

This document contains the course notes for the graduate course "Computational Logic" held at Jacobs University, Bremen in the Fall Semsesters 2005, 2007, and 2009. The document mixes the slides presented in class with comments of the instructor to give students a more complete background reference.

This document is made available for the students of this course only. It is still an early draft, and will develop over the course of the course. It will be developed further in coming academic years.
This document is also an experiment in knowledge representation. Under the hood, it uses the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ package, a $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ extension for semantic markup. Eventually, this will enable to export the contents into eLearning platforms like Connexions (see http://cnx.rice.edu) or ActiveMath (see http://www.activemath.org).

Comments and extensions are always welcome, please send them to the author.
Acknowledgments: The following students have submitted corrections and suggestions to this and earlier versions of the notes: Rares Ambrus, Florian Rabe, Deyan Ginev.

Contents

1 Administrativa 3
2 First-Order Logic 7
2.1 First-Order Logic 7
2.2 First-Order Substitutions 12
2.3 Alpha-Renaming for First-Order Logic 14
2.4 Recap: General Properties of Logics and Calculi 15
2.5 First-Order Calculi 17
2.6 Abstract Consistency and Model Existence 21
2.7 A Completeness Proof for First-Order ND 28
2.8 Limits of First-Order Logic 30
3 First-Order Automated Theorem Proving with Tableaux 30
3.1 First-Order Tableaux 30
3.2 Free Variable Tableaux 33
3.3 Properties of First-Order Tableaux 34
4 Higher-Order Logic and λ-Calculus 36
4.1 Higher-Order Predicate Logic 36
4.2 Simply Typed λ-Calculus 40
4.3 Simply Typed λ Calculus 42
4.4 Computational Properties of λ-Calculus 46
4.4.1 Termination of β-reduction 47
4.5 Completeness of $\alpha \beta \eta$-Equality 50
4.6λ-Calculus Properties 52
4.7 The Curry-Howard Isomorphism 52
5 Knowledge Representation 57
5.1 Introduction to Knowledge Representation 57
5.2 Logic-Based Knowledge Representation 62
5.3 A simple Description Logic: ALC 68
5.4 ALC Extensions 79
5.4.1 Functional Roles and Number Restrictions 79
5.4.2 Unique Names 82
5.4.3 Qualified Number Restrictions 83
5.4.4 Role Operators 86
5.4.5 Role Axioms 90
5.4.6 Features 91
5.4.7 Concrete Domains 93
5.4.8 Nominals 96
5.5 The Semantic Web 98
5.6 Description Logics and the Semantic Web 101

Outline

Contents

1 Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract between the instructor and the students. Both have to keep their side of the deal to make learning and becoming Computer Scientists as efficient and painless as possible.

```
Textbooks, Handouts and Information, Forum
     No required textbook, but course notes, posted slides
    \triangleright Course notes will be posted at http://kwarc.info/teaching/GenCS1.html
    \triangleright Everything will be posted on Panta Rhei (Notes+assignments+course forum)
    announcements, contact information, course schedule and calendar
    \triangleright ~ d i s c u s s i o n ~ a m o n g ~ y o u r ~ f e l l o w ~ s t u d e n t s ( c a r e f u l , ~ I ~ w i l l ~ o c c a s i o n a l l y ~ c h e c k ~ f o r ~ a c a d e m i c ~ i n t e g r i t y ! )
    \trianglerighthttp://panta-rhei.kwarc.info (use your precourse login and pwd)
    \triangleright if there are problems send e-mail to c.mueller@jacobs-university.de
\triangleright ~ T h e ~ E E C S ~ S e m i n a r ~ ( I f ~ y o u ~ w a n t ~ t o ~ t a k e ~ a ~ p e e k ~ i n t o ~ E E C S ~ r e s e a r c h )
    see details at http://www.eecs.jacobs-university.de/seminar/
@c
(c):Michael Kohlhase
3

No Textbook: Due to the special circumstances discussed above, there is no single textbook that covers the course. Instead we have a comprehensive set of course notes (this document). They are provided in two forms: as a large PDF that is posted at the course web page and on the Panta Rhei system. The latter is actually the preferred method of interaction with the course materials, since it allows to discuss the material in place, to play with notations, to give feedback, etc. The PDF file is for printing and as a fallback, if the Panta Rhei system, which is still under development develops problems.
The EECS seminar: The EECS seminar is the colloquium of the EECS\&Logistics group at Jacobs University. The seminar features talks by graduate students, Jacobs faculty and external research collaborators. Even though much of the material covered in the talks will be beyond understanding for most first-year students, the speakers usually give a general introduction which shows students which research directions are currently being discussed. For students that want to get involved into research early this is a valuable source of orientation.
Homework assignments
\(\triangleright\) Goal: Reinforce and apply what is taught in class.
\(\triangleright\) homeworks will be small individual problem/programming/proof assignments (but take time to solve)
\(\triangleright\) admin: To keep things running smoothly
\(\triangleright\) Homeworks will be posted on Panta Rhei
\(\triangleright\) Homeworks are handed in electronically in grader (plain text, Postscript, PDF,...)
\(\triangleright\) go to the recitations, discuss with your TA (they are there for you!)
\(\triangleright\) Homework discipline
\(\triangleright\) start early! (many assignments need more than one evening's work)
\(\triangleright\) Don't start by sitting at a blank screen
\(\triangleright\) Humans will be trying to understand the text/code/math when grading it.
\begin{tabular}{|c|c|c|c|}
\hline \[
\Theta
\] & (c): Michael Kohlhase & 4 & noms \\
\hline
\end{tabular}

Homework assignments are a central part of the course, they allow you to review the concepts covered in class, and practice using them.
The next topic is very important, you should take this very seriously, even it you think that this is just a self-serving regulation made by the faculty.

All societies have their rules, written and unwritten ones, which serve as a social contract among its members, protect their interestes, and optimize the functioning of the society as a whole. This is also true for the community of scientists worldwide. This society is special, since it balances intense cooperation on joint issues with fierce competition. Most of the rules are largely unwritten; you are expected to follow them anyway. The code of academic integrity at Jacobs is an attempt to put some of the aspects into writing.

It is an essential part of your academic education that you learn to behave like academics, i.e. to function as a member of the academic community. Even if you do not want to become a scientist in the end, you should be aware that many of the people you are dealing with have gone through an adademic education and expect that you (as a graduate of Jacobs) will behave by these rules.

\section*{The Code of Academic Integrity}
\(\triangleright\) Jacobs has a "Code of Academic Integrity"
\(\triangleright\) this is a document passed by the faculty
(our law of the university)
\(\triangleright\) you have signed it last week
(we take this seriously)
- It mandates good behavior and penalizes bad from both faculty and students
\(\triangleright\) honest academic behavior (we don't cheat)
\(\triangleright\) respect and protect the intellectual property of others (no plagiarism)
\(\triangleright\) treat all Jacobs members equally (no favoritism)
\(\Delta\) this is to protect you and build an atmosphere of mutual respect
\(\triangleright\) academic societies thrive on reputation and respect as primary currency
\(\triangleright\) The Reasonable Person Principle
(one lubricant of academia)
\(\triangleright\) we treat each other as reasonable persons
\(\triangleright\) the other's requests and needs are reasonable until proven otherwise

To understand the rules of academic societies it is central to realize that these communities are driven by economic considerations of their members. However, in academic societies, the the primary good that is produced and consumed consists in ideas and knowledge, and the primary currency involved is academic reputation \({ }^{1}\). Even though academic societies may seem as altruistic - scientists share their knowledge freely, even investing time to help their peers understand the concepts more deeply - it is useful to realize that this behavior is just one half of an economic transaction. By publishing their ideas and results, scientists sell their goods for reputation. Of course, this can only work if ideas and facts are attributed to their original creators (who gain reputation by being cited). You will see that scientists can become quite fierce and downright nasty when confronted with behavior that does not respect other's intellectual property.
One special case of academic rules that affects students is the question of cheating, which we will cover next.

\footnotetext{
\({ }^{1}\) Of course, this is a very simplistic attempt to explain academic societies, and there are many other factors at work there. For instance, it is possible to convert reputation into money: if you are a famous scientist, you may get a well-paying job at a good university,...
}

\section*{Cheating [adapted from CMU:15-211 (P. Lee, 2003)]}
\(\triangleright\) There is no need to cheat in this course!!
\(\triangleright\) cheating prevents you from learning
- if you are in trouble, come and talk to me
\(\triangleright\) We expect you to know what is useful collaboration and what is cheating
\(\triangleright\) you will be required to hand in your own original code/text/math for all assignments
\(\triangleright\) you may discuss your homeworks with others, but if doing so impairs your ability to write truly original code/text/math, you will be cheating
\(\triangleright\) copying from peers, books or the Internet is plagiarism unless properly attributed
(even if you change most of the actual words)
\(\triangleright\) more on this as the semester goes on...
\(\triangleright\) 亿 There are data mining tools that monitor the originality of text/code. 乞
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

We are fully aware that the border between cheating and useful and legitimate collaboration is difficult to find and will depend on the special case. Therefore it is very difficult to put this into firm rules. We expect you to develop a firm intuition about behavior with integrity over the course of stay at Jacobs.

\section*{Software/Hardware tools}
\(\Delta\) You will need computer access for this course (come see me if you do not have a computer of your own)
\(\Delta\) we recommend the use of standard software tools
\(\triangleright\) the emacs and vi text editor
\(\triangleright\) UNIX (linux, MacOSX, cygwin)
\(\triangleright\) FireFox
\(\triangleright\) learn how to touch-type NOW
©
(c): Michael Kohlhase
(powerful, flexible, available, free)
(prevalent in CS)
(just a better browser)
(reap the benefits earlier, not later)


Touch-typing: You should not underestimate the amount of time you will spend typing during your studies. Even if you consider yourself fluent in two-finger typing, touch-typing will give you a factor two in speed. This ability will save you at least half an hour per day, once you master it. Which can make a crucial difference in your success.

Touch-typing is very easy to learn, if you practice about an hour a day for a week, you will re-gain your two-finger speed and from then on start saving time. There are various free typing tutors on the network. At http://typingsoft.com/all_typing_tutors.htm you can find about programs, most for windows, some for linux. I would probably try Ktouch or TuxType

Darko Pesikan recommends the TypingMaster program. You can download a demo version from http://www.typingmaster.com/index.asp?go=tutordemo

You can find more information by googling something like "learn to touch-type". (goto http: //www.google.com and type these search terms).
Next we come to a special project that is going on in parallel to teaching the course. I am using the coures materials as a research object as well. This gives you an additional resource, but may
affect the shape of the coures materials (which now server double purpose). Of course I can use all the help on the research project I can get.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Experiment: E-Learning with OMDoc/ActiveMath/SWiM} \\
\hline \multicolumn{4}{|l|}{\(\triangleright\) My research area: deep representation formats for (mathematical) knowledge} \\
\hline \(\triangleright\) App & systems & \multicolumn{2}{|l|}{(represent knowledge to transport it)} \\
\hline \(\triangleright \operatorname{Exp}\) & h this course & & edicine) \\
\hline \multicolumn{4}{|c|}{\(\triangleright\) Re-Represent the slide materials in OMDoc (Open Math Documents)} \\
\hline \multicolumn{4}{|r|}{\(\triangleright\) Feed it into the ActiveMath system (http://www.activemath.org)} \\
\hline \multicolumn{4}{|c|}{\(\triangleright\) Try it on you all} \\
\hline \multicolumn{4}{|l|}{\(\triangleright\) Tasks} \\
\hline \multicolumn{4}{|c|}{\(\triangleright\) help me complete the material on the slides} \\
\hline \multicolumn{4}{|c|}{\(\triangleright\) I need to remember "what I say", examples on the board.} \\
\hline \multicolumn{4}{|l|}{\(\triangleright\) Benefits for you} \\
\hline \multicolumn{4}{|c|}{\(\triangleright\) you will be mentioned in the acknowledgements} \\
\hline \multicolumn{4}{|r|}{\(\triangleright\) you will help build better course materials (think of next-year's freshmen)} \\
\hline  & © : Michael Kohlhase & 8 & \(\nabla^{\text {uncoses }}\) \\
\hline
\end{tabular}

\section*{2 First-Order Logic}

\subsection*{2.1 First-Order Logic}


\section*{History of Ideas (continued): Predicate Logic}
\(\triangleright\) Begriffsschrift [Frege 1879]
+ functional structure of formal language(terms, atomic formulae, connectives, quantifiers)
- weird graphical syntax, no mathematical semantics
- paradoxes
e.g.
Russell's
Paradox
[R. 1901] (the set of sets that do not contain themselves)
\(\triangleright\) modern form of predicate logic [Peano \(\sim 1889\) ]
+ modern notation for predicate logic \((\vee, \wedge, \Rightarrow, \forall, \exists)\)
```

@c

```
(c): Michael Kohlhase

10
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{History of Ideas (continued): First-Order Predicate Logic} \\
\hline \multicolumn{2}{|l|}{\(\triangleright\) Types} & & ([Russell 1908]) \\
\hline \multicolumn{4}{|c|}{- restriction to well-types expression} \\
\hline \multicolumn{4}{|c|}{+ paradoxes cannot be written in the system} \\
\hline & atica & & d, Russell 1910]) \\
\hline \multicolumn{2}{|l|}{\(\triangleright\) Identification of first-order Logic} & ([Skolem, Herbra & ( 1920 - '30]) \\
\hline \multicolumn{4}{|r|}{- quantification only over individual variables (cannot write down induction principle)} \\
\hline \multicolumn{4}{|c|}{+ correct, complete calculi, semi-decidable} \\
\hline \multicolumn{2}{|c|}{+ set-theoretic semantics} & & ([Tarski 1936]) \\
\hline \(\square\) & ©: Michael Kohhase & 11 & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{History of Ideas (continued): Foundations of Mathematics}
\(\triangleright\) Hilbert's Programme: find logical system and calculus,
\(\triangleright\) that formalizes all of mathematics
\(\triangleright\) that admits correct and complete calculi
\(\triangleright\) whose consistence is provable in the system itself
\(\triangleright\) Hilbert's Programm is impossible!
([Gödel 1931])
Let \(\mathcal{L}\) be a logical system that formalizes arithmetics \((\mathbb{N},+, *)\),
\(\triangleright\) then \(\mathcal{L}\) is incomplete
\(\triangleright\) then the consistence of \(\mathcal{L}\) cannot be proven in \(\mathcal{L}\).
(c): Michael Kohlhase

12
\(\nabla\)

\section*{History of Ideas (continued): \(\lambda\)-calculus, set theory}
\(\triangleright\) simply typed \(\lambda\)-calculus
([Church 1940])
+ simplifies Russel's types, \(\lambda\)-operator for functions
+ comprehension as \(\beta\)-equality
(can be mechanized)
+ simple type-driven semantics (standard semantics \(\sim\) incompleteness)
\(\triangleright\) Axiomatic set theory
+- type-less representation
(all objects are sets)
+ first-order logic with axioms
+ restricted set comprehension (no set of sets)
- functions and relations are derived objects

\section*{First-Order Predicate Logic (PL1)}
\(\triangleright\) Coverage: We can talk about
\(\triangleright\) individual things and denote them by variables or constants
\(\triangleright\) properties of individuals, (e.g. being human or mortal)
\(\triangleright\) relations of individuals, (e.g. sibling_of relationship)
\(\triangleright\) functions on individuals, (e.g. the father_of function)
We can also state the existance of an individual with a certain property, or the universality of a property.
\(\triangleright\) but we cannot state assertions like
- There is a surjective function from the natural numbers into the reals.
\(\triangleright\) First-Order Predicate Logic has many good properties (complete calculi, compactness, unitary, linear unification,... )
\(\triangleright\) but too weak for formalizing :
\(\triangleright\) natural numbers, torsion groups, calculus, ...
\(\triangleright\) generalized quantifiers (most, at least three, some,... )
(c): Michael Kohlhase

14

\section*{\(P L^{1}\) Syntax (Signature and Variables)}
\(\triangleright\) PL1 talks about two kinds of objects:
(so we have two kinds of symbols)
\(\triangleright o\) for truth values
(like in PL0)
\(\triangleright\) Type \(\iota\) for individuals
\(\triangleright\) Definition 2.1: A first-order signature consists of
\(\triangleright\) connectives: \(\Sigma^{o}=\{T, F, \neg, \vee, \wedge, \Rightarrow, \Leftrightarrow, \ldots\}\)
\(\triangleright\) function constants: \(\Sigma_{k}^{f}=\{f, g, h, \ldots\}\)
\(\triangleright\) predicate constants: \(\Sigma_{k}^{p}=\{p, q, r \ldots\}\)
\(\triangleright\left(\right.\) Skolem constants: \(\left.\Sigma_{k}^{s k}=\left\{f_{1}^{k}, f_{2}^{k}, \ldots\right\}\right) \quad\) (witness constants; countably \(\infty\) )
\(\triangleright\) We take the signature \(\Sigma\) to all of these together: \(\Sigma:=\Sigma^{o} \cup \Sigma^{f} \cup \Sigma^{p} \cup \Sigma^{s k}\), where \(\Sigma^{*}:=\bigcup_{k \in \mathbb{N}} \Sigma_{k}^{*}\).
\(\triangleright\) Definition 2.2: For first-order Logic \(\left(P L^{1}\right)\), we assue a set of
\(\triangleright\) individual variables: \(\mathcal{V}_{\iota}=\left\{X_{\iota}, Y_{\iota}, Z, X_{\iota}^{1}, X^{2}, \ldots\right\} \quad\) (countably \(\infty\) )
\(\cdots\)
© : Michael Kohlhase
15

\section*{\(P L^{1}\) Syntax (Formulae)}
\(\triangleright\) Definition 2.3: terms: \(\mathbf{A}_{\iota} \in\) wff \(_{\iota}\left(\Sigma_{\iota}\right) \quad\) (denote individuals: type \(\iota\) )
\(\triangleright \mathcal{V}_{\iota} \subseteq\) wff \(_{\iota}\left(\Sigma_{\iota}\right)\),
\(\triangleright\) if \(f \in \Sigma_{k}^{f}\) and \(\mathbf{A}^{i} \in \operatorname{wff}_{\iota}\left(\Sigma_{\iota}\right)\) for \(i \leq k\), then \(f\left(\mathbf{A}^{1}, \ldots, \mathbf{A}^{k}\right) \in w f f_{\iota}\left(\Sigma_{\iota}\right)\).
\(\triangleright\) Definition 2.4: propositions: \(\mathbf{A}_{o} \in\) wff \(_{o}(\Sigma) \quad\) (denote truth values: type \(o\) )
\(\triangleright\) if \(p \in \Sigma_{k}^{p}\) and \(\mathbf{A}^{i} \in w f f_{\iota}\left(\Sigma_{\iota}\right)\) for \(i \leq k\), then \(p\left(\mathbf{A}^{1}, \ldots, \mathbf{A}^{k}\right) \in w f f f_{o}(\Sigma)\)
\(\triangleright\) If \(\mathbf{A}, \mathbf{B} \in\) wff \(_{o}(\Sigma)\), then \(T,(\mathbf{A} \wedge \mathbf{B}), \neg \mathbf{A},\left(\forall X_{\iota} . \mathbf{A}\right) \in w f f_{o}(\Sigma)\)
\(\triangleright\) Definition 2.5: We define the connectives \(F, \vee, \Rightarrow, \Leftrightarrow\) via the abbreviations \(\mathbf{A} \vee \mathbf{B}:=\) \(\neg(\neg \mathbf{A} \wedge \neg \mathbf{B}), \quad \mathbf{A} \Rightarrow \mathbf{B}:=\neg \mathbf{A} \vee \mathbf{B}, \quad \mathbf{A} \Leftrightarrow \mathbf{B}:=(\mathbf{A} \Rightarrow \mathbf{B}) \wedge(\mathbf{B} \Rightarrow \mathbf{A})\), and \(F:=\) \(\neg \mathbf{A} \wedge \mathbf{A}\). We will use them like the primary connectives \(\wedge\) and \(\neg\)
\(\triangleright\) Definition 2.6: We use \(\exists X_{\iota} . \mathbf{A}\) as an abbreviation for \(\neg\left(\forall X_{\iota} . \neg \mathbf{A}\right)\) (existential quantifier)
\(\triangleright\) Definition 2.7: Formulae without connectives or quantifiers are called atomic else complex.
@
(C): Michael Kohlhase

16
\(\checkmark\)

\section*{Semantics (PL1)}
\(\triangleright\) Universe \(\mathcal{D}_{o}=\{\mathrm{T}, \mathrm{F}\}\) of truth values
\(\triangleright\) Arbitrary universe \(\mathcal{D}_{\iota} \neq \emptyset\) of individuals
\(\triangleright\) interpretation \(\mathcal{I}\) assigns values to constants, e.g.
\(\triangleright \mathcal{I}(\neg): \mathcal{D}_{o} \rightarrow \mathcal{D}_{o}\) with \(\mathrm{T} \mapsto \mathrm{F}, \mathrm{F} \mapsto \mathrm{T}\), and \(\mathcal{I}(\wedge)=\ldots\)
(as in PLO)
\(\triangleright \mathcal{I}: \Sigma_{k}^{f} \rightarrow \mathcal{F}\left(\mathcal{D}_{\iota}{ }^{k} ; \mathcal{D}_{\iota}\right) \quad\) (interpret function symbols as arbitrary functions)
\(\triangleright \mathcal{I}: \Sigma_{k}^{p} \rightarrow \mathcal{P}\left(\mathcal{D}_{\iota}{ }^{k}\right) \quad\) (interpret predicates as arbitrary relations)
\(\triangleright\) Definition 2.8: variable assignment \(\varphi: \mathcal{V}_{\iota} \rightarrow \mathcal{D}_{\iota}\) assigns values to variables.

© : Michael Kohlhase
17

\section*{Semantics (PL1 continued)}
\(\triangleright\) The value function \(\mathcal{I}_{\varphi}\) recursively defined
\(\triangleright \mathcal{I}_{\varphi}:\) wff \(_{\iota}\left(\Sigma_{\iota}\right) \rightarrow \mathcal{D}_{\iota}\) assigns values to terms.
\(\triangleright \mathcal{I}_{\varphi}\left(X_{\iota}\right):=\varphi\left(X_{\iota}\right)\) and
\(\triangleright \mathcal{I}_{\varphi}\left(f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right)\right):=\mathcal{I}(f)\left(\mathcal{I}_{\varphi}\left(\mathbf{A}_{1}\right), \ldots, \mathcal{I}_{\varphi}\left(\mathbf{A}_{k}\right)\right)\)
\(\triangleright \mathcal{I}_{\varphi}: w f f_{o}(\Sigma) \rightarrow \mathcal{D}_{o}\) assigns values to formulae
\(\triangleright\) e.g. \(\mathcal{I}_{\varphi}(\neg \mathbf{A})=\mathcal{I}(\neg)\left(\mathcal{I}_{\varphi}(\mathbf{A})\right) \quad\) (just as in PI0)
\(\triangleright \mathcal{I}_{\varphi}\left(p\left(\mathbf{A}^{1}, \ldots, \mathbf{A}^{k}\right)\right):=\mathrm{T}\), iff \(\left\langle\mathcal{I}_{\varphi}\left(\mathbf{A}^{1}\right), \ldots, \mathcal{I}_{\varphi}\left(\mathbf{A}^{k}\right)\right\rangle \in \mathcal{I}(p)\)
\(\triangleright \mathcal{I}_{\varphi}\left(\forall X_{\iota} . \mathbf{A}\right):=\mathrm{T}\), iff \(\mathcal{I}_{\varphi,[a / X]}(\mathbf{A})=\mathrm{T}\) for all \(a \in \mathcal{D}_{\iota}\).
\(\triangleright\) Model: \(\mathcal{M}=\left\langle\mathcal{D}_{\iota}, \mathcal{I}\right\rangle\) varies in \(\mathcal{D}_{\iota}\) and \(\mathcal{I}\).
\begin{tabular}{|c|c|c|c|}
\hline @ & (c): Michael Kohlhase & 18 & iccoss \\
\hline
\end{tabular}

\section*{Free and Bound Variables}
\(\triangleright\) Definition 2.9: We call an occurrence of a variable \(X\) bound in a formula \(\mathbf{A}\), iff it is in a subterm \(\forall X\).B of \(\mathbf{A}\). We call a variable occurrence free otherwise.
For a formula \(\mathbf{A}\), we will use \(\mathbf{B V a r}(\mathbf{A})\) (and free \((\mathbf{A})\) ) for the set of bound (free) variables of \(\mathbf{A}\), i.e. variables that have a free/bound occurrence in \(\mathbf{A}\).
\(\triangleright\) Definition 2.10: We can inductively define the set free(A) of free variables of a formula A:
\[
\begin{aligned}
\operatorname{free}(X): & =\{X\} \\
\operatorname{free}\left(f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)\right): & =\bigcup_{1 \leq i \leq n} \operatorname{free}\left(\mathbf{A}_{i}\right) \\
\operatorname{free}\left(p\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)\right): & =\bigcup_{1 \leq i \leq n} \operatorname{free}\left(\mathbf{A}_{i}\right) \\
\operatorname{free}(\neg \mathbf{A}): & =\operatorname{free}(\mathbf{A}) \\
\operatorname{free}(\mathbf{A} \wedge \mathbf{B}): & =\operatorname{free}(\mathbf{A}) \cup \operatorname{free}(\mathbf{B}) \\
\operatorname{free}(\forall X . \mathbf{A}) & :=\operatorname{free}(\mathbf{A}) \backslash\{X\}
\end{aligned}
\]
\(\triangleright\) Definition 2.11: We call a formula \(\mathbf{A}\) closed or ground, iff \(\operatorname{free}(\mathbf{A})=\emptyset\). We call a closed proposition a sentence, and denote the set of all ground terms with \(c w f f f_{\iota}\left(\Sigma_{\iota}\right)\) and the set of sentences with \(\operatorname{cwff}_{o}\left(\Sigma_{\iota}\right)\).
(c): Michael Kohlhase

19

\subsection*{2.2 First-Order Substitutions}

\section*{Substitutions}
\(\triangleright\) Intuition: If \(\mathbf{B}\) is a term and \(X\) is a variable, then we denote the result of systematically replacing all variables in a term \(\mathbf{A}\) by \(\mathbf{B}\) with \([\mathbf{B} / X] \mathbf{A}\).
\(\triangleright\) Problem: What about \([Z / Y],[Y / X] X\), is that \(Y\) or \(Z\) ?
\(\triangleright\) Folklore: \(\quad[Z / Y],[Y / X] X=Y\), but \([Z / Y][Y / X](X)=Z\) of course.
(Parallel application)
\(\triangleright\) Definition 2.12: We call \(\sigma:\) wff \(_{\iota}\left(\Sigma_{\iota}\right) \rightarrow\) wff \(_{\iota}\left(\Sigma_{\iota}\right)\) a substitution, iff \(\sigma f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)=\) \(f\left(\sigma \mathbf{A}_{1}, \ldots, \sigma \mathbf{A}_{n}\right)\) and the support \(\operatorname{supp}(\sigma):=(\{X \mid \sigma X \neq X\})\) of \(\sigma\) is finite.
\(\triangleright\) Notation 2.13: Note that a substitution \(\sigma\) is determined by its values on variables alone, thus we can write \(\sigma\) as \(\left.\sigma\right|_{\mathcal{V}_{\iota}}=(\{[\sigma X / X] \mid X \in \operatorname{supp}(\sigma)\})\).
\(\triangleright\) Example 2.14: \([a / x],[f(b) / y],[a / z]\) instantiates \(g(x, y, h(z))\) to \(g(a, f(b), h(a))\).
\(\triangleright\) Definition 2.15: We call \(\operatorname{intro}(\sigma):=\bigcup_{X \in \operatorname{supp}(\sigma)} \operatorname{free}(\sigma X)\) the set of variables introduced by \(\sigma\).
© Michael Kohlhase

\section*{Substitution Extension}
```

