |= A.

� Proof: This is a direct consequence of the completeness theorem

P.1 We have Φ |= A, iff Φ `ND A.

P.2 As a proof is a finite object, only a finite subset Ψ ⊆ Φ can appear as leaves in the
proof.

c©:Michael Kohlhase 50

cEdNote: show this

2.8 Limits of First-Order Logic

We will now come to the limits of first-order Logic.

Gödel’s Incompleteness Theorem

� Theorem 2.67: No logical system that can Peano-Arithmetic (N, s, 0,+, ∗) admits com-
plete calculi.

� Proof: (Sketch)

P.1 Let L := 〈S, C〉 be such a system. We show that there is a valid S-sentence AC ,
that is no C-theorem.

P.2 Encode the syntax of S and the C in Peano-arithmetic

P.3 We can now talk about S and C in S itself.

P.4 E.g. there is a S-sentence B with the menaning: A is a C-theorem.

P.5 Choose AC as “AC is no C-theorem” (cf. Russell’s set)

P.6 Obviously: AC ist valid in all standard models.

P.7 So C is either not correct or cannot derive AC .

c©:Michael Kohlhase 51

3 First-Order Automated Theorem Proving with Tableaux

3.1 First-Order Tableaux

30

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Test Calculi: Tableaux and Model Generation

� Idea: instead of showing ∅ ` Th, show ¬Th ` trouble (use ⊥ for trouble)

� Example 3.1:

Tableau Refutation (Validity) Model generation (Satisfiability)
|= P ∧Q⇒ Q ∧ P |= P ∧ (Q ∨ ¬R) ∧ ¬Q

P ∧Q⇒ Q ∧ P F

P ∧QT

Q ∧ P F

PT

QT

P F

⊥
QF

⊥

P ∧ (Q ∨ ¬R) ∧ ¬QT

P ∧ (Q ∨ ¬R)T

¬QT

QF

PT

Q ∨ ¬RT

QT

⊥
¬RT

RF

No Model Herbrand Model {PT, QF, RF}
ϕ := {P 7→ T, Q 7→ F, R 7→ F}

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� Satisfiable, iff there are open branches (correspond to models)

c©:Michael Kohlhase 52

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on
when a formula can be made true (or false). Therefore the formulae are decorated with exponents
that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with

the intended truth value F). Both branches contain an elementary contradiction ⊥.
On the right we have a model generation tableau, which analyzes a positive formula (it is

decorated with the intended truth value T. This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

31

http://creativecommons.org/licenses/by-sa/2.5/

Analytical Tableaux (Formal Treatment of T)

� formula is analyzed in a tree to determine satisfiability

� branches correspond to valuations (models)

� Tableau rules: one per connective

A ∧BT

T ∧
AT

BT

A ∧BF

T ∨
AF

˛̨̨
BF

¬AT

T ¬T

AF

¬AF

T ¬F

AT

Aα

Aβ α 6= β

T cut
⊥

� Algorithm: Use rules exhaustively as long as they contribute new material

� Definition 3.2: Call a tableau saturated, iff no rule applies, and a branch closed, iff it
ends in ⊥, else open. (open branches in saturated tableaux yield models)

� Definition 3.3: (T -Theorem/Derivability)

A is a T -theorem (`T A), iff there is a closed tableau with AF at the root.

Φ ⊆ wff o(Vo) derives A in T (Φ `T A), iff there is a closed tableau starting with AF

and ΦT.

c©:Michael Kohlhase 53

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).
Definition 3.4: We will call a closed tableau with the signed formula Aα at the root a tableau
refutation for Aα.
The saturated tableau represents a full case analysis of what is necessary to give A the truth value
α; since all branches are closed (contain contradictions) this is impossible.
Definition 3.5: We will call a tableau refutation for AF a tableau proof for A, since it refutes the
possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all models,
which is just our definition of validity.
Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
calculus in section ?? it does not prove a theorem A by deriving it from a set of axioms, but
it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advanages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others

can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒ B as ¬A ∨B,. . . .)
We will now extend the propositional tableau techiques to first-order logic. We only have to add
two new rules for the universal quantifiers (in positive and negative polarity).

32

http://creativecommons.org/licenses/by-sa/2.5/

First-Order Standard Tableaux (T1)

� Refutation calculus based on trees of labeled formulae

� Tableau-Rules: propositional tableau rules plus

∀X.AT C ∈ cwff ι(Σι) T1:∀
[C/X]AT

∀X.AF c ∈ (Σsk0 \H)
T1:∃

[c/X]AF

c©:Michael Kohlhase 54

The rule T1:∀ rule operationalizes the intuition that a universally quantified formula is true, iff
all of the instances of the scope are. To understand the T1:∃ rule, we have to keep in mind that
∃X.A abbreviates ¬(∀X.¬A), so that we have to read ∀X.AF existentially — i.e. as ∃X.¬AT,
stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
[c/X]¬AT = [c/X]AF holds, and this is just the conclusion of the T1:∃ rule.
Note that the T1:∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C ∈ wff ι(Σι) for X. This makes the rule
infinitely branching.

3.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the T1:∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f1)

� Refutation calculus based on trees of labeled formulae

� Tableau rules

∀X.AT Y new
T f1 :∀

[Y/X]AT

∀X.AF free(∀X.A) = {X1, . . ., Xk} f ∈ Σskk
T f1 :∃

[f(X1, . . . , Xk)/X]AF

� Generalized cut rule T f1 :⊥ instantiates the whole tableau by σ.

Aα

Bβ α 6= β σA = σB

T f1 :⊥
⊥

� Advantage: no guessing necessary in T f1 :∀-rule

� New: find suitable substitution (most general unifier)

c©:Michael Kohlhase 55

33

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in
the T1:∀ rule, T f1 :∀ instantiates it with a new meta-variable Y , which will be instantiated by need
in the course of the derivation.
Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the
treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain meta-variables introduced by the T f1 :∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 :∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the meta-variables in A.
Instantiating Metavariables: Finally, the T f1 :⊥ rule completes the treatment of meta-variables, it
allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

3.3 Properties of First-Order Tableaux

Correctness of T f1
� Lemma 3.6: T f1 :∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 :∃ to ∀X.AF in T , extending it with
[f(X1, . . . , Xn)/X]AF, where W := free(∀X.A) = {X1, . . ., Xk}

P.1 Let T be satisfiable in M := 〈D, I〉, then Iϕ(∀X.A) = F.

P.2 We need to find a model M′ that satisfies T ′ (find interpretation for f)

P.3 By definition Iϕ,[a/X](A) = F for some a ∈ D (depends on ϕ
∣∣
W

)

P.4 Let g : Dn → D be defined by g(a1, . . . , ak) := a, if ϕ(Xi) = ai

P.5 choose M′ = 〈D, I ′〉 with I ′ := I, [g/f], then by subst. value lemma

I ′ϕ([f(X1, . . . , Xk)/X]A) = I ′ϕ,[I′ϕ(f(X1,...,Xk))/X](A) = I ′ϕ,[a/X](A) = F

P.6 So [f(X1, . . . , Xk)/X]AF satisfiable in M′

c©:Michael Kohlhase 56

34

http://creativecommons.org/licenses/by-sa/2.5/

Correctness of T f1
� Lemma 3.7: Tableau rules transform satisfiable tableaux into satisfiable ones.

� Proof: we examine the tableau rules in turn

P.1.1 propositional rules: as in propositional tableaux

P.1.2 T f1 :∃: in the Lemma above

P.1.3 T subst: by substitution value lemma

P.1.4 T f1 :∀:

P.1.4.1 Iϕ(∀X.A) = T, iff Iψ(A) = T for all a ∈ Dι
P.1.4.2 so in particular for some a ∈ Dι 6= ∅.

� Corollary 3.8: T f1 is correct.

c©:Michael Kohlhase 57

Completeness of (T f1)

� Theorem 3.9: T f1 is refutation complete.

� Proof: We show that ∇ := ({Φ | ΦT has no closed Tableau}) is an abstract consis-
tency class

P.1 (∇∗, ∇¬, ∇∨, and ∇¬) as for propositional case.

P.2 (∇∀) by the lifting lemma below

P.3 (∇∃) Let T be a closed tableau for ¬(∀X.A) ∈ Φ and ΦT ∗ [c/X](A)F ∈ ∇.

ΨT

∀X.AF

[c/X]AF

Rest

ΨT

∀X.AF

[f(X1, . . . , Xk)/X]AF

[f(X1, . . . , Xk)/c]Rest

c©:Michael Kohlhase 58

35

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableau-Lifting

� Theorem 3.10: If Tθ is a closed tableau for a st θΦ of formulae, then there is a closed
tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau T , and a
tableau-isomorphism ω : T → Tθ, such that ω(A) = θA.

P.1 only the tableau-substitution rule is interesting.

P.2 Let θAiT and θBiF cut formulae in the branch Θi
θ of Tθ

P.3 there is a joint unifier σ of θ(A1)=?θ(B1) ∧ . . . ∧ θ(An)=?θ(Bn)

P.4 thus σ ◦ θ is a unifier of A and B

P.5 hence there is a most general unifier ρ of A1=?B1 ∧ . . . ∧An=?Bn

P.6 so Θ is closed

c©:Michael Kohlhase 59

4 Higher-Order Logic and λ-Calculus

4.1 Higher-Order Predicate Logic

Higher-Order Predicate Logic (PLΩ)

� Quantification over functions and Predicates: ∀P.∃F.P (a) ∨ ¬P (F (a))

� Comprehension: (Existence of Functions)
∃F.∀X.FX = A e.g. f(x) = 3x+5x− 7

� Extensionality: (Equality of functions and truth values)
∀F.∀G.(∀X.FX = GX)⇒ F = G
∀P.∀Q.(P ⇔ Q)⇔ P = Q

� Leibniz-Equality: (Indiscernability)
A = B for ∀P.PA⇒ PB

� Problem: Russell’s Antinomy (∀Q.M(Q)⇔ ¬Q(Q))

� the set M of all sets that do not contain themselves

� Question: Is M∈M? Answer: M∈M iff M /∈M.

� What has happened? the predicate Q has been applied to itself

� Solution for this course: Forbid self-applications by types!!

� ι, o (type of individuals, truth values), α→ β (function type)

� right associative bracketing: α→ β → γ abbreviates α→ (β → γ)

� vector notation: αn → β abbreviates α1 → . . .→ αn → β

� Well-typed formulae (prohibits paradoxes like ∀Q.M(Q)⇔ ¬Q(Q))

� Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

c©:Michael Kohlhase 60

36

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Well-Typed Formulae (PLΩ)

� signature Σ =
⋃
α∈T Σα with

� connectives: ¬ ∈ Σ(o→o) {∨,∧,⇒,⇔ . . .} ⊆ Σo→o→o

� variables VT =
⋃
α∈T Vα, such that every Vα countably infinite.

� well-typed formulae wff α(Σ,VT) of type α

� Vα ∪ Σα ⊆ wff α(Σ,VT)

� If C ∈ wff (α→β)(Σ,VT) and A ∈ wff α(Σ,VT), then (CA) ∈ wff β(Σ,VT)

� If A ∈ wff o(Σ,VT), then (∀Xα.A) ∈ wff o(Σ,VT)

� first-order terms have type ι, formulae (propositions) the type o.

� there is no type annotation such that ∀Q.M(Q)⇔ ¬Q(Q) is well-typed.
Q needs type α as well as α→ o.

c©:Michael Kohlhase 61

Standard Semantics

� Definition 4.1: The universe of discourse (carrier)

� arbitrary set of individuals Dι fixed truth values Do = {T,F}
� function universes Dα→β = F(Dα;Dβ)

� interpretation of constants: typed mapping I : Σ→ D (i.e. I(Σα) ⊆ Dα)

� variable assignment: typed mapping ϕ : VT → D

� Definition 4.2: value function: typed mapping Iϕ : wff T (Σ,VT)→ D

� Iϕ
∣∣
VT

= ϕ Iϕ
∣∣
ΣT

= I

� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(∀Xα.A) = T, iff Iϕ,[a/X](A) = T for all a ∈ Dα.

� Ao valid under ϕ, iff Iϕ(A) = T.

c©:Michael Kohlhase 62

37

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example: Peano Axioms for the Natural Numbers

� Σ = {[N : ι→ o], [0 : ι], [s : ι→ ι]}

� N0 (0 is a natural number)

� ∀Xι.NX ⇒ N(sX) (the successor of a natural number is natural)

� ¬(∃Xι.NX ∧ sX = 0) (0 has no predecessor)

� ∀Xι.∀Yι.(sX = sY)⇒ X = Y (the successor function is injective)

� ∀Pι→o.P0⇒ (∀Xι.NX ⇒ PXP (sX))⇒ (∀Yι.NY ⇒ P (Y))
induction axiom: all properties P , that hold of 0, and with every n for its successor s(n),
hold on all N

c©:Michael Kohlhase 63

Expressive Formalism for Mathematics

� Example 4.3: (Cantor’s Theorem)

The cardinality of a set is smaller than that of its power set.

� smaller − card(M,N) := ¬(∃F.surjective(F,M,N))

� surjective(F,M,N) := (∀X ∈M.∃Y ∈ N.FY = X)

Simplified Formalization: ¬∃Fι→ι→ι.∀Gι→ι.∃Jι.FJ = G

� Standard-Benchmark for higher-order theorem provers

� can be proven by Tps and Leo (see below)

c©:Michael Kohlhase 64

Hilbert-Calculus

� Definition 4.4: (HΩ Axioms)

� ∀Po, Qo.P ⇒ Q⇒ P

� ∀Po, Qo, Ro.P ⇒ Q⇒ R⇒ P ⇒ Q⇒ P ⇒ R

� ∀Po, Qo.¬P ⇒ ¬Q⇒ P ⇒ Q

� Definition 4.5: (HΩ Inference rules)

Ao ⇒ Bo A

B

∀Xα.A

[B/Xα]A

A

∀Xα.A

X 6∈ free(A) ∀Xα.A ∧B

A ∧ (∀Xα.B)

� Theorem 4.6: Correct wrt. standard semantics

� Also Complete?

c©:Michael Kohlhase 65

38

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Hilbert-Calculus HΩ (continued)

� valid sentences that are not HΩ-theorems:

� Cantor’s Theorem:
¬(∃Fιι→ι.∀Gι→ι.(∀Kι.NK ⇒ N(GK))⇒ (∃Jι.(NJ) ∧ FJ = G))
(There is no surjective mapping from N into the set F(N; ,)N of natural number
sequences)

� proof attempt fails at the subgoal ∃Gι→ι.∀Xι.GX = s(fXX)

� new axiom schema: Comprehension: ∃Fαn→β .∀Xα.FX = Aβ

(for every variable Xα and every term A ∈ wff β(Σ,VT))

� new axiom schemata: extensionality
Extαβ ∀Fα→β .∀Gα→β .(∀Xα.FX = GX)⇒ F = G
Exto ∀Fo.∀Go.(F ⇔ G)⇔ F = G

� correct! complete? cannot be!! [Gödel 1931]

c©:Michael Kohlhase 66

Way Out: Henkin-Semantics

� Gödel’s incompleteness theorem only holds for standard semantics

� find generalization that admits complete calculi:

� Idea: generalize so that the carrier only contains those functions that are requested by
the comprehension axioms.