\ Notation 2.16: (Substitution Extension)

```
\[
\begin{array}{lll}
\text { Let } \sigma \begin{array}{c}
\text { be a } \\
\text { function } \\
\text { the }
\end{array} & (\{\langle Y, \mathbf{A}\rangle \in \sigma \mid Y \neq X\}) \cup\{\langle X, \mathbf{A}\rangle\} .
\end{array}
\]
\(\triangleright\) Note: If \(\sigma\) is a substitution, then \(\sigma,[\mathbf{A} / X]\) is also a substitution.
\(\triangleright\) Definition 2.17: If \(\sigma\) is a substitution, then we call \(\sigma,[\mathbf{A} / X]\) the extension of \(\sigma\) by \([\mathbf{A} / X]\).

\section*{Substitutions on Propositions}
\(\triangleright\) Problem: We want to extend substitutions to propositions, in particular to quantified formulae: What is \(\sigma(\forall X . \mathbf{A})\) ?
\(\triangleright\) Idea: \(\sigma\) should not instantiate bound variables:
\(\triangleright\) Definition 2.18: \(\sigma(\forall X . \mathbf{A}):=\left(\forall X . \sigma_{-X} \mathbf{A}\right)\), where \(\sigma_{-X}:=\sigma,[X / X]\)
\(\triangleright\) Problem: This can lead to variable capture: \([f(X) / Y](\forall X \cdot p(X, Y))\) would evaluate to \(\forall X . p(X, f(X))\), where the second occurrence of \(X\) is bound after instantiation, whereas it was free before.
\(\triangleright\) Definition 2.19: Let \(\mathbf{B} \in\) wff \(_{\iota}\left(\Sigma_{\iota}\right)\) and \(\mathbf{A} \in w f f_{o}(\Sigma)\), then we call \(\mathbf{B}\) substitutible for \(X\) in \(\mathbf{A}\), iff \(\mathbf{A}\) has no occurrence of \(X\) in a subterm \(\forall Y\).C with \(Y \in \operatorname{free}(\mathbf{B})\).
\(\triangleright\) Solution: forbid substitution \([\mathbf{B} / X] \mathbf{A}\), when \(\mathbf{B}\) is not substitutible for \(X\) in \(\mathbf{A}\)
\(\triangleright\) Better Solution: rename away the bound variable \(X\) in \(\forall X . p(X, Y)\) before applying the substitution.
(see alphabetic renaming later.)


\section*{Substitution Value Lemma for Terms}
\(\triangleright\) Lemma 2.20: Let \(\mathbf{A}\) and \(\mathbf{B}\) be terms, then \(\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\psi}(\mathbf{A})\), where \(\psi=\) \(\varphi,\left[\mathcal{I}_{\varphi}(\mathbf{B}) / X\right]\)
\(\triangleright\) Proof: by induction on the depth of \(\mathbf{A}\) :
P.1.1 depth \(=0\) :
P.1.1.1 Then \(\mathbf{A}\) is a variable (say \(Y\) ), or constant, so we have three cases
P.1.1.1.1 \(\mathbf{A}=Y=X: \quad\) then \(\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\varphi}([\mathbf{B} / X] X)=\mathcal{I}_{\varphi}(\mathbf{B})=\psi(X)=\) \(\mathcal{I}_{\psi}(X)=\mathcal{I}_{\psi}(\mathbf{A})\).
P.1.1.1.2 \(\mathbf{A}=Y \neq X: \quad\) then \(\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\varphi}([\mathbf{B} / X] Y)=\mathcal{I}_{\varphi}(Y)=\varphi(Y)=\) \(\psi(Y)=\mathcal{I}_{\psi}(Y)=\mathcal{I}_{\psi}(\mathbf{A})\).
P.1.1.1.3 A is a constant: analogous to the preceding case \((Y \neq X)\)
P.1.1.2 This completes the base case (depth \(=0\) ).
P.1.2 depth \(>0\) : then \(\mathbf{A}=f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)\) and we have
\[
\begin{aligned}
\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A}) & =\mathcal{I}(f)\left(\mathcal{I}_{\varphi}\left([\mathbf{B} / X] \mathbf{A}_{1}\right), \ldots, \mathcal{I}_{\varphi}\left([\mathbf{B} / X] \mathbf{A}_{n}\right)\right) \\
& =\mathcal{I}(f)\left(\mathcal{I}_{\psi}\left(\mathbf{A}_{1}\right), \ldots, \mathcal{I}_{\psi}\left(\mathbf{A}_{n}\right)\right) \\
& =\mathcal{I}_{\psi}(\mathbf{A})
\end{aligned}
\]
by inductive hypothesis
P.1.2.2 This completes the inductive case, and we have proven the assertion
(c): Michael Kohlhase

\section*{Substitution Value Lemma for Propositions}
\(\triangleright\) Lemma 2.21: Let \(\mathbf{B} \in\) wff \(_{\iota}\left(\Sigma_{\iota}\right)\) be substitutible for \(X\) in \(\mathbf{A} \in w f f_{o}(\Sigma)\), then \(\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\psi}(\mathbf{A})\), where \(\psi=\varphi,\left[\mathcal{I}_{\varphi}(\mathbf{B}) / X\right]\)
\(\triangleright\) Proof: by induction on the number \(n\) of connectives and quantifiers in \(\mathbf{A}\)
P.1.1 \(n=0\) : then \(\mathbf{A}\) is an atomic proposition, and we can argue like in the inductive case of the substitution value lemma for terms.
P.1.2 \(n>0\) and \(\mathbf{A}=\forall X . \mathbf{C}\) : then \(\mathcal{I}_{\psi}(\mathbf{A})=\mathcal{I}_{\psi}(\forall X . \mathbf{C})=\mathrm{T}\), iff \(\mathcal{I}_{\psi,[a / X]}(\mathbf{C})=\) \(\mathcal{I}_{\varphi,[a / X]}(\mathbf{C})=\mathrm{T}\), for all \(a \in \mathcal{D}_{\iota}\), which is the case, iff \(\mathcal{I}_{\varphi}(\forall X . \mathbf{C})=\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\) T.
P.1.3 \(n>0\) and \(\mathbf{A}=\forall Y\).C where \(X \neq Y\) : then \(\mathcal{I}_{\psi}(\mathbf{A})=\mathcal{I}_{\psi}(\forall Y . \mathbf{C})=\mathrm{T}\), iff \(\mathcal{I}_{\psi,[a / Y]}(\mathbf{C})=\mathcal{I}_{\varphi,[a / Y]}([\mathbf{B} / X] \mathbf{C})=\mathrm{T}\), by inductive hypothesis. \(\quad\) So \(\mathcal{I}_{\psi}(\mathbf{A})=\) \(\mathcal{I}_{\varphi}(\forall Y .[\mathbf{B} / X] \mathbf{C})=\mathcal{I}_{\varphi}([\mathbf{B} / X](\forall Y . \mathbf{C}))=\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})\)
P.1.4 \(n>0\) and \(\mathbf{A}=\neg \mathbf{B}\) or \(\mathbf{A}=\mathbf{C} \circ \mathbf{D}\) :
P.1.4.1 Here we argue like in the inductive case of the term lemma
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 24 &  \\
\hline
\end{tabular}

\subsection*{2.3 Alpha-Renaming for First-Order Logic}

Armed with the substitution value lemma we can now prove one of the main representational facts for first-order logic: the names of bound variables do not matter; they can be renamed at liberty without changing the meaning of a formula.
```

Alphabetic Renaming
\triangleright Lemma 2.22: Bound variables can be renamed: If Y is substitutible for X in \mathbf{A}, then
$\mathcal{I}_{\varphi}(\forall X . \mathbf{A})=\mathcal{I}_{\varphi}(\forall Y .[Y / X] \mathbf{A})$
\triangleright Proof: by the definitions:
P. $1 \mathcal{I}_{\varphi}(\forall X . \mathbf{A})=\mathrm{T}$, iff
P. $2 \mathcal{I}_{\varphi,[a / X]}(\mathbf{A})=\mathrm{T}$ for all $a \in \mathcal{D}_{\iota}$, iff
P. $3 \mathcal{I}_{\varphi,[a / Y]}([Y / X] \mathbf{A})=\mathrm{T}$ for all $a \in \mathcal{D}_{\iota}$, iff \quad (by substitution value lemma)
P. $4 \mathcal{I}_{\varphi}(\forall Y .[Y / X] \mathbf{A})=\mathrm{T}$.
\triangleright Definition 2.23: We call two formulae \mathbf{A} and \mathbf{B} alphabetical variants (or α-equal; write $\mathbf{A}={ }_{\alpha} \mathbf{B}$), iff $\mathbf{A}=\forall X . \mathbf{C}$ and $\mathbf{B}=\forall Y .[Y / X] \mathbf{C}$ for some variables X and Y.

```


We have seen that naive substitutions can lead to variable capture. As a consequence, we always have to presuppose that all instanciations respect a substitutibility condition, which is quite tedious. We will now come up with an improved definition of substitution application for first-order logic that does not have this problem.

\section*{Avoiding Variable Capture by Built-in \(\alpha\)-renaming}
\(\triangleright\) Idea: Given alphabetic renaming, we will consider alphabetical variants as identical
\(\triangleright\) So: Bound variable names in formulae are just as a representational device (we rename bound variables wherever necessary)
\(\triangleright\) Formally: Take \(c w f f_{o}\left(\Sigma_{\iota}\right)\) (new) to be the quotient set of \(c w f f{ }_{o}\left(\Sigma_{\iota}\right)\) (old) modulo \(={ }_{\alpha}\). (formulae as syntactic representatives of equivalence classes)
\(\triangleright\) Definition 2.24: (Capture-Avoiding Substitution Application)
Let \(\sigma\) be a substitution, \(\mathbf{A}\) a formula, and \(\mathbf{A}^{\prime}\) an alphabetical variant of \(\mathbf{A}\), such that \(\operatorname{intro}(\sigma) \cap \mathbf{B V a r}(\mathbf{A})=\emptyset\). Then \([\mathbf{A}]_{=_{\alpha}}=\left[\mathbf{A}^{\prime}\right]_{=_{\alpha}}\) and we can define \(\sigma[\mathbf{A}]_{=_{\alpha}}:=\) \(\left[\sigma\left(\mathbf{A}^{\prime}\right)\right]_{=_{\alpha}}\).
\(\triangleright\) Notation 2.25: After we have understood the quotient construction, we will neglect making it explicit and write formulae with and substitutions with the understanding that they act on quotients.
\(\Theta\)
©): Michael Kohlhase
26

\subsection*{2.4 Recap: General Properties of Logics and Calculi}

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical system consists of a formal language, a class of models, and a satisfaction relation between models and expressions of the formal lanugage. The satisfaction relation tells us when a expression is deemed true in this model.

\section*{Logical Systems}
\(\triangleright\) Definition 2.26: logical system is a triple \(\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle\), where \(\mathcal{L}\) is a formal language, \(\mathcal{K}\) is a set and \(\models \subseteq \mathcal{K} \times \mathcal{L}\). Member of \(\mathcal{L}\) are called formulae of \(\mathcal{S}\), members of \(\mathcal{K}\) models for \(\mathcal{S}\), and \(\models\) the satisfaction relation
\(\triangleright\) Definition 2.27: Let \(\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle\) be a logical system, \(\mathcal{M} \in \mathcal{K}\) be a model and \(\mathbf{A} \in \mathcal{L}\) a formula, then we call \(\mathbf{A}\)
\(\triangleright\) satisfied by \(\mathcal{M}\), iff \(\mathcal{M} \models \mathbf{A}\)
\(\triangleright\) falsified by \(\mathcal{M}\), iff \(\mathcal{M} \not \vDash \mathbf{A}\)
\(\triangleright\) satisfiable in \(\mathcal{K}\), iff \(\mathcal{M} \vDash \mathbf{A}\) for some model \(\mathcal{M} \in \mathcal{K}\).
\(\triangleright\) valid in \(\mathcal{K}\), iff \(\mathcal{M} \models \mathbf{A}\) for all models \(\mathcal{M} \in \mathcal{K}\)
\(\triangleright\) falsifiable in \(\mathcal{K}\), iff \(\mathcal{M} \not \models \mathbf{A}\) for some \(\mathcal{M} \in \mathcal{K}\).
\(\triangleright\) unsatisfiable in \(\mathcal{K}\), iff \(\mathcal{M} \not \vDash \mathbf{A}\) for all \(\mathcal{M} \in \mathcal{K}\).
\(\triangleright\) Definition 2.28: Let \(\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle\) be a logical system, then we define the entailment relation \(\models \subseteq \mathcal{L} \times \mathcal{L}\). We say that \(\mathbf{A}\) entails \(\mathbf{B}\) (written \(\mathbf{A} \models \mathbf{B}\) ), iff we have \(\mathcal{M} \models \mathbf{B}\) for all models \(\mathcal{M} \in \mathcal{K}\) with \(\mathcal{M} \vDash \mathbf{A}\).
\(\triangleright\) Theorem 2.29: \(\mathbf{A} \models \mathbf{B}\) and \(\mathcal{M} \models \mathbf{A}\) imply \(\mathcal{M} \models \mathbf{B}\).

\section*{Inference Rules and Calculi}
\(\triangleright\) Definition 2.30: Let \(\mathcal{S}:=\langle\mathcal{L}, \mathcal{K}, \models\rangle\) be a logical system, then we call a relation \(\vdash \subseteq\) \(\mathcal{P}(\mathcal{L}) \times \mathcal{L}\) a calculus for \(\mathcal{S}\), if it
\(\triangleright\) is proof-reflexive, i.e. \(\mathcal{H} \vdash \mathbf{A}\), if \(\mathbf{A} \in \mathcal{H}\),
\(\triangleright\) is proof-transitive, i.e. \(\left(\mathcal{H}^{\prime} \cup \mathcal{H}^{\prime \prime}\right) \vdash \mathcal{A}\), if \(\mathcal{H} \vdash \mathbf{A}\) and \(\mathcal{H}^{\prime} \vdash \mathbf{A}^{\prime}\), where \(\mathbf{A}^{\prime} \in \mathcal{H}\) and \(\mathcal{H}^{\prime \prime}=\mathcal{H} \backslash\{\mathbf{A}\}\).
\(\triangleright\) admits weakening, i.e. \(\mathcal{H} \vdash \mathbf{A}\) and \(\mathcal{H} \subseteq \mathcal{H}^{\prime}\) imply \(\mathcal{H}^{\prime} \vdash \mathbf{A}\).
\(\triangleright\) Definition 2.31: A calculus \(\mathcal{C}\) is usually given as a set of inference rules \(\frac{\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}}{\mathbf{C}} \mathcal{N}\), where \(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\) and \(\mathbf{C}\) are formula schemata and \(\mathcal{N}\) is a name. The \(\mathbf{A}_{i}\) are called assumptions, and \(\mathbf{C}\) is called conclusion.
\(\triangleright\) Definition 2.32: An inference rule without assumptions is called an axiom (schema).
\begin{tabular}{|c|c|c|c|}
\hline © & (c): Michael Kohlhase & 28 &  \\
\hline
\end{tabular}

\section*{Derivations and Proofs}
\(\triangleright\) Definition 2.33: A derivation of a formula \(\mathbf{C}\) from a set \(\mathcal{H}\) of hypotheses (write \(\mathcal{H} \vdash \mathbf{C}\) ) is a sequence \(\mathbf{A}_{1}, \ldots, \mathbf{A}_{m}\) of formulae, such that
\(\triangleright \mathbf{A}_{m}=\mathbf{C} \quad\) (derivation culminates in \(\mathbf{C}\) )
\(\triangleright\) for all \(1 \leq i \leq m\), either \(\mathbf{A}_{i} \in \mathcal{H}\) (hypothesis)
or there is an inference rule \(\frac{\mathbf{A}_{l_{1}}, \ldots, \mathbf{A}_{l_{k}}}{\mathbf{A}_{i}} \mathcal{N}\), where \(l_{j}<i\) for all \(j \leq k\).

\(\triangleright\) Definition 2.35: \(\mathbf{A}\) derivation \(\emptyset \vdash_{\mathcal{C}} \mathbf{A}\) is called a proof of \(\mathbf{A}\) and if one exists \(\left(\vdash_{\mathcal{C}} \mathbf{A}\right)\) then \(\mathbf{A}\) is called a \(\mathcal{C}\)-theorem.
\(\triangleright\) Definition 2.36: an inference rule \(\mathcal{I}\) is called admissible in \(\mathcal{C}\), if the extension of \(\mathcal{C}\) by \(\mathcal{I}\) does not yield new theorems.


\section*{Properties of Calculi (Theoretical Logic)}


\subsection*{2.5 First-Order Calculi}

In this section we will introduce two reasoning calculi for first-order logic, both were invented by Gerhard Gentzen in the 1930's and are very much related. The "natural deduction" calculus was created in order to model the natural mode of reasoning e.g. in everyday mathematical practice. This calculus was intended as a counter-approach to the well-known Hilbert'style calculi, which were mainly used as theoretical devices for studying reasoning in principle, not for modeling particular reasoning styles.

The "sequent calculus" was a rationalized version and extension of the natural deduction calculus that makes certain meta-proofs simpler to push through \({ }^{1}\).

Both calculi have a similar structure, which is motivated by the human-orientation: rather than using a minimal set of inference rules, they provide two inference rules for every connective and quantifier, one "introduction rule" (an inference rule that derives a formula with that symbol at the head) and one "elimination rule" (an inference rule that acts on a formula with this head and derives a set of subformulae).

This allows us to introduce the calculi in two stages, first for the propositional connectives and then extend this to a calculus for first-order logic by adding rules for the quantifiers.

\footnotetext{
\({ }^{1}\) EdNote: say something about cut elimination/analytical calculi somewhere
}

\section*{Calculi: Natural Deduction (ND) [Gentzen'30]}
\(\triangleright\) tries to mimic human theorem proving behavior
non- minimal)
\(\triangleright\) rules for the introduction and elimination of all connectives
\begin{tabular}{cc} 
Introduction & Elimination \\
\(\frac{\mathbf{A} \mathbf{B}}{\mathbf{A} \wedge \mathbf{B}} \wedge I\) & \(\frac{\mathbf{A} \wedge \mathbf{B}}{\mathbf{A}} \wedge E_{l}\)
\end{tabular}\(\frac{\mathbf{A} \wedge \mathbf{B}}{\mathbf{B}} \wedge E_{r}\)
\(\overline{\mathbf{A \vee \neg \mathbf { A }}} T N D\)

\(\triangleright\) only in classical logic (otherwise constructive/intuitionistic)
@ (c): Michael Kohlhase
```