� Theorem 4.7: (Henkin 1950)

HΩ is complete wrt. this semantics.

� Proof: Idea

more models ; less valid sentences (these are HΩ-theorems)

� Henkin-models induce sensible measure of completeness for higher-order logic.

c©:Michael Kohlhase 67

39

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Equality

� “Leibniz equality” (Indiscernability) QαAαBα = ∀Pα→o.PA⇔ PB

� not that ∀Pα→o.PA⇒ PB(get the other direction by instantiating P with Q, where QX ⇔ ¬PX)

� Theorem 4.8: If M = 〈D, I〉 is a standard model, then Iϕ(Qα) is the identity relation
on Dα.

� Notation 4.9: We write A = B for QAB(A and B are equal, iff there is no property P that can tell them apart.)

� Proof:

P.1 Iϕ(QAB) = Iϕ(∀P.PA⇒ PB) = T, iff
Iϕ,[r/P](PX ⇒ PY) = T for all r ∈ Dα→o.

P.2 For A = B we have Iϕ,[r/P](PA) = r(Iϕ(A)) = F or Iϕ,[r/P](PA) = r(Iϕ(A)) =
T.

P.3 Thus Iϕ(QAB) = T.

P.4 Let Iϕ(A) 6= Iϕ(B) and r = {Iϕ(A)}
P.5 so r(Iϕ(A)) = T and r(Iϕ(B)) = F

P.6 Iϕ(QAB) = F, as Iϕ,[r/P](PA⇒ PB) = F, since Iϕ,[r/P](PA) = r(Iϕ(A)) = T
and Iϕ,[r/P](PB) = r(Iϕ(B)) = F.

c©:Michael Kohlhase 68

4.2 Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions – the simply typed λ-calculus.
It is a typed logic, so everything we write down is typed (even if we do not always write the types
down).

Simply typed λ-Calculus (Syntax)

� Signature Σ =
⋃
α∈T Σα

� VT =
⋃
α∈T Vα, such that Vα are countably infinite

� Definition 4.10: We call the set wff α(Σ,VT) defined by the rules

� Vα ∪ Σα ⊆ wff α(Σ,VT)

� If C ∈ wff (α→β)(Σ,VT) and A ∈ wff α(Σ,VT), then (CA) ∈ wff β(Σ,VT)

� If A ∈ wff α(Σ,VT), then (λXβ A) ∈ wff (β→α)(Σ,VT)

the set of well-typed formulae of type α over the signature Σ and use wff T (Σ,VT) :=⋃
α∈T wff α(Σ,VT) for the set of all well-typed formulae.

� Definition 4.11: We will call all occurrences of the variable X in A bound in λXA.
Variables that are not bound in B are called free in B.

c©:Michael Kohlhase 69

40

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Simply typed λ-Calculus (Notations)

� Notation 4.12: (Application is left-associative)

We abbreviate FA1A2. . .An with FA1 . . . An eliding the brackets and further with FAn

in a kind of vector notation.

� Andrews’ dot: A stands for a left bracket whose partner is as far right as is consistent
with existing brackets; i.e. A (BC) abbreviates A(BC).

� Notation 4.13: (Abstraction is right-associative)

We abbreviate λX1 λX2 · · ·λXnA · · · with λX1. . .XnA eliding brackets, and further to

λXnA in a kind of vector notation.

� Notation 4.14: (Outer brackets)

Finally, we allow ourselves to elide outer brackets where they can be inferred.

c©:Michael Kohlhase 70

Intuitively, λXA is the function f , such that f(B) will yield A, where all occurrences of the
formal parameter X are replaced by B.4 EdNote(4)
The intuitions about functional structure of λ-terms and about free and bound variables are
encoded into three transformation rules Λ→:

αβη-Equality (Overview)

� reduction with


β : (λXA)B→β [B/X](A)
η : λXAX →η A

under α :
(λXA)

=α

(λY [Y/X](A))

� Theorem 4.15: βη-reduction is well-typed, correct, terminating and confluent in the
presence of α-conversion.

� Consequence: Unique β-normal form λX1 . . . Xk hA1 . . .An where

� h constant or variable (the head symbol)

� hA1 . . . An (the matrix) λX1. . .Xk (the Binder)

� the subterms Ai are of the same form.

� Definition 4.16: Head Reduction always has a unique β redex

λXn (λY A)B1 . . . Bn →h
β λXn [B1/Y](A)B2 . . . Bn

� Definition 4.17: Long βη-normal form, iff β-NF and matrix has base type.

� Definition 4.18: η-Expansion: η
[
λX1. . .XnA

]
:= λX1. . .XnY 1. . .Y mAY 1 . . . Y m

c©:Michael Kohlhase 71

The first rule (α-conversion) just says that we can rename bound variables as we like. The β-
reduction rule codifies the intuition behind function application by replacing bound variables with
argument. The third rule is a special case of the extensionality principle for functions (f = g
iff f(a) = g(a) for all possible arguments a): If we apply both sides of the transformation to

4EdNote: rationalize the semantic macros for syntax!

41

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

the same argument – say B and β-reduce the left side, then we arrive at the right hand side
λXαAXB→β AB.
The semantics of Λ→ is structured around the types. Like the models we discussed before, a model
M is a pair 〈D, I〉, where D is the universe of discourse and I is the interpretation of constants.

Semantics of Λ→

� Definition 4.19: We call a collection DT := ({Dα | α ∈ T }) a typed collection (of
sets) and a collection fT : DT → ET , a typed function, iff fα : Dα → Eα.

� Definition 4.20: A typed collection DT is called a frame, iff Dα→β ⊆ Dα → Dβ

� Definition 4.21: Given a frame DT , and a typed function I : Σ → D, then we call
Iϕ : wff T (Σ,VT)→ D the value function induced by I, iff

� Iϕ
∣∣
VT

= ϕ, Iϕ
∣∣
Σ

= I

� Iϕ(AB) = Iϕ(A)(Iϕ(B))

� Iϕ(λXαA) is that function f ∈ D(α→β), such that f(a) = Iϕ,[a/X](A) for all
a ∈ Dα

� Definition 4.22: We call a pair 〈D, I〉 a Σ-model, iff Iϕ : wff T (Σ,VT) → D is total.
(comprehension-closed)

Such modes are also called generalized models ([Henkin 1950])

c©:Michael Kohlhase 72

4.3 Simply Typed λ Calculus

Simply typed λ-Calculus

� arbitrary (for now) set BT of base types.

� Signature ΣT =
⋃
α∈T Σα

� VT =
⋃
α∈T Vα, such that Vα countably infinite

� well-typed formulae wff α(Σ,VT) of type α

� Vα,Σα ⊆ wff α(Σ,VT)

� If C ∈ wff (α→β)(Σ,VT) and A ∈ wff α(Σ,VT), then (CA) ∈ wff β(Σ,VT)

� If A ∈ wff α(Σ,VT), then (λXβ A) ∈ wff (β→α)(Σ,VT)

� α-equality: λXαA =α λYα [Y/X](A) if Y 6∈ free(A)

� β-equality: (λXαA)B =β [B/X](A)

c©:Michael Kohlhase 73

42

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Types

� Types are semantic annotations for terms that prevent antinomies

� Definition 4.23: Given a set BT of base types, construct function types: α→ β is the
type of functions with domain type α and range type β. We call the closure T of BT
under function types the set of types over BT .

� Definition 4.24: (iotypes.def)

We will use ι for the type of individuals and o for the type of truth values.

� Right Associativity: The type constructor is used as a right-associative operator, i.e. we
use α→ β → γ as an abbreviation for α→ (β → γ)

� Vector Notation: We will use a kind of vector notation for function types, abbreviating
α1 → . . .→ αn → β with αn → β.

c©:Michael Kohlhase 74

Substitution Value Lemma for λ-Terms

� Lemma 4.25: (Substitution Value Lemma)

Let A and B be terms, then Iϕ([B/X]A) = Iψ(A), where ψ = ϕ, [Iϕ(B)/X]

� Proof: by induction on the depth of A

P.1 we have five cases

P.1.1 A = X: Then Iϕ([B/X]A) = Iϕ([B/X]X) = Iϕ(B) = ψ(X) = Iψ(X) =
Iψ(A).

P.1.2 A = Y 6= X and Y ∈ VT : then Iϕ([B/X]A) = Iϕ([B/X]Y) = Iϕ(Y) =
ϕ(Y) = ψ(Y) = Iψ(Y) = Iψ(A).

P.1.3 A ∈ Σ: This is analogous to the last case.

P.1.4 A = CD: then Iϕ([B/X]A) = Iϕ([B/X]CD) = Iϕ([B/X](C)[B/X](D)) =
Iϕ([B/X]C)(Iϕ([B/X]D)) = Iψ(C)(Iψ(D)) = Iψ(CD) = Iψ(A)

P.1.5 A = λYαC:

P.1.5.1 We can assume that X 6= Y and Y /∈ free(B)

P.1.5.2 Thus for all a ∈ Dα we have Iϕ([B/X]A)(a) = Iϕ([B/X]λY C)(a) =
Iϕ(λY [B/X](C))(a) = Iϕ,[a/Y]([B/X]C) = Iψ,[a/Y](C) = Iψ(λY C)(a) =
Iψ(A)(a)

c©:Michael Kohlhase 75

43

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Correctness of αβη-Equality

� Theorem 4.26: LetA := 〈D, I〉 be a Henkin model and Y 6∈ free(A), then Iϕ(λXA) =
Iϕ(λY [Y/X]A) for all assignments ϕ.

� Proof: by substitution value lemma

P.1 Iϕ(λY [Y/X]A)@a = Iϕ,[a/Y]([Y/X]A)
= Iϕ,[a/X](A)
= Iϕ(λXA)@a

� Theorem 4.27: If A := 〈D, I〉 is a Henkin model and X not bound in A, then
Iϕ((λXA)B) = Iϕ([B/X]A).

� Proof: by substitution value lemma

P.1
Iϕ((λXA)B) = Iϕ(λXA)@Iϕ(B)

= Iϕ,[Iϕ(B)/X](A)
= Iϕ([B/X]A)

c©:Michael Kohlhase 76

Correctness of αβη (continued)

� Theorem 4.28: If X 6∈ free(A), then Iϕ(λXAX) = Iϕ(A) for all ϕ.

� Proof:

Iϕ(λXAX)@a = Iϕ,[a/X](AX)
= Iϕ(A)@Iϕ,[a/X](X)
= Iϕ(A)@a

as X 6∈ free(A).

� Theorem 4.29: αβη-equality is correct wrt. Henkin models. (if A =αβη B, then
Iϕ(A) = Iϕ(B) for all assignments ϕ)

c©:Michael Kohlhase 77

44

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Simply Typed λ-Calculus as an Inference System

� Judgment Γ `Σ A : α (formula A has type α given the type assumptions in Γ)

� A ∈ wff α(Σ,VT), iff Γ `Σ A : α derivable in

c ∈ Σα
wff:const

Γ `Σ c : α

Γ `Σ A : (β → α) Γ `Σ B : β
wff:app

Γ `Σ (AB) : α

Γ(X) = α
wff:var

Γ `Σ X : α

Γ, [X : α] `Σ A : α
wff:abs

Γ `Σ (λXβ A) : (β → α)

� Oops: this looks surprisingly like a natural deduction calculus.
(⇒ Curry Howard Isomorphism)

c©:Michael Kohlhase 78

βη-Equality by Inference Rules: One-Step Reduction

� One-step Reduction (+ ∈ {α, β, η})

wffβ:top
` ((λXA)B)→1

β [B/X](A)

X 6∈ free(A)
wffη:top

` (λXAX)→1
β A

` A→1
+ B

tr:appfn
` (AC)→1

+ (BC)

` A→1
+ B

tr:apparg
` (CA)→1

+ (CB)

` A→1
+ B

tr:abs
` (λXA)→1

+ (λXB)

c©:Michael Kohlhase 79

45

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

βη-Equality by Inference Rules: Multi-Step Reduction

� Multi-Step-Reduction (+ ∈ {α, β, η})

` A→1
+ B

ms:start
` A→∗+ B

ms:ref
` A→∗+ A

` A→∗+ B ` B→∗+ C
ms:trans

` A→∗+ C

� Congruence Relation

` A→∗+ B
eq:start

` A =+ B

` A =+ B
eq:sym

` B =+ A

` A =+ B ` B =+ C
eq:trans

` A =+ C

c©:Michael Kohlhase 80

4.4 Computational Properties of λ-Calculus

From Extensionality to η-Conversion

� Definition 4.30: Extensionality Axiom: ∀Fα→β .∀Gα→β .(∀Xα.FX = GX)⇒ F = G

� Theorem 4.31: η-equality and Extensionality are equivalent

� Proof: We show that η-equality (Aα→β =η λXαAX, if X 6∈ free(A)) is special case
of extensionality; the converse entailment is trivial

P.1 Let ∀Xα.AX = BX, thus AX = BX with ∀E
P.2 λXαAX = λXαBX, therefore A = B with η

P.3 Hence ∀Fo.∀Go.(F ⇔ G)⇔ F = G

� Axiom of truth values: ∀Fo.∀Go.(F ⇔ G)⇔ F = G unsolved.

c©:Michael Kohlhase 81

46

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

η-Reduction ist terminating and confluent

� Lemma 4.32: η-Reduction ist terminating

� Proof: by a simple counting argument

� Lemma 4.33: η-Reduction ist confluent

� Proof: by diagram chase

c©:Michael Kohlhase 82

βη is confluent

� Lemma 4.34: →∗β and →∗η commute.

� Proof: diagram chase

c©:Michael Kohlhase 83

4.4.1 Termination of β-reduction

The second result is that β reduction terminates. We will use this to present a very powerful
proof method, called the “logical relations method”, which is one of the basic proof methods in
the repertoire of a proof theorist.

Termination of β-Reduction

� only holds for the typed case
(λXXX)(λXXX)→β (λXXX)(λXXX)

� Theorem 4.35: (Typed β-Reduction terminates)

For all A ∈ wff α(Σ,VT), the chain of reductions from A is finite.

� proof attempts:

� Induction on the structure A must fail, since this would also work for the untyped
case.

� Induction on the type of A must fail, since β-reduction conserves types.

� combined induction on both: Logical Relations [Tait 1967]

c©:Michael Kohlhase 84

47

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Relations SR and LR
� Definition 4.36: A is called strongly reducing at type α (write SR(A, α)), iff each chain
β-reductions from A terminates.

� Lemma 4.37: (Lemma 1)

If SR(C, α) and Bβ is a subterm of A, then SR(B, β).

� Proof Idea: Every infinite β-reduction from B would be one from A.

� We define a logical relation LR inductively on the structure of the type

� α base type: LR(A, α), iff SR(A, α)

� LR(C, α→ β), iff LR(CA, β) for all A ∈ wff α(Σ,VT) with LR(A, α).

� Proof: Termination Proof

P.1 LR ⊆ SR (Lemma 2b)

P.2 A ∈ wff α(Σ,VT) implies LR(A, α)

P.3 also SR(A, α)

c©:Michael Kohlhase 85

LR ⊆ SR (Rollercoaster Lemma)

� Lemma 4.38: (Lemma 2)

a) If h is a constant or variable of type αn → β and SR(Ai, αi), then LR(hAn, β).

b) LR(A, α) implies SR(A, α).

� Proof: we prove both assertions by simultaneous induction on α

P.1.1 α base type:

P.1.1.1.1 a): hAn is strongly reducing, since the Ai are (brackets!)

P.1.1.1.1.2 so LR(hAn, β) as α is a base type (SR = LR)

P.1.1.1.2 b): by definition

P.1.2 α = β → γ:

P.1.2.1.1 a): Let LR(B, β).

P.1.2.1.1.2 by the second IH we have SR(B, β), and LR(hAnB, γ) by the first IH

P.1.2.1.1.3 so LR(hAn, β) by definition.

P.1.2.1.2 b): Let LR(A, α) and Xβ /∈ free(A).

P.1.2.1.2.2 by the first IH (with n = 0) we have LR(X,β), thus LR(AX, γ) by defini-
tion.

P.1.2.1.2.3 By the second IH we have SR(AX, γ) and by Lemma 1 SR(A, α).

c©:Michael Kohlhase 86

48

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

β-Expansion-Lemma

� Lemma 4.39: If LR([B/X]A, α) and LR(B, β) for Xβ /∈ free(A), then
LR((λXαA)B, α).

� Proof:

P.1 Let α = γi → δ where δ base type and LR(Ci, γi)

P.2 It is sufficient to show that SR((λXA)BC, δ), as δ base type

P.3 We have LR([B/X](A)C, δ) by hypothesis and definition of LR.

P.4 thus SR([B/X](A)C, δ), as δ base type.

P.5 in particular SR([B/X]A, α) and SR(Ci, γi) (subterms)

P.6 SR(B, β) by hypothesis and Lemma 2

P.7 So an infinite reduction from (λXA)BC cannot solely consist of redexes from
[B/X]A and the Ci.

P.8 so an infinite reduction from (λXA)BC must have the form

(λXA)BC →∗β (λXA′)B′C′

→1
β [B′/X](A′)C′

→∗β . . .

where A→∗β A′, B→∗β B′ and Ci →∗β Ci′

P.9 so we have [B/X](A)→∗β [B′/X](A′)

P.10 so we have the infinite reduction

[B/X](A)C →∗β [B′/X](A′)C′

→∗β . . .

which contradicts our assumption

c©:Michael Kohlhase 87

49

http://creativecommons.org/licenses/by-sa/2.5/

�

Closure under β-Expansion (weakly reducing)

� Lemma 4.40: (Lemma 3)

If C→h
β D and LR(D, α), so is LR(C, α).

� Proof: by induction over the structure of α

P.1.1 α base type:

P.1.1.1 we have SR(D, α) by definition

P.1.1.2 so SR(C, α), since head reduction is unique

P.1.1.3 and thus LR(C, α).

P.1.2 α = β → γ:

P.1.2.1 Let LR(B, β), by definition we have LR(DB, γ).

P.1.2.2 but CB→h
β DB, so LR(CB, γ) by IH

P.1.2.3 and LR(C, α) by definition.

Note: This Lemma only holds for weak reduction (any chain of β head reductions termi-
nates) for strong reduction we need a stronger Lemma.

c©:Michael Kohlhase 88

A ∈ wff α(Σ,VT) implies LR(A, α)

� Theorem 4.41: If LR(σXα, α) for all X ∈ supp(σ) and A ∈ wff α(Σ,VT), then
LR(σA, α).

� Proof: by induction on the structure of A

P.1.1 A = Xα ∈ supp(σ): then LR(σA, α) by assumption

P.1.2 A = X /∈ supp(σ): then σA = A and LR(A, α) by Lemma 2 with n = 0.

P.1.3 A ∈ Σ: then σA = A as above

P.1.4 A = BC: by IH LR(σB, γ → α) and LR(σC, γ)

P.1.4.2 so LR(σ(B)σ(C), α) by definition of LR.

P.1.5 A = λXβ Cγ : Let LR(B, β) and θ := σ, [B/X], then θ meets the conditions of
the IH.

P.1.5.2 Moreover σ(λXβ Cγ)B→β σ, [B/X](C) = θ(C).

P.1.5.3 Now, LR(θC, γ) by IH and thus LR(σ(A)B, γ) by Lemma 3.

P.1.5.4 So LR(σA, α) by definition of LR.

c©:Michael Kohlhase 89

4.5 Completeness of αβη-Equality

We will now show is that αβη-equality is complete for the semantics we defined, i.e. that whenever
Iϕ(A) = Iϕ(B) for all variable assignments ϕ, then A =αβη B. We will prove this by a model

50

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

existence argument: we will construct a modelM := 〈D, I〉 such that if A 6=αβη B then Iϕ(A) 6=
Iϕ(B) for some ϕ.

Normal Forms in the simply typed λ-calculus

� Definition 4.42: We call a term A ∈ wff T (Σ,VT) a β normal form iff there is no
B ∈ wff T (Σ,VT) with A→β B.
We call N a β normal form of A, iff N is a β-normal form and A→β N .
We denote the set of β-normal forms with wff T (Σ,VT)

y
β

.

� We have just proved that βη-reduction is terminating and confluent, so we have

� Corollary 4.43: (Normal Forms)

Every A ∈ wff T (Σ,VT) has a unique β normal form (βη, long βη normal form), which
we denote by A↓β (A↓βη A↓lβη)

c©:Michael Kohlhase 90

A Herbrand Model for Λ→

� Definition 4.44: (Term Structures for Σ)

Let Tβη := 〈cwff T (Σ,VT)
y
β
, Iβη〉, where cwff T (Σ,VT)

y
β

is the set of ground βη-

normal λ-terms and Iβη(c)@A := cA↓β . We call Tβη the β-term structure for Σ.

� Let ϕ be an assignment into cwff T (Σ,VT)
y
β

. Note that σ := ϕ
∣∣
free(A)

is a substitu-

tion, since free(A) is finite. We have Iβηϕ (A) = σA↓β .

� The name term structure in the previous definition is justified by the following lemma.

� Lemma 4.45: Tβη is a Σ-model

c©:Michael Kohlhase 91

We can see that αβη-equality is complete for the class of Σ-models, i.e. if the equation A = B
is valid, then A =αβη B. Thus αβη equivalence fully characterizes equality in the class of all
Σ-models, while additional η-equality characterizes functionality.

51

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Completetness of αβη-Equality

� Theorem 4.46: A = B is valid in the class of Σ-models, iff A =αβη B.

� Proof: This is a simple consequence of the fact that Tβη is a Σ-model.

P.1 For closed equations the proof goes like this: if A = B is valid in all Σ-models,
it must be in Tβη and in particular A↓β = I(A) = I(B) = B↓β and therefore
A =αβη B.

P.2 If the equation is not closed, then the argument is a little more subtle due to the
presence of free variables.

P.3 We extend Σ with constant ciα for each type α and each i ∈ N.

P.4 Since we have assumed countably many variables per type, there is a bijection between
the set of variables and the set of constants in Σ, which induces a variable assignment
ϕΣ into cwff T (Σ,VT)

y
β

(each variable Xα is mapped to its associated constant

ciα ∈ cwff T (Σ,VT)
y
β

).

P.5 Thus IϕΣ(A) = IϕΣ(B) is the long βη-normal form of ϕΣ(A) and ϕΣ(B).

P.6 Since ϕΣ is a structure preserving homomorphism on well-formed formulae,
ϕ−1

Σ (IϕΣ(A)) is the is the long βη-normal form of both A and B and thus
A =αβη B.

c©:Michael Kohlhase 92

4.6 λ-Calculus Properties

We will now show is that αβη-reduction does not change the value of formulae, i.e. if A =αβη B,
then Iϕ(A) = Iϕ(B), for all D and ϕ. We say that the reductions are sound. On the other hand,
it can be shown that αβη-reduction is complete for this model class, i.e. if Iϕ(A) = Iϕ(B), for all
D and ϕ, then A =αβη B.

4.7 The Curry-Howard Isomorphism

The Curry-Howard Iso. for minimal ⇒-Logic

� make the structural similarity between λ-calculus and propositional ND explicit

� → resembles ⇒
� types resemble formulae (“propositions as types”)

� λ-terms resemble proofs (“proof terms”’, “proofs as programs”)

� wff:app resembles ⇒ E, wff:abs resembles ⇒ I

� A provable, iff α non-empty (e.g. for the Hilbert-axioms)

� λXα λYβXα has type α→ β → α

� λXα→β→γ λYα→γ λZγXZ (Y Z) has type (α→ β → γ)→ (α→ β)→ α→ γ

� works well for → and ⇒

c©:Michael Kohlhase 93

52

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Types for Conjunctions

� new type constructor: × (product type α× β)

� new term constructors: 〈·, ·〉, π1 and π2

� new type inference rules

Γ `Σ A : α Γ `Σ B : β
wff:pair

Γ `Σ 〈A,B〉 : α× β

Γ `Σ A : α× β
wff:πl

Γ `Σ π1(A) : α

Γ `Σ A : α× β
wff:πr

Γ `Σ π2(A) : β

� new reductions (gives canonical reduction system)

(π1(〈A,B〉)→1
β A) (π2(〈A,B〉)→1

β B) (〈π1(A), π2(A)〉 →1
η A)

� Others: disjoint sum for disjunction, complement for negation,. . .

c©:Michael Kohlhase 94

Example (Conjunction)

[A ∧B]X
∧Er

B

[A ∧B]X
∧El

A
∧I

B ∧A
⇒ IX

A ∧B⇒ B ∧A

corresponds to λXα×β 〈π2(X), π1(X)〉

� Normalization

D

A

E

B
∧I

A ∧B
∧El

A

D

A

since (π1(〈M,N〉)→1
β M)

� analogous for the other reductions

c©:Michael Kohlhase 95

53

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The Curry-Howard Isomorphism by Example

� Example 4.47: (Deriving the S-Axiom)

Γ ` α→ β → γ Γ ` α

Γ ` α→ β Γ ` α

Γ ` β

Γ ` γ

α→ β → γ , α→ β ` α→ γ

α→ β → γ ` (α→ β)→ α→ γ

∅ ` (α→ β → γ)→ (α→ β)→ α→ γ

where Γ = α→ β → γ , α→ β , α

c©:Michael Kohlhase 96

The Curry-Howard Isomorphism by Example

� Example 4.48: (Deriving the S-Axiom)

Γ `Σ X : α→ β → γ Γ `Σ Z : α

Γ `Σ Y : α→ β Γ `Σ Z : α

Γ `Σ Y Z : β

Γ `Σ XZ(Y Z) : γ

[X : α→ β → γ], [Y : α→ β] `Σ λZXZ(Y Z) : α→ γ

[X : α→ β → γ] `Σ λY ZXZ(Y Z) : (α→ β)→ α→ γ

∅ `Σ λXY ZXZ(Y Z) : (α→ β → γ)→ (α→ β)→ α→ γ

where Γ = [X : α→ β → γ], [Y : α→ β], [Z : α]

c©:Michael Kohlhase 97

54

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What next for the Curry Howard Isomorphism?

� Additional types for disjunction and negation

� Problem: What about quantifiers?

� Idea 1: Introduce type polymorphism (“Second-Order λ-Calculus”)

� type-variables, type-quantification

� λXX has the type ∀α.α→ α

� Idea 2: make types dependent on terms (“Edinburgh Logical Framework”)

� typ-constructors “type-families”: vec(7) is the type of vectors of length 7

� mat(3→ 5)→~(3)→~(5) is the type of a matrix multiplication operator

� pf(A) the type of proofs of a formula A.

c©:Michael Kohlhase 98

Example: Proof Normalization

�
D

A

[A]X
E

B
⇒ IX

A⇒ B
⇒ E

B

� E corresponds to Mµ (B to β)

� D corresponds to Nν (A to α)

� the whole to (λXαMµ)Nν

� Normalize: ((λXαMµ)Nν)→1
β [N/X](M) corresponds to

D

A
E

B

� Theorem 4.49: (Cut Elimination)

For each ND-proof of a formula A there is a ⇒ E-free proof of A.

c©:Michael Kohlhase 99

55

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

λ-calculus and functional Programming

� z.B. LISP (λ-calculus with lists [a|b|c] and conditionals)

sort=(λ (L) (if L=[] then []else [min(L)|sort(del(min(L),L))]))

del=(λ (X,L) (if L=[] then ⊥
elif X=first(L) then rest(L)
else [first(L)|del(X,rest(L))]))

min=(λ (L) (if L=[] then ⊥
elif L=[first(L)] then first(L)
elif first(L)<min(rest(L)) then first(L)
else min(rest(L))))

� Program-Evaluation is β-reduction and list-reduction
del c [a|b|c]

→1
β[first([a|b|c])|del(c,rest([a|b|c]))]→1

β[a|del(c,[b|c])]

→1
β[a|first([b|c])|del(c,rest([b|c]))]→1

β[a|b|del(c,[c])]

→1
β[a|b|rest([c])]→1

β[a|b|[]]→
1
β[a|b]

c©:Michael Kohlhase 100

56

http://creativecommons.org/licenses/by-sa/2.5/

Proofs as Programs

� Remember: Proofs are λ-terms & λ-terms are programs

� Idea: Then proofs should be programs (well only constructive ones)

� Example 4.50: (Sorting)

a theory of ordered lists:

� |= perm(L,M), if M is a permutation of L

� |= ord(L), if L ordered wrt. <

� X < L if X < Y for all Y ∈ L

Theorems:

� |= min(L) < del(min(L), L)

� |= ord(L) ∧ x < L⇒ ord([x|L])

� |= perm(L⇒M)⇒ perm([x|L], [x|M])

� Theorem 4.51: ∀L.∃M.ord(L)perm(L,M)

� Proof: by induction on the structure of the list L

P.1.1 If L = []: choose M = []

P.1.2 If L 6= []:

P.1.2.1 by IH there is a list W , such that ord(W)perm(W,del(min(L), L))

P.1.2.2 chose M = [min(L)|W]

Programm:
� sort=(λ L (if L=[] then ⊥ else [min(L)|sort(del(min(L),L))]))

� Note: the correcness of this program is ensured by the proof

� Note: different proofs yield different programs

� Note: the programs extracted from automatically found proofs are not always efficient
(Slowsort!)

c©:Michael Kohlhase 101

5 Knowledge Representation

Before we start into the development of description logics, we set the stage by looking into what
alternatives for knowledge representation we know.