Natural Deduction: Examples
\rightarrow Inference with local hypotheses

```


\section*{Natural Deduction in Sequent Calculus Formulation}
\(\triangleright\) Idea: Explicit representation of hypotheses
(lift calculus to judgments)
\(\triangleright\) Definition 2.37: A judgment is a meta-statement about the provability of propositions
\(\triangleright\) Definition 2.38: A sequent is a judgment of the form \(\mathcal{H} \vdash \mathbf{A}\) about the provability of the formula \(\mathbf{A}\) from the set \(\mathcal{H}\) hypotheses.
\(\triangleright\) Idea: Reformulate ND rules so that they act on sequents
\(\triangleright\) Example 2.39:
\[
\frac{\frac{[\mathbf{A} \wedge \mathbf{B}] \vdash \mathbf{B}}{[\mathbf{A}, \mathbf{B}] \vdash \mathbf{B}} \wedge E_{r} \quad \frac{[\mathbf{A} \wedge \mathbf{B}] \vdash \mathbf{A}}{[\mathbf{A}, \mathbf{B}] \vdash \mathbf{A}} \wedge E_{l}}{\frac{[\mathbf{A} \wedge \mathbf{B}] \vdash \mathbf{B} \wedge \mathbf{A}}{\emptyset \vdash \mathbf{A} \wedge \mathbf{B} \Rightarrow \mathbf{B} \wedge \mathbf{A}} \wedge I}
\]
\(\triangleright\) Note: Even though the antecedent of a sequent is written like a sequence, it is actually a set. In particular, we can permute and duplicate members at will.
@
©: Michael Kohlhase 33
33
〇

\section*{Sequent-Style Rules for Natural Deduction}
\(\triangleright\) Definition 2.40: The following inference rules make up the sequent calculus
\[
\begin{aligned}
& \frac{\Gamma \vdash \mathbf{B}}{\Gamma, \mathbf{A} \vdash \mathbf{A}} A x \quad \frac{\Gamma}{\Gamma, \mathbf{A} \vdash \mathbf{B}} \text { weaken } \quad \frac{\Gamma \vdash \mathbf{A} \vee \neg \mathbf{A}}{} T N D \\
& \frac{\Gamma \vdash \mathbf{A} \quad \Gamma \vdash \mathbf{B}}{\Gamma \vdash \mathbf{A} \wedge \mathbf{B}} \wedge I \quad \frac{\Gamma \vdash \mathbf{A} \wedge \mathbf{B}}{\Gamma \vdash \mathbf{A}} \wedge E_{l} \quad \frac{\Gamma \vdash \mathbf{A} \wedge \mathbf{B}}{\Gamma \vdash \mathbf{B}} \wedge E_{r} \\
& \frac{\Gamma \vdash \mathbf{A}}{\Gamma \vdash \mathbf{A} \vee \mathbf{B}} \vee I_{l} \frac{\Gamma \vdash \mathbf{B}}{\Gamma \vdash \mathbf{A} \vee \mathbf{B}} \vee I_{r} \quad \frac{\Gamma \vdash \mathbf{A} \vee \mathbf{B} \quad \Gamma, \mathbf{A} \vdash \mathbf{C} \quad \Gamma, \mathbf{B} \vdash \mathbf{C}}{\Gamma \vdash \mathbf{C}} \vee E \\
& \frac{\Gamma, \mathbf{A} \vdash \mathbf{B}}{\Gamma \vdash \mathbf{A} \Rightarrow \mathbf{B}} \Rightarrow I \quad \frac{\Gamma \vdash \mathbf{A} \Rightarrow \mathbf{B} \quad \Gamma \vdash \mathbf{A}}{\Gamma \vdash \mathbf{B}} \Rightarrow E \\
& \frac{\Gamma, \mathbf{A} \vdash F}{\Gamma \vdash \neg \mathbf{A}} \neg I \quad \frac{\Gamma \vdash \neg \neg \mathbf{A}}{\mathbf{A}} \neg E \\
& \frac{\Gamma \vdash \neg \mathbf{A} \quad \Gamma \vdash \mathbf{A}}{\Gamma \vdash F} F I \quad \frac{\Gamma \vdash F}{\Gamma \vdash \mathbf{A}} F E
\end{aligned}
\]
(c): Michael Kohlhase 34

\section*{First-Order Natural Deduction}
\(\triangleright\) Rules for propositional connectives just as always
\(\triangleright\) Definition 2.41: (New Quantifier Rules)
\[
\begin{aligned}
\frac{\mathbf{A}}{\forall X . \mathbf{A}} \forall I^{*} & \frac{\forall X . \mathbf{A}}{\left[\mathbf{B}_{\imath} / X\right] \mathbf{A}} \forall E \\
\frac{[\mathbf{B} / X] \mathbf{A}}{\exists X \cdot \mathbf{A}} \exists I & \frac{\exists X \cdot \mathbf{A} \xlongequal{\underline{[[c / X] \mathbf{A}]}}}{\mathbf{C}} \exists E
\end{aligned}
\]
* means that \(\mathbf{A}\) does not depend on any hypothesis in which \(X\) is free.
@ @
© : Michael Kohlhase
35
\(\vartheta\)

\section*{First-Order Natural Deduction in Sequent Formulation}
\(\triangleright\) Rules for propositional connectives just as always
\(\triangleright\) Definition 2.42: (New Quantifier Rules)
\[
\frac{\Gamma \vdash \mathbf{A} \quad X \notin \operatorname{free}(\Gamma)}{\Gamma \vdash \forall X . \mathbf{A}} \forall I \quad \frac{\Gamma \vdash \forall X . \mathbf{A}}{\Gamma \vdash\left[\mathbf{B}_{\iota} / X\right] \mathbf{A}} \forall E
\]
\[
\frac{\Gamma \vdash[\mathbf{B} / X] \mathbf{A}}{\Gamma \vdash \exists X . \mathbf{A}} \exists I \quad \frac{\Gamma \vdash \exists X . \mathbf{A} \quad \Gamma,[c / X] \mathbf{A} \vdash \mathbf{C} \quad c \in \Sigma_{0}^{s k} \text { new }}{\Gamma \vdash \mathbf{C}} \exists E
\]

\section*{Linearized Notation for ND [Andrews]}
\(\triangleright\) Linearized version of sequents
\begin{tabular}{lllll} 
1. & \(\mathcal{H}_{1} \vdash\) & \(\mathbf{A}_{1}\) & \(\left(\mathcal{J}_{1}\right)\) \\
2. & \(\mathcal{H}_{2}\) & \(\vdash\) & \(\mathbf{A}_{2}\) & \(\left(\mathcal{J}_{2}\right)\) \\
3. & \(\mathcal{H}_{3}\) & \(\vdash\) & \(\mathbf{A}_{3}\) & \((\mathcal{R} 1,2)\)
\end{tabular}\(\quad\) corresponds to \(\quad \frac{\mathcal{H}_{1} \vdash \mathbf{A}_{1} \quad \mathcal{H}_{2} \vdash \mathbf{A}_{2}}{\mathcal{H}_{3} \vdash \mathbf{A}_{3}} \mathcal{R}\)
\(\Delta\) Example:
\(\left.\begin{array}{lllll}\text { 1. } & 1 & \vdash & \mathbf{A} \wedge \mathbf{B} & \\ \text { 2. } & 1 & \vdash & \mathbf{B} & (\text { Hyp }) \\ 3 . & 1 & \vdash & \mathbf{A} & \left(\wedge E_{r} 1\right) \\ \text { 4. } & 1 & \vdash & \mathbf{B} \wedge \mathbf{A} & \left(\wedge E_{l} 1\right) \\ \text { Thm. } & \vdash & \mathbf{A} \wedge \mathbf{B} \Rightarrow \mathbf{B} \wedge \mathbf{A} & (\wedge I 23\end{array}\right)\)

\subsection*{2.6 Abstract Consistency and Model Existence}

We will now come to an important tool in the theoretical study of reasoning calculi: the "abstract consistency" /"model existence" method. This method for analyzing calculi was developed by Jaako Hintikka, Raymond Smullyann, and Peter Andrews in 1950-1970 as an encapsulation of similar constructions that were used in completeness arguments in the decades before.
The basic intuition for this method is the following: typically, a logical system \(\mathcal{S}=\langle\mathcal{L}, \mathcal{K}\rangle\) has multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones like the automated theorem proving calculi. All of these need to be analyzed for completeness (as a basic quality assurance measure).

A completeness proof for a calculus \(\mathcal{C}\) for \(\mathcal{S}\) typically comes in two parts: one analyzes \(\mathcal{C}\) consistency (sets that cannot be refuted in \(\mathcal{C}\) ), and the other construct \(\mathcal{K}\)-models for \(\mathcal{C}\)-consistent sets.

In this situtation the "abstract consistency" / "model existence" method encapsulates the model construction process into a meta-theorem: the "model existence" theorem. This provides a set of syntactic ("abstract consistency") conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that \(\mathcal{C}\)-consistency is an abstract consistency property (a purely syntactic task that can be done by a \(\mathcal{C}\)-proof transformation argument) to obtain a completeness result for \(\mathcal{C}\).

\section*{Model Existence (Overview)}
```

D Definition: Abstract consistency
Definition: Hintikka set (maximally abstract consistent)
\ Theorem: Hintikka sets are satisfiable
Theorem: If }\Phi\mathrm{ is abstract consistent, then }\Phi\mathrm{ can be extended to a Hintikka set.
\triangleright ~ C o r o l l a r y : ~ I f ~ \Phi ~ i s ~ a b s t r a c t ~ c o n s i s t e n t , ~ t h e n ~ \Phi ~ i s ~ s a t i s f i a b l e
\triangleright Application: Let \mathcal{C}}\mathrm{ be a calculus
\triangleright ~ T h e o r e m : ~ I f ~ \Phi ~ i s ~ \mathcal { C } -consistent, then \Phi is abstract consistent.
\Corollary:\mathcal{C}}\mathrm{ is complete.

```
\begin{tabular}{|c|c|c|c|}
\hline @ © & (c): Michael Kohlhase & 38 & \[
\vartheta^{\circ}
\] \\
\hline
\end{tabular}

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of formulae with very strong syntactic closure properties, which allow to read off models. Jaako Hintikka's original idea for completeness proofs was that for every complete calculus \(\mathcal{C}\) and every \(\mathcal{C}\)-consistent set one can induce a Hintikka set, from which a model can be constructed. This can be considered as a first model existence theorem. However, the process of obtaining a Hintikka set for a set \(\mathcal{C}\)-consistent set \(\Phi\) of sentences usually involves complicated calculus-dependent constructions.

In this situation, Raymond Smullyann was able to formulate the sufficient conditions for the existence of Hintikka sets in the form of "abstract consistency properties" by isolating the calculusindependent parts of the Hintikka set construction. His technique allows to reformulate Hintikka sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction as a maximizing limit process.
To carry out the "model-existence"/"abstract consistency" method, we will first have to look at the notion of consistency.

Consistency and refutability are very important notions when studying the completeness for calculi; they form syntactic counterparts of satisfiability.

\section*{Consistency}
\(\triangleright\) Let \(\mathcal{C}\) be a calculus
\(\triangleright\) Definition 2.43: \(\Phi\) is called \(\mathcal{C}\)-refutable, if there is a formula \(\mathbf{B}\), such that \(\Phi \vdash_{\mathcal{C}} \mathbf{B}\) and \(\Phi \vdash_{\mathcal{C}} \neg(\mathbf{B})\).
\(\triangleright\) Definition 2.44: We call a pair \(\mathbf{A}\) and \(\neg \mathbf{A}\) a contradiction.
\(\triangleright\) So a set \(\Phi\) is \(\mathcal{C}\)-refutable, if \(\mathcal{C}\) can derive a contradiction from it.
\(\triangleright\) Definition 2.45: \(\Phi\) is called \(\mathcal{C}\)-consistent, iff there is a formula \(\mathbf{B}\), that is not derivable from \(\Phi\) in \(\mathcal{C}\).
\(\triangleright\) Definition 2.46: We call a calculus \(\mathcal{C}\) reasonable, iff Modus Ponens is admissible in \(\mathcal{C}\) and \(\mathbf{A} \wedge \neg \mathbf{A} \Rightarrow \mathbf{B}\) is a \(\mathcal{C}\)-theorem.
\(\triangleright\) Theorem 2.47: \(\mathcal{C}\)-inconsistency and \(\mathcal{C}\)-refutability coincide for reasonable calculi
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\(\underbrace{( }\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

It is very important to distinguish the syntactic \(\mathcal{C}\)-refutability and \(\mathcal{C}\)-consistency from satlisfiability, which is a property of formulae that is at the heart of semantics. Note that the former specify the calculus (a syntactic device) while the latter does not. In fact we should actually say \(\mathcal{S}\) satisfiability, where \(\mathcal{S}=\langle\mathcal{L}, \mathcal{K}, \models\rangle\) is the current logical system.

Even the word "contradiction" has a syntactical flavor to it, it translates to "saying against each other" from its latin root.
The notion of an "abstract consistency class" provides the a calculus-independent notion of "consistency": A set \(\Phi\) of sentences is considered "consistent in an abstract sense", iff it is a member of an abstract consistency class \(\nabla\).
```

Abstract Consistency
\triangleright Definition 2.48: Let ∇ be a family of sets of propositional formulae. We call ∇ closed
under subsets, iff for each $\Phi \in \nabla$, all subsets $\Psi \subseteq \Phi$ are elements of ∇.
\triangleright Notation 2.49: We will use $\Phi * \mathbf{A}$ for $\Phi \cup\{\mathbf{A}\}$.
\triangleright Definition 2.50: A family ∇ of sets of formulae is called a (first-order) abstract consis-
tency class, iff it is closed under subsets, and for each $\Phi \in \nabla$
$\left.\nabla_{c}\right) \mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$ for atomic $\mathbf{A} \in$ wff $_{o}(\Sigma)$.
$\left.\nabla_{\neg}\right) \neg \neg \mathbf{A} \in \Phi$ implies $\Phi * \mathbf{A} \in \nabla$
$\left.\nabla_{\wedge}\right)(\mathbf{A} \wedge \mathbf{B}) \in \Phi$ implies $(\Phi \cup\{\mathbf{A}, \mathbf{B}\}) \in \nabla$
$\left.\nabla_{\mathrm{v}}\right) \neg(\mathbf{A} \wedge \mathbf{B}) \in \Phi$ implies $\Phi * \neg \mathbf{A} \in \nabla$ or $\Phi * \neg \mathbf{B} \in \nabla$
$\left.\nabla_{\gamma}\right)$ If $(\forall X . \mathbf{A}) \in \Phi$, then $\Phi *[\mathbf{B} / X](\mathbf{A}) \in \nabla$ for each closed term \mathbf{B}.
∇_{\exists}) If $\neg(\forall X . \mathbf{A}) \in \Phi$ and c is an individual constant that does not occur in Φ, then
$\Phi * \neg[c / X](\mathbf{A}) \in \nabla$
©

The conditions are very natural: Take for instance ∇_{c}, it would be foolish to call a set Φ of sentences "consistent under a complete calculus", if it contains an elementary contradiction. The next condition ∇_{\neg} says that if a set Φ that contains a sentence $\neg \neg \mathbf{A}$ is "consistent", then we should be able to extend it by \mathbf{A} without losing this property; in other words, a complete calculus should be able to recognize \mathbf{A} and $\neg \neg \mathbf{A}$ to be equivalent.
We now come to a very technical condition that will allow us to carry out a limit construction in the Hintikka set extension argument later.

Compact Collections

\triangleright Definition 2.51: We call a collection ∇ of sets compact, iff for any set Φ we have $\Phi \in \nabla$, iff $\Psi \in \nabla$ for every finite subset Ψ of Φ.
\triangleright Lemma 2.52: If ∇ is compact, then ∇ is closed under subsets.
\triangleright Proof:
P. 1 Suppose $S \subseteq T$ and $T \in \nabla$.
P. 2 Every finite subset A of S is a finite subset of T.
P. 3 As ∇ is compact, we know that $A \in \nabla$.
P. 4 Thus $S \in \nabla$.

@	©: Michael Kohlhase	41	$\nabla^{\text {kgoses }}$

The main result here is that abstract consistency classes can be extended to compact ones. The proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract consistency classes are compact in the first place (otherwise we pass to the compact extension).

Compact Abstract Consistency Classes

\triangleright Lemma 2.53: Any abstract consistency class can be extended to a compact one.
\triangle Proof:
P. 1 We choose $\nabla^{\prime}:=\left(\left\{\Phi \subseteq w f f_{o}\left(\mathcal{V}_{o}\right) \mid\right.\right.$ every finite subset of Φ is in $\left.\left.\nabla\right\}\right)$.
P. 2 Now suppose that $\Phi \in \nabla . \nabla$ is closed under subsets, so every finite subset of Φ is in ∇ and thus $\Phi \in \nabla^{\prime}$. Hence $\nabla \subseteq \nabla^{\prime}$.
P. 3 Next let us show that each ∇^{\prime} is compact.
P.4.1 Suppose $\Phi \in \nabla^{\prime}$ and Ψ is an arbitrary finite subset of Φ.
P.4.2 By definition of ∇^{\prime} all finite subsets of Φ are in ∇ and therefore $\Psi \in \nabla^{\prime}$.
P.4.3 Thus all finite subsets of Φ are in ∇^{\prime} whenever Φ is in ∇^{\prime}.
P.4.4 On the other hand, suppose all finite subsets of Φ are in ∇^{\prime}.
P.4.5 Then by the definition of ∇^{\prime} the finite subsets of Φ are also in ∇, so $\Phi \in \nabla^{\prime}$. Thus ∇^{\prime} is compact.
P. 4 Note that ∇^{\prime} is closed under subsets by the Lemma above.
P. 5 Next we show that if ∇ satisfies ∇_{*}, then ∇^{\prime} satisfies ∇_{*}.
P.5.1 To show ∇_{c}, let $\Phi \in \nabla^{\prime}$ and suppose there is an atom \mathbf{A}, such that $\{\mathbf{A}, \neg \mathbf{A}\} \subseteq \Phi$. Then $\{\mathbf{A}, \neg \mathbf{A}\} \in \nabla$ contradicting ∇_{c}.
P.5.2 To show ∇_{\neg}, let $\Phi \in \nabla^{\prime}$ and $\neg \neg \mathbf{A} \in \Phi$, then $\Phi * \mathbf{A} \in \nabla^{\prime}$. [noproofend]
P.5.2.1 Let Ψ be any finite subset of $\Phi * \mathbf{A}$, and $\Theta:=(\Psi \backslash\{\mathbf{A}\}) * \neg \neg \mathbf{A}$.
P.5.2.2 Θ is a finite subset of Φ, so $\Theta \in \nabla$.
P.5.2.3 Since ∇ is an abstract consistency class and $\neg \neg \mathbf{A} \in \Theta$, we get $\Theta * \mathbf{A} \in \nabla$ by ∇_{\neg}.
P.5.2.4 We know that $\Psi \subseteq \Theta * \mathbf{A}$ and ∇ is closed under subsets, so $\Psi \in \nabla$.
P.5.2.5 Thus every finite subset Ψ of $\Phi * \mathbf{A}$ is in ∇ and therefore by definition $\Phi * \mathbf{A} \in \nabla^{\prime}$.
P.5.3 the other cases are analogous to ∇_{\neg}.
Θ
(c): Michael Kohlhase

42
7

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated as maximally consistent sets i.e. sets that already contain everything that can be consistently added to them.

∇-Hintikka Set

\triangleright Definition 2.54: Let ∇ be an abstract consistency class, then we call a set $\mathcal{H} \in \nabla$ a ∇-Hintikka Set, iff \mathcal{H} is maximal in ∇, i.e. for all \mathbf{A} with $\mathcal{H} * \mathbf{A} \in \nabla$ we already have $\mathbf{A} \in \mathcal{H}$.
\triangleright Theorem 2.55: (Hintikka Properties)
Let ∇ be an abstract consistency class and \mathcal{H} be a ∇-Hintikka set, then
\mathcal{H}_{c}) For all $\mathbf{A} \in$ wff $_{o}(\Sigma)$ we have $\mathbf{A} \notin \mathcal{H}$ or $\neg \mathbf{A} \notin \mathcal{H}$.
\mathcal{H}_{\neg}) If $\neg \neg \mathbf{A} \in \mathcal{H}$ then $\mathbf{A} \in \mathcal{H}$.
$\left.\mathcal{H}_{\wedge}\right)$ If $(\mathbf{A} \wedge \mathbf{B}) \in \mathcal{H}$ then $\mathbf{A}, \mathbf{B} \in \mathcal{H}$.
$\left.\mathcal{H}_{\vee}\right)$ If $\neg((\mathbf{A} \wedge \mathbf{B})) \in \mathcal{H}$ then $\neg \mathbf{A} \in \mathcal{H}$ or $\neg \mathbf{B} \in \mathcal{H}$.
$\left.\mathcal{H}_{\forall}\right)$ If $(\forall X . \mathbf{A}) \in \mathcal{H}$, then $[\mathbf{B} / X](\mathbf{A}) \in \mathcal{H}$ for each closed term \mathbf{B}.
$\left.\mathcal{H}_{\exists}\right)$ If $\neg(\forall X . \mathbf{A}) \in \mathcal{H}$ then $\neg[\mathbf{B} / X](\mathbf{A}) \in \mathcal{H}$ for some term closed term \mathbf{B}.
\triangleright Proof:
P. 1 We prove the properties in turn
P.1.1 \mathcal{H}_{c} : by induction on the structure of \mathbf{A}
P.1.1.1.1 $\mathbf{A} \in \mathcal{V}_{o}$: Then $\mathbf{A} \notin \mathcal{H}$ or $\neg \mathbf{A} \notin \mathcal{H}$ by ∇_{c}.
P.1.1.1.2 A $=\neg \mathbf{B}$:
P.1.1.1.2.1 Let us assume that $\neg \mathbf{B} \in \mathcal{H}$ and $\neg \neg \mathbf{B} \in \mathcal{H}$,
P.1.1.1.2.2 then $\mathbf{B} * \mathcal{H} \in \nabla$ by ∇_{\neg}, and therefore $\mathbf{B} \in \mathcal{H}$ by maximality.
P.1.1.1.2.3 So both \mathbf{B} and $\neg \mathbf{B}$ are in \mathcal{H}, which contradicts the inductive hypothesis.
P.1.1.1.3 $\mathbf{A}=\mathbf{B} \vee \mathbf{C}$: similar to the previous case:
P.1.2 We prove \mathcal{H}_{\neg} by maximality of \mathcal{H} in ∇ :
P.1.2.1 If $\neg \neg \mathbf{A} \in \mathcal{H}$, then $\mathcal{H} * \mathbf{A} \in \nabla$ by ∇_{\neg}.
P.1.2.2 The maximality of \mathcal{H} now gives us that $\mathbf{A} \in \mathcal{H}$.
P.1.3 other \mathcal{H}_{*} are similar:
© : Michael Kohlhase

The following theorem is one of the main results in the "abstract consistency" /"model existence" method. For any abstract consistent set Φ it allows us to construct a Hintikka set \mathcal{H} with $\Phi \in \mathcal{H}$.

Extension Theorem

\triangleright Theorem 2.56: If ∇ is an abstract consistency class and $\Phi \in \nabla$ finite, then there is a ∇-Hintikka set \mathcal{H} with $\Phi \subseteq \mathcal{H}$.
\triangleright Proof: Wlog. assume that ∇ compact (else use compact extension)
P. 1 Choose an enumeration $\mathbf{A}^{1}, \mathbf{A}^{2}, \ldots$ of $c w f f f_{o}\left(\Sigma_{\iota}\right)$ and c^{1}, c^{2}, \ldots of $\Sigma_{0}^{s k}$.
$\mathbf{P} .2$ and construct a sequence of sets H^{i} with $H^{0}:=\Phi$ and

$$
H^{n+1}:= \begin{cases}H^{n} & \text { iff } H^{n} * \mathbf{A}^{n} \notin \nabla \\ H^{n} \cup\left\{\mathbf{A}^{n}, \neg\left[c^{n} / X\right](\mathbf{B})\right\} & \text { iff } H^{n} * \mathbf{A}^{n} \in \nabla \text { and } \mathbf{A}^{n}=\neg(\forall X . \mathbf{B}) \\ H^{n} * \mathbf{A}^{n} & \text { iff else }\end{cases}
$$

P. 3 Note that all $H^{i} \in \nabla$, choose $\mathcal{H}:=\bigcup_{i \in \mathbb{N}} H^{i}$
P. $4 \Psi \subseteq \mathcal{H}$ finite implies there is a $j \in \mathbb{N}$ such that $\Psi \subseteq H^{j}$,
P. 5 so $\Psi \in \nabla$ as ∇ closed under subsets and $\mathcal{H} \in \nabla$ as ∇ is compact.
P. 6 Let $\mathcal{H} * \mathbf{B} \in \nabla$, then there is a $j \in \mathbb{N}$ with $\mathbf{B}=\mathbf{A}^{j}$, so that $\mathbf{B} \in H^{j+1}$ and $H^{j+1} \subseteq \mathcal{H}$
P. 7 Thus \mathcal{H} is ∇-maximal

	(c): Michael Kohlhase	44	${ }_{\text {Incoss }}^{\text {UNIVEstr }}$

Note that the construction in the proof above is non-trivial in two respects. First, the limit construction for \mathcal{H} is not executed in our original abstract consistency class ∇, but in a suitably extended one to make it compact - the original would not have contained \mathcal{H} in general. Second, the set \mathcal{H} is not unique for Φ, but depends on the choice of the enumeration of $c w f f_{o}\left(\Sigma_{\iota}\right)$. If we pick a different enumeration, we will end up with a different \mathcal{H}. Say if \mathbf{A} and $\neg \mathbf{A}$ are both ∇-consistent ${ }^{2}$ with Φ, then depending on which one is first in the enumeration \mathcal{H}, will contain that one; with all the consequences for subsequent choices in the construction process.

Valuation

\triangleright Definition 2.57: A function $\nu: \operatorname{cwff}_{o}\left(\Sigma_{\iota}\right) \rightarrow \mathcal{D}_{o}$ is called a (first-order) valuation, iff
$\triangleright \nu(\neg \mathbf{A})=\mathrm{T}$, iff $\nu(\mathbf{A})=\mathrm{F}$
$\triangleright \nu(\mathbf{A} \wedge \mathbf{B})=\mathrm{T}$, iff $\nu(\mathbf{A})=\mathrm{T}$ and $\nu(\mathbf{B})=\mathrm{T}$
$\triangleright \nu(\forall X . \mathbf{A})=\mathrm{T}$, iff $\nu([\mathbf{B} / X] \mathbf{A})=\mathrm{T}$ for all closed terms \mathbf{B}.
\triangleright Lemma 2.58: If $\varphi: \mathcal{V}_{o} \rightarrow \mathcal{D}_{o}$ is a variable assignment, then $\mathcal{I}_{\varphi}:$ cwff ${ }_{o}\left(\Sigma_{\iota}\right) \rightarrow \mathcal{D}_{o}$ is a valuation.
\triangleright Proof: Immediate from the definitions

	(c): Michael Kohlhase	45	

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also true, even though the proof of this result is much more involved: The existence of a first-order valuation that makes a set of sentences true entails the existence of a model that satisfies it.

[^0]
Valuation and Satisfiability

\triangleright Lemma 2.59: If $\nu: \operatorname{cwff}_{o}\left(\Sigma_{\iota}\right) \rightarrow \mathcal{D}_{o}$ is a valuation and $\Phi \subseteq \operatorname{cwff}_{o}\left(\Sigma_{\iota}\right)$ with $\nu(\Phi)=\{\mathrm{T}\}$, then Φ is satisfiable.
\triangleright Proof: We construct a model for Φ.
P. 1 Let $\mathcal{D}_{\iota}:=\operatorname{cwff}_{\iota}\left(\Sigma_{\iota}\right)$, and

$$
\begin{aligned}
& \triangleright \mathcal{I}(f): \mathcal{D}_{\iota}{ }^{k} \rightarrow \mathcal{D}_{\iota} ;\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right\rangle \mapsto f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right) \text { for } f \in \Sigma^{f} \\
& \triangleright \mathcal{I}(p): \mathcal{D}_{\iota}{ }^{k} \rightarrow \mathcal{D}_{o} ;\left\langle\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right\rangle \mapsto \nu\left(p\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)\right) \text { for } p \in \Sigma^{p} .
\end{aligned}
$$

P. 2 Then variable assignments into \mathcal{D}_{ι} are ground substitutions.
$\mathbf{P} .3$ We show $\mathcal{I}_{\varphi}(\mathbf{A})=\varphi \mathbf{A}$ for $\mathbf{A} \in$ wff $_{\iota}\left(\Sigma_{\iota}\right)$ by induction on \mathbf{A}
P.3.1 $\mathbf{A}=X$: then $\mathcal{I}_{\varphi}(\mathbf{A})=\varphi X$ by definition.
P.3.2 $\mathbf{A}=f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right): \quad$ then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}(f)\left(\mathcal{I}_{\varphi}\left(\mathbf{A}_{1}\right), \ldots, \mathcal{I}_{\varphi}\left(\mathbf{A}_{n}\right)\right)=$ $\mathcal{I}(f)\left(\varphi \mathbf{A}_{1}, \ldots, \varphi \mathbf{A}_{n}\right)=f\left(\varphi \mathbf{A}_{1}, \ldots, \varphi \mathbf{A}_{n}\right)=\varphi f\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)=\varphi \mathbf{A}$
P. 4 We show $\mathcal{I}_{\varphi}(\mathbf{A})=\nu(\varphi \mathbf{A})$ for $\mathbf{A} \in$ wff $_{o}(\Sigma)$ by induction on \mathbf{A}
P.4.1 $\mathbf{A}=p\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)$: then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}(p)\left(\mathcal{I}_{\varphi}\left(\mathbf{A}_{1}\right), \ldots, \mathcal{I}_{\varphi}\left(\mathbf{A}_{n}\right)\right)=$ $\mathcal{I}(p)\left(\varphi \mathbf{A}_{1}, \ldots, \varphi \mathbf{A}_{n}\right)=\nu\left(p\left(\varphi \mathbf{A}_{1}, \ldots, \varphi \mathbf{A}_{n}\right)\right)=\nu\left(\varphi p\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right)\right)=\nu(\varphi \mathbf{A})$
P.4.2 $\mathbf{A}=\neg \mathbf{B}$: then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathrm{T}$, iff $\mathcal{I}_{\varphi}(\mathbf{B})=\nu(\varphi \mathbf{B})=\mathrm{F}$, iff $\nu(\varphi \mathbf{A})=\mathrm{T}$.
P.4.3 A $=\mathrm{B} \wedge \mathrm{C}$: similar
P.4.4 $\mathbf{A}=\forall X$.B: then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathrm{T}$, iff $\mathcal{I}_{\psi}(\mathbf{B})=\nu(\psi \mathbf{B})=\mathrm{T}$, for all $\mathbf{C} \in \mathcal{D}_{\iota}$, where $\psi=\varphi,[\mathbf{C} / X]$. This is the case, iff $\nu(\varphi \mathbf{A})=\mathrm{T}$.
P. 5 Thus $\mathcal{I}_{\varphi}(\mathbf{A})=\nu(\varphi \mathbf{A})=\nu(\mathbf{A})=\mathrm{T}$ for all $\mathbf{A} \in \Phi$.
P. 6 Hence $\mathcal{M} \equiv \mathbf{A}$ for $\mathcal{M}:=\left\langle\mathcal{D}_{\iota}, \mathcal{I}\right\rangle$.

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

```
Model Existence
    \(\triangleright\) Theorem 2.60: (Hintikka-Lemma)
    If \(\nabla\) is an abstract consistency class and \(\mathcal{H}\) a \(\nabla\)-Hintikka set, then \(\mathcal{H}\) is satisfiable.
    \(\triangleright\) Proof:
    P. 1 we define \(\nu(\mathbf{A}):=\mathrm{T}\), iff \(\mathbf{A} \in \mathcal{H}\),
    P. 2 then \(\nu\) is a valuation by the Hintikka set properties.
    P. 3 We have \(\nu(\mathcal{H})=\{\mathrm{T}\}\), so \(\mathcal{H}\) is satisfiable.
    \(\triangleright\) Theorem 2.61: (Model Existence)
    If \(\nabla\) is an abstract consistency class and \(\Phi \in \nabla\), then \(\Phi\) is satisfiable.
    \(\triangleright\) Proof:
    P. 1 There is a \(\nabla\)-Hintikka set \(\mathcal{H}\) with \(\Phi \subseteq \mathcal{H}\)
    P. 2 We know that \(\mathcal{H}\) is satisfiable.
        (Extension Theorem)
    (Hintikka-Lemma)
    P. 3 In particular, \(\Phi \subseteq \mathcal{H}\) is satisfiable.
\(\Theta\)
    © : Michael Kohlhase
    47
7
```


2.7 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof for first-order natural deduction is rather simple, we only have to check that ND-consistency is an abstract consistency property.

Consistency, Refutability and Abstract Consistency

\triangleright Theorem 2.62: (Non-Refutability is an Abstract Consistency Property)
$\Gamma:=\left(\left\{\Phi \subseteq \operatorname{cwff}_{o}\left(\Sigma_{\iota}\right) \mid \Phi \operatorname{not} \mathcal{N D}\right.\right.$-refutable $\left.\}\right)$ is an abstract conistency class.
\triangleright Proof: We check the properties of an ACC
P. 1 If Φ is non-refutable, then any subset is as well, so Γ is closed under subsets.
P. 2 We show the abstract consistency conditions ∇_{*} for $\Phi \in \Gamma$.
P.2.1 ∇_{c} :
P.2.1.1 We have to show that $\mathbf{A} \notin \Phi$ or $\neg \mathbf{A} \notin \Phi$ for atomic $\mathbf{A} \in w f f{ }_{o}(\Sigma)$.
P.2.1.2 Equivalently, we show the contrapositive: If $\{\mathbf{A}, \neg \mathbf{A}\} \subseteq \Phi$, then $\Phi \notin \Gamma$.
P.2.1.3 So let $\{\mathbf{A}, \neg \mathbf{A}\} \subseteq \Phi$, then Φ is $\mathcal{N D}$-refutable by construction.
P.2.1.4 So $\Phi \notin \Gamma$.
P.2.2 ∇_{\neg} : We show the contrapositive again:
P.2.2.1 Let $\neg \neg \mathbf{A} \in \Phi$ and $\Phi * \mathbf{A} \notin \Gamma$
P.2.2.2 Then we have a refutation $\mathcal{D}: \Phi * \mathbf{A} \vdash_{\mathcal{N D}} F$
P.2.2.3 By prepending an application of $\neg E$ for $\neg \neg \mathbf{A}$ to \mathcal{D}, we obtain a refutation $\mathcal{D}^{\prime}: \Phi \vdash_{\mathcal{N D}} F$.
P.2.2.4 Thus $\Phi \notin \Gamma$.
P.2.3 other ∇_{*} similar:

© : Michael Kohlhase

Henkin's Theorem

\triangleright Corollary 2.63: (Henkin's Theorem)
Every $\mathcal{N D}$-consistent set of sentences has a model.
\triangle Proof:
P. 1 Let Φ be a $\mathcal{N D}$-consistent set of sentencens.
P. 2 The class of sets of $\mathcal{N D}$-consistent propositions constitute an abstract consistency class
P. 3 Thus the model existence theorem guarantees a countable model for Φ.
\triangleright Corollary 2.64: (Löwenheim\&Skolem Theorem)
Satisfiable set Φ of first-order sentences has a countable model.
\triangleright Proof: The model we constructed is countable, since the set of ground terms is.

Completeness and Compactness

\triangleright Theorem 2.65: (Completeness Theorem for $\mathcal{N D}$)
If $\Phi \models \mathbf{A}$, then $\Phi \vdash_{\mathcal{N D}} \mathbf{A}$.
\triangleright Proof:
P. 1 If \mathbf{A} is valid in all models of Φ, then $\Phi * \neg \mathbf{A}$ has no model
P. 2 Thus $\Phi * \neg \mathbf{A}$ is inconsistent by Henkins Theorem.
P. 3 So $\Phi \vdash_{\mathcal{N D}} \neg(\neg \mathbf{A})^{3}$
P. 4 So $\Phi \vdash_{\mathcal{N D}} \mathbf{A}$ by $\neg E$.
\triangleright Theorem 2.66: (Compactness Theorem for first-order logic)
If $\Phi \models \mathbf{A}$, then there is already a finite set $\Psi \subseteq \Phi$ with $\Psi \models \mathbf{A}$.
\triangleright Proof: This is a direct consequence of the completeness theorem
P. 1 We have $\Phi \models \mathbf{A}$, iff $\Phi \vdash_{\mathcal{N D}} \mathbf{A}$.
P. 2 As a proof is a finite object, only a finite subset $\Psi \subseteq \Phi$ can appear as leaves in the proof.
${ }^{c}$ EdNote: show this

2.8 Limits of First-Order Logic

We will now come to the limits of first-order Logic.

3 First-Order Automated Theorem Proving with Tableaux

3.1 First-Order Tableaux

Test Calculi: Tableaux and Model Generation

\triangleright Idea: instead of showing $\emptyset \vdash T h$, show $\neg T h \vdash$ trouble \quad (use \perp for trouble)
\triangleright Example 3.1:

Tableau Refutation (Validity)	Model generation (Satisfiability)
$=P \wedge Q \Rightarrow Q \wedge P$	$\models P \wedge(Q \vee \neg R) \wedge \neg Q$
$P \wedge Q \Rightarrow Q \wedge P^{\mathrm{F}}$	$P \wedge(Q \vee \neg R) \wedge \neg Q^{\mathrm{T}}$
$P \wedge Q^{\mathrm{T}}$	$P \wedge(Q \vee \neg R)^{\mathrm{T}}$
$Q \wedge P^{\mathrm{F}}$	$\neg Q^{\mathrm{T}}$
P^{T}	Q^{F}
Q^{T}	P^{\top}
$P^{\mathrm{F}} \mid Q^{\mathrm{F}}$	$Q \vee \neg R^{\mathrm{T}}$
$\perp \mid \perp$	$Q^{\mathrm{T}} \mid \neg R^{\mathrm{T}}$
No Model	\perp
	R^{F}
Herbrand Model $\left\{P^{\top}, Q^{\mathrm{F}}, R^{\mathrm{F}}\right\}$	
	$\varphi:=\{P \mapsto \mathrm{~T}, Q \mapsto \mathrm{~F}, R \mapsto \mathrm{~F}\}$

\triangleright Algorithm: Fully expand all possible tableaux,
(no rule can be applied)
\triangleright Satisfiable, iff there are open branches (correspond to models)
© Michael Kohlhase

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis on when a formula can be made true (or false). Therefore the formulae are decorated with exponents that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the intended truth value F). Both branches contain an elementary contradiction \perp.

On the right we have a model generation tableau, which analyzes a positive formula (it is decorated with the intended truth value T. This tableau uses the same rules as the refutation tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a closed branch and an open one, which corresponds a model).

Now that we have seen the examples, we can write down the tableau rules formally.

```
Analytical Tableaux (Formal Treatment of \(\mathcal{T}\) )
    \(\triangleright\) formula is analyzed in a tree to determine satisfiability
    \(\triangleright\) branches correspond to valuations (models)
    \(\triangleright\) Tableau rules: one per connective
\(\frac{\mathbf{A} \wedge \mathbf{B}^{\top}}{\mathbf{A}^{\top}} \mathcal{T} \wedge \quad \frac{\mathbf{A} \wedge \mathbf{B}^{\mathrm{F}}}{\mathbf{B}^{\top}} \mathcal{\mathbf { A } ^ { \mathrm { F } } | \mathbf { B } ^ { \mathrm { F } }} \mathcal{T} \vee \quad \frac{\neg \mathbf{A}^{\top}}{\mathbf{A}^{\mathrm{F}}} \mathcal{T} \neg^{\top} \quad \frac{\neg \mathbf{A}^{\mathrm{F}}}{\mathbf{A}^{\top}} \mathcal{T} \neg^{\mathrm{F}} \quad \frac{\left.\begin{array}{c}\mathbf{A}^{\alpha} \\ \mathbf{A}^{\beta}\end{array} \quad \begin{array}{l}\perp \neq \beta \\ \perp \\ \text { cut }\end{array}\right]}{}\)
\(\triangleright\) Algorithm: Use rules exhaustively as long as they contribute new material
\(\triangleright\) Definition 3.2: Call a tableau saturated, iff no rule applies, and a branch closed, iff it ends in \(\perp\), else open. (open branches in saturated tableaux yield models)
\(\triangleright\) Definition 3.3: ( \(\mathcal{T}\)-Theorem/Derivability)
\(\mathbf{A}\) is a \(\mathcal{T}\)-theorem \(\left(\vdash_{\mathcal{T}} \mathbf{A}\right)\), iff there is a closed tableau with \(\mathbf{A}^{\mathrm{F}}\) at the root.
\(\Phi \subseteq \operatorname{wff}_{o}\left(\mathcal{V}_{o}\right)\) derives \(\mathbf{A}\) in \(\mathcal{T}\left(\Phi \vdash_{\mathcal{T}} \mathbf{A}\right)\), iff there is a closed tableau starting with \(\mathbf{A}^{\mathrm{F}}\) and \(\Phi^{\top}\).
@ © Michael Kohlhase
```

These inference rules act on tableaux have to be read as follows: if the formulae over the line appear in a tableau branch, then the branch can be extended by the formulae or branches below the line. There are two rules for each primary connective, and a branch closing rule that adds the special symbol \perp (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new material to the branch. This ensures termination of the tableau procedure for propositional logic (every rule eliminates one primary connective).
Definition 3.4: We will call a closed tableau with the signed formula \mathbf{A}^{α} at the root a tableau refutation for \mathcal{A}^{α}.
The saturated tableau represents a full case analysis of what is necessary to give \mathbf{A} the truth value α; since all branches are closed (contain contradictions) this is impossible.
Definition 3.5: We will call a tableau refutation for \mathbf{A}^{F} a tableau proof for \mathbf{A}, since it refutes the possibility of finding a model where \mathbf{A} evaluates to F . Thus \mathbf{A} must evaluate to T in all models, which is just our definition of validity.
Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the calculus in section ?? it does not prove a theorem A by deriving it from a set of axioms, but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally negative calculi have computational advanages over positive ones, since they have a built-in sense of direction.
We have rules for all the necessary connectives (we restrict ourselves to \wedge and \neg, since the others can be expressed in terms of these two via the propositional identities above. For instance, we can write $\mathbf{A} \vee \mathbf{B}$ as $\neg(\neg \mathbf{A} \wedge \neg \mathbf{B})$, and $\mathbf{A} \Rightarrow \mathbf{B}$ as $\neg \mathbf{A} \vee \mathbf{B}, \ldots$.
We will now extend the propositional tableau techiques to first-order logic. We only have to add two new rules for the universal quantifiers (in positive and negative polarity).

$$
\begin{aligned}
& \text { First-Order Standard Tableaux }\left(\mathcal{T}_{1}\right) \\
& \Delta \text { Refutation calculus based on trees of labeled formulae } \\
& \triangleright \text { Tableau-Rules: propositional tableau rules plus } \\
& \frac{\forall X . \mathbf{A}^{\top} \quad \mathbf{C} \in c w f f_{\iota}\left(\Sigma_{\iota}\right)}{[\mathbf{C} / X] \mathbf{A}^{\top}} \mathcal{T}_{1}: \forall \quad \frac{\forall X . \mathbf{A}^{\mathrm{F}} \quad c \in\left(\Sigma_{0}^{s k} \backslash \mathcal{H}\right)}{[c / X] \mathbf{A}^{\mathrm{F}}} \mathcal{T}_{1}: \exists \\
& \text { © } \\
& \text { (c): Michael Kohlhas } \\
& 54 \\
& \text { T) }
\end{aligned}
$$

The rule $\mathcal{T}_{1}: \forall$ rule operationalizes the intuition that a universally quantified formula is true, iff all of the instances of the scope are. To understand the $\mathcal{T}_{1}: \exists$ rule, we have to keep in mind that $\exists X$.A abbreviates $\neg(\forall X . \neg \mathbf{A})$, so that we have to read $\forall X . \mathbf{A}^{\mathrm{F}}$ existentially - i.e. as $\exists X$. $\neg \mathbf{A}^{\top}$, stating that there is an object with property $\neg \mathbf{A}$. In this situation, we can simply give this object a name: c, which we take from our (infinite) set of witness constants $\Sigma_{0}^{s k}$, which we have given ourselves expressly for this purpose when we defined first-order syntax. In other words $[c / X] \neg \mathbf{A}^{\top}=[c / X] \mathbf{A}^{\mathrm{F}}$ holds, and this is just the conclusion of the $\mathcal{T}_{1}: \exists$ rule.
Note that the $\mathcal{I}_{1}: \forall$ rule is computationally extremely inefficient: we have to guess an (i.e. in a search setting to systematically consider all) instance $\mathbf{C} \in w f f_{\iota}\left(\Sigma_{\iota}\right)$ for X. This makes the rule infinitely branching.

3.2 Free Variable Tableaux

In the next calculus we will try to remedy the computational inefficiency of the $\mathcal{T}_{1}: \forall$ rule. We do this by delaying the choice in the universal rule.

Free variable Tableaux $\left(\mathcal{T}_{1}^{f}\right)$

Δ Refutation calculus based on trees of labeled formulae
\triangleright Tableau rules

$$
\frac{\forall X . \mathbf{A}^{\top} Y \text { new }}{[Y / X] \mathbf{A}^{\top}} \mathcal{T}_{1}^{f}: \forall \quad \frac{\forall X . \mathbf{A}^{\mathrm{F}} \quad \operatorname{free}(\forall X . \mathbf{A})=\left\{X^{1}, \ldots, X^{k}\right\} \quad f \in \Sigma_{k}^{s k}}{\left[f\left(X^{1}, \ldots, X^{k}\right) / X\right] \mathbf{A}^{\mathrm{F}}} \mathcal{T}_{1}^{f}: \exists
$$

\triangleright Generalized cut rule $\mathcal{T}_{1}^{f}: \perp$ instantiates the whole tableau by σ.

$$
\begin{gathered}
\mathbf{A}^{\mathbf{B}^{\alpha}} \quad \alpha \neq \beta \quad \sigma \mathbf{A}=\sigma \mathbf{B} \\
\mathbf{B}^{\beta} \\
\mathcal{T}_{1}^{f}: \perp
\end{gathered}
$$

\triangleright Advantage: no guessing necessary in $\mathcal{T}_{1}^{f}: \forall$-rule
\triangleright New: find suitable substitution
(most general unifier)

Metavariables: Instead of guessing a concrete instance for the universally quantified variable as in the $\mathcal{T}_{1}: \forall$ rule, $\mathcal{T}_{1}^{f}: \forall$ instantiates it with a new meta-variable Y, which will be instantiated by need in the course of the derivation.
Skolem terms as witnesses: The introduction of meta-variables makes is necessary to extend the treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name, since the meaning of the body \mathbf{A} may contain meta-variables introduced by the $\mathcal{T}_{1}^{f}: \forall$ rule. As we do not know their values yet, the witness for the existential statement in the antecedent of the $\mathcal{T}_{1}^{f}: \exists$ rule needs to depend on that. So witness it using a witness term, concretely by applying a Skolem function to the meta-variables in \mathbf{A}.
Instantiating Metavariables: Finally, the $\mathcal{T}_{1}^{f}: \perp$ rule completes the treatment of meta-variables, it allows to instantiate the whole tableau in a way that the current branch closes. This leaves us with the problem of finding substitutions that make two terms equal.

3.3 Properties of First-Order Tableaux

Correctness of \mathcal{T}_{1}^{f}

\triangleright Lemma 3.6: $\quad \mathcal{T}_{1}^{f}: \exists$ transforms satisfiable tableaux into satisfiable ones.
\triangleright Proof: Let \mathcal{T}^{\prime} be obtained by applying $\mathcal{T}_{1}^{f}: \exists$ to $\forall X . \mathbf{A}^{F}$ in \mathcal{T}, extending it with $\left[f\left(X^{1}, \ldots, X^{n}\right) / X\right] \mathbf{A}^{\mathrm{F}}$, where $W:=\operatorname{free}(\forall X . \mathbf{A})=\left\{X^{1}, \ldots, X^{k}\right\}$
P. 1 Let \mathcal{T} be satisfiable in $\mathcal{M}:=\langle\mathcal{D}, \mathcal{I}\rangle$, then $\mathcal{I}_{\varphi}(\forall X . A)=\mathrm{F}$.
P. 2 We need to find a model \mathcal{M}^{\prime} that satisfies \mathcal{T}^{\prime}
(find interpretation for f)
P. 3 By definition $\mathcal{I}_{\varphi,[a / X]}(\mathbf{A})=\mathrm{F}$ for some $a \in \mathcal{D} \quad$ (depends on $\left.\varphi\right|_{W}$)
P. 4 Let $g: \mathcal{D}^{n} \rightarrow \mathcal{D}$ be defined by $g\left(a_{1}, \ldots, a_{k}\right):=a$, if $\varphi\left(X^{i}\right)=a_{i}$
$\mathbf{P} .5$ choose $\mathcal{M}^{\prime}=\left\langle\mathcal{D}, \mathcal{I}^{\prime}\right\rangle$ with $\mathcal{I}^{\prime}:=\mathcal{I},[g / f]$, then by subst. value lemma

$$
\left.\mathcal{I}^{\prime}{ }_{\varphi}\left(\left[f\left(X^{1}, \ldots, X^{k}\right) / X\right] \mathbf{A}\right)=\mathcal{I}_{\varphi,\left[\mathcal{I}^{\prime}\right.}^{\prime}\left(f\left(X^{1}, \ldots, X^{k}\right)\right) / X\right](\mathbf{A})=\mathcal{I}_{\varphi,[a / X]}^{\prime}(\mathbf{A})=\mathrm{F}
$$

P. 6 So $\left[f\left(X^{1}, \ldots, X^{k}\right) / X\right] \mathbf{A}^{\mathrm{F}}$ satisfiable in \mathcal{M}^{\prime}
@
(C): Michael Kohlhase

56

Correctness of \mathcal{T}_{1}^{f}

\triangleright Lemma 3.7: Tableau rules transform satisfiable tableaux into satisfiable ones.
\triangleright Proof: we examine the tableau rules in turn
P.1.1 propositional rules: as in propositional tableaux
P.1.2 $\mathcal{T}_{1}^{f}: \exists$: in the Lemma above
P.1.3 \mathcal{T} subst: by substitution value lemma
P.1.4 $\mathcal{T}_{1}^{f}: \forall$:
P.1.4.1 $\mathcal{I}_{\varphi}(\forall X . \mathbf{A})=\mathrm{T}$, iff $\mathcal{I}_{\psi}(\mathbf{A})=\mathrm{T}$ for all $a \in \mathcal{D}_{\iota}$
P.1.4.2 so in particular for some $a \in \mathcal{D}_{\iota} \neq \emptyset$.
\triangleright Corollary 3.8: \mathcal{T}_{1}^{f} is correct.

	(c): Michael Kohlhase	57	$17{ }^{\text {acoss }}$

Completeness of $\left(\mathcal{T}_{1}^{f}\right)$

\triangleright Theorem 3.9: \mathcal{T}_{1}^{f} is refutation complete.
\triangleright Proof: We show that $\nabla:=\left(\left\{\Phi \mid \Phi^{\top}\right.\right.$ has no closed Tableau $\left.\}\right)$ is an abstract consistency class
P. $1\left(\nabla_{*}, \nabla_{\neg}, \nabla_{V}\right.$, and $\left.\nabla_{\neg}\right)$ as for propositional case.
P. $2\left(\nabla_{\forall}\right)$ by the lifting lemma below
$\mathbf{P .} 3\left(\nabla_{\exists}\right)$ Let \mathcal{T} be a closed tableau for $\neg(\forall X . \mathbf{A}) \in \Phi$ and $\Phi^{\top} *[c / X](\mathbf{A})^{\mathrm{F}} \in \nabla$.