5.1 Introduction to Knowledge Representation

57

http://creativecommons.org/licenses/by-sa/2.5/

What is knowledge? Why Representation?

� For the purposes of this course: Knowledge is the information necessary to support
intelligent reasoning (during NLP)

representation can be used to determine

set of words whether a word is admissible
list of words the rank of a word
a lexicon translation or grammatical function

structure function

� Representation as structure and function.

� the representation determines the content theory (what is the data?)

� the function determines the process model (what do we do with the data?)

c©:Michael Kohlhase 102

Knowledge Representation vs. Data Structures

� Why do we use the term “knowledge representation” rather than

� data structures? (sets, lists, ... above)

� information representation? (it is information)

� no good reason other than AI practice, with the intuition that

� data is simple and general (supports many algorithms)

� knowledge is complex (has distinguished process model)

c©:Michael Kohlhase 103

Some Paradigms for AI/NLP

� GOFAI (good old-fashioned AI)

� symbolic knowledge representation, process model based on heuristic search

� statistical, corpus-based approaches.

� symbolic representation, process model based on machine learning

� knowledge is divided into symbolic- and statistical (search) knowledge

� connectionist approach (not in this course)

� sub-symbolic representation, process model based on primitive processing elements
(nodes) and weighted links

� knowledge is only present in activation patters, etc.

c©:Michael Kohlhase 104

58

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

KR Approaches/Evaluation Criteria

� Expressive Adequacy: What can be represented, what distinctions are supported.

� Reasoning Efficiency: can the representation support processing that generates results in
acceptable speed?

� Primitives: what are the primitive elements of representation, are they intuitive, cogni-
tively adequate?

� Meta-representation: knowledge about knowledge

� Incompleteness: the problems of reasoning with knowledge that is known to be incom-
plete.

c©:Michael Kohlhase 105

Semantic Networks [e.g. Collins and Quillian ’69]

� Graph structure with for representing knowledge

� nodes represent concepts (e.g. bird, John, robin)

� links represent relations between these (isa, father of, belongs to)

wings Mary

John

robin

bird Jack

has part

loves

owner of

isaisa

c©:Michael Kohlhase 106

59

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The famous “Isa-Hierarchy”

� Idea: encode taxonomic information about concepts and individuals

� in “isa” links (inclusion of concepts)

� in “inst” links (concept memberships)

� use property inheritance in the process model

Clyde Fred

elephant graytigerstriped

higher animal headlegs

amoeba

movesanimal

inst inst

color

isaisa

pattern

has parthas part

isa
isa

can

c©:Michael Kohlhase 107

Limitations of Semantic Networks

� What is the meaning of a link?

� link names are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational semantics)

� No division of optional and defining arguments

wings

robin

bird
has part

isa

wings

robin

joe

bird
has part

isa

isa

5

c©:Michael Kohlhase 108

eEdNote: with a cancel link link to the has link

60

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Another Notation for Semantic Networks

� use function/argument notation

� Interpret nodes as arguments (reification to individuals)

� Interpret links as functions (logical relations)

wings Mary

John

robin

bird Jack

has part

loves

owner of

isaisa isa(robin, bird)
haspart(bird, wings)
isa(Jack, robin)
owner of(John, robin)
loves(John,Mary)

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. PROLOG)

– worse locality properties (networks are associative)

c©:Michael Kohlhase 109

A Denotational Semantics for Semantic Networks

� take isa/inst concept/individual distinction into account

wings Mary

John

robin

bird Jack

has part

loves

owner of

inst
isa

robin ⊆ bird
haspart(bird, wings)
Jack ∈ robin
owner of(John, Jack)
loves(John,Mary)

� looks like first-order logic, if we take

� A ⊆ B to mean ∀X.A(X)⇒ B(X)

� a ∈ S to mean S(a)

� haspart(A,B) to mean ∀X.A(X)⇒ (∃Y.B(Y) ∧ part of(X ∧ Y))

� Take first-order deduction as process model (gives inheritance for free)

c©:Michael Kohlhase 110

61

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Frame Notation as Logic with Locality

� Predicate Logic: (where is the locality?)

catch 22 ∈ catch object There is an instance of catching
catcher(catch 22, jack 2) Jack did the catching
caught(catch 22, ball 5) He caught a certain ball

� Frame Notation (group everything around the object)

(catch_object catch_22

(catcher jack_2)

(caught ball_5))

+ Once you have decided on a frame, all the information is local

+ easy to define schemes for concepts (aka. types in feature structures)

– how to determine frame, when to choose frame (log/chair)

c©:Michael Kohlhase 111

KR involving Time (Scripts [Shank ’77])

� Idea: organize typical event sequences, actors and props into representation structure

� Example 5.1: getting your hair cut
(at a beauty parlor)

� props, actors as script variables

� events in a (generalized) sequence

� use script material for

� anaphors, bridging references

� default common ground

� to fill in missing material into sit-
uations

big tip small tip

happy unhappy

pay

Beautician cuts hair

tell receptionist you’re here

go into beauty parlor

make appointment

c©:Michael Kohlhase 112

Other Representation Formats (not covered)

� Procedural Representations (production systems)

� analogical representations (interesting but not here)

� iconic representations (interesting but very difficult to formalize)

� If you are interested, come see me off-line

c©:Michael Kohlhase 113

5.2 Logic-Based Knowledge Representation

62

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Logic-Based Knowledge Representation

� Logic (and related formalisms) have a well-defined semantics

� explicitly (gives more understanding than statistical/neural methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by log. calculi (combinatorial explosion)

� One possible answer: Description Logics. (next couple of times)

c©:Michael Kohlhase 114

Propositional Logic as Set Description Language

� use propositional logic as a set description language

� variant syntax: u=̂∧ (intersection), t=̂∨ (union), · =̂¬ (complement), v =̂ ⇒ (sub-
sumption)

Example Set Semantics

son v child
daughter v child
son u daughter
child v son t daughter

daughterssons

children

� Definition 5.2: (Formal Semantics)

let D be a given set (called the domain) and ϕ : Vo → ℘(D), then

� [[P]] := ϕ(P) ⊆ D,

� [[A tB]] = [[A]] ∪ [[B]] and
[[

A
]]

= D\[[A]]. . .

c©:Michael Kohlhase 115

63

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Effects of the Axioms in this example

� Idea: use logical axioms to describe the world
(Axioms restrict the class of admissible domain structures)

�

Axioms Effect

son v child
daughter v child

daughterssons

children

son u daughter
child v son t daughter

daughterssons

c©:Michael Kohlhase 116

Predicate-Logic Formulation

Propositional Logic Predicate Logic

son v child ∀x.son(x)⇒ child(x)
daughter v child ∀x.daughter(x)⇒ child(x)
son u daughter ∀x.¬(son(x) ∧ daughter(x))
child v son t daughter ∀x.child(x)⇒ son(x) ∨ daughter(x)

c©:Michael Kohlhase 117

Set-Theoretic Semantics

� Definition 5.3: A model M = 〈D, I〉 consists of a Interpretation I over a non-empty
domain D is a mapping [[·]]:

Operator Meaning formula semantics

1 [[p]] ⊂ D
2 [[·]] = complement

[[
A
]]

= [[A]] := =D\[[A]]
3 [[u]] = ∩ [[A uB]] = [[A]] ∩ [[B]]
4 [[t]] = ∪ [[A tB]] = [[A]] ∪ [[B]]
5 [[v]] = ⊆ [[A v B]] = [[A]] ∪ [[B]]
6 [[≡]] = set equality [[A ≡ B]] = ([[A]] ∩ [[B]]) ∪ ([[A]] ∪ [[B]])

� Justification for 5: A⇒ B = ¬A ∨B

� Justification for 6: A⇔ B = A ∧B ∨ ¬A ∧ ¬B = A ∧B ∨ ¬(A ∨B)

c©:Michael Kohlhase 118

64

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Set-Theoretic Semantics of Axioms

� Set-Theoretic Semantics of ‘true’ and ‘false’ (> = ϕ t ϕ ⊥ = ϕ u ϕ)

[[⊥]] = [[p]] ∪ [[p]] = [[p]] ∪ [[p]] = D Analogously: [[⊥]] = ∅

� Set-Theoretic Semantics of Axioms: A is true in M = 〈D, I〉 , iff [[A]] = D

Axioms Semantics

son v child is true
iff [[son]] ∪ [[child]] = D
iff [[son]] ⊆ [[child]]

sons

children

son v child [[son]] ⊆ [[child]]

daughter v child [[daughter]] ⊆ [[child]]

son u daughter [[son]] ∩ [[daughter]] = D
child v son t daughter [[child]] ⊆ [[son]] ∪ [[daughter]]

c©:Michael Kohlhase 119

Set-Theoretic Semantics and Predicate Logic

� use logical operators u,t,v,≡ instead of ∧,∨,⇒,⇔ if we are using PL0 with set-
theoretic semantics.

� Translation into PL1

� recursively add argument
variable x

� change back u,t,v,≡ to
∧,∨,⇒,⇔

� universal closure for x at
formula level.

PL0
fo(x)

= PL1 Comment

pfo(x) = p(x)

(A)
fo(x)

= ¬Afo(x)

(A uB
fo(x)

) = A
fo(x) ∧B

fo(x) ∧ vs. u
(A tB

fo(x)
= A

fo(x) ∨B
fo(x) ∨ vs. t

(A v B)
fo(x)

= A
fo(x) ⇒ B

fo(x) ⇒ vs. v
(A = B)

fo(x)
= A

fo(x) ⇔ B
fo(x) ⇔ vs. =

A
fo

= ∀x.Afo(x)
for formulae

c©:Michael Kohlhase 120

65

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Translation Examples

� Example 5.4:

son v child
fo

= ∀x.son(x)⇒ child(x)
daughter v child

fo
= ∀x.daughter(x)⇒ child(x)

(son v daughter)
fo

= ∀x.son(x) ∧ daughter(x)
child v son t daughter

fo
= ∀x.child(x)⇒ son(x) ∨ daughter(x)

� What are the advantages of translation to PL1?

� theoretically: A better understanding of the semantics

� computationally: NOTHING
many tests are decidable for PL0, but not for PL1 (Description Logics?)

c©:Michael Kohlhase 121

Kinds of Inference in Description Logics

� Consistency test (is a concept definition satisfiable?)

� Subsumption test (does a concept subsume another?)

� Instance test (is an individual an example of a concept?)

� . . .

� Problem: decidability, complexity, algorithm

c©:Michael Kohlhase 122

Consistency Test

� Example 5.5: T-Box

woman = person u has Y person without y-chromosome
man = person u has Y person with y-chromosome

hermaphrodite = man u woman man and woman

� This specification is inconsistent, i.e. [[hermaphrodite]] = ∅ for all D, ϕ.

� Algorithm: propositional satisfiability test (NP-complete) we know how to do this, e.g.
tableau, resolution

c©:Michael Kohlhase 123

66

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Subsumption Test

� Example 5.6: in this case trivial
Axioms entailed subsumption relation

woman = person u has Y woman v person
man = person u has Y man v person

� Reduction to consistency test: (need to implement only one) Axioms⇒ A⇒ B is
valid iff Axioms ∧A ∧ ¬B is inconsistent.

� Definition 5.7: A subsumes B (modulo an axiom set A)
iff [[B]] ⊆ [[A]] for all interpretations D, that satisfy A
iff Axioms⇒ B⇒ A is valid ‘

� in our example: person subsumes woman and man

c©:Michael Kohlhase 124

Classification

� The subsumption relation among all concepts (subsumption graph)

� Visualization of the Subsumption graph for inspection (plausibility)

� Definition 5.8: Classification is the computation of the subsumption graph

� Example 5.9: (not always so trivial)

male student female student boy girl

man woman student professor child

person

object

c©:Michael Kohlhase 125

Instance Test

� Example 5.10: (will explain TBox and ABox with ALC later)

T-Box (terminological Box)

woman = person u has Y
man = person u has Y

A-Box (assertional Box, data base)

tony : person Paul is a person
tony : has Y Paul has a y-chromosome

� This entails: tony : man (Paul is a man).

c©:Michael Kohlhase 126

67

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Realization

� Definition 5.11: Realization is the computation of all instance relations between ABox
objects and TBox concepts.

� sufficient to remember the lowest concepts in the subsumption graph

male student female student girl boy

man woman student professor child

person

object

Tony TimmyTerry

� if tony : male student is known, we do not need tony : man.

c©:Michael Kohlhase 127

5.3 A simple Description Logic: ALC

Motivation for ALC (Prototype Description Logic)

� Propositional logic (PL0) is not expressive enough

� Example 5.12: “mothers are women that have a child”

� Reason: there are no quantifiers in PL0 (existential (∃) and universal (∀))

� Idea: use first-order predicate logic (PL1)

∀x.mother(x)⇔ woman(x) ∧ (∃y.has child(x, y))

� Problem: complex algorithms, non-termination (PL1 is too expressive)

� Idea: Try to travel the middle ground
more expressive than PL0 (quantifiers) but weaker than PL1 (still tractable)

� Technique: Allow only “restricted quantification”, where quantified variables only range
over values that can be reached via a binary relation like has child.

c©:Michael Kohlhase 128

68

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Syntax of ALC
� Concepts: (aka. “predicates” in PL1 or “propositional variables” in PL0)

concepts in DLs name classes of objects like in OOP.

� Special concepts: > (for “true” or “all”) and ⊥ (for “false” or “none”).

� Example 5.13: person, woman, man, mother, professor, student, car, BMW, computer,
computer program, heart attack risk, furniture, table, leg of a chair,. . .