Ψ^{\top}	Ψ^{\top}
$\forall X . \mathbf{A}^{\mathrm{F}}$	$\forall X . \mathbf{A}^{\mathrm{F}}$
$[c / X] \mathbf{A}^{\mathrm{F}}$	$\left[f\left(X^{1}, \ldots, X^{k}\right) / X\right] \mathbf{A}^{\mathrm{F}}$
Rest	$\left[f\left(X^{1}, \ldots, X^{k}\right) / c\right]$ Rest

Θ
© : Michael Kohlhase
58

Tableau-Lifting

\triangleright Theorem 3.10: If \mathcal{T}_{θ} is a closed tableau for a st $\theta \Phi$ of formulae, then there is a closed tableau \mathcal{T} for Φ.
\triangleright Proof: by induction over the structure of \mathcal{T}_{θ} we build an isomorphic tableau \mathcal{T}, and a tableau-isomorphism $\omega: \mathcal{T} \rightarrow \mathcal{T}_{\theta}$, such that $\omega(\mathbf{A})=\theta \mathbf{A}$.
P. 1 only the tableau-substitution rule is interesting.
$\mathbf{P} .2$ Let $\theta \mathbf{A}^{i^{\top}}$ and $\theta \mathbf{B}^{i^{\mathrm{F}}}$ cut formulae in the branch Θ_{θ}^{i} of \mathcal{T}_{θ}
$\mathbf{P} .3$ there is a joint unifier σ of $\theta\left(\mathbf{A}^{1}\right)=? \theta\left(\mathbf{B}^{1}\right) \wedge \ldots \wedge \theta\left(\mathbf{A}^{n}\right)=? \theta\left(\mathbf{B}^{n}\right)$
$\mathbf{P} .4$ thus $\sigma \circ \theta$ is a unifier of \mathbf{A} and \mathbf{B}
$\mathbf{P} .5$ hence there is a most general unifier ρ of $\mathbf{A}^{1}={ }^{?} \mathbf{B}^{1} \wedge \ldots \wedge \mathbf{A}^{n}={ }^{?} \mathbf{B}^{n}$
$\mathbf{P} .6$ so Θ is closed

4 Higher-Order Logic and λ-Calculus

4.1 Higher-Order Predicate Logic

Higher-Order Predicate Logic ($P L \Omega$)

\triangleright Quantification over functions and Predicates: $\forall P . \exists F . P(a) \vee \neg P(F(a))$
\triangleright Comprehension: (Existence of Functions)
$\exists F . \forall X . F X=\mathbf{A} \quad$ e.g. $f(x)=3 x^{+} 5 x-7$
\triangleright Extensionality: (Equality of functions and truth values)
$\forall F . \forall G .(\forall X . F X=G X) \Rightarrow F=G$
$\forall P . \forall Q \cdot(P \Leftrightarrow Q) \Leftrightarrow P=Q$
\triangleright Leibniz-Equality: (Indiscernability)
$\mathbf{A}=\mathbf{B}$ for $\forall P . P \mathbf{A} \Rightarrow P \mathbf{B}$
\triangleright Problem: Russell's Antinomy $(\forall Q . \mathcal{M}(Q) \Leftrightarrow \neg Q(Q))$
Δ the set \mathcal{M} of all sets that do not contain themselves
\triangleright Question: Is $\mathcal{M} \in \mathcal{M}$? Answer: $\mathcal{M} \in \mathcal{M}$ iff $\mathcal{M} \notin \mathcal{M}$.
\triangleright What has happened? the predicate Q has been applied to itself
\triangleright Solution for this course: Forbid self-applications by types!!
$\triangleright \iota, o$ (type of individuals, truth values), $\alpha \rightarrow \beta$ (function type)
\triangleright right associative bracketing: $\alpha \rightarrow \beta \rightarrow \gamma$ abbreviates $\alpha \rightarrow(\beta \rightarrow \gamma)$
\triangleright vector notation: $\overline{\alpha_{n}} \rightarrow \beta$ abbreviates $\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{n} \rightarrow \beta$
\triangleright Well-typed formulae (prohibits paradoxes like $\forall Q \cdot \mathcal{M}(Q) \Leftrightarrow \neg Q(Q)$)
\triangleright Other solution: Give it a non-standard semantics (Domain-Theory [Scott])

Well-Typed Formulae ($P L \Omega$)

\triangleright signature $\Sigma=\bigcup_{\alpha \in \mathcal{T}} \Sigma_{\alpha}$ with
\triangleright connectives: $\quad \neg \in \Sigma_{(o \rightarrow o)} \quad\{\vee, \wedge, \Rightarrow, \Leftrightarrow \ldots\} \subseteq \Sigma_{o \rightarrow o \rightarrow o}$
\triangleright variables $\mathcal{V}_{\mathcal{T}}=\bigcup_{\alpha \in \mathcal{T}} \mathcal{V}_{\alpha}$, such that every \mathcal{V}_{α} countably infinite.
\triangleright well-typed formulae $w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ of type α
$\triangleright \mathcal{V}_{\alpha} \cup \Sigma_{\alpha} \subseteq w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$
\triangleright If $\mathbf{C} \in \operatorname{wff}_{(\alpha \rightarrow \beta)}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ and $\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$, then $(\mathbf{C A}) \in w f f_{\beta}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$
\triangleright If $\mathbf{A} \in w f f_{o}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$, then $\left(\forall X_{\alpha} . \mathbf{A}\right) \in w f f_{o}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$
\triangleright first-order terms have type ι, formulae (propositions) the type o.
\triangleright there is no type annotation such that $\forall Q \cdot \mathcal{M}(Q) \Leftrightarrow \neg Q(Q)$ is well-typed.
Q needs type α as well as $\alpha \rightarrow o$.
@ @
(c): Michael Kohlhase
61
©

Standard Semantics

\triangleright Definition 4.1: The universe of discourse (carrier)
\triangleright arbitrary set of individuals $\mathcal{D}_{\iota} \quad$ fixed truth values $\mathcal{D}_{o}=\{\mathrm{T}, \mathrm{F}\}$
\triangleright function universes $\mathcal{D}_{\alpha \rightarrow \beta}=\mathcal{F}\left(\mathcal{D}_{\alpha} ; \mathcal{D}_{\beta}\right)$
\triangleright interpretation of constants: typed mapping $\mathcal{I}: \Sigma \rightarrow \mathcal{D}$ (i.e. $\left.\mathcal{I}\left(\Sigma_{\alpha}\right) \subseteq \mathcal{D}_{\alpha}\right)$
\triangleright variable assignment: typed mapping $\varphi: \mathcal{V}_{\mathcal{T}} \rightarrow \mathcal{D}$
\triangleright Definition 4.2: value function: typed mapping $\mathcal{I}_{\varphi}: w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \rightarrow \mathcal{D}$
$\left.\triangleright \mathcal{I}_{\varphi}\right|_{\mathcal{V}_{\mathcal{T}}}=\left.\varphi \quad \mathcal{I}_{\varphi}\right|_{\Sigma_{\mathcal{T}}}=\mathcal{I}$
$\triangleright \mathcal{I}_{\varphi}(\mathbf{A B})=\mathcal{I}_{\varphi}(\mathbf{A})\left(\mathcal{I}_{\varphi}(\mathbf{B})\right)$
$\triangleright \mathcal{I}_{\varphi}\left(\forall X_{\alpha} \cdot \mathbf{A}\right)=\mathrm{T}$, iff $\mathcal{I}_{\varphi,[\mathrm{a} / X]}(\mathbf{A})=\mathrm{T}$ for all $\mathrm{a} \in \mathcal{D}_{\alpha}$.
$\triangleright \mathbf{A}_{o}$ valid under φ, iff $\mathcal{I}_{\varphi}(\mathbf{A})=\mathrm{T}$.
(c): Michael Kohlhase

62
∇

Example: Peano Axioms for the Natural Numbers

$\triangleright \Sigma=\{[\mathbb{N}: \iota \rightarrow o],[0: \iota],[s: \iota \rightarrow \iota]\}$
$\triangleright \mathbb{N} 0 \quad$ (0 is a natural number)
$\triangleright \forall X_{\iota} \cdot \mathbb{N} X \Rightarrow \mathbb{N}(s X) \quad$ (the successor of a natural number is natural)
$\triangleright \neg\left(\exists X_{\iota} \cdot \mathbb{N} X \wedge s X=0\right) \quad$ (0 has no predecessor)
$\triangleright \forall X_{\iota} \cdot \forall Y_{\iota} \cdot(s X=s Y) \Rightarrow X=Y \quad$ (the successor function is injective)
$\triangleright \forall P_{\iota \rightarrow o} . P 0 \Rightarrow\left(\forall X_{\iota} \cdot \mathbb{N} X \Rightarrow P X P(s X)\right) \Rightarrow\left(\forall Y_{\iota} \cdot \mathbb{N} Y \Rightarrow P(Y)\right)$
induction axiom: all properties P, that hold of 0 , and with every n for its successor $s(n)$, hold on all \mathbb{N}
@
(c): Michael Kohlhase 63
§

Expressive Formalism for Mathematics

\triangleright Example 4.3: (Cantor's Theorem)
The cardinality of a set is smaller than that of its power set.
\triangleright smaller $-\operatorname{card}(M, N):=\neg(\exists F$.surjective $(F, M, N))$
$\triangleright \operatorname{surjective}(F, M, N):=(\forall X \in M . \exists Y \in N . F Y=X)$
Simplified Formalization: $\neg \exists F_{\iota \rightarrow \iota \rightarrow \iota} . \forall G_{\iota \rightarrow \iota} . \exists J_{\iota} . F J=G$
\triangleright Standard-Benchmark for higher-order theorem provers
\triangleright can be proven by TPS and LEO (see below)
© : Michael Kohlhase
64

Hilbert-Calculus

\triangleright Definition 4.4: (\mathcal{H}_{Ω} Axioms)
$\triangleright \forall P_{o}, Q_{o} . P \Rightarrow Q \Rightarrow P$
$\triangleright \forall P_{o}, Q_{o}, R_{o} . P \Rightarrow Q \Rightarrow R \Rightarrow P \Rightarrow Q \Rightarrow P \Rightarrow R$
$\triangleright \forall P_{o}, Q_{o} \neg P \Rightarrow \neg Q \Rightarrow P \Rightarrow Q$
\triangleright Definition 4.5: $\quad\left(\mathcal{H}_{\Omega}\right.$ Inference rules $)$

$$
\frac{\mathbf{A}_{o} \Rightarrow \mathbf{B}_{o} \quad \mathbf{A}}{\mathbf{B}} \quad \frac{\forall X_{\alpha} \cdot \mathbf{A}}{\left[\mathbf{B} / X_{\alpha}\right] \mathbf{A}} \quad \frac{\mathbf{A}}{\forall X_{\alpha} \cdot \mathbf{A}} \quad \frac{X \notin \operatorname{free}(\mathbf{A}) \quad \forall X_{\alpha} \cdot \mathbf{A} \wedge \mathbf{B}}{\mathbf{A} \wedge\left(\forall X_{\alpha} \cdot \mathbf{B}\right)}
$$

\triangleright Theorem 4.6: Correct wrt. standard semantics
\triangleright Also Complete?
(c): Michael Kohlhase

65

Hilbert-Calculus \mathcal{H}_{Ω} (continued)

\triangleright valid sentences that are not \mathcal{H}_{Ω}-theorems:
\triangleright Cantor's Theorem:
$\neg\left(\exists F_{\iota \rightarrow \iota} \cdot \forall G_{\iota \rightarrow \iota} \cdot\left(\forall K_{\iota} \cdot \mathbb{N} K \Rightarrow \mathbb{N}(G K)\right) \Rightarrow\left(\exists J_{\iota} .(\mathbb{N} J) \wedge F J=G\right)\right)$
(There is no surjective mapping from \mathbb{N} into the set $\mathcal{F}(\mathbb{N} ;,) \mathbb{N}$ of natural number sequences)
\triangleright proof attempt fails at the subgoal $\exists G_{\iota \rightarrow \iota} . \forall X_{\iota} . G X=s(f X X)$
\triangleright new axiom schema: Comprehension: $\exists F_{\overline{\alpha_{n}} \rightarrow \beta} . \forall X_{\alpha} \cdot F X=\mathbf{A}_{\beta}$
(for every variable X_{α} and every term $\mathbf{A} \in w f f{ }_{\beta}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$)

- new axiom schemata: extensionality

$$
\mathbf{E x t}^{\alpha \beta} \quad \forall F_{\alpha \rightarrow \beta} \cdot \forall G_{\alpha \rightarrow \beta} \cdot\left(\forall X_{\alpha} \cdot F X=G X\right) \Rightarrow F=G
$$

$\mathbf{E x t}^{\mathbf{\circ}} \quad \forall F_{o} . \forall G_{o} .(F \Leftrightarrow G) \Leftrightarrow F=G$
\triangleright correct! complete? cannot be!! [Gödel 1931]
©
© : Michael Kohlhase
66
T

Way Out: Henkin-Semantics

\triangleright Gödel's incompleteness theorem only holds for standard semantics
\triangleright find generalization that admits complete calculi:
\triangleright Idea: generalize so that the carrier only contains those functions that are requested by the comprehension axioms.
\triangleright Theorem 4.7: (Henkin 1950)
\mathcal{H}_{Ω} is complete wrt. this semantics.
\triangleright Proof: Idea
more models \sim less valid sentences
(these are \mathcal{H}_{Ω}-theorems)
\triangleright Henkin-models induce sensible measure of completeness for higher-order logic.
@ ©
(c): Michael Kohlhase
67
$\int_{\substack{\text { acobs } \\ \text { UNVIVRTT }}}$

```
Equality
\(\triangleright\) "Leibniz equality" (Indiscernability) \(\mathbf{Q}^{\alpha} \mathbf{A}_{\alpha} \mathbf{B}_{\alpha}=\forall P_{\alpha \rightarrow o} . P \mathbf{A} \Leftrightarrow P \mathbf{B}\)
\(\triangleright\) not that \(\forall P_{\alpha \rightarrow o} . P \mathbf{A} \Rightarrow P \mathbf{B}\) (get the other direction by instantiating \(P\) with \(Q\), where \(Q X \Leftrightarrow \neg P X\) )
\(\triangleright\) Theorem 4.8: If \(\mathcal{M}=\langle\mathcal{D}, \mathcal{I}\rangle\) is a standard model, then \(\mathcal{I}_{\varphi}\left(\mathbf{Q}^{\alpha}\right)\) is the identity relation
    on \(\mathcal{D}_{\alpha}\).
\(\triangleright\) Notation 4.9: We write \(\mathbf{A}=\mathbf{B}\) for \(\mathbf{Q A B} \mathbf{A} \mathbf{A}\) and \(\mathbf{B}\) are equal, iff there is no property \(P\) that can tell them apart.)
\(\triangleright\) Proof:
    P. \(1 \mathcal{I}_{\varphi}(\mathbf{Q A B})=\mathcal{I}_{\varphi}(\forall P . P \mathbf{A} \Rightarrow P \mathbf{B})=\mathrm{T}\), iff
        \(\mathcal{I}_{\varphi,[r / P]}(P X \Rightarrow P Y)=\mathrm{T}\) for all \(r \in \mathcal{D}_{\alpha \rightarrow o}\).
    P. 2 For \(\mathbf{A}=\mathbf{B}\) we have \(\mathcal{I}_{\varphi,[r / P]}(P \mathbf{A})=r\left(\mathcal{I}_{\varphi}(\mathbf{A})\right)=\mathrm{F}\) or \(\mathcal{I}_{\varphi,[r / P]}(P \mathbf{A})=r\left(\mathcal{I}_{\varphi}(\mathbf{A})\right)=\)
        T.
    P. 3 Thus \(\mathcal{I}_{\varphi}(\mathbf{Q A B})=\mathrm{T}\).
    \(\mathbf{P} .4\) Let \(\mathcal{I}_{\varphi}(\mathbf{A}) \neq \mathcal{I}_{\varphi}(\mathbf{B})\) and \(r=\left\{\mathcal{I}_{\varphi}(\mathbf{A})\right\}\)
    P. 5 so \(r\left(\mathcal{I}_{\varphi}(\mathbf{A})\right)=\mathrm{T}\) and \(r\left(\mathcal{I}_{\varphi}(\mathbf{B})\right)=\mathrm{F}\)
    P. \(6 \mathcal{I}_{\varphi}(\mathbf{Q A B})=\mathrm{F}\), as \(\mathcal{I}_{\varphi,[r / P]}(P \mathbf{A} \Rightarrow P \mathbf{B})=\mathrm{F}\), since \(\mathcal{I}_{\varphi,[r / P]}(P \mathbf{A})=r\left(\mathcal{I}_{\varphi}(\mathbf{A})\right)=\mathrm{T}\)
        and \(\mathcal{I}_{\varphi,[r / P]}(P \mathbf{B})=r\left(\mathcal{I}_{\varphi}(\mathbf{B})\right)=\mathrm{F}\).
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 68 & \(1 \underbrace{\text { Uncons }}\) (Viversiv \\
\hline
\end{tabular}
```


4.2 Simply Typed λ-Calculus

In this section we will present a logic that can deal with functions - the simply typed λ-calculus. It is a typed logic, so everything we write down is typed (even if we do not always write the types down).

```
Simply typed \(\lambda\)-Calculus (Syntax)
    \(\triangleright\) Signature \(\Sigma=\bigcup_{\alpha \in \mathcal{T}} \Sigma_{\alpha}\)
    \(\triangleright \mathcal{V}_{\mathcal{T}}=\bigcup_{\alpha \in \mathcal{T}} \mathcal{V}_{\alpha}\), such that \(\mathcal{V}_{\alpha}\) are countably infinite
    \(\triangleright\) Definition 4.10: We call the set \(w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\) defined by the rules
    \(\triangleright \mathcal{V}_{\alpha} \cup \Sigma_{\alpha} \subseteq w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
    \(\triangleright\) If \(\mathbf{C} \in w f f_{(\alpha \rightarrow \beta)}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\) and \(\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\), then \((\mathbf{C A}) \in w f f_{\beta}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
    \(\triangleright\) If \(\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\), then \(\left(\lambda X_{\beta} \cdot \mathbf{A}\right) \in w f f_{(\beta \rightarrow \alpha)}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
```

 the set of well-typed formulae of type \(\alpha\) over the signature \(\Sigma\) and use \(w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right):=\)
 \(\bigcup_{\alpha \in \mathcal{T}} w f f{ }_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\) for the set of all well-typed formulae.
 \(\triangleright\) Definition 4.11: We will call all occurrences of the variable \(X\) in \(\mathbf{A}\) bound in \(\lambda X\).A.
 Variables that are not bound in \(\mathbf{B}\) are called free in \(\mathbf{B}\).
 @
(c): Michael Kohlhase
69
\checkmark

```
Simply typed }\lambda\mathrm{ -Calculus (Notations)
    \Notation 4.12: (Application is left-associative)
    We abbreviate FA'1}\mp@subsup{\mathbf{A}}{}{2}\ldots.\mp@subsup{\mathbf{A}}{}{n}\mathrm{ with FA}\mp@subsup{\mathbf{F}}{}{1}\ldots
    in a kind of vector notation.
    \triangleright Andrews' dot: A . stands for a left bracket whose partner is as far right as is consistent
    with existing brackets; i.e. A.(BC) abbreviates A(BC).
     Notation 4.13: (Abstraction is right-associative)
    We abbreviate }\lambda\mp@subsup{X}{}{1}.\lambda\mp@subsup{X}{}{2}\cdots\lambda\mp@subsup{X}{}{n}...A\cdots\mathrm{ with }\lambda\mp@subsup{X}{}{1}\ldots.\mp@subsup{X}{}{n}.A\mathrm{ eliding brackets, and further to
    \lambda\overline{\mp@subsup{X}{n}{}}.\mathbf{A}\mathrm{ in a kind of vector notation.}
    \triangleright Notation 4.14: (Outer brackets)
    Finally, we allow ourselves to elide outer brackets where they can be inferred.
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 70 & str \\
\hline
\end{tabular}
```

Intuitively, $\lambda X . \mathbf{A}$ is the function f, such that $f(\mathbf{B})$ will yield \mathbf{A}, where all occurrences of the formal parameter X are replaced by B. ${ }^{4}$
The intuitions about functional structure of λ-terms and about free and bound variables are encoded into three transformation rules Λ :
$\alpha \beta \eta$-Equality (Overview)
\triangleright reduction with $\left\{\begin{array}{lcc}\beta:(\lambda X . \mathbf{A}) \mathbf{B} \rightarrow_{\beta}[\mathbf{B} / X](\mathbf{A}) & & (\lambda X . \mathbf{A}) \\ \eta: \lambda X . \mathbf{A} X \rightarrow_{\eta} \mathbf{A} & \text { under } \alpha: & ={ }_{\alpha} \\ & & (\lambda Y .[Y / X](\mathbf{A}))\end{array}\right.$
\triangleright Theorem 4.15: $\beta \eta$-reduction is well-typed, correct, terminating and confluent in the presence of α-conversion.
\triangleright Consequence: Unique β-normal form $\lambda X^{1} \ldots X^{k} . h \mathbf{A}^{1} \ldots \mathbf{A}^{n}$ where
$\triangleright h$ constant or variable (the head symbol)
$\triangleright h \mathbf{A}^{1} \ldots \mathbf{A}^{n}$ (the matrix) $\quad \lambda X^{1} \ldots X^{k}$. (the Binder)
\triangleright the subterms \mathbf{A}^{i} are of the same form.
\triangleright Definition 4.16: Head Reduction always has a unique β redex

$$
\lambda \overline{X_{n}} \cdot(\lambda Y \cdot \mathbf{A}) \mathbf{B}^{1} \ldots \mathbf{B}^{n} \rightarrow{ }_{\beta}^{h} \lambda \overline{X_{n}} \cdot\left[\mathbf{B}^{1} / Y\right](\mathbf{A}) \mathbf{B}^{2} \ldots \mathbf{B}^{n}
$$

\triangleright Definition 4.17: Long $\beta \eta$-normal form, iff β-NF and matrix has base type.
\triangleright Definition 4.18: η-Expansion: $\eta\left[\lambda X^{1} \ldots X^{n} \cdot \mathbf{A}\right]:=\lambda X^{1} \ldots X^{n} Y^{1} \ldots Y^{m} . \mathbf{A} Y^{1} \ldots Y^{m}$
© Michael Kohlhase

The first rule (α-conversion) just says that we can rename bound variables as we like. The β reduction rule codifies the intuition behind function application by replacing bound variables with argument. The third rule is a special case of the extensionality principle for functions ($f=g$ iff $f(a)=g(a)$ for all possible arguments a): If we apply both sides of the transformation to

[^1]the same argument - say \mathbf{B} and β-reduce the left side, then we arrive at the right hand side $\lambda X_{\alpha} \cdot \mathbf{A} X \mathbf{B} \rightarrow_{\beta} \mathbf{A B}$.
The semantics of Λ is structured around the types. Like the models we discussed before, a model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle$, where \mathcal{D} is the universe of discourse and \mathcal{I} is the interpretation of constants.

Semantics of Λ

\triangleright Definition 4.19: We call a collection $\mathcal{D}_{\mathcal{T}}:=\left(\left\{\mathcal{D}_{\alpha} \mid \alpha \in \mathcal{T}\right\}\right)$ a typed collection (of sets) and a collection $f_{\mathcal{T}}: \mathcal{D}_{\mathcal{T}} \rightarrow \mathcal{E}_{\mathcal{T}}$, a typed function, iff $f_{\alpha}: \mathcal{D}_{\alpha} \rightarrow \mathcal{E}_{\alpha}$.
\triangleright Definition 4.20: A typed collection $\mathcal{D}_{\mathcal{T}}$ is called a frame, iff $\mathcal{D}_{\alpha \rightarrow \beta} \subseteq \mathcal{D}_{\alpha} \rightarrow \mathcal{D}_{\beta}$
\triangleright Definition 4.21: Given a frame $\mathcal{D}_{\mathcal{T}}$, and a typed function $\mathcal{I}: \Sigma \rightarrow \mathcal{D}$, then we call $\mathcal{I}_{\varphi}:$ wff $_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \rightarrow \mathcal{D}$ the value function induced by \mathcal{I}, iff
$\left.\triangleright \mathcal{I}_{\varphi}\right|_{\mathcal{V}_{\mathcal{T}}}=\varphi,\left.\quad \quad \mathcal{I}_{\varphi}\right|_{\Sigma}=\mathcal{I}$
$\triangleright \mathcal{I}_{\varphi}(\mathbf{A B})=\mathcal{I}_{\varphi}(\mathbf{A})\left(\mathcal{I}_{\varphi}(\mathbf{B})\right)$
$\triangleright \mathcal{I}_{\varphi}\left(\lambda X_{\alpha} \cdot \mathbf{A}\right)$ is that function $f \in \mathcal{D}_{(\alpha \rightarrow \beta)}$, such that $f(a)=\mathcal{I}_{\varphi,[a / X]}(\mathbf{A})$ for all $a \in \mathcal{D}_{\alpha}$
\triangleright Definition 4.22: We call a pair $\langle\mathcal{D}, \mathcal{I}\rangle$ a Σ-model, iff $\mathcal{I}_{\varphi}: w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \rightarrow \mathcal{D}$ is total. (comprehension-closed)
Such modes are also called generalized models
([Henkin 1950])
@
© : Michael Kohlhase
72
7

4.3 Simply Typed λ Calculus

```
Simply typed \(\lambda\)-Calculus
    \(\triangleright\) arbitrary (for now) set \(\mathcal{B T}\) of base types.
    \(\triangleright\) Signature \(\Sigma_{\mathcal{T}}=\bigcup_{\alpha \in \mathcal{T}} \Sigma_{\alpha}\)
    \(\triangleright \mathcal{V}_{\mathcal{T}}=\bigcup_{\alpha \in \mathcal{T}} \mathcal{V}_{\alpha}\), such that \(\mathcal{V}_{\alpha}\) countably infinite
    \(\triangleright\) well-typed formulae \(w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\) of type \(\alpha\)
    \(\triangleright \mathcal{V}_{\alpha}, \Sigma_{\alpha} \subseteq w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
    \(\triangleright\) If \(\mathbf{C} \in \operatorname{wff}_{(\alpha \rightarrow \beta)}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\) and \(\mathbf{A} \in\) wff \(_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\), then \((\mathbf{C A}) \in w f f_{\beta}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
    \(\triangleright\) If \(\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\), then \(\left(\lambda X_{\beta} \cdot \mathbf{A}\right) \in w f f_{(\beta \rightarrow \alpha)}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\)
    \(\triangleright \alpha\)-equality: \(\lambda X_{\alpha} \cdot \mathbf{A}={ }_{\alpha} \lambda Y_{\alpha} \cdot[Y / X](\mathbf{A})\) if \(Y \notin\) free \((\mathbf{A})\)
    \(\triangleright \beta\)-equality: \(\left(\lambda X_{\alpha} \cdot \mathbf{A}\right) \mathbf{B}={ }_{\beta}[\mathbf{B} / X](\mathbf{A})\)
```

\cdots
@
(c): Michael Kohlhase

Types

\triangleright Types are semantic annotations for terms that prevent antinomies
\triangleright Definition 4.23: Given a set $\mathcal{B T}$ of base types, construct function types: $\alpha \rightarrow \beta$ is the type of functions with domain type α and range type β. We call the closure \mathcal{T} of $\mathcal{B} \mathcal{T}$ under function types the set of types over $\mathcal{B T}$.
\triangleright Definition 4.24: (iotypes.def)
We will use ι for the type of individuals and o for the type of truth values.
\triangleright Right Associativity: The type constructor is used as a right-associative operator, i.e. we use $\alpha \rightarrow \beta \rightarrow \gamma$ as an abbreviation for $\alpha \rightarrow(\beta \rightarrow \gamma)$
\triangleright Vector Notation: We will use a kind of vector notation for function types, abbreviating $\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{n} \rightarrow \beta$ with $\overline{\alpha_{n}} \rightarrow \beta$.
©: Michael Kohlhase
74

Substitution Value Lemma for λ-Terms

\triangleright Lemma 4.25: (Substitution Value Lemma)
Let \mathbf{A} and \mathbf{B} be terms, then $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\psi}(\mathbf{A})$, where $\psi=\varphi,\left[\mathcal{I}_{\varphi}(\mathbf{B}) / X\right]$
\triangleright Proof: by induction on the depth of \mathbf{A}
P. 1 we have five cases
P.1.1 $\mathbf{A}=X$: Then $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\varphi}([\mathbf{B} / X] X)=\mathcal{I}_{\varphi}(\mathbf{B})=\psi(X)=\mathcal{I}_{\psi}(X)=$ $\mathcal{I}_{\psi}(\mathbf{A})$.
P.1.2 $\mathbf{A}=Y \neq X$ and $Y \in \mathcal{V}_{\mathcal{T}}$: then $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\varphi}([\mathbf{B} / X] Y)=\mathcal{I}_{\varphi}(Y)=$ $\varphi(Y)=\psi(Y)=\mathcal{I}_{\psi}(Y)=\mathcal{I}_{\psi}(\mathbf{A})$.
P.1.3 $\mathbf{A} \in \Sigma$: This is analogous to the last case.
P.1.4 $\mathbf{A}=\mathbf{C D}$: then $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})=\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{C D})=\mathcal{I}_{\varphi}([\mathbf{B} / X](\mathbf{C})[\mathbf{B} / X](\mathbf{D}))=$ $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{C})\left(\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{D})\right)=\mathcal{I}_{\psi}(\mathbf{C})\left(\mathcal{I}_{\psi}(\mathbf{D})\right)=\mathcal{I}_{\psi}(\mathbf{C D})=\mathcal{I}_{\psi}(\mathbf{A})$
P.1.5 $\mathbf{A}=\lambda Y_{\alpha}$.C:
P.1.5.1 We can assume that $X \neq Y$ and $Y \notin$ free(\mathbf{B})
P.1.5.2 Thus for all $a \in \mathcal{D}_{\alpha}$ we have $\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})(a)=\mathcal{I}_{\varphi}([\mathbf{B} / X] \lambda Y . \mathbf{C})(a)=$ $\mathcal{I}_{\varphi}(\lambda Y .[\mathbf{B} / X](\mathbf{C}))(a)=\mathcal{I}_{\varphi,[a / Y]}([\mathbf{B} / X] \mathbf{C})=\mathcal{I}_{\psi,[a / Y]}(\mathbf{C})=\mathcal{I}_{\psi}(\lambda Y . \mathbf{C})(a)=$ $\mathcal{I}_{\psi}(\mathbf{A})(a)$
©
(c): Michael Kohlhase

75
$17{ }^{\substack{\text { ucons } \\ \text { UNTEREsTr }}}$

Correctness of $\alpha \beta \eta$-Equality

\triangleright Theorem 4.26: Let $\mathcal{A}:=\langle\mathcal{D}, \mathcal{I}\rangle$ be a Henkin model and $Y \notin$ free (\mathbf{A}), then $\mathcal{I}_{\varphi}(\lambda X . \mathbf{A})=$ $\mathcal{I}_{\varphi}(\lambda Y \cdot[Y / X] \mathbf{A})$ for all assignments φ.
\triangleright Proof: by substitution value lemma
P. $1 \mathcal{I}_{\varphi}(\lambda Y .[Y / X] \mathbf{A}) @ \mathbf{a}=\mathcal{I}_{\varphi,[a / Y]}([Y / X] \mathbf{A})$
$=\mathcal{I}_{\varphi,[a / X]}(\mathbf{A})$
$=\mathcal{I}_{\varphi}(\lambda X . \mathbf{A}) @ a$
\triangleright Theorem 4.27: If $\mathcal{A}:=\langle\mathcal{D}, \mathcal{I}\rangle$ is a Henkin model and X not bound in \mathbf{A}, then $\mathcal{I}_{\varphi}((\lambda X . \mathbf{A}) \mathbf{B})=\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})$.
\triangleright Proof: by substitution value lemma

$$
\mathbf{P . 1} \begin{aligned}
\mathcal{I}_{\varphi}((\lambda X . \mathbf{A}) \mathbf{B}) & =\mathcal{I}_{\varphi}(\lambda X . \mathbf{A}) @ \mathcal{I}_{\varphi}(\mathbf{B}) \\
& =\mathcal{I}_{\varphi,\left[\mathcal{I}_{\varphi}(\mathbf{B}) / X\right]}(\mathbf{A}) \\
& =\mathcal{I}_{\varphi}([\mathbf{B} / X] \mathbf{A})
\end{aligned}
$$

Θ
(c): Michael Kohlhase

Correctness of $\alpha \beta \eta$ (continued)

\triangleright Theorem 4.28: If $X \notin \operatorname{free}(\mathbf{A})$, then $\mathcal{I}_{\varphi}(\lambda X . \mathbf{A} X)=\mathcal{I}_{\varphi}(\mathbf{A})$ for all φ.
\triangleright Proof:

$$
\begin{aligned}
\mathcal{I}_{\varphi}(\lambda X . \mathbf{A} X) @ \mathrm{a} & =\mathcal{I}_{\varphi,[\mathrm{a} / X]}(\mathbf{A} X) \\
& =\mathcal{I}_{\varphi}(\mathbf{A}) @ \mathcal{I}_{\varphi,[\mathrm{a} / X]}(X) \\
& =\mathcal{I}_{\varphi}(\mathbf{A}) @ \mathrm{a}
\end{aligned}
$$

as $X \notin \operatorname{free}(\mathbf{A})$.
\triangleright Theorem 4.29: $\alpha \beta \eta$-equality is correct wrt. Henkin models. (if $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$, then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}_{\varphi}(\mathbf{B})$ for all assignments φ)
©
(c): Michael Kohlhase

77
©

$$
\begin{aligned}
& \beta \eta \text {-Equality by Inference Rules: Multi-Step Reduction } \\
& \triangleright \text { Multi-Step-Reduction }(+\in\{\alpha, \beta, \eta\}) \\
& \frac{\vdash \mathbf{A} \rightarrow_{+}^{1} \mathbf{B}}{\vdash \mathbf{A} \rightarrow_{+}^{*} \mathbf{B}} \text { ms:start } \quad \frac{}{\vdash \mathbf{A} \rightarrow_{+}^{*} \mathbf{A}} \text { ms:ref } \\
& \frac{\vdash \mathbf{A} \rightarrow_{+}^{*} \mathbf{B} \quad \vdash \mathbf{B} \rightarrow_{+}^{*} \mathbf{C}}{\vdash \mathbf{A} \rightarrow_{+}^{*} \mathbf{C}} \text { ms:trans } \\
& \triangleright \text { Congruence Relation } \\
& \frac{\vdash \mathbf{A} \rightarrow_{+}^{*} \mathbf{B}}{\vdash \mathbf{A}={ }_{+} \mathbf{B}} \text { eq:start } \\
& \frac{\vdash \mathbf{A}={ }_{+} \mathbf{B}}{\vdash \mathbf{B}={ }_{+} \mathbf{A}} \text { eq:sym } \quad \frac{\vdash \mathbf{A}={ }_{+} \mathbf{B} \quad \vdash \mathbf{B}={ }_{+} \mathbf{C}}{\vdash \mathbf{A}={ }_{+} \mathbf{C}} \text { eq:trans }
\end{aligned}
$$

4.4 Computational Properties of λ-Calculus

From Extensionality to η-Conversion

\triangleright Definition 4.30: Extensionality Axiom: $\forall F_{\alpha \rightarrow \beta} \cdot \forall G_{\alpha \rightarrow \beta} \cdot\left(\forall X_{\alpha} \cdot F X=G X\right) \Rightarrow F=G$
\triangleright Theorem 4.31: η-equality and Extensionality are equivalent
\triangleright Proof: We show that η-equality $\left(\mathbf{A}_{\alpha \rightarrow \beta}={ }_{\eta} \lambda X_{\alpha}\right.$. $\mathbf{A} X$, if $X \notin$ free $\left.(\mathbf{A})\right)$ is special case of extensionality; the converse entailment is trivial
P. 1 Let $\forall X_{\alpha} . \mathbf{A} X=\mathbf{B} X$, thus $\mathbf{A} X=\mathbf{B} X$ with $\forall E$
P. $2 \lambda X_{\alpha}$. $\mathbf{A} X=\lambda X_{\alpha} \cdot \mathbf{B} X$, therefore $\mathbf{A}=\mathbf{B}$ with η
P. 3 Hence $\forall F_{o} . \forall G_{o} .(F \Leftrightarrow G) \Leftrightarrow F=G$
\triangleright Axiom of truth values: $\forall F_{o} . \forall G_{o} .(F \Leftrightarrow G) \Leftrightarrow F=G$ unsolved.
(c): Michael Kohlhase

81

η-Reduction ist terminating and confluent	
\triangleright Lemma 4.32: η-Reduction ist terminating	
\triangleright Proof: by a simple counting argument	
\triangleright Lemma 4.33: η-Reduction ist confluent	\square
\triangleright Proof: by diagram chase	
@ Michael Kohlhase 82 \square	

$\beta \eta$ is confluent

\triangleright Lemma 4.34: \rightarrow_{β}^{*} and \rightarrow_{η}^{*} commute.
\triangleright Proof: diagram chase
©
(c): Michael Kohlhase

83
∇

4.4.1 Termination of β-reduction

The second result is that β reduction terminates. We will use this to present a very powerful proof method, called the "logical relations method", which is one of the basic proof methods in the repertoire of a proof theorist.

```
Termination of \(\beta\)-Reduction
    - only holds for the typed case
        \((\lambda X . X X)(\lambda X . X X) \rightarrow_{\beta}(\lambda X . X X)(\lambda X . X X)\)
    \(\triangleright\) Theorem 4.35: (Typed \(\beta\)-Reduction terminates)
    For all \(\mathbf{A} \in w_{f f}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)\), the chain of reductions from \(\mathbf{A}\) is finite.
    \(\triangleright\) proof attempts:
            \(\triangleright\) Induction on the structure A must fail, since this would also work for the untyped
                case.
            \(\triangleright\) Induction on the type of A must fail, since \(\beta\)-reduction conserves types.
        \(\triangleright\) combined induction on both: Logical Relations [Tait 1967]
            © : Michael Kohlhase 84
                            \(\nabla^{7}\)
```


Relations $\mathcal{S R}$ and $\mathcal{L R}$

\triangleright Definition 4.36: \mathbf{A} is called strongly reducing at type α (write $\mathcal{S R}(\mathbf{A}, \alpha)$), iff each chain β-reductions from \mathbf{A} terminates.
\triangleright Lemma 4.37: (Lemma 1)
If $\mathcal{S R}(\mathbf{C}, \alpha)$ and \mathbf{B}_{β} is a subterm of \mathbf{A}, then $\operatorname{SR}(\mathbf{B}, \beta)$.
\triangleright Proof Idea: Every infinite β-reduction from \mathbf{B} would be one from \mathbf{A}.
\triangleright We define a logical relation $\mathcal{L R}$ inductively on the structure of the type
$\triangleright \alpha$ base type: $\mathcal{L R}(\mathbf{A}, \alpha)$, iff $\mathcal{S R}(\mathbf{A}, \alpha)$
$\triangleright \mathcal{L R}(\mathbf{C}, \alpha \rightarrow \beta)$, iff $\mathcal{L R}(\mathbf{C A}, \beta)$ for all $\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ with $\mathcal{L R}(\mathbf{A}, \alpha)$.
\triangleright Proof: Termination Proof
P. $1 \mathcal{L R} \subseteq \mathcal{S R}$
(Lemma 2b)
P. $2 \mathbf{A} \in w_{f f}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ implies $\mathcal{L R}(\mathbf{A}, \alpha)$
$\mathbf{P} .3$ also $\mathcal{S R}(\mathbf{A}, \alpha)$

$\mathcal{L R} \subseteq \mathcal{S R}$ (Rollercoaster Lemma)

\triangleright Lemma 4.38: (Lemma 2)
a) If h is a constant or variable of type $\overline{\alpha_{n}} \rightarrow \beta$ and $\operatorname{SR}\left(\mathbf{A}^{i}, \alpha^{i}\right)$, then $\mathcal{L R}\left(h \overline{\mathbf{A}^{n}}, \beta\right)$.
b) $\mathcal{L R}(\mathbf{A}, \alpha)$ implies $\mathcal{S R}(\mathbf{A}, \alpha)$.
\triangleright Proof: we prove both assertions by simultaneous induction on α
P.1. 1α base type:
P.1.1.1.1 a): $h \overline{\mathbf{A}^{n}}$ is strongly reducing, since the \mathbf{A}^{i} are (brackets!)
P.1.1.1.1.2 so $\mathcal{L R}\left(h \overline{\mathbf{A}^{n}}, \beta\right)$ as α is a base type $(\mathcal{S R}=\mathcal{L} \mathcal{R})$
P.1.1.1.2 b): by definition
P.1.2 $\alpha=\beta \rightarrow \gamma$:
P.1.2.1.1 a): Let $\mathcal{L R}(\mathbf{B}, \beta)$.
P.1.2.1.1.2 by the second IH we have $\mathcal{S R}(\mathbf{B}, \beta)$, and $\mathcal{L R}\left(h \overline{\mathbf{A}^{n}} \mathbf{B}, \gamma\right)$ by the first IH
P.1.2.1.1.3 so $\mathcal{L R}\left(h \overline{\mathbf{A}^{n}}, \beta\right)$ by definition.
P.1.2.1.2 b): Let $\mathcal{L R}(\mathbf{A}, \alpha)$ and $X_{\beta} \notin$ free (\mathbf{A}).
P.1.2.1.2.2 by the first IH (with $n=0$) we have $\mathcal{L R}(X, \beta)$, thus $\mathcal{L R}(\mathbf{A} X, \gamma)$ by definition.
P.1.2.1.2.3 By the second IH we have $\operatorname{SR}(\mathbf{A} X, \gamma)$ and by Lemma $1 \operatorname{SR}(\mathbf{A}, \alpha)$.

β-Expansion-Lemma

\triangleright Lemma 4.39: If $\mathcal{L R}([\mathbf{B} / X] \mathbf{A}, \alpha)$ and $\mathcal{L R}(\mathbf{B}, \beta)$ for $X_{\beta} \notin \operatorname{free}(\mathbf{A})$, then $\mathcal{L R}\left(\left(\lambda X_{\alpha} \cdot \mathbf{A}\right) \mathbf{B}, \alpha\right)$.
\triangleright Proof:
P. 1 Let $\alpha=\overline{\gamma_{i}} \rightarrow \delta$ where δ base type and $\mathcal{L R}\left(\mathbf{C}^{i}, \gamma^{i}\right)$
$\mathbf{P} .2$ It is sufficient to show that $\mathcal{S R}((\lambda X . \mathbf{A}) \mathbf{B} \overline{\mathbf{C}}, \delta)$, as δ base type
P. 3 We have $\mathcal{L R}([\mathbf{B} / X](\mathbf{A}) \overline{\mathbf{C}}, \delta)$ by hypothesis and definition of $\mathcal{L R}$.
$\mathbf{P} .4$ thus $\mathcal{S R}([\mathbf{B} / X](\mathbf{A}) \overline{\mathbf{C}}, \delta)$, as δ base type.
$\mathbf{P} .5$ in particular $\mathcal{S R}([\mathbf{B} / X] \mathbf{A}, \alpha)$ and $\mathcal{S R}\left(\mathbf{C}^{i}, \gamma^{i}\right)$
P. $6 \mathcal{S R}(\mathbf{B}, \beta)$ by hypothesis and Lemma 2
P. 7 So an infinite reduction from $(\lambda X . \mathbf{A}) \mathbf{B} \overline{\mathbf{C}}$ cannot solely consist of redexes from $[\mathbf{B} / X] \mathbf{A}$ and the \mathbf{C}^{i}.
$\mathbf{P} .8$ so an infinite reduction from $(\lambda X . \mathbf{A}) \mathbf{B} \overline{\mathbf{C}}$ must have the form

where $\mathbf{A} \rightarrow_{\beta}^{*} \mathbf{A}^{\prime}, \mathbf{B} \rightarrow_{\beta}^{*} \mathbf{B}^{\prime}$ and $\mathbf{C}^{i} \rightarrow_{\beta}^{*} \mathbf{C}^{i^{\prime}}$
$\mathbf{P} .9$ so we have $[\mathbf{B} / X](\mathbf{A}) \rightarrow_{\beta}^{*}\left[\mathbf{B}^{\prime} / X\right]\left(\mathbf{A}^{\prime}\right)$
P. 10 so we have the infinite reduction

$$
\begin{array}{rll}
{[\mathbf{B} / X](\mathbf{A}) \overline{\mathbf{C}}} & \rightarrow_{\beta}^{*} & {\left[\mathbf{B}^{\prime} / X\right]\left(\mathbf{A}^{\prime}\right) \overline{\mathbf{C}^{\prime}}} \\
& \rightarrow_{\beta}^{*} & \cdots
\end{array}
$$

which contradicts our assumption
© : Michael Kohlhase
87

Closure under β-Expansion (weakly reducing)

\triangleright Lemma 4.40: (Lemma 3)
If $\mathbf{C} \rightarrow_{\beta}^{h} \mathbf{D}$ and $\mathcal{L R}(\mathbf{D}, \alpha)$, so is $\mathcal{L R}(\mathbf{C}, \alpha)$.
\triangleright Proof: by induction over the structure of α
P.1.1 α base type:
P.1.1.1 we have $\mathcal{S R}(\mathbf{D}, \alpha)$ by definition
P.1.1.2 so $\mathcal{S R}(\mathbf{C}, \alpha)$, since head reduction is unique
P.1.1.3 and thus $\mathcal{L R}(\mathbf{C}, \alpha)$.
P.1.2 $\alpha=\beta \rightarrow \gamma$:
P.1.2.1 Let $\mathcal{L R}(\mathbf{B}, \beta)$, by definition we have $\mathcal{L R}(\mathbf{D B}, \gamma)$.
P.1.2.2 but $\mathbf{C B} \rightarrow{ }_{\beta}^{h} \mathbf{D B}$, so $\mathcal{L R}(\mathbf{C B}, \gamma)$ by IH
P.1.2.3 and $\mathcal{L R}(\mathbf{C}, \alpha)$ by definition.

Note: This Lemma only holds for weak reduction (any chain of β head reductions terminates) for strong reduction we need a stronger Lemma.
@
© : Michael Kohlhase
88
©
$\mathbf{A} \in w f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ implies $\mathcal{L R}(\mathbf{A}, \alpha)$
\triangleright Theorem 4.41: If $\mathcal{L R}\left(\sigma X_{\alpha}, \alpha\right)$ for all $X \in \operatorname{supp}(\sigma)$ and $\mathbf{A} \in w f f f_{\alpha}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$, then $\mathcal{L R}(\sigma \mathbf{A}, \alpha)$.
\triangleright Proof: by induction on the structure of \mathbf{A}
P.1.1 $\mathbf{A}=X_{\alpha} \in \operatorname{supp}(\sigma)$: then $\mathcal{L R}(\sigma \mathbf{A}, \alpha)$ by assumption
P.1.2 $\mathbf{A}=X \notin \operatorname{supp}(\sigma)$: then $\sigma \mathbf{A}=\mathbf{A}$ and $\mathcal{L R}(\mathbf{A}, \alpha)$ by Lemma 2 with $n=0$.
P.1.3 $\mathbf{A} \in \Sigma$: then $\sigma \mathbf{A}=\mathbf{A}$ as above
P.1.4 A = BC: by $\mathrm{IH} \mathcal{L R}(\sigma \mathbf{B}, \gamma \rightarrow \alpha)$ and $\mathcal{L R}(\sigma \mathbf{C}, \gamma)$
P.1.4.2 so $\mathcal{L R}(\sigma(\mathbf{B}) \sigma(\mathbf{C}), \alpha)$ by definition of $\mathcal{L R}$.
P.1.5 $\mathbf{A}=\lambda X_{\beta} . \mathbf{C}_{\gamma}$: Let $\mathcal{L R}(\mathbf{B}, \beta)$ and $\theta:=\sigma,[\mathbf{B} / X]$, then θ meets the conditions of the IH .
P.1.5.2 Moreover $\sigma\left(\lambda X_{\beta} . \mathbf{C}_{\gamma}\right) \mathbf{B} \rightarrow_{\beta} \sigma,[\mathbf{B} / X](\mathbf{C})=\theta(\mathbf{C})$.
P.1.5.3 Now, $\mathcal{L R}(\theta \mathbf{C}, \gamma)$ by IH and thus $\mathcal{L R}(\sigma(\mathbf{A}) \mathbf{B}, \gamma)$ by Lemma 3.
P.1.5.4 So $\mathcal{L R}(\sigma \mathbf{A}, \alpha)$ by definition of $\mathcal{L R}$.

4.5 Completeness of $\alpha \beta \eta$-Equality

We will now show is that $\alpha \beta \eta$-equality is complete for the semantics we defined, i.e. that whenever $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}_{\varphi}(\mathbf{B})$ for all variable assignments φ, then $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$. We will prove this by a model
existence argument: we will construct a model $\mathcal{M}:=\langle\mathcal{D}, \mathcal{I}\rangle$ such that if $\mathbf{A} \neq{ }_{\alpha \beta \eta} \mathbf{B}$ then $\mathcal{I}_{\varphi}(\mathbf{A}) \neq$ $\mathcal{I}_{\varphi}(\mathbf{B})$ for some φ.

Normal Forms in the simply typed λ-calculus

\triangleright Definition 4.42: We call a term $\mathbf{A} \in w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ a β normal form iff there is no $\mathbf{B} \in w f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ with $\mathbf{A} \rightarrow_{\beta} \mathbf{B}$.
We call \mathbf{N} a β normal form of \mathbf{A}, iff \mathbf{N} is a β-normal form and $\mathbf{A} \rightarrow{ }_{\beta} \mathcal{N}$.
We denote the set of β-normal forms with $w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta}$.
\triangleright We have just proved that $\beta \eta$-reduction is terminating and confluent, so we have
\triangleright Corollary 4.43: (Normal Forms)
Every $\mathbf{A} \in w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right)$ has a unique β normal form ($\beta \eta$, long $\beta \eta$ normal form), which we denote by $\mathbf{A} \downarrow_{\beta}\left(\mathbf{A} \downarrow_{\beta \eta} A \downarrow_{\beta \eta}^{l}\right)$

@	(c): Michael Kohlhase	90	

$$
\begin{aligned}
& \text { A Herbrand Model for } \Lambda \\
& \triangleright \text { Definition 4.44: }(\text { Term Structures for } \Sigma) \\
& \text { Let } \mathcal{I}_{\beta \eta}:=\left\langle c w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta}, \mathcal{I}^{\beta \eta}\right\rangle \text {, where } c w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta} \text { is the set of ground } \beta \eta \text { - } \\
& \text { normal } \lambda \text {-terms and } \mathcal{I}^{\beta \eta}(c) @ \mathbf{A}:=c \mathbf{A} \downarrow_{\beta} \text {. We call } \mathcal{I}_{\beta \eta} \text { the } \beta \text {-term structure for } \Sigma \text {. } \\
& \triangleright \text { Let } \varphi \text { be an assignment into } c w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta} \text {. Note that } \sigma:=\left.\varphi\right|_{\text {free }(\mathbf{A})} \text { is a substitu- } \\
& \text { tion, since free }(\mathbf{A}) \text { is finite. We have } \mathcal{I}_{\varphi}^{\beta \eta}(\mathbf{A})=\sigma \mathbf{A} \downarrow_{\beta} \text {. } \\
& \triangleright \text { The name term structure in the previous definition is justified by the following lemma. } \\
& \triangleright \text { Lemma 4.45: } \mathcal{I}_{\beta \eta} \text { is a } \Sigma \text {-model } \\
& \begin{array}{ll}
\text { © Michael Kohlhase } & \text { © }
\end{array}
\end{aligned}
$$

We can see that $\alpha \beta \eta$-equality is complete for the class of Σ-models, i.e. if the equation $\mathbf{A}=\mathbf{B}$ is valid, then $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$. Thus $\alpha \beta \eta$ equivalence fully characterizes equality in the class of all Σ-models, while additional η-equality characterizes functionality.