� Roles: name binary relations (like in in PL1)

� Example 5.14: has child, has son, has daughter, loves, hates gives course, exe-
cutes computer program, has leg of table, has wheel, has motor,. . .

c©:Michael Kohlhase 129

Syntax of ALC: Formulae FALC
� Grammar: FALC :== C | > | ⊥ | FALC | FALC u FALC | FALC t FALC | (∃R.FALC) | (∀R.FALC)

� Example 5.15:

� person u (∃has child.student) (parents of students)

(The set of persons that have a child which is a student)

� person u (∃has child.∃has child.student) (grandparents of students)

� person u (∃has child.∃has child.student t teacher)(grandparents of students or teachers)

� person u (∀has child.student) (parents whose children are all students)

� person u (∀haschild.∃has child.student) (grandparents, whose children all have at least one child that is a student)

c©:Michael Kohlhase 130

More Examples

� car u (∃has part.∃made in.EU)(cars that have at least one part that has not been made in the EU)

� student u (∀audits course.graduatelevelcourse)(students, that only audit graduate level courses)

� house u (∀has parking.off street) (houses with off-street parking)

� Note: p v q can still be used as an abbreviation for p t q.

� student u (∀audits course.(∃hasrecitation.>) v (∀has TA.woman))
(students that only audit courses that either have no recitation or recitations that are TAed by women)

c©:Michael Kohlhase 131

69

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

ALC Concept Definitions

� Define new concepts from known ones: (KDALC :== C = FALC)

Definition rec

man = person u (∃has chrom.Y chrom) −
woman = person u (∀has chrom.Y chrom) −
mother = woman u (∃has child.person) −

father = man u (∃has child.person) −
grandparent = person u (∃has child.mother t father) −

german = person u (∃has parents.german) +
number list = empty list t (∃is first.number) u (∃is rest.number list) +

c©:Michael Kohlhase 132

Concept Axioms

� Definition 5.16: General DL formulae that are not concept definitions are called Concept
Axioms.

� They normally contain additional information about concepts

� Example 5.17:

� person u car (persons and cars are disjoint)

� car v motor vehicle (cars are motor vehicles)

� motor vehicle v car t truck tmotorcycle(motor vehicles are cars, trucks, or motorcycles)

c©:Michael Kohlhase 133

TBoxes: “terminological Box”

� Definition 5.18: finite set of concept definitions + finite set of concept axioms

� Definition 5.19: Acyclic TBox (mostly treated)

TBox does not contain recursive definitions

� Definition 5.20: Normalized wrt. TBox (convenient)

A formula A is called normalized wrt. T , iff it does not contain concept names defined
in T .

� Algorithm: (Input: A formula A and a TBox T .) (for arbitrary DLs)

� While [A contains concept name c and T concept definition c = C]

� substitute c by C in A.

� Lemma 5.21: this algorithm terminates for acyclic TBoxes

c©:Michael Kohlhase 134

70

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Normalization Example (normalizing grandparent)
grandparent

7→ person u (∃has child.mother t father)
7→ person u (∃has child.woman u (∃has child.person),man, ∃has child.person)
7→ person u (∃has child.person u (∃has chrom.Y chrom) u (∃has child.person) u person u (∃has chrom.Y chrom) u (∃has child.person))

� Observation: normalization result can be exponential and redundant

� Observation: need not terminate on cyclic TBoxes

german 7→ person u (∃has parents.german)
7→ person u (∃has parents.person u (∃has parents.german))
7→ . . .

@ c©:Michael Kohlhase 135

Semantics of ALC
� ALC semantics is an extension of the set-semantics of propositional logic.

� Definition 5.22: An Interpretation I over a non-empty domain D is a mapping [[·]]:

Op. formula semantics

[[c]] ⊆ D = [[>]] [[⊥]] = ∅ [[r]] ⊆ D ×D
· [[ϕ]] = [[ϕ]] = D\[[ϕ]]
u [[ϕ u ψ]] = [[ϕ]] ∩ [[ψ]]
t [[ϕ t ψ]] = [[ϕ]] ∪ [[ψ]]
∃R. [[∃R.ϕ]] = ({x ∈ D | ∃y.〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]})
∀R. [[∀R.ϕ]] = ({x ∈ D | ∀y. if 〈x, y〉 ∈ [[R]] then y ∈ [[ϕ]]})

c©:Michael Kohlhase 136

Propositional Identities

Name for u for t
Idenpot. ϕ u ϕ = ϕ ϕ t ϕ = ϕ
Identity ϕ u > = ϕ ϕ t ⊥ = ϕ
Absorpt. ϕ t > = > ϕ u ⊥ = ⊥
Commut. ϕ u ψ = ψ u ϕ ϕ t ψ = ψ t ϕ
Assoc. ϕ u (ψ u θ) = (ϕ u ψ) u θ ϕψ t θ = (ϕ t ψ) t θ
Distrib. ϕ u (ψ t θ) = ϕ u ψ t ϕ u θ ϕ t ψ u θ = (ϕ t ψ) u (ϕ t θ)
Absorpt. ϕ u (ϕ t θ) = ϕ ϕ t ϕ u θ = ϕ u θ
Morgan ϕ u ψ = ϕ t ψ ϕ t ψ = ϕ u ψ
dneg ϕ = ϕ

c©:Michael Kohlhase 137

71

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

More ALC Identities

�
∃R.ϕ = ∀R.ϕ ∀R.ϕ = ∃R.ϕ

∀R.ϕ u ψ = ∀R.ϕ u (∀R.ψ) ∃R.ϕ t ψ = ∃R.ϕ t (∃R.ψ)

� Proof of 1[[
∃R.ϕ

]]
= D\[[(∃R.ϕ)]] = D\({x ∈ D | ∃y.〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]})

= ({x ∈ D | not ∃y.〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]})
= ({x ∈ D | ∀y.if 〈x, y〉 ∈ [[R]] then y 6∈ [[ϕ]]})
= ({x ∈ D | ∀y.if 〈x, y〉 ∈ [[R]] then y ∈ (D\[[ϕ]])})
= ({x ∈ D | ∀y.if 〈x, y〉 ∈ [[R]] then y ∈ [[ϕ]]})
= [[∀R.ϕ]]

c©:Michael Kohlhase 138

Negation Normal Form

� Definition 5.23: (NNF)

· directly in front of concept names in ALC formulae

� Use the ALC rules to compute it. (in linear time)

example by rule

∃R.(∀S.e) u (∀S.d)
7→ ∀R.(∀S.e) u (∀S.d) ∃R.ϕ 7→ ∀R.ϕ

7→ ∀R.(∀S.e) t (∀S.d) ϕ u ψ 7→ ϕ t ψ
7→ ∀R.(∃S.e) t (∀S.d) ∀R.ϕ 7→ ∀R.ϕ
7→ ∀R.(∃S.e) t (∀S.d) ϕ 7→ ϕ

c©:Michael Kohlhase 139

TALC : A Tableau-Calculus for ALC
x : c
x : c
⊥

∗

x : ϕ u ψ
u

x : ϕ
x : ψ

x : ϕ t ψ
t

x : ϕ
˛̨̨
x : ψ

x : ∀R.ϕ
x R y

∀
y : ϕ

x : ∃R.ϕ
∃

x R y
y : ϕ

� tableau calculus acts constraints of the form

� x : ϕ (x variable and ϕ ∈ ALC) (x is in the set ϕ)

� x R y, (x, y variables, and R role name) (x and y are in relation R)

c©:Michael Kohlhase 140

72

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Examples

1 x : ∀has child.manu
∃has child.man initial x : ∀has child.manu

∃has child.man initial
2 x : ∀has child.man ul x : ∀has child.man ul
3 x : ∃has child.man ur x : ∃has child.man ur
4 x has child y ∃r x has child y ∃r
5 y : man ∃s y : man ∃s
6 y : man ∀ open
7 ∗ ⊥

inconsistent

The right tableau has a model: there are two per-
sons, x and y. y is the only child of x, y is a man

c©:Michael Kohlhase 141

Another Example

1 x : (∀has child.ugrad t grad) u (∃has child.ugrad)
2 x : ∀has child.ugrad t grad ul
3 x : ∃has child.ugrad ur
4 x has child y ∃s
5 y : ugrad ∃r
6 y : ugrad t grad ∀

7 y : ugrad y : grad t
8 ∗ open

The left branch is closed, the right one represents a model:
y is a child of x, y is a graduate student, x hat exactly one child: y.

c©:Michael Kohlhase 142

Properties of Tableau Calculi

� We study the following properties of a tableau calculus C:

Termination there are no infinite sequences of rule applications.

Correctness If ϕ is consistent, then C terminates with an open branch.

Completeness If ϕ is in consistent, then C terminates and all branches are closed.

Complexity of the algorithm

Complexity of the satisfiability itself

c©:Michael Kohlhase 143

73

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Termination

� Theorem 5.24: The Tableau Algorithm for ALC terminates To prove termination of a
tableau algorithm, find a well-founded measure (function) that is decreased by all rules

� Proof: Sketch (full proof very technical)

P.1 any rule except ∀ can only be applied once to x : ψ.

P.2 rule ∀ applicable to x : ∀R.ψ at most as the number of R-successors of x.
(those y with x R y above)

P.3 the R-successors are generated by x : ∃R.θ above,
(number bounded by size of input formula)

P.4 every rule application to x : ψ generates constraints z : ψ′, where ψ′ a proper sub-
formula of ψ.

c©:Michael Kohlhase 144

Correctness

� Lemma 5.25: If ϕ consistent, then T terminates on x : ϕ with open branch.

� Proof: Let M be a model for ϕ and w ∈ [[ϕ]].

P.1 we define [[x]] := w and
= |= x : ψ iff [[x]] ∈ [[ψ]]
= |= x R y iff 〈x, y〉 ∈ [[R]]
= |= S iff = |= c for all c ∈ S

P.2 This gives us = |= x : ϕ (base case)

P.3 case analysis: if branch consistent, then either

� no rule applicable to leaf (open branch)

� or rule applicable and one new branch satisfiable (green inductive case)

P.4 consequence: there must be an open branch (by termination)

c©:Michael Kohlhase 145

Case analysis on the rules

u applies , then = |= x : ϕ u ψ, i.e. [[x]] ∈ [[(ϕ u ψ)]]
so [[x]] ∈ [[ϕ]] and [[x]] ∈ [[ψ]], thus = |= x : ϕ and = |= x : ψ.

t applies , then = |= x : ϕ t ψ, i.e [[x]] ∈ [[(ϕ t ψ)]]
so [[x]] ∈ [[ϕ]] or [[x]] ∈ [[ψ]], thus = |= x : ϕ or = |= x : ψ,
wlog. = |= x : ϕ.

∀ applies , then = |= x : ∀R.ϕ and = |= x R y, i.e. [[x]] ∈ [[(∀R.ϕ)]] and 〈x, y〉 ∈ [[R]], so
[[y]] ∈ [[ϕ]]

∃ applies , then = |= x : ∃R.ϕ, i.e [[x]] ∈ [[(∃R.ϕ)]],
so there is a v ∈ D with 〈[[x]], v〉 ∈ [[R]] and v ∈ [[ϕ]].
We define [[y]] := v, then = |= x R y and = |= y : ϕ

c©:Michael Kohlhase 146

74

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Completeness of the Tableau Calculus

� lemma 5.26: Open saturated tableau branches for ϕ induce models for ϕ.

� Proof: construct a model for the branch and verify for ϕ

P.1 (Model Construction) Let B be an open saturated branch

� we define
D : = ({x | x : ψ ∈ B or z R x ∈ B})

[[c]] : = ({x | x : c ∈ B})
[[R]] : = ({〈x, y〉 | x R y ∈ Sn})

� well-defined since never x : c, x : c ∈ B (otherwise ⊥ applies)

� = satisfies all constraints x : c, x : c and x R y, (by construction)

P.2 (Induction) = |= y : ψ, for all y : ψ ∈ B (on k = size(ψ) next slide)

P.3 (Consequence) = |= x : ϕ.

c©:Michael Kohlhase 147

Case Analysis for Induction

case y : ψ = y : ψ1 u ψ2 Then {y : ψ1, y : ψ2} ⊆ B (u-rule, saturation)

so = |= y : ψ1 und = |= y : ψ2 and = |= y : ψ1 u ψ2 (IH, Definition)

case y : ψ = y : ψ1 t ψ2 Then y : ψ1 ∈ B or y : ψ2 ∈ B (t-rule, saturation)

so = |= y : ψ1 or = |= y : ψ2 and = |= y : ψ1 t ψ2 (IH, Definition)

case y : ψ = y : ∃R.θ then {y R z, z : θ} ⊆ B (z new variable) (∃∗-rules, saturation)

so = |= z : θ and = |= y R z, thus = |= y : ∃R.θ. (IH, Definition)

case y : ψ = y : ∀R.θ Let 〈[[y]], v〉 ∈ [[R]] for some r ∈ =D
then v = z for some variable z with y R z ∈ B (construction of [[R]])

So z : θ ∈ B and = |= z : θ. (∀-rule, saturation, Def)

Since v was arbitrary we have = |= y : ∀R.θ.

c©:Michael Kohlhase 148

75

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Complexity

� Idea: We can organize the tableau procedure, so that the branches are worked off one
after the other. Therefore the size of the branches is relevant of the (space)-complexity
of the procedure.

� The size of the branches is polynomial in the size of the input formula
(same reasons as for termination)

� every rule except ∀ is only applied to a constraint x : ψ.

� The ∀ is applied to constraints of the form x : ∀R.ψ at most as often as there are
R-successors of x.

� The R-successors of x are generated by constraints x : ∃R.θ, whose number is bounded
by the size of the input formula.

� Each application to a constraint x : ψ generates constraints z : ψ′ where ψ′ is a proper
subformula of ψ.

The total size is the size of the input formula plus number of ∃-formulae times number
of ∀-formulae.

�� Theorem 5.27: The consisteny problem for ALC is in PSPACE.

� Theorem 5.28: The consistency problem for ALC is PSPACE-Complete.