Completetness of $\alpha \beta \eta$-Equality

\triangleright Theorem 4.46: $\quad \mathbf{A}=\mathbf{B}$ is valid in the class of Σ-models, iff $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$.
\triangleright Proof: This is a simple consequence of the fact that $\mathcal{T}_{\beta \eta}$ is a Σ-model.
P. 1 For closed equations the proof goes like this: if $\mathbf{A}=\mathbf{B}$ is valid in all Σ-models, it must be in $\mathcal{I}_{\beta \eta}$ and in particular $\mathbf{A} \downarrow_{\beta}=\mathcal{I}(\mathbf{A})=\mathcal{I}(\mathbf{B})=\mathbf{B} \downarrow_{\beta}$ and therefore $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$.
P. 2 If the equation is not closed, then the argument is a little more subtle due to the presence of free variables.
P. 3 We extend Σ with constant c_{α}^{i} for each type α and each $i \in \mathbb{N}$.
P. 4 Since we have assumed countably many variables per type, there is a bijection between the set of variables and the set of constants in Σ, which induces a variable assignment φ_{Σ} into $c w f f_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta}$ (each variable X_{α} is mapped to its associated constant $\left.c_{\alpha}^{i} \in \operatorname{cwff} \mathcal{T}_{\mathcal{T}}\left(\Sigma, \mathcal{V}_{\mathcal{T}}\right) \downarrow_{\beta}\right)$.
P. 5 Thus $\mathcal{I}_{\varphi_{\Sigma}}(\mathbf{A})=\mathcal{I}_{\varphi_{\Sigma}}(\mathbf{B})$ is the long $\beta \eta$-normal form of $\varphi_{\Sigma}(\mathbf{A})$ and $\varphi_{\Sigma}(\mathbf{B})$.
P. 6 Since φ_{Σ} is a structure preserving homomorphism on well-formed formulae, $\varphi_{\Sigma}^{-1}\left(\mathcal{I}_{\varphi_{\Sigma}}(\mathbf{A})\right)$ is the is the long $\beta \eta$-normal form of both \mathbf{A} and \mathbf{B} and thus $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$.

(c): Michael Kohlhase 92

4.6λ-Calculus Properties

We will now show is that $\alpha \beta \eta$-reduction does not change the value of formulae, i.e. if $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$, then $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}_{\varphi}(\mathbf{B})$, for all \mathcal{D} and φ. We say that the reductions are sound. On the other hand, it can be shown that $\alpha \beta \eta$-reduction is complete for this model class, i.e. if $\mathcal{I}_{\varphi}(\mathbf{A})=\mathcal{I}_{\varphi}(\mathbf{B})$, for all \mathcal{D} and φ, then $\mathbf{A}={ }_{\alpha \beta \eta} \mathbf{B}$.

4.7 The Curry-Howard Isomorphism

The Curry-Howard Iso. for minimal \Rightarrow-Logic

\triangleright make the structural similarity between λ-calculus and propositional ND explicit
$\triangleright \rightarrow$ resembles \Rightarrow
\triangleright types resemble formulae ("propositions as types")
$\triangleright \lambda$-terms resemble proofs ("proof terms"', "proofs as programs")
\triangleright wff:app resembles $\Rightarrow E$, wff:abs resembles $\Rightarrow I$
\triangleright A provable, iff α non-empty (e.g. for the Hilbert-axioms)

$$
\begin{aligned}
& \triangleright \lambda X_{\alpha} \cdot \lambda Y_{\beta \cdot} \cdot X_{\alpha} \text { has type } \alpha \rightarrow \beta \rightarrow \alpha \\
& \triangleright \lambda X_{\alpha \rightarrow \beta \rightarrow \gamma \cdot} \cdot \lambda Y_{\alpha \rightarrow \gamma \cdot} \cdot \lambda Z_{\gamma} \cdot X Z(Y Z) \text { has type }(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma
\end{aligned}
$$

\triangleright works well for \rightarrow and \Rightarrow

Types for Conjunctions

\triangleright new type constructor: $\times($ product type $\alpha \times \beta$)
\triangleright new term constructors: $\langle\cdot, \cdot\rangle, \pi_{1}$ and π_{2}
\triangleright new type inference rules

$$
\frac{\Gamma \vdash_{\Sigma} \mathbf{A}: \alpha \quad \Gamma \vdash_{\Sigma} \mathbf{B}: \beta}{\Gamma \vdash_{\Sigma}\langle\mathbf{A}, \mathbf{B}\rangle: \alpha \times \beta} \text { wff:pair } \frac{\Gamma \vdash_{\Sigma} \mathbf{A}: \alpha \times \beta}{\Gamma \vdash_{\Sigma} \pi_{1}(\mathbf{A}): \alpha} \text { wff: } \pi_{l} \frac{\Gamma \vdash_{\Sigma} \mathbf{A}: \alpha \times \beta}{\Gamma \vdash_{\Sigma} \pi_{2}(\mathbf{A}): \beta} \text { wff: } \pi_{r}
$$

\triangleright new reductions (gives canonical reduction system)

$$
\left(\pi_{1}(\langle\mathbf{A}, \mathbf{B}\rangle) \rightarrow{ }_{\beta}^{1} \mathbf{A}\right) \quad\left(\pi_{2}(\langle\mathbf{A}, \mathbf{B}\rangle) \rightarrow{ }_{\beta}^{1} \mathbf{B}\right) \quad\left(\left\langle\pi_{1}(\mathbf{A}), \pi_{2}(\mathbf{A})\right\rangle \rightarrow{ }_{\eta}^{1} \mathbf{A}\right)
$$

\triangleright Others: disjoint sum for disjunction, complement for negation,...
(c): Michael Kohlhase

$$
\begin{aligned}
& \text { Example (Conjunction) } \\
& \frac{\frac{[\mathbf{A} \wedge \mathbf{B}]^{X}}{\mathbf{B}} \wedge E_{r} \frac{[\mathbf{A} \wedge \mathbf{B}]^{X}}{\mathbf{A}} \wedge E_{l}}{\frac{\mathbf{B} \wedge \mathbf{A}}{\mathbf{A} \wedge \mathbf{B} \Rightarrow \mathbf{B} \wedge \mathbf{A}} \Rightarrow I} \\
& \text { corresponds to } \lambda X_{\alpha \times \beta} \text {. }\left\langle\pi_{2}(X), \pi_{1}(X)\right\rangle \\
& \triangleright \text { Normalization }
\end{aligned}
$$

$$
\begin{aligned}
& \text { since }\left(\pi_{1}(\langle\mathbf{M}, \mathbf{N}\rangle) \rightarrow{ }_{\beta}^{1} \mathbf{M}\right) \\
& \triangleright \text { analogous for the other reductions } \\
& \text { @ } @ \\
& \text { © : Michael Kohlhase } \\
& 95
\end{aligned}
$$

The Curry-Howard Isomorphism by Example

\triangleright Example 4.47: (Deriving the S-Axiom)

$$
\text { where } \Gamma=\quad \alpha \rightarrow \beta \rightarrow \gamma, \quad \alpha \rightarrow \beta, \quad \alpha
$$

```
@m########m
```

© : Michael Kohlhase

The Curry-Howard Isomorphism by Example

\triangleright Example 4.48: (Deriving the S-Axiom)
$\underline{\Gamma \vdash_{\Sigma} Y: \alpha \rightarrow \beta \quad \Gamma \vdash_{\Sigma} Z: \alpha}$
$\Gamma \vdash_{\Sigma} X: \alpha \rightarrow \beta \rightarrow \gamma \quad \Gamma \vdash_{\Sigma} Z: \alpha \quad \Gamma \vdash_{\Sigma} Y Z: \beta$
$\Gamma \vdash_{\Sigma} X Z(Y Z): \gamma$
$[X: \alpha \rightarrow \beta \rightarrow \gamma],[Y: \alpha \rightarrow \beta] \vdash_{\Sigma} \lambda Z . X Z(Y Z): \alpha \rightarrow \gamma$
$[X: \alpha \rightarrow \beta \rightarrow \gamma] \vdash_{\Sigma} \lambda Y Z . X Z(Y Z):(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$
$\emptyset \vdash_{\Sigma} \lambda X Y Z . X Z(Y Z):(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$
where $\Gamma=[X: \alpha \rightarrow \beta \rightarrow \gamma],[Y: \alpha \rightarrow \beta],[Z: \alpha]$

```
What next for the Curry Howard Isomorphism?
    Additional types for disjunction and negation
    \triangleright Problem: What about quantifiers?
    | Idea 1: Introduce type polymorphism
                            ("Second-Order \lambda-Calculus")
    type-variables, type-quantification
    \triangleright \lambda X . X ~ h a s ~ t h e ~ t y p e ~ \forall \alpha . \alpha ~ \rightarrow \alpha
    \triangleright Idea 2: make types dependent on terms ("Edinburgh Logical Framework")
     typ-constructors "type-families": vec(7) is the type of vectors of length 7
    \triangleright \operatorname { m a t } ( 3 \rightarrow 5 ) \rightarrow \vec { ( 3 ) } \rightarrow \vec { ( 5 ) } \text { is the type of a matrix multiplication operator}
    \triangleright pf(\mathbf{A})\mathrm{ the type of proofs of a formula A.}
@c
@):Michael Kohlhase
98
7
```


Example: Proof Normalization

\triangleright Normalize: $\quad\left(\left(\lambda X_{\alpha} \cdot \mathbf{M}_{\mu}\right) \mathbf{N}_{\nu}\right) \rightarrow{ }_{\beta}^{1}[\mathbf{N} / X](\mathbf{M})$ corresponds to $\stackrel{\stackrel{\mathcal{D}}{\overline{\mathbf{A}}}}{\underline{B}}$ ${ }^{\mathbf{A}} \mathcal{E}$
B
Δ Theorem 4.49: (Cut Elimination)
For each ND-proof of a formula \mathbf{A} there is $a \Rightarrow E$-free proof of \mathbf{A}.
(c): Michael Kohlhase

99
\bigcirc

```
\(\lambda\)-calculus and functional Programming
    \(\triangleright\) z.B. LISP ( \(\lambda\)-calculus with lists \([a|b| c]\) and conditionals)
        \(\operatorname{sort}=(\lambda(\mathrm{L})(\) if \(\mathrm{L}=[]\) then [] else \([\min (\mathrm{L}) \mid \operatorname{sort}(\operatorname{del}(\min (\mathrm{L}), \mathrm{L}))])\) )
        \(\operatorname{del}=(\lambda\) ( \(\mathrm{X}, \mathrm{L}\) ) (if \(\mathrm{L}=[\mathrm{]}\) then \(\perp\)
            elif \(X=\) first (L) then rest(L)
            else \([\operatorname{first}(L) \mid \operatorname{del}(X, \operatorname{rest}(L))]))\)
    \(\min =(\lambda\) ( \(L\) ) (if \(L=[]\) then \(\perp\)
                elif \(L=[f i r s t(L)]\) then first(L)
                elif first(L) \(<\min (\) rest \((\mathrm{L}))\) then first(L)
                else \(\min (\operatorname{rest}(\mathrm{L})))\) )
    \(\triangleright\) Program-Evaluation is \(\beta\)-reduction and list-reduction
        del c [a|b|c]
            \(\rightarrow{ }_{\beta}^{1}[\operatorname{first}([a|b| c]) \mid \operatorname{del}(c, \operatorname{rest}([a|b| c]))] \rightarrow{ }_{\beta}^{1}[a \mid \operatorname{del}(c,[b \mid c])]\)
            \(\rightarrow{ }_{\beta}^{1}[a|\operatorname{first}([b \mid c])| \operatorname{del}(c, \operatorname{rest}([b \mid c]))] \rightarrow{ }_{\beta}^{1}[a|b| \operatorname{del}(c,[c])]\)
            \(\rightarrow{ }_{\beta}^{1}[\mathrm{a}|\mathrm{b}| \operatorname{rest}([\mathrm{c}])] \rightarrow{ }_{\beta}^{1}[\mathrm{a}|\mathrm{b}|[]] \rightarrow{ }_{\beta}^{1}[\mathrm{a} \mid \mathrm{b}]\)
©

\section*{Proofs as Programs}
```

\triangleright ~ R e m e m b e r : ~ P r o o f s ~ a r e ~ \lambda - t e r m s ~ \& ~ \lambda - t e r m s ~ a r e ~ p r o g r a m s ~
\triangleright Idea: Then proofs should be programs (well only constructive ones)
\triangleright Example 4.50: (Sorting)
a theory of ordered lists:
\vDash}\operatorname{perm}(L,M)\mathrm{ , if }M\mathrm{ is a permutation of L
\vDash}\operatorname{ord}(L)\mathrm{ , if }L\mathrm{ ordered wrt. <
\triangleright X < L if X < Y for all Y \in L

```

Theorems:
\(\triangleright \models \min (L)<\operatorname{del}(\min (L), L)\)
\(\triangleright \models \operatorname{ord}(L) \wedge x<L \Rightarrow \operatorname{ord}([x \mid L])\)
\(\triangleright \models \operatorname{perm}(L \Rightarrow M) \Rightarrow \operatorname{perm}([x \mid L],[x \mid M])\)
\(\triangleright\) Theorem 4.51: \(\forall L . \exists M \operatorname{cord}(L) \operatorname{perm}(L, M)\)
\(\triangleright\) Proof: by induction on the structure of the list \(L\)
P.1.1 If \(L=[]\) : choose \(M=[]\)
P.1.2 If \(L \neq[]\) :
P.1.2.1 by IH there is a list \(W\), such that \(\operatorname{ord}(W) \operatorname{perm}(W, \operatorname{del}(\min (L), L))\)
P.1.2.2 chose \(M=[\min (L) \mid W]\)

Programm:
\(\triangleright \operatorname{sort}=(\lambda L\) (if \(L=[]\) then \(\perp\) else \([\min (L) \mid \operatorname{sort}(\operatorname{del}(\min (L), L))]))\)
\(\triangleright\) Note: the correcness of this program is ensured by the proof
\(\triangleright\) Note: different proofs yield different programs
\(\triangleright\) Note: the programs extracted from automatically found proofs are not always efficient
(Slowsort!)
©
(c): Michael Kohlhase

101
\(\sqrt{ }\)

\section*{5 Knowledge Representation}

Before we start into the development of description logics, we set the stage by looking into what alternatives for knowledge representation we know.

\subsection*{5.1 Introduction to Knowledge Representation}

\section*{What is knowledge? Why Representation?}
\(\triangleright\) For the purposes of this course: Knowledge is the information necessary to support intelligent reasoning (during NLP)
\begin{tabular}{|l|l|}
\hline representation & can be used to determine \\
\hline \hline set of words & whether a word is admissible \\
\hline list of words & the rank of a word \\
\hline a lexicon & translation or grammatical function \\
\hline \hline structure & function \\
\hline
\end{tabular}
\(\triangleright\) Representation as structure and function.
\(\triangleright\) the representation determines the content theory
(what is the data?)
\(\triangleright\) the function determines the process model (what do we do with the data?)

Emen
© : Michael Kohlhase
102
\(\bigcirc\)

\section*{Knowledge Representation vs. Data Structures}
\(\triangleright\) Why do we use the term "knowledge representation" rather than
\(\triangleright\) data structures? (sets, lists, ... above)
\(\triangleright\) information representation?
(it is information)
\(\triangleright\) no good reason other than AI practice, with the intuition that
\(\triangleright\) data is simple and general (supports many algorithms)
\(\triangleright\) knowledge is complex (has distinguished process model)
©
(c): Michael Kohlhase

103
7

\section*{Some Paradigms for AI/NLP}
\(\triangleright\) GOFAI
(good old-fashioned AI)
\(\triangleright\) symbolic knowledge representation, process model based on heuristic search \(\triangleright\) statistical, corpus-based approaches.
\(\triangleright\) symbolic representation, process model based on machine learning
\(\triangleright\) knowledge is divided into symbolic- and statistical (search) knowledge \(\triangleright\) connectionist approach (not in this course)
\(\triangleright\) sub-symbolic representation, process model based on primitive processing elements (nodes) and weighted links
\(\triangleright\) knowledge is only present in activation patters, etc.

\section*{KR Approaches/Evaluation Criteria}
\(\triangleright\) Expressive Adequacy: What can be represented, what distinctions are supported.
\(\triangleright\) Reasoning Efficiency: can the representation support processing that generates results in acceptable speed?
\(\triangleright\) Primitives: what are the primitive elements of representation, are they intuitive, cognitively adequate?
\(\triangleright\) Meta-representation: knowledge about knowledge
\(\triangleright\) Incompleteness: the problems of reasoning with knowledge that is known to be incomplete.
ⓒ: Michael Kohlhase


\section*{The famous "Isa-Hierarchy"}
\(\triangleright\) Idea: encode taxonomic information about concepts and individuals
\(\triangleright\) in "isa" links
(inclusion of concepts)
- in "inst" links (concept memberships)
\(\triangleright\) use property inheritance in the process model

```

@

```
(c): Michael Kohlhase

107 \(\bigcirc\)

\section*{Limitations of Semantic Networks}
\(\triangleright\) What is the meaning of a link?
\(\triangleright\) link names are very suggestive
(misleading for humans)
\(\triangleright\) meaning of link types defined in the process model (no denotational semantics)
\(\triangleright\) No division of optional and defining arguments


5
© ©
© : Michael Kohlhase
108
7
\({ }^{e}\) EdNote: with a cancel link link to the has link

A Denotational Semantics for Semantic Networks
\(\triangleright\) take isa/inst account

\section*{Frame Notation as Logic with Locality}
\(\triangleright\) Predicate Logic:
(where is the locality?)
catch_22 \(\in\) catch_object catcher(catch_22, jack_2) caught(catch_22,ball_5) He caught a certain ball
\(>\) Frame Notation
```