� Proof: reduce a PSPACE-complete problem to ALC-consistency

� Theorem 5.29: (Time Complexity)

The ALC-consistency problem is in EXPTIME

� Proof: Sketch: There can be exponentially many branches(already for propositional logic)

c©:Michael Kohlhase 149

76

http://creativecommons.org/licenses/by-sa/2.5/

The functional Algorithm for ALC
� Observation: leads to treatment for ∃

� the ∃-rule generates the constraints x R y and y : ψ from x : ∃R.ψ

� this triggers the ∀-rule for x : ∀R.θi, which generate y : θ1, . . . , y : θn
� for y we have y : ψ and y : θ1, . . . y : θn. (do all of this in a single step)

� we are only interested in non-emptyness, not in the particular witnesses
(leave them out)

consistent(S) =
if {c, c} ⊆ S then false (inconsistent) elseif

‘(ϕ u ψ)’ ∈ S and (‘ϕ’ 6∈ S or ‘ψ’ 6∈ S)
then consistent(S ∪ {ϕ,ψ})

elseif ‘(ϕ t ψ)’ ∈ S and {ϕ,ψ} 6∈ S
then consistent(S ∪ {ϕ}) or

consistent(S ∪ {ψ})
elseif forall ‘(∃R.ψ)’ ∈ S

consistent({ψ} ∪ ({θ | ‘(∀R.θ)’ ∈ S}))
else true (consistent)

� relatively simple to implement (good implementations optimized)

� but: this is restricted to ALC. (extension to other DL difficult)

c©:Michael Kohlhase 150

�

Extending the Tableau Algorithm by Concept Axioms

� Concept axioms, e.g. child v son t daughter could not be handled in tableau calculi

� Idea: Whenever a new variable y is introduced (by ∃-rule) add the information that
axioms hold for y.

� initialize tableau with {x : ϕ} ∪ CA (CA : = set of concept axioms)

� new ∃-rule:
x : ∃R.ϕ α ∈ CA

∃CA
y : α

(apply-co-exhaustively to ∃)

Problem: CA := {∃R.c} and start tableau with x : d (non-termination)

c©:Michael Kohlhase 151

77

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Non-Termination of Tableau with Concept Axioms

x : d start
x : ∃R.c ∈ CA
x R y1 ∃
y1 : c ∃
y1 : ∃R.c ∃CA
y1 R y2 ∃
y2 : c ∃
y2 : ∃R.c ∃CA
. . .

Solution: Loop-Check:

� instead of a new variable y take
an old variable z, if we can guaran-
tee that whatever holds for y already
holds for z.

� we can only do this, iff the ∀-rule has
been exhaustively applied.

c©:Michael Kohlhase 152

ABoxes (Database Component of DL)

� Formula: a : ϕ (a is a ϕ) aRb (a stands in relation R to b)

property example

internally inconsistent tony : student, tony : student

inconsistent with a TBox
TBox : student u prof
ABox : tony : student, tony : prof

implicit info that is not ex-
plicit

Abox : tony : ∀has grad.genius
tonyhas gradmary
|= mary : genius

info that can be combined
with TBox info

TBox : cont prof = prof u (∀has grad.genius)
ABox : tony : cont prof, tonyhas gradmary
|= mary : genius

c©:Michael Kohlhase 153

78

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableau-based Instance Test and Realization

� Query: do the ABox and TBox together entail a : ϕ (a ∈ ϕ?)

� Algorithm: test a : ϕ for consistency with ABox and TBox.6 (use our tableau)

� necessary changes: (no big deal)

� Normalize ABox wrt. TBox (definition expansion)

� initialize the tableau with ABox in NNF (so it can be used)

Example: add mary : genius to determine ABox, TBox |= mary : genius

TBox cont prof = prof u (∀has grad.genius) tony : prof u (∀has grad.genius) Norm
tonyhas gradmary Norm

tony : prof u
tony : ∀has grad.genius u

mary : genius ∀
∗ ∗

ABox
tony : cont prof
tonyhas gradmary

� Note: The instance test is the base for the realization (remember?)

� extend to more complex ABox queries: (give me all instances of ϕ)

c©:Michael Kohlhase 154

fEdNote: need to unify abox and tbox judgments.

5.4 ALC Extensions

Language Extensions

� ALC is much more expressive than propositional logic, (still not enough)

� Idea: study more expressive extensions

� Need to study:

� which new operators? (are some definable)

� translation into predicate logic

� are the inference problems decidable? (consistency, subsumption, instance test,. . .)

� what is the complexity of the decision problem?

� what do the algorithms look like?

c©:Michael Kohlhase 155

5.4.1 Functional Roles and Number Restrictions

79

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Functional Roles

� Example 5.30: CSR=̂ Car with glass sun roof

� In ALC: CSR = car u (∃has sun roof.glass)

� potential unwanted interpretation: more than one sun roof.

� Problem: has sun roof is a relation in ALC (no partial function)

� Example 5.31: Humans have exactly one father and mother.

� in ALC: human v (∃has father.human) u (∃has mother.human)

� Problem: has father should be a total function (on the set of humans)

Solution: Number Restrictions (see next slide)

�� Example 5.32: Teenager = human between 13 and 19

� teenager = human u (age < 20)age > 12 (not covered by ALC)

� Solution: concrete domains (outside the scope of this course)

c©:Michael Kohlhase 156

Number Restrictions

� Example 5.33: Car = vehicle with at least four wheels

� Trick: In ALC: model car using two new distinguishing concepts p1 and p2

vehicle u (∃has wheel.p1 u p2) u (∃has wheel.p1 u p2) u (∃has wheel.p1 u p2) u (∃has wheel.p1 u p2)

� Problem: city = town with at least 1,000,000 inhabitants (oh boy)

� Alternative: Operators for number restrictions.

c©:Michael Kohlhase 157

(Unqualified) Number Restrictions

� ALC plus operators ∃n≥R and ∀n≤R (R role, n ∈ N)

� Example 5.34:

car = vehicle u ∃4
≥has wheel

city = town u ∃1,000,000
≥ has inhabitants

small family = family u ∀2
≤has child

� Semantics:

[[
∃n≥R

]]
= ({x ∈ D | #({y | 〈x, y〉 ∈ [[R]]}) ≥ n})[[

∀n≤R
]]

= ({x ∈ D | #({y | 〈x, y〉 ∈ [[R]]}) ≤ n})

� Intuitively: ∃n≥R is the set of objects that have at least n R-successors.

� Example 5.35: ∃1,000,000
≥ has inhabitants is the set of objects that have at least 1,000,000

inhabitants.

c©:Michael Kohlhase 158

80

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Translation into Predicate Logic

� Two extra rules for number restrictions: (very cumbersome)

∃n≥R
fo(x) ∀n≤R

fo(x)

∃y1.R(x, y1)∧ . . . ∧∃yn.R(x, yn) ¬∃y.R(x, y)∨
∧y1 6= y2∧ . . . ∧y1 6= yn (∃y1.R(x, y1) ∧ . . . ∧ ∃yn.R(x, yn)

∧ y2 6= y3∧ . . . ∧ y2 6= yn∧ ∀y.R(x, y)⇒ (y = y1 ∨ . . . ∨ y = yn))
yn−1 6= yn

� Definable Operator: =

�
n= R := ∃n≥R u ∀n≤R

defines the set of objects that have exactly n R-successors.

� Example 5.36: car = vehicle u n= has wheel (vehicles with exactly 4 wheels)

c©:Michael Kohlhase 159

Functional Roles

� Example 5.37: CSR = car u 1= has sun roof (CSR = car with sun roof)

has sun roof is a relation, but restricted to CSR it is a total function.

� Partial functions: Chd = computer u ∀1
≤has hd (computer with at most one hard drive)

has hd is a partial function on the set Chd

� Intuition: number restrictions can be used to encode partial and total functions, but not
to specify the range type.

c©:Michael Kohlhase 160

Negation Rules

� Observation: to compute the negation normal form, need the rules for the new operators

∃n≥R 7→ ∀n−1
≤ R ∀n≤R 7→ ∃n+1

≥ R

� Proof: by the semantics of the operators

� Example 5.38:
1 : ∃5

≥has child = ∀4
≤has child

2 : ∀5
≤has child = ∃6

≥has child

c©:Michael Kohlhase 161

81

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableaux Rules (without ABox Information)

x R a1

...
x R an−k
x : ∃n≥R

y1, . . . , yk new

x R y1

...
x R yk

x R a1

...
x R am
x : ∀n≤R

m > n
1 ≤ i, j ≤ m

[aj/ai] everywhere

� Basic Intuition (but when do we fail? Can we always identify)

� ∃n≥R: Introduce as many R-successors as necessary

� ∀n≤R: Identify two R-successors if there are too many (repeat as needed)

c©:Michael Kohlhase 162

5.4.2 Unique Names

Unique Name Assumption

� Problem: assuming UNA for ABox constants (but not always)

� Definition 5.39: (Unique Name Assumption)

(UNA)

Different names for objects denote different objects, (cannot be equated)

� Example 5.40:
Bob : gardener
Bob : gardener
UNAbomber : gardener

� Bill and Bob are different

� but the UNAbomber can be Bill or
Bob or someone else.

� Assumption: mark every ABox constant with ‘UNA’ or ‘UNA’

c©:Michael Kohlhase 163

82

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableau Rules (with ABox Information)

x R a1

...
x R an−k
x : ∃n≥R

y1, . . . , yk : UNA new
a1, . . . , an−k : UNA

x R y1

...
x R yk

x R a1

...
x R am
x : ∀n≤R

m > n
1 ≤ i, j ≤ m
ai : UNA

[aj/ai] everywhere

x R a1

...
x R am
x : ∀n≤R

m > n
a1, . . . , am : UNA

⊥

c©:Michael Kohlhase 164

Example: Solving a Crime with Number Restrictions

� Example 5.41: Tony has observed (at most) two people. Tony observed a murderer that
had black hair. It turns out that Bill and Bob were the two people Tony observed. Bill is
blond, and Bob has black hair. (Who was the murderer.)

Bill : UNA, Bob : UNA, tony : UNA, muderer : UNA

tony : ∀2
≤observes

tony observes Bill
tony observes Bob

tony observes muderer
muderer : black hair

Bill : black hair
Bob : black hair

tony observes Bill
Bill : black hair

∗

tony observes Bob
Bob : black hair

c©:Michael Kohlhase 165

5.4.3 Qualified Number Restrictions

83

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Qualified Number Restrictions

� ALC plus operators ∃n≥R.ϕ and ∀n≤R.ϕ (R role, n ∈ N , ϕ formula)

� Example 5.42: person u ∀2
≤has child.blond‘ (persons with ≤ 2 blond kids)

� Example 5.43: comp u ∃5
≥has client.car comp

(company with at least 5 clients in the automobile industry)

� Special case: Unqualified Number restrictions (∃n≥R.>, ∀n≤R.>.)

� Semantics:

[[
∃n≥R.ϕ)

]]
= ({x ∈ D | #({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≥ n})[[

∀n≤R.ϕ)
]]

= ({x ∈ D | #({y | 〈x, y〉 ∈ [[R]] and y ∈ [[ϕ]]}) ≤ n})

c©:Michael Kohlhase 166

Negation and Quantifier Elimination

� Negation rules: ∃n≥R.ϕ = ∀n−1
≤ R.ϕ ∀n≤R.ϕ = ∃n+1

≥ R.ϕ

� Example 5.44: ∃3
≥has child.teacher = ∀2

≤has child.teacher

� Example 5.45: ∀3
≤has child.teacher = ∃4

≥has child.teacher

� Quantifier elimination (regular quantifiers no longer necessary)

� ∃R.ϕ = ∃1
≥R.ϕ

� ∀R.ϕ = ∃R.ϕ = ∃1
≥R.ϕ = ∀0

≤R.ϕ

c©:Michael Kohlhase 167

Optimizied Tableau Rules [Tob00]

� Definition 5.46: TALC rules plus:

B
x : ∃n≥r.ϕ

#({y | x R y, y : ϕ ∈ B}) < n y new

x R y
y : ϕ
y : ξ1

...
y : ξk

where {ψ1, . . ., ψk} = ({ψ | x : ∃m≥R.ψ ∈ B or x : ∀m≤R.ψ ∈ B}) and ξi = ψ or ξ = ψ.

B
x : ∀n≤r.ϕ

#({y | x R y, y : ϕ ∈ B}) > n

∗

c©:Michael Kohlhase 168

84

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example Tableau

� Example 5.47:

x : ∃3
≥R.ϕ u ∀1

≤R.ψ u ∀1
≤R.ψ

x : ∃3
≥R.ϕ

x : ∀1
≤R.ψ

x : ∀1
≤R.ψ

x R y1

y1 : ϕ
y1 : ψ
x R y2

y2 : ϕ
y2 : ψ
∗

y2 : ψ
x R y3

y3 : ϕ
y3 : ψ
∗

y3 : ψ
∗

y1 : ψ
x R y2

y2 : ϕ
y2 : ψ
x R y3

y2 : ϕ
y3 : ψ
∗

y3 : ψ
∗

y2 : ψ
∗

� Problem: Naive Implementation: exponential path lengths

c©:Michael Kohlhase 169

Implementation by “Traces”

� Algorithm SAT(ϕ) = sat(x0, {x0 : ϕ})

sat(x, S):

allocate counter #rS(x, ψ) := 0 for all roles R and positive or negative subformulae ψ in
S.

apply rules u and t as long as possible

If S contains an inconsistency, RETURN ∗.
while(7→≥ is appliccable to x) do:

Sneu := {TALCRxy, y : ϕ, y : ξ1, . . . y : ξk}
where

y is a new variable,
x : ∃n≥R.ϕ triggers rule 7→≥,
{ψ1, . . ., ψk} = ({ψ | x : ∃m≥R.ψ ∈ B or x : ∀m≤R.ψ ∈ B}) and
ξi = ψ oder ξ = ¬ψ.

For each y : ψ ∈ Snew: #rS(x, ψ)+ = 1 If x : ∀m≤R.ψ ∈ B and #rS(x, ψ) > m
RETURN ∗

If sat(y, Sneu) = ∗ RETURN ∗ od
RETURN ”‘consistent”’.

c©:Michael Kohlhase 170

85

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Analysis

� Idea: Each R-successor of x triggers a recursive call of sat.

� There may be exponentially many R-successor, but they are treated one-by-one, so their
space can be re-used.

� The chains of R-successors are at most as long as the nesting depth of operators(linear)

� Lemma 5.48: Space consumption is polynomial.

� Lemma 5.49: This algorithm is complete.

� Proof: Sketch: The global counters #rS(x, ψ) count the R-successors and trigger rule
7→≤.

� Theorem 5.50: The algorithm is correct, complete and terminating, and PSPACE
(no worse than ALC)

c©:Michael Kohlhase 171

5.4.4 Role Operators

The DL-Zoo: Operator Types

� Operators on role names (construct roles on the fly)

� role hierarchy and role axioms (knowledge about roles)

� nominals (names for domain elements)

� features (partial functions)

� concrete domains (e.g. N,Z, trees)

� external data structures (for programming)

� epistemic operators (belief,. . .)

� . . .

c©:Michael Kohlhase 172

Role Hierarchies

� Idea: specification of subset relations among relations.

� Example 5.51: role hierarchy as a directed graph R

has daughter v has child
has son v has child

talks to v communicates with
calls v communicates with

buys v obtains
steals v obtains

c©:Michael Kohlhase 173

86

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

ALC with Role hierarchies (without role operators)

� Definition 5.52: TALC + complex roles instead of role names

x : ∃R.ϕ
∃

x R y
y : ϕ

x S y
x : ∀R.ϕ

S v R ∈ R
∀v

y : ϕ

The ∃ rule is the same as before

c©:Michael Kohlhase 174

Operators on Roles: Role Conjunction

� Example 5.53: person u (∃(has teacher u has friend).swiss)
(persons that have a Swiss teacher that is also their friend)

� Example 5.54: com u (∃(has employee u has attorney).lawyer)
(companies that have an employed attorney that is a lawyer)

� Semantics: [[R u S]] = [[R]] ∩ [[S]] = ({〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] and 〈x, y〉 ∈ [[S]]})

•

•

•

•

s

r

r

r

s u r

Inference Rules

(∀R u S.ϕ) v (∀R.ϕ) u (∀S.ϕ)
(∃R u S.ϕ) v (∃R.ϕ) u (∃S.ϕ)
∃n≥R u S.ϕ v ∃n≥R.ϕ u ∃n≥S.ϕ

∀n+m
≤ R u S.ϕ v ∃n≥R.ϕ u ∃m≥S.ϕ

c©:Michael Kohlhase 175

Role Disjunction t
� Example 5.55: person u (∀has child t has friend.teacher)

(persons whose children and friends are all teachers)

� Example 5.56: com u (∃has employee t has consultant.member of congress)
(companies with an employee or consultant who is member of congress)

� Semantics: [[R t S]] = [[R]] ∪ [[S]] = ({〈x, y〉 ∈ D | 〈x, y〉 ∈ [[R]] or 〈x, y〉 ∈ [[S]]})

•

•

•

•

s

r

r

s t r

s t r

s t r Inference Rules

∀R t S.ϕ = (∀R.ϕ) t (∀S.ϕ)
∃R t S.ϕ = (∃R.ϕ) t (∃S.ϕ)
∃n≥R t S.ϕ =??
∀n≤R t S.ϕ v ∀n≤R.ϕ u ∀n≤S.ϕ
∀n+m
≤ R t S.ϕ v ∀n≤R.ϕ u ∀m≤S.ϕ

∃max(n,m)
≥ R t S.ϕ v ∃n≥R.ϕ t ∃m≥S.ϕ

c©:Michael Kohlhase 176

87

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Role Complement ·
� Example 5.57: univ u (∀has employee u has prof.unionized)

(universities whose employees that are not professors are unionized)

� Example 5.58: house u (∃resident u owner.swiss)(houses whose residents that are not owners are Swiss)

�
[[

R
]]

= D2\[[R]] = ({〈x, y〉 ∈ D2 | 〈x, y〉 6∈ [[R]]})

� Observation: u,t, · is a Boolean algebra (propositional logic)

We can compute with role terms built up from u,t, · exactly like with propositional
formulae built up from ∧,∨,¬.

� Example 5.59: ∀R u S.ϕ = ∀R t S.ϕ

� more rules: if R v S is a tautology, then (∀S.ϕ) v (∀R.ϕ) and (∃R.ϕ) v (∃S.ϕ)

c©:Michael Kohlhase 177

Special Relations 0 and 1

R u R = 0 empty relation

R t R = 1 universal relation

� Question: what does ∀1.ϕ mean?

c©:Michael Kohlhase 178

Role composition ◦
� Example 5.60: person u (∃has child ◦ has child.prof)

(persons that have grandchild that is a professor)

� Example 5.61: univ u (∀has student ◦ has Partner ◦ lives in).Texas)
(universities whose students all have partners that live in Texas)

� Semantics: [[R ◦ S]] = [[R]][[S]] = ({〈x, z〉 ∈ D2 | ∃y.〈x, y〉 ∈ [[S]] and 〈y, z〉 ∈ [[R]]})

•

•
•

•

srr

•
•
•

•

•

r

r

r
r

s
s

s

s

s

s ◦ r
s ◦ r
s ◦ r

c©:Michael Kohlhase 179

88

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Converse Roles (·−1)

� Example 5.62: (set of objects whose parents are teachers)[[
∀has child−1.teacher

]]
= ({x | ∀y.〈x, y〉 ∈

[[
has child−1

]]
⇒ y ∈ [[teacher]]})

= ({x | ∀y.〈y, x〉 ∈ [[has child]]⇒ y ∈ [[teacher]]})
= ({x | ∀y.〈x, y〉 ∈ [[has parents]]⇒ y ∈ [[teacher]]})

� Definition 5.63:
[[

R−1
]]

= [[R]]−1 = ({〈y, x〉 ∈ D2 | 〈x, y〉 ∈ [[R]]})

� Example 5.64:

has child−1 = has parents
is part of−1 = contains as part
owns−1 = belongs to
. . .

c©:Michael Kohlhase 180

Translation of Role Terms
trx,y(R) =R(x, y) =

trx,y(R u S) =trx,y(R) ∧ trx,y(S) trx,y(R t S)=trx,y(R) ∨ trx,y(S)

trx,y(R v S)=trx,y(R)⇒ trx,y(S) trx,y(R ◦ S) =(∃z.trx,z(R), trz,y(S))

trx,y(R−1) =try,x(R) trx,y(R) =¬trx,y(R)

∀R.ϕ
fo(x)

=(∀y.trx,y(R))⇒ ϕfo(y) ∃R.ϕ
fo(x)

=(∃y.trx,y(R), ϕfo(y))

� Example 5.65:

∀R ◦ S u T−1.c
fo(x)

= ∀y.trx,y(R ◦ S u T−1)⇒ cfo(y)

= ∀y.¬trx,y(R ◦ S u T−1)⇒ c(y)
= ∀y.¬(∃z.R(x ∧ z) ∧ trz,y(S u T−1))⇒ c(y)
= ∀y.¬(∃z.R(x ∧ z) ∧ try,z(S u T))⇒ c(y)
= ∀y.¬(∃z.R(x ∧ z) ∧ S(y ∧ z) ∧ T(y ∧ z))⇒ c(y)

c©:Michael Kohlhase 181

Connection to dynamic Logic

� Dynamic Logic is used for specification and verification of imperative programs
(including non-deterministic, parallel)

� Similar to ALC with role terms (role terms as program fragments)

� Domain of interpretation of a DynL formula is the set of states of the processes
([[∀R.ϕ]] = “in all states after executing R, ϕ holds”)

R u S parallel execution of R and S
R t S execution of R or S (nondeterministically)
R ◦ S execution of S after R
R execution of a program that is not R
R−1 execution of an undo operation
?ψ test whether ψ holds (not in ALC)

c©:Michael Kohlhase 182

89

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableaux Calculus: ALC + Role Terms

� Definition 5.66: complex roles instead of role names

x : ∃R.ϕ
x R z

∃
x R y
y : ϕ

B
x : ∀R.ϕ

B |= x R y

∀R
y : ϕ

� Problem: What is B |= x R y (B is the current branch)

� Simple case: no role composition ◦ and no converse roles ·−1.

� then B |= x R y, iff ({S | x S y ∈ B}) ∪ {R} inconsistent in PL0 (decidable)

� General case: B |= x R y, iff ({tru,vS | u S v ∈ B}) ∪ {trx,y(R)} inconsistent in PL1
(undecidable in general)

c©:Michael Kohlhase 183

Special Cases for B |= x R y

� no role composition ◦ (decidable)

� then B |= x R y, iff ({trx,yS | x S y ∈ B}) ∪ {trx,y(R)} inconsistent in PL1 (as set
of ground formulae).

� role complement only for role names (decidable)

� then ({tru,vS | u S v ∈ B}) is a set of ground formulae and trx,y(R) only contains
constants and variables in the clause normal form.

� The general case is undecidable, therefore the naive tableau approach is unsuitable

c©:Michael Kohlhase 184

5.4.5 Role Axioms

General Role Axioms
has daughter v has child daughters are children
has son v has child sons are children
has daughter u has son sons and daughters are disjoint
has child v has son t has daughter children are either sons or daughters

� Translation of an axiom ρ: trr(ρ) = ∀x, y.trx,y(ρ)

trr(has child v (has son t has daughter))
= ∀x, y.trx,y(has child v has son t has daughter)
= ∀x, y.has child(x⇒ y)⇒ has son(x ∨ y) ∨ has daughter(x ∨ y)

c©:Michael Kohlhase 185

90

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

ALC + Role Terms + Role Axioms ρ

� Idea: Tableau like for ALC + role terms (B, ρ |= x R y instead of B |= x R y)

� Simple case: no role composition ◦ and no converse roles ·−1. (decidable)

� then B, ρ |= x R y iff ({S | x S y ∈ B}) ∪ ρ ∪ {R} inconsistent in PL0

� General case: B, ρ |= x R y, iff ({tru,vS | u S v ∈ (B ∪ trr(ρ) ∪ {trx,y(R)})}) inconsis-
tent in PL1 (undecidable in general)

� no role composition ◦ (decidable)

� then B, ρ |= x R y, iff ({trx,yS | x S y ∈ (S ∪ trr(ρ) ∪ {trx,y(R)})}) inconsistent in
PL1 (as set of formulae without functions).

� role complement only for role names (decidable)

� then ({tru,vS | u S v ∈ B}) is a set of ground formulae and both trx,y(ρ) and trx,y(R)
only contain constants and variables in CNF

c©:Michael Kohlhase 186

5.4.6 Features

ALCF : Features

� Idea: Features are partial functions.

� Idea: ALCF is ALC + features + special constraints on feature paths

� Definition 5.67: Let F := {f, g, f1, . . .} be a set of features, then we define the ALCF
formulae by
FALCF :== FALC | R.FALCF | π↑ | π = π | π 6= π where π :== f | f ◦ π

� Definition 5.68: The semantics of the ALC part is as always.

1. The meaning of a feature f is a partial function [[f]] : D ×D → D.

2. [[f ◦ π]](x) := [[π]]([[f]](x))

3. [[π↑]] := (D\dom([[π]]))

4. [[f.ϕ]] := ({x ∈ dom([[π]]) | [[f]](x) ∈ [[ϕ]]})
5. [[ϕ = ω]] := ({x ∈ (dom([[π]]) ∩ dom([[ω]])) | [[π]](x) = [[ω]](x)})
6. [[ϕ 6= ω]] := ({x ∈ (dom([[π]]) ∩ dom([[ω]])) | [[π]](x) 6= [[ω]](x)})

c©:Michael Kohlhase 187

91

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Examples

� Example 5.69: persons, whose father is a teacher: person u had father.teacher

� Example 5.70: persons that have no father: person u had father↑

� Example 5.71: companies, whose bosses have no company car:
company u has boss ◦ has comp car↑

� Example 5.72: cars whose exterior color is the same as the interior color:
car u color exterior = color interior

� Example 5.73: cars whose exterior color is different from the interior color:
car u color exterior 6= color interior

� Example 5.74: companies whose Bosses and Vice Presidents have the same company
car: company u has boss ◦ has comp car = has VP ◦ has comp car

c©:Michael Kohlhase 188

Normalization

� Normalization rules
f.ϕ → f↑ t f.ϕ

π = ω → (π↑)ω↑ t π 6= ω

π 6= ω → (π↑)ω↑ t π = ω
f ◦ π↑ → f↑ t f ◦ π↑

� Example 5.75: (for the last transformation)

has boss ◦ has comp car ◦ has sun roof↑ = . . .

i.e. the set of objects that do not have a boss, plus the set of objects whose boss does
not have a company car plus the set of objects whose bosses have company cars without
sun roofs

c©:Michael Kohlhase 189

92

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Tableau Calculus

� Definition 5.76: The calculus is an extension of TALC .

x : f.ϕ

x f y
y : ϕ

x : π = ω

x π y
x ω y

x : π 6= ω

x π y
x ω z
y 6= z

x f ◦ π y

x f y
z π y

B
x f y
x f z

6= y, z

[y/z]B

x : ⊥
∗

x : c
x : c

∗

x f y
x : f↑

∗

x 6= x

∗

� Theorem 5.77: The calculus is correct, complete and terminating.

� Theorem 5.78: It can be implmented in PSPACE

c©:Michael Kohlhase 190

Example

� Example 5.79: has boss ◦ has comp car↑ u has boss.has comp car.has sun roof.> is in-
consistent.

� Normalize: (has boss↑ t has boss.has comp car↑) u has boss.has comp car.has sun roof.>

� Tableau
x : has boss↑ t has boss.has comp car↑

x : has boss.has comp car.has sun roof.>
x has boss y

y : has comp car.has sun roof.>
y has comp car z
z : has sun roof.>

x : has boss↑
∗

x : has boss.has comp car↑
x has boss v

v : has comp car↑
y : has comp car↑ (y = v)

∗

c©:Michael Kohlhase 191

5.4.7 Concrete Domains

93

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

ALC with “concrete Domains” (Examples)

Formula Concrete Domain

person u age < 20 real numbers

persons younger than 20

company u has CEO ◦ has comp car ◦ price) > $100000 natural numbers

companies with CEOs with expensive car

car u height > width natural numbers

cars that are higher than wide

person u first name < last name strings

persons whose first name is lexicograhpically smaller than their last name

person u has father ◦ studiesbefore(has mother ◦ studies temporal interval logic

persons whose fathers have studied before their mothers

c©:Michael Kohlhase 192

Concrete Domain

� Definition 5.80: A concrete domain is a pair 〈C,P〉, where C is a set and P a set of
predicates.

� Example 5.81:

� C = N and P = {=, <,≤, >,≥} (natural numbers)

� C = R and P = {=, <,≤, >,≥} (real numbers)

� C = temporal intervals, P = {before, after, overlaps, . . .} (Allen’s interval logic)

� C = facts in a relational data base, P = SQL relations

c©:Michael Kohlhase 193

Admissible Concrete Domains

� Idea: concrete domains are admissible, iff P is decidable.

� Definition 5.82: Let {P1, . . ., Pn} ⊆ P, then conjunctions P1(x1, . . .) ∧ . . . ∧ Pn(xn, . . .)
are called satisfiable, iff there is a satisfying variable assignment [ai/xi] with ai ∈ C.

(the model is fixed in a concrete domain)

� Example 5.83: C = real numbers

P1(x, y) = ∃z.(x+ z2 = y) satisfiable (z =
√
y − x, e.g. x = y = 1, z = 0)

P2(x, y) = P1(x, y) ∧ x > y unsatisfiable

� Definition 5.84: A concrete domain 〈C,P〉 is called admissible, iff

1. the satisfiability problem for conjunctions is decidable

2. P is closed under negation and contains a name for C.

c©:Michael Kohlhase 194

94

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

�

ALC(C)
� Syntax: FALC(C) :== FALCF | P (π, . . . , π)

� Example 5.85: a female human under 21 can become a woman by having a child
mother = human u female u (∃has child.human)
woman = human u female u (mother t age ≥ 21)

here age ≥ 21 ∈ FALC(C), since it is of the form P (age) (P = λx.x ≥ 21)

� Semantics: Semantics of ALC(D)

� D and C are disjoint.

� P (π1, . . . , πn) =


x ∈ D

˛̨̨̨
there are y1 = [[π1]](x), . . ., yn = [[πn]](x) ∈ C
with 〈y1, . . ., yn〉 ∈ [[P]]

ff
Warning: [[ϕ]] = D\[[ϕ]], but not [[ϕ]] = D ∪ C\[[ϕ]]

c©:Michael Kohlhase 195

!

Negation Rules and Tableau Calculus

� Let >C be the name for the concrete domain (as a set) and P the negated predicate for
P (C is admissible)

� New negation rule: P (π1, . . . , πn)→ P (π1, . . . , πn) t (∀π1.>C) t . . . t (∀πn.>C)

� New tableau rule

P1(x11, . . . , x1n1)
...

Pk(xk1, . . . , xknk)

∧
1≤i≤k

Pi(xi1, . . . , xini) inconsistent

⊥p
∗

c©:Michael Kohlhase 196

95

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Example:car u height = 2 u width = 1 v car u height > width

x : car u height = 2 u width = 1
x : car u width ≤ height

x : car
x : height = 2
x : width = 1

x : car
∗

x : width ≤ height
xheight y1

y1 = 2
x : width = y2

y2 = 1
x : width y3

x : height = y4

y3 ≤ y4

y1 ≤ y2

∗

c©:Michael Kohlhase 197

5.4.8 Nominals

Nominals

� Definition 5.86: (Idea)

nominal are names for domain elements that can be used in the T-Box.

� Example 5.87: Students that study on Bremen or Hamburg:
student u (∃studies in.{Bremen,Hamburg})

� Example 5.88: Students that have a friend with name Eva:
student u (∃has friend ◦ has name.{Eva})

� Example 5.89: persons that have phoned Bill, Bob, or the murderer:
person u (∃has phoned.{Bill, Bob,murderer})

� Example 5.90: friends of Eva: person u has friend : Eva

� Example 5.91: companies whose employees all bank at Sparda Bank:
company u (∀has empl.has bank : Sparda)

� Example 5.92: employees of Jacobs that bank at Sparda:
employed at : Jacobs u has bank : Sparda

c©:Michael Kohlhase 198

96

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Semantics

� Definition 5.93: [[{a1, . . ., an}]] is the set of objects with names a1, . . . an.

� Definition 5.94: [[R : a]] is the set of objects that have [[a]] as R-successor

[[{a1, . . ., an}]] = {[[a1]], . . ., [[an]]}
[[R : a]] = ({x ∈ D | 〈x, [[a]]〉 ∈ [[R]]})

� Definition 5.95: (Negation Rules)

{a1, . . ., an} = invariant

R : a = ∀R.{a}

� Example 5.96: had friend : Eva (the complement of the set of friends of Eva)

= ∀had friend.{Eva} (the set of objects that do not have Eva as a friend)

c©:Michael Kohlhase 199

Example Language with Nominals

� We consider the following language: ALC + unqualified number restrictions (∃n≥R, ∀n≤R),

some role operators (u, ◦, ·−1), {a1, . . ., an}, R : a

� Example 5.97: persons that have at most two friends among their
neighbors and whose neighbors are Bill, Bob, or the gardener
person u ∀2

≤(has friend u has neighbor) u (∀has neighbor.{Bill, Bob,Gardener})

� Example 5.98: companies with at least 100 employees that have a car and live in
Bremen company u ∃100

≥ has empl ◦ has comp car u has empl ◦ lives in : Bremen

c©:Michael Kohlhase 200

Tableaux Calculus (only T-Box)

� Definition 5.99: The calculus consists of the TALC rules together with:

a : {. . ., a, . . .}

∗

B
x : {a1, . . ., an}

[x/a1]B
∣∣∣ . . . [x/an]B

x : R : a

x R a

x R−1 y

y R x

x R u S y

x R y
x S y

x R ◦ S y

x R z
z S y

� Theorem 5.100: The calculus is correct, complete, and terminating

� Proof: very technical but not terribly difficult using the techniques developed so far.

c©:Michael Kohlhase 201

97

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

5.5 The Semantic Web

The Current Web

� Resources: identified by URI’s, untyped

� Links: href, src, . . . limited, non-descriptive

� User: Exciting world - semantics of the resource, however, gleaned from content

� Machine: Very little information available - significance of the links only evident from
the context around the anchor.

c©:Michael Kohlhase 202

The Semantic Web

� Resources: Globally Identified by URI’s or Locally scoped (Blank), Extensible, Relational

� Links: Identified by URI’s, Extensible, Relational

� User: Even more exciting world, richer user experience

� Machine: More processable information is available (Data Web)

� Computers and people: Work, learn and exchange knowledge effectively

c©:Michael Kohlhase 203

98

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

What is the Information a User sees?

WWW2002
The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact

Registered participants coming from
australia, canada, chile denmark, france, germany, ghana, hong kong, india,
ireland, italy, japan, malta, new zealand, the netherlands, norway,
singapore, switzerland, the united kingdom, the united states, vietnam, zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
international world wide web conference. This prestigious event ?
Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web, ?
Ian Foster: Ian is the pioneer of the Grid, the next generation internet ?

c©:Michael Kohlhase 204

What the machine sees

WWW∈′′∈
T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce
S〈e∇ato\wa〉‖〉‖〉〈otel
Ho\olulu⇔〈awa〉〉⇔USA
7↖∞∞ma†∈′′∈

Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔‡a〉∇e

O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈

〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙T〈〉∫√∇e∫t〉}〉ou∫eve\t⊥

S√ea‖e∇∫co\{〉∇med

T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb⇔⊥
Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇\et⊥

c©:Michael Kohlhase 205

99

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Solution: xml markup with “meaningful” Tags

<title>WWW∈′′∈T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce</title>
<place>S〈e∇ato\Wa〉‖〉‖〉〈otelHo\olulu⇔〈awa〉〉⇔USA</place>
<date>7↖∞∞ma†∈′′∈</date>
<participants>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔

‡a〉∇e</participants>
</introduction>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈〉\↖

te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙</introduction>
<program>S√ea‖e∇∫co\{〉∇med

<speaker>T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</speaker>
<speaker>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<speaker></program>

c©:Michael Kohlhase 206

What the machine sees of the xml

<t〉tle>WWW∈′′∈T〈eeleve\t〈〉\te∇\at〉o\alwo∇ldw〉dewebco\{e∇e\ce</t〉tle>
<√lace>S〈e∇ato\Wa〉‖〉‖〉〈otelHo\olulu⇔〈awa〉〉⇔USA</√lace>

<date>7↖∞∞ma†∈′′∈</date>
<√a∇t〉c〉√a\t∫>Re}〉∫te∇ed√a∇t〉c〉√a\t∫com〉\}{∇om

au∫t∇al〉a⇔ca\ada⇔c〈〉lede\ma∇‖⇔{∇a\ce⇔}e∇ma\†⇔}〈a\a⇔〈o\}‖o\}⇔〉\d〉a⇔
〉∇ela\d⇔〉tal†⇔|a√a\⇔malta⇔\ew‡eala\d⇔t〈e\et〈e∇la\d∫⇔\o∇wa†⇔

∫〉\}a√o∇e⇔∫w〉t‡e∇la\d⇔t〈eu\〉ted‖〉\}dom⇔t〈eu\〉ted∫tate∫⇔v〉et\am⇔

‡a〉∇e</√a∇t〉c〉√a\t∫>

</〉\t∇oduct〉o\>O\t〈e7t〈Ma†Ho\oluluw〉ll√∇ov〉det〈ebac‖d∇o√o{t〈eeleve\t〈〉\te∇↖

\at〉o\alwo∇ldw〉dewebco\{e∇e\ce↙</〉\t∇oduct〉o\>
<√∇o}∇am>S√ea‖e∇∫co\{〉∇med

<∫√ea‖e∇>T〉mbe∇\e∇∫↖lee¬T〉m〉∫t〈ewell‖\ow\〉\ve\to∇o{t〈eWeb</∫√ea‖e∇>

<∫√ea‖e∇>Ia\Fo∫te∇¬Ia\〉∫t〈e√〉o\ee∇o{t〈eG∇〉d⇔t〈e\e§t}e\e∇at〉o\〉\te∇↖

\et<∫√ea‖e∇></√∇o}∇am>

c©:Michael Kohlhase 207

100

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Need to add “Semantics”

� External agreement on meaning of annotations E.g., Dublin Core

� Agree on the meaning of a set of annotation tags

� Problems with this approach: Inflexible, Limited number of things can be expressed

� Use Ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

c©:Michael Kohlhase 208

‘

5.6 Description Logics and the Semantic Web

Resource Description Framework

� Definition 5.101: The Resource Description Framework (RDF) is a framework for de-
scribing resources on the web. It is a xml vocabulary developed by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be being displayed
to people

� Example 5.102: RDF can be used for describing

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified date)

� content and rating for web pictures

� content for search engines

� electronic libraries

c©:Michael Kohlhase 209

101

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 5.103: A resource is anything that can have a URI, such as http://www.
jacobs-university.de

� Definition 5.104: A property is a resource that has a name, such as author or homepage,
and a property value is the value of a property, such as Michael Kohlhase or http:
//kwarc.info/kohlhase (a property value can be another resource)

� Definition 5.105: The combination of a resource, a property, and a property value forms
a statement (known as the subject, predicate and object of a statement).

� Example 5.106: Statement: The [author]pred of [this slide]subj is [Michael Kohlhase]obj

c©:Michael Kohlhase 210

�

xml Syntax for RDF

� RDF is a concrete xml vocabulary for writing statements

� Example 5.107: The following RDF document could describe the slides as a resource

<?xml v e r s i o n=” 1 .0 ”?>
<rdf:RDF xm ln s : r d f=” h t t p : //www.w3 . org /1999/02/22− rd f−syntax−ns#”

xmln s :dc= ” h t t p : // p u r l . o rg /dc/ e l ement s /1 .1/ ”>
<r d f : D e s c r i p t i o n about=” h t t p s : // svn . kwarc . i n f o / . . . / s l i d e s / k r /en/ r d f . t e x ”>
<d c : c r e a t o r>Michae l Koh lhase</ d c : c r e a t o r>
<d c : s o u r c e>h t t p : //www. w3schoo l s . com/ r d f</ d c : s o u r c e>

</ r d f : D e s c r i p t i o n>
</ rdf:RDF>

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

Intuitively: RDF is a way to write down ABox information in a web-scalable way.

c©:Michael Kohlhase 211

102

http://www.jacobs-university.de
http://www.jacobs-university.de
http://kwarc.info/kohlhase
http://kwarc.info/kohlhase
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into other files)

� Example 5.108:

<d i v xm ln s :dc=” h t t p : // p u r l . o rg /dc/ e l ement s /1 .1/ ”>
<h2 p r op e r t y=” d c : t i t l e ”>RDF as an I n l i n e RDF Markup Format</h2>
<h3 p r op e r t y=” d c : c r e a t o r ”>Michae l Koh lhase</h3>
<em p r op e r t y=” dc : d a t e ” da ta t ype=” x s d : d a t e ”

con t en t=”20091111”>November 11 . , 2009
</ d i v>

https://svn.kwarc.info/.../slides/kr/en/rdfa.tex

RDFasanInlineRDFMarkupFormat

20091111 (xsd:date)

MichaelKohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

c©:Michael Kohlhase 212

OWL as an Ontology Language for the Semantic Web

� Idea: Use Description Logics to talk about RDF triples.

� An RDF triple is an ABox entry for a role contraint hRs

� Example 5.109: h is the resource for Ian Horrocks, s is the resource for Ulrike Sattler,
and R is the the relation “hasColleague” in

<r d f : D e s c r i p t i o n about=”some . u r i / pe r son / i a n h o r r o c k s ”>
<ha sCo l l e a gu e r e s o u r c e=”some . u r i / pe r son / u l i s a t t l e r ”/>

</ r d f : D e s c r i p t i o n>

Idea: Now collect similar resources in classes, and state rules about them in a way,
so that we can use inference to make kwnowledge explicit that was implicit before

(saves us lots of work!)

�� Idea: We know how to do this, this is just ALC+!!!

c©:Michael Kohlhase 213

103

https://svn.kwarc.info/.../slides/kr/en/rdfa.tex
RDF as an Inline RDF Markup Format
20091111
xsd:date
Michael Kohlhase
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

The OWL Language

� Three species of OWL

� OWL Full is union of OWL syntax and RDF

� OWL DL restricted to FOL fragment

� OWL Lite is ”easier to implement” subset of OWL DL

� Semantic layering

� OWL DL =̂ OWL Full within DL fragment

� DL semantics officially definitive

� OWL DL based on SHIQ Description Logic(ALC + nubmer restrictions, transitive roles, inverse roles, role inclusions)

� OWL DL benefits from many years of DL research

� Well defined semantics, formal properties well understood (complexity, decidability)

� Known reasoning algorithms, Implemented systems (highly optimized)

c©:Michael Kohlhase 214

104

http://creativecommons.org/licenses/by-sa/2.5/

References

[Tob00] Stephan Tobies. PSpace reasoning for graded modal logics. Journal of Logic and Com-
putation, 11:85–106, 2000.

105

	Administrativa
	First-Order Logic
	First-Order Logic
	First-Order Substitutions
	Alpha-Renaming for First-Order Logic
	Recap: General Properties of Logics and Calculi
	First-Order Calculi
	Abstract Consistency and Model Existence
	A Completeness Proof for First-Order ND
	Limits of First-Order Logic

	First-Order Automated Theorem Proving with Tableaux
	First-Order Tableaux
	Free Variable Tableaux
	Properties of First-Order Tableaux

	Higher-Order Logic and -Calculus
	Higher-Order Predicate Logic
	Simply Typed -Calculus
	Simply Typed Calculus
	Computational Properties of -Calculus
	Termination of -reduction

	Completeness of -Equality
	-Calculus Properties
	The Curry-Howard Isomorphism

	Knowledge Representation
	Introduction to Knowledge Representation
	Logic-Based Knowledge Representation
	A simple Description Logic: ALC
	ALC Extensions
	Functional Roles and Number Restrictions
	Unique Names
	Qualified Number Restrictions
	Role Operators
	Role Axioms
	Features
	Concrete Domains
	Nominals

	The Semantic Web
	Description Logics and the Semantic Web