(catch_object catch_22
(catcher jack_2)
(caught ball_5))
(catch_object catch_22
catcher jack_2)
(caught ball_5))

```
+ Once you have decided on a frame, all the information is local
+ easy to define schemes for concepts (aka. types in feature structures)
- how to determine frame, when to choose frame
@
(c): Michael Kohlhase

111
(log/chair)
7
(group everything around the object)
\[
\text { ( } 0
\]

MIIGHIIRESEFWEED

\section*{KR involving Time (Scripts [Shank '77])}
\(\triangleright\) Idea: organize typical event sequences, actors and props into representation structure
\(\triangleright\) Example 5.1: getting your hair cut
(at a beauty parlor)
\(>\) props, actors as script variables
\(\triangleright\) events in a (generalized) sequence
-
(
use script material for


\section*{Other Representation Formats (not covered)}
\begin{tabular}{|c|c|}
\hline \(\triangleright\) Procedural Representations & (production systems) \\
\hline \(\triangleright\) analogical representations & (interesting but not here) \\
\hline \(\triangleright\) iconic representations & (interesting but very difficult to formalize ) \\
\hline - If you are interested, come see me off-line & \\
\hline ® © : Michael Kohlhase & 113 - \\
\hline
\end{tabular}

\subsection*{5.2 Logic-Based Knowledge Representation}

\section*{Logic-Based Knowledge Representation}
\(\triangleright\) Logic (and related formalisms) have a well-defined semantics
\(\triangleright\) explicitly (gives more understanding than statistical/neural methods)
\(\triangleright\) transparently (symbolic methods are monotonic)
\(\triangleright\) systematically (we can prove theorems about our systems)
\(\triangleright\) Problems with logic-based approaches
\(\triangleright\) Where does the world knowledge come from?
(Ontology problem)
\(\triangleright\) How to guide search induced by log. calculi
(combinatorial explosion)
\(\triangleright\) One possible answer: Description Logics. (next couple of times)
\begin{tabular}{|c|c|c|c|}
\hline & (c): Michael Kohlhase & 114 & \\
\hline
\end{tabular}

\section*{Propositional Logic as Set Description Language}
\(\triangleright\) use propositional logic as a set description language
\(\triangleright\) variant syntax: \(\sqcap \hat{=} \wedge\) (intersection), \(\sqcup \hat{=} \vee\) (union), \(\overline{\hat{=}} \neg(\) complement \(), \sqsubseteq \hat{=} \Rightarrow\) (subsumption)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Example } & Set Semantics \\
\hline \hline \begin{tabular}{l} 
son \(\sqsubseteq\) child \\
daughter \(\sqsubseteq\) child
\end{tabular} & \\
\begin{tabular}{l} 
son \(\sqcap\) daughter \\
child \(\sqsubseteq\) son \(\sqcup\) daughter
\end{tabular} & \\
\hline
\end{tabular}
\(\triangleright\) Definition 5.2: (Formal Semantics)
let \(\mathcal{D}\) be a given set (called the domain) and \(\varphi: \mathcal{V}_{o} \rightarrow \wp(\mathcal{D})\), then
\(\triangleright \llbracket P \rrbracket:=\varphi(P) \subseteq \mathcal{D}\),
\(\triangleright \llbracket \mathbf{A} \sqcup \mathbf{B} \rrbracket=\llbracket \mathbf{A} \rrbracket \cup \llbracket \mathbf{B} \rrbracket\) and \(\llbracket[\overline{\mathbf{A}}]]=\mathcal{D} \backslash \llbracket \mathbf{A} \rrbracket \ldots\)
(c): Michael Kohlhase
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Effects of the Axioms in this example} \\
\hline & & & Axioms & Effect & \\
\hline & \(\triangleright\) & & \[
\begin{aligned}
& \text { son } \sqsubseteq \text { child } \\
& \text { daughter } \sqsubseteq \text { child }
\end{aligned}
\] &  & \\
\hline & & & \begin{tabular}{l}
n \(\Pi\) daughter \\
hild \(\sqsubseteq\) son \(\sqcup\) daughter
\end{tabular} &  & \\
\hline \(\underbrace{}_{\text {¢ }}\) & & & ©): Michael Kohlhase & 116 & \(7{ }^{7}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Predicate-Logic Formulation} \\
\hline & Propositional Logic & Predicate Logic \\
\hline & \begin{tabular}{l} 
son \(\sqsubseteq\) child \\
daughter \(\sqsubseteq\) child \\
\hline son \(\sqcap\) daughter \\
child \(\sqsubseteq\) son \(\sqcup\) daughter
\end{tabular} & \[
\begin{aligned}
& \hline \forall x \text {.son }(x) \Rightarrow \operatorname{child}(x) \\
& \forall x . \text { daughter }(x) \Rightarrow \operatorname{child}(x) \\
& \forall x . \neg(\operatorname{son}(x) \wedge \text { daughter }(x)) \\
& \forall x . \operatorname{child}(x) \Rightarrow \operatorname{son}(x) \vee \text { daughter }(x)
\end{aligned}
\] \\
\hline \(\Theta\) & \multicolumn{2}{|r|}{©: Michael Kohlhase \(\quad 117\)} \\
\hline
\end{tabular}

\section*{Set-Theoretic Semantics}
\(\triangleright\) Definition 5.3: A model \(\mathcal{M}=\langle\mathcal{D}, \mathcal{I}\rangle\) consists of a Interpretation \(\mathcal{I}\) over a non-empty domain \(\mathcal{D}\) is a mapping \(\llbracket \cdot \rrbracket\) :
\begin{tabular}{|c|c|c|c|}
\hline & Operator Meaning & & formula semantics \\
\hline 1 & & \(\llbracket p \rrbracket\) & \(\subset \mathcal{D}\) \\
\hline 2 & \(\llbracket \vdash \rrbracket=\) complement & \([[\overline{\mathbf{A}}]]\) & \(=\overline{\llbracket \mathbf{A} \rrbracket}:==\mathcal{D} \backslash \llbracket \mathbf{A} \rrbracket\) \\
\hline 3 & \(\llbracket \square \rrbracket=\cap\) & \(\llbracket \mathbf{A} \sqcap \mathbf{B} \rrbracket\) & \(=\llbracket \mathbf{A} \rrbracket \cap \llbracket \mathbf{B} \rrbracket\) \\
\hline 4 & \(\llbracket \sqcup \rrbracket=\cup\) & \(\llbracket \mathbf{A} \sqcup \mathbf{B} \rrbracket\) & \(=\llbracket \mathbf{A} \rrbracket \cup \llbracket \mathbf{B} \rrbracket\) \\
\hline 5 & \(\llbracket \sqsubseteq \rrbracket=\subseteq\) & \(\llbracket \mathrm{A} \sqsubseteq \mathrm{B} \rrbracket\) & \(=\overline{\llbracket \mathbf{A} \rrbracket} \cup \llbracket \mathbf{B} \rrbracket\) \\
\hline 6 & \(\llbracket \equiv \rrbracket=\) set equality & \(\llbracket \mathbf{A} \equiv \mathbf{B} \rrbracket\) & \(=(\llbracket \mathbf{A} \rrbracket \cap \llbracket \mathbf{B} \rrbracket) \cup(\overline{\llbracket \mathbf{A} \rrbracket} \cup \llbracket \mathbf{B} \rrbracket)\) \\
\hline
\end{tabular}
\(\triangleright\) Justification for 5: \(\mathbf{A} \Rightarrow \mathbf{B}=\neg \mathbf{A} \vee \mathbf{B}\)
\(\triangleright\) Justification for 6: \(\mathbf{A} \Leftrightarrow \mathbf{B}=\mathbf{A} \wedge \mathbf{B} \vee \neg \mathbf{A} \wedge \neg \mathbf{B}=\mathbf{A} \wedge \mathbf{B} \vee \neg(\mathbf{A} \vee \mathbf{B})\)
\(\Theta\)
(c): Michael Kohlhase
118
©

\section*{Set－Theoretic Semantics of Axioms}
\(\triangleright\) Set－Theoretic Semantics of＇true＇and＇false＇
\[
(\top=\varphi \sqcup \bar{\varphi} \quad \perp=\varphi \sqcap \bar{\varphi})
\]
\[
\llbracket \perp \rrbracket=\llbracket p \rrbracket \cup \llbracket \bar{p} \rrbracket=\llbracket p \rrbracket \cup \overline{\llbracket p \rrbracket}=\mathcal{D} \quad \text { Analogously: } \llbracket \perp \rrbracket=\emptyset
\]
\(\triangleright\) Set－Theoretic Semantics of Axioms： \(\mathbf{A}\) is true in \(\mathcal{M}=\langle\mathcal{D}, \mathcal{I}\rangle\) ，iff \(\llbracket \mathbf{A} \rrbracket=\mathcal{D}\)
\begin{tabular}{|c|c|}
\hline Axioms & Semantics \\
\hline \begin{tabular}{l}
son \(\sqsubseteq\) child is true \\
iff \(\llbracket \overline{\text { son }} \rrbracket \cup \llbracket\) child \(\rrbracket=\mathcal{D}\) \\
iff \(\llbracket\) son \(\rrbracket \subseteq \llbracket c h i l d \rrbracket\)
\end{tabular} &  \\
\hline son \(\sqsubseteq\) child & ［son】 \(\subseteq\) 【child】 \\
\hline daughter \(\sqsubseteq\) child & 【daughter】 \(\subseteq\) 【child】 \\
\hline son \(\Pi\) daughter & 【son】 \(\cap\)［daughter】 \(=\mathcal{D}\) \\
\hline child \(\sqsubseteq\) son \(\sqcup\) daughter & \(\llbracket\) child \(\rrbracket \subseteq \llbracket\) son \(\rrbracket \cup \llbracket\) daughter】 \\
\hline
\end{tabular}
\(@\)

\section*{Set－Theoretic Semantics and Predicate Logic}
\(\triangleright\) use logical operators \(\sqcap, \sqcup, \sqsubseteq, \equiv\) instead of \(\wedge, \vee, \Rightarrow, \Leftrightarrow\) if we are using PL0 with set－ theoretic semantics．
\(\triangleright\) Translation into PL1
\(\triangleright\) recursively add argument variable \(x\)
\(\triangleright\) change back \(\sqcap, \sqcup, \sqsubseteq, \equiv\) to \(\wedge, \vee, \Rightarrow, \Leftrightarrow\)
\(\triangleright\) universal closure for \(x\) at formula level．
\begin{tabular}{|c|c|}
\hline \(\overline{\mathrm{PL}} 0^{f o(x)}=\) PL1 & Comment \\
\hline \(\bar{p}^{f o(x)}=p(x)\) & \\
\hline \(\overline{(\overline{\mathbf{A}})}^{f o(x)}=\neg \overline{\mathbf{A}}^{f o(x)}\) & \\
\hline \left.\({\overline{\left(\mathbf{A} \sqcap \mathbf{B}^{\prime \prime}\right.}}^{f o(x)}\right)=\overline{\mathbf{A}}^{f o(x)} \wedge \overline{\mathbf{B}}^{f o(x)}\) & \(\wedge\) vs．\(\square\) \\
\hline \(\overline{(\mathbf{A}} \sqcup \mathbf{B}^{f o(x)}=\overline{\mathbf{A}}^{f o(x)} \vee \overline{\mathbf{B}}^{f o(x)}\) & \(\checkmark\) vs．ப \\
\hline  & \(\Rightarrow\) vs．\(\sqsubseteq\) \\
\hline  & \(\Leftrightarrow\) vs． \\
\hline \(\overline{\mathbf{A}}^{f o}=\forall x \cdot \overline{\mathbf{A}}^{f o(x)}\) & for formulae \\
\hline
\end{tabular}

\section*{Translation Examples}
\(\triangleright\) Example 5.4:
\[
\begin{aligned}
{\overline{\text { son } \sqsubseteq \text { child }^{f o}}}^{f o} & =\forall x \cdot \operatorname{son}(x) \Rightarrow \operatorname{child}(x) \\
{\overline{\text { daughter } \sqsubseteq \text { child }^{f o}}}^{f o} & =\forall x \cdot \text { daughter }(x) \Rightarrow \operatorname{child}(x) \\
\overline{\text { (son } \sqsubseteq \text { daughter) }}^{f o} & =\forall x \cdot \overline{\operatorname{son}(x) \wedge \text { daughter }(x)} \\
\text { child } \sqsubseteq \text { son } \sqcup \text { daughter } & \\
& =\forall x \cdot \operatorname{child}(x) \Rightarrow \operatorname{son}(x) \vee \text { daughter }(x)
\end{aligned}
\]
\(\triangleright\) What are the advantages of translation to PL1?
\(\triangleright\) theoretically: A better understanding of the semantics
\(\triangleright\) computationally: NOTHING
many tests are decidable for PL0, but not for PL1 (Description Logics?)


\section*{Kinds of Inference in Description Logics}
\(\triangleright\) Consistency test
\(\triangleright\) Subsumption test
\(\triangleright\) Instance test
\(\triangleright \ldots\)
\(\triangleright\) Problem: decidability, complexity, algorithm

\section*{Consistency Test}
\(\triangleright\) Example 5.5: T-Box

\(\triangleright\) This specification is inconsistent, i.e. 【hermaphrodite】 \(=\emptyset\) for all \(\mathcal{D}, \varphi\).
\(\triangleright\) Algorithm: propositional satisfiability test (NP-complete) we know how to do this, e.g. tableau, resolution
@ © Michael Kohlhase
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Subsumption Test} \\
\hline \multirow[b]{2}{*}{\(\triangleright\) Example 5.6: in this case trivial} & Axioms & entailed subsumption relation \\
\hline & \[
\begin{aligned}
\text { woman } & =\text { person } \sqcap \overline{\text { has_Y }} \\
\text { man } & =\text { person } \sqcap \text { has_ } Y
\end{aligned}
\] & \[
\begin{array}{rll}
\hline \text { woman } & \sqsubseteq & \text { person } \\
\operatorname{man} & \sqsubseteq & \text { person } \\
\hline
\end{array}
\] \\
\hline \multicolumn{3}{|l|}{\(\triangleright\) Reduction to consistency test: (need to implement only one) Axioms \(\Rightarrow \mathbf{A} \Rightarrow \mathbf{B}\) is valid iff Axioms \(\wedge \mathbf{A} \wedge \neg \mathbf{B}\) is inconsistent.} \\
\hline \multicolumn{3}{|l|}{\(\triangleright\) Definition 5.7: A subsumes \(\mathbf{B}\) (modulo an axiom set \(\mathcal{A}\) ) iff \(\llbracket \mathbf{B} \rrbracket \subseteq \llbracket \mathbf{A} \rrbracket\) for all interpretations \(\mathcal{D}\), that satisfy \(\mathcal{A}\) iff Axioms \(\Rightarrow \mathbf{B} \Rightarrow \mathbf{A}\) is valid} \\
\hline \multicolumn{3}{|l|}{\(\triangleright\) in our example: person subsumes woman and man} \\
\hline @ ©: Michael & Kohlhase 124 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|lll} 
Classification \\
\(\triangleright\) The subsumption relation among all concepts \\
\(\triangleright\) Visualization of the Subsumption graph for inspection & \begin{tabular}{r} 
(subsumption graph) \\
(plausibility)
\end{tabular} \\
\(\triangleright\) Definition 5.8: Classification is the computation of the subsumption graph \\
\(\triangleright\) Example 5.9: \\
(not always so trivial)
\end{tabular}

\section*{Instance Test}
- Example 5.10:
(will explain TBox and ABox with ALC later)
\begin{tabular}{|r|ll|l|}
\hline \multicolumn{2}{|c|}{ T-Box (terminological Box) } & \multicolumn{2}{l|}{ A-Box (assertional Box, data base) } \\
\hline \hline \begin{tabular}{rlr|}
\hline woman & \(=\) & person \(\sqcap \overline{\text { has_Y }}\) \\
man & \(=\) & person \(\sqcap\) has_Y
\end{tabular} & \begin{tabular}{l} 
tony: person \\
tony: has_Y
\end{tabular} & \begin{tabular}{l} 
Paul is a person \\
Paul has a y-chromosome
\end{tabular} \\
\hline
\end{tabular}
\(\triangleright\) This entails: tony: man (Paul is a man).
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 126 & \\
\hline
\end{tabular}


\subsection*{5.3 A simple Description Logic: ALC}

\section*{Motivation for \(\mathcal{A L C}\) (Prototype Description Logic)}
\(\triangleright\) Propositional logic (PLO) is not expressive enough
\(\triangleright\) Example 5.12: "mothers are women that have a child"
\(\triangleright\) Reason: there are no quantifiers in PL0
(existential \((\exists)\) and universal \((\forall)\) )
\(\triangleright\) Idea: use first-order predicate logic (PL1)
\[
\forall x . \operatorname{mother}(x) \Leftrightarrow \operatorname{woman}(x) \wedge\left(\exists y . h a s \_c h i l d(x, y)\right)
\]
\(\triangleright\) Problem: complex algorithms, non-termination
(PL1 is too expressive)
\(\triangleright\) Idea: Try to travel the middle ground more expressive than PL0 (quantifiers) but weaker than PL1 (still tractable)
\(\triangleright\) Technique: Allow only "restricted quantification", where quantified variables only range over values that can be reached via a binary relation like has_child.

\section*{Syntax of \(\mathcal{A L C}\)}
\(\triangleright\) Concepts: (aka. "predicates" in PL1 or "propositional variables" in PL0) concepts in DLs name classes of objects like in OOP.
\(\triangleright\) Special concepts: \(\top\) (for "true" or "all") and \(\perp\) (for "false" or "none").
\(\triangleright\) Example 5.13: person, woman, man, mother, professor, student, car, BMW, computer, computer program, heart attack risk, furniture, table, leg of a chair,...
\(\triangleright\) Roles: name binary relations (like in in PL1)
\(\triangleright\) Example 5.14: has_child, has_son, has_daughter, loves, hates gives_course, executes_computer_program, has_leg_of_table, has_wheel, has_motor,...
\begin{tabular}{|c|c|c|c|}
\hline  & (c): Michael Kohlhase & 129 & \(\int_{\substack{\text { acons } \\ \text { UNIVESTr }}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline ```
Syntax of \(\mathcal{A C C}\) : Formulae \(F_{\mathcal{A C}}\)
    \(\triangleright\) Grammar: \(F_{\mathcal{A K C}}:==C|\top| \perp\left|\overline{F_{\mathcal{A C C}}}\right| F_{\mathcal{A K C}} \sqcap F_{\mathcal{A C C}}\left|F_{\mathcal{A K C}} \sqcup F_{\mathcal{A K C}}\right|\left(\exists \mathrm{R} . F_{\mathcal{A K C}}\right) \mid\left(\forall \mathrm{R} . F_{\mathcal{A K C}}\right)\)
\(\triangleright\) Example 5.15:
    \(\triangleright\) person \(\sqcap\) ( \(\exists\) has_child.student)
        (parents of students)
        (The set of persons that have a child which is a student)
    \(\triangleright\) person \(\sqcap\) ( \(\exists\) has_child. \(\exists\) has_child.student)
        (grandparents of students)
\(\triangleright\) person \(\sqcap\) ( \(\exists\) has_child. \(\exists\) has_child.student \(\sqcup\) teacher)(grandparents of students or teachers)
\(\triangleright\) person \(\sqcap\) ( \(\forall\) has_child.student) (parents whose children are all students)
\(\triangleright\) person \(\Pi\) ( haschild. \(\exists\) has_child.student) (grandparents, whose children all have at least one child that is a student)
``` \\
\hline @ ¢ Michael Kohlhase \\
\hline
\end{tabular}

\section*{More Examples}
\(\triangleright \operatorname{car} \sqcap(\exists\) has_part. \(\exists\) made_in. \(\overline{E U})\) (cars that have at least one part that has not been made in the EU)
\(\triangleright\) student \(\sqcap\) (\(\forall\) audits_course.graduatelevelcourse)(students, that only audit graduate level courses)
\(\triangleright\) house \(\sqcap\) (\(\forall\) has_parking.off_street) (houses with off-street parking)
\(\triangleright\) Note: \(p \sqsubseteq q\) can still be used as an abbreviation for \(\overline{\bar{p}} \sqcup q\).
\(\triangleright \quad\) student \(\sqcap(\forall\) audits_course. \((\exists\) hasrecitation. \(\top) \sqsubseteq(\forall\) has_TA.woman \())\)
(students that only audit courses that either have no recitation or recitations that are TAed by women)
\begin{tabular}{|c|c|c|c|}
\hline @ & (c): Michael Kohlhase & 131 & knems \\
\hline
\end{tabular}

\section*{\(\mathcal{A L C}\) Concept Definitions}
\(\triangleright\) Define new concepts from known ones:
\[
\left(K D_{\mathcal{A C C}}:==C=F_{\mathcal{A C C}}\right)
\]
\begin{tabular}{|r|c|l|}
\hline man & \(=\) person \(\sqcap(\exists\) has_chrom.Y_chrom \()\) & rec \\
\hline \hline woman & \(=\) person \(\sqcap(\forall\) has_chrom. \(\bar{Y}\) _chrom \()\) & - \\
mother & \(=\) woman \(\sqcap(\exists\) has_child.person \()\) & - \\
father & \(=\) man \(\sqcap(\exists\) has_child.person \()\) & - \\
grandparent & \(=\) person \(\sqcap(\exists\) has_child.mother \(\sqcup\) father \()\) & - \\
german & \(=\) person \(\sqcap(\exists\) has_parents.german \()\) & - \\
number_list & \(=\) empty_list \(\sqcup(\exists\) is_first.number \(\sqcap(\exists\) is_rest.number_list \()\) & + \\
\hline
\end{tabular}

\section*{(c): Michael Kohlhase}

132

\section*{Concept Axioms}
\(\triangleright\) Definition 5.16: General DL formulae that are not concept definitions are called Concept Axioms.
\(\triangleright\) They normally contain additional information about concepts
Example 5.17:
\(\triangleright \overline{\text { person } \sqcap \text { car }}\) (persons and cars are disjoint)
\(\triangleright\) car \(\sqsubseteq\) motor_vehicle
(cars are motor vehicles)
\(\triangleright\) motor_vehicle \(\sqsubseteq\) car \(\sqcup\) truck \(\sqcup\) motorcycle(motor vehicles are cars, trucks, or motorcycles)

\section*{TBoxes: "terminological Box"}
\(\Delta\) Definition 5.18: finite set of concept definitions + finite set of concept axioms
\(\triangleright\) Definition 5.19: Acyclic TBox (mostly treated)
TBox does not contain recursive definitions
\(\triangleright\) Definition 5.20: Normalized wrt. TBox
(convenient)
A formula \(\mathbf{A}\) is called normalized wrt. \(T\), iff it does not contain concept names defined in \(T\).
\(\triangleright\) Algorithm: (Input: A formula A and a TBox T.) (for arbitrary DLs)
\(\triangleright\) While [A contains concept name \(c\) and \(T\) concept definition \(c=\mathbf{C}\)]
\(\triangleright\) substitute \(c\) by \(\mathbf{C}\) in \(\mathbf{A}\).
\(\triangleright\) Lemma 5.21: this algorithm terminates for acyclic TBoxes
(c): Michael Kohlhase

134

\section*{Semantics of \(\mathcal{A C C}\)}
\(\triangleright \mathcal{A K C}\) semantics is an extension of the set-semantics of propositional logic.
\(\triangleright\) Definition 5.22: An Interpretation \(\mathcal{I}\) over a non-empty domain \(\mathcal{D}\) is a mapping \(\llbracket \cdot \rrbracket\) :

136

\section*{More \(\mathcal{A L C}\) Identities}
\(\triangleright\)
\[
\begin{aligned}
\exists \mathrm{R} \cdot \varphi & =\forall \mathrm{R} \cdot \bar{\varphi} \\
\forall \mathrm{R} \cdot \varphi \sqcap \psi & =\forall \mathrm{R} \cdot \varphi \sqcap(\forall \mathrm{R} \cdot \psi)
\end{aligned} \begin{aligned}
\forall \mathrm{R} \cdot \varphi & =\exists \mathrm{R} \cdot \bar{\varphi} \\
\exists \mathrm{R} \cdot \varphi \sqcup \psi & =\exists \mathrm{R} \cdot \varphi \sqcup(\exists \mathrm{R} \cdot \psi)
\end{aligned}
\]
\(\triangleright\) Proof of 1
\[
\begin{aligned}
\llbracket[\exists \mathrm{R} \cdot \varphi]]=\mathcal{D} \backslash \llbracket(\exists \mathrm{R} \cdot \varphi) \rrbracket & =\mathcal{D} \backslash(\{x \in \mathcal{D} \mid \exists y \cdot\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket \text { and } y \in \llbracket \varphi \rrbracket\}) \\
& =(\{x \in \mathcal{D} \mid \operatorname{not} \exists y \cdot\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket \text { and } y \in \llbracket \varphi \rrbracket\}) \\
& =(\{x \in \mathcal{D} \mid \forall y . \text { if }\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket \text { then } y \notin \llbracket \varphi \rrbracket\}) \\
& =(\{x \in \mathcal{D} \mid \forall y . \text { if }\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket \text { then } y \in(\mathcal{D} \backslash \llbracket \varphi \rrbracket)\}) \\
& =(\{x \in \mathcal{D} \mid \forall y . \text { if }\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket \text { then } y \in \llbracket \bar{\varphi} \rrbracket\}) \\
& =\llbracket \mathrm{R} \cdot \bar{\varphi} \rrbracket
\end{aligned}
\]

\section*{Negation Normal Form}
\(\triangleright\) Definition 5.23: (NNF)
- directly in front of concept names in \(\mathcal{A L C}\) formulae
\(\triangleright\) Use the \(\mathcal{A K C}\) rules to compute it.
(in linear time)
\begin{tabular}{|c|c|}
\hline example & by rule \\
\hline \hline\(\overline{\exists \mathrm{R} .(\forall \mathrm{S} . e) \sqcap \overline{(\forall \mathrm{S} . d)}}\) & \\
\(\mapsto \forall \mathrm{R} . \overline{(\forall \mathrm{S} . e) \sqcap \overline{(\forall \mathrm{S} . d)}}\) & \(\overline{\exists \mathrm{R} . \varphi} \mapsto \forall \mathrm{R} \cdot \bar{\varphi}\) \\
\(\mapsto \forall \mathrm{R} . \overline{(\forall \mathrm{S} . e)} \sqcup \overline{\overline{(\forall \mathrm{S} . d)}}\) & \(\overline{\varphi \sqcap \psi} \mapsto \bar{\varphi} \sqcup \bar{\psi}\) \\
\(\mapsto \forall \mathrm{R} .(\exists \mathrm{S} . \bar{e}) \sqcup \overline{\overline{(\forall \mathrm{S} . d)}}\) & \(\overline{\operatorname{RR} \cdot \varphi} \mapsto \forall \mathrm{R} \cdot \bar{\varphi}\) \\
\(\mapsto \forall \mathrm{R} .(\exists \mathrm{S} . \bar{e}) \sqcup \overline{(\forall \mathrm{S} . d)}\) & \(\overline{\bar{\varphi}} \mapsto \varphi\) \\
\hline
\end{tabular}

\section*{\(\mathcal{T}_{\text {ALC }}\) : A Tableau-Calculus for \(\mathcal{A L C}\)}
\(\triangleright\) tableau calculus acts constraints of the form
\(\triangleright x: \varphi(x\) variable and \(\varphi \in \mathcal{A C C}) \quad(x\) is in the set \(\varphi)\)
\(\triangleright x \mathrm{R} y,(x, y\) variables, and R role name \()\) (\(x\) and \(y\) are in relation R)
@
(c): Michael Kohlhase

140
フ

\section*{Examples}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & \[
x: \begin{aligned}
& \forall \text { has_child.man } \Pi \\
& \exists \text { has_child. } \overline{\text { man }}
\end{aligned}
\] & initial & \(x: \begin{gathered}\forall h a s _c h i l d . m a n \Pi \\ \exists \text { ヨhas_child.man }\end{gathered}\) & initial \\
\hline 2 & \(x\) : \(\forall\) has_child.man & \(\sqcap_{l}\) & \(x\) : \(\forall\) has_child.man & \(\Pi_{l}\) \\
\hline 3 & \(x\) : \(\exists\) has_child. \(\overline{\mathrm{man}}\) & \(\square_{r}\) & \(x\) : ヨhas_child.man & \(\sqcap_{r}\) \\
\hline 4 & \(x\) has_child \(y\) & \(\exists_{r}\) & \(x\) has_child \(y\) & \(\exists_{r}\) \\
\hline 5 & \(y\) : \(\overline{\text { man }}\) & \(\exists_{s}\) & \(y\) : man & \(\exists_{s}\) \\
\hline 6 & \(y\) : man & \(\forall\) & open & \\
\hline 7 & * & \(\perp\) & & \\
\hline & inconsistent & & & \\
\hline
\end{tabular}

\section*{Another Example}
\begin{tabular}{|cc|c|}
\hline 1 & \(x:(\forall\) has_child.ugrad \(\sqcup\) grad \() \sqcap(\exists\) has_child. \(\overline{\text { ugrad })}\) & \\
2 & \(x: \forall\) has_child.ugrad \(\sqcup\) grad & \(\Pi_{l}\) \\
3 & \(x: \exists\) has_child.ugrad & \(\Pi_{r}\) \\
4 & \(x\) has_child \(y\) & \(\exists_{s}\) \\
5 & \(y: \overline{\text { ugrad }}\) & \(\exists_{r}\) \\
6 & \(y:\) ugrad \(\sqcup\) grad & \(\forall\) \\
7 & \(y:\) ugrad & \(y:\) grad \\
8 & \(*\) & open
\end{tabular}

The left branch is closed, the right one represents a model:
\(y\) is a child of \(x, y\) is a graduate student, \(x\) hat exactly one child: \(y\).

\section*{Properties of Tableau Calculi}
\(\triangleright\) We study the following properties of a tableau calculus \(\mathcal{C}\) :
Termination there are no infinite sequences of rule applications.
Correctness If \(\varphi\) is consistent, then \(\mathcal{C}\) terminates with an open branch.
Completeness If \(\varphi\) is in consistent, then \(\mathcal{C}\) terminates and all branches are closed.
Complexity of the algorithm
Complexity of the satisfiability itself

\section*{Termination}
\(\Delta\) Theorem 5.24: The Tableau Algorithm for ALC terminates To prove termination of a tableau algorithm, find a well-founded measure (function) that is decreased by all rules
\(\triangleright\) Proof: Sketch (full proof very technical)
P. 1 any rule except \(\forall\) can only be applied once to \(x: \psi\).
P. 2 rule \(\forall\) applicable to \(x: \forall \mathrm{R} . \psi\) at most as the number of R -successors of \(x\). (those \(y\) with \(x \mathrm{R} y\) above)
P. 3 the R-successors are generated by \(x: \exists \mathrm{R} . \theta\) above, (number bounded by size of input formula)
P. 4 every rule application to \(x: \psi\) generates constraints \(z: \psi^{\prime}\), where \(\psi^{\prime}\) a proper subformula of \(\psi\).

\section*{Correctness}
\(\triangleright\) Lemma 5.25: If \(\varphi\) consistent, then \(\mathcal{T}\) terminates on \(x: \varphi\) with open branch.
\(\triangleright\) Proof: Let \(\mathcal{M}\) be a model for \(\varphi\) and \(w \in \llbracket \varphi \rrbracket\).
\(\Im \models x: \psi \quad\) iff \(\quad \llbracket x \rrbracket \in \llbracket \psi \rrbracket\)
P. 1 we define \(\llbracket x \rrbracket:=w\) and \(\Im \models x \mathrm{R} y \quad\) iff \(\quad\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket\)
\(\Im \models S \quad\) iff \(\quad \Im \models c\) for all \(c \in S\)
P. 2 This gives us \(\Im \models x: \varphi\)
(base case)
\(\mathbf{P} .3\) case analysis: if branch consistent, then either
\(\triangleright\) no rule applicable to leaf
\(\triangleright\) or rule applicable and one new branch satisfiable
(open branch)
(green inductive case)
P. 4 consequence: there must be an open branch
(by termination)

\section*{Case analysis on the rules}
\(\sqcap\) applies , then \(\Im \models x: \varphi \sqcap \psi\), i.e. \(\llbracket x \rrbracket \in \llbracket(\varphi \sqcap \psi) \rrbracket\)
so \(\llbracket x \rrbracket \in \llbracket \varphi \rrbracket\) and \(\llbracket x \rrbracket \in \llbracket \psi \rrbracket\), thus \(\Im \models x: \varphi\) and \(\Im \models x: \psi\).
\(\sqcup\) applies , then \(\Im \models x: \varphi \sqcup \psi\), i.e \(\llbracket x \rrbracket \in \llbracket(\varphi \sqcup \psi) \rrbracket\)
so \(\llbracket x \rrbracket \in \llbracket \varphi \rrbracket\) or \(\llbracket x \rrbracket \in \llbracket \psi \rrbracket\), thus \(\Im \models x: \varphi\) or \(\Im \models x: \psi\),
wlog. \(\Im \models x: \varphi\).
\(\forall\) applies , then \(\Im \models x: \forall \mathrm{R} . \varphi\) and \(\Im \models x \mathrm{R} y\), i.e. \(\llbracket x \rrbracket \in \llbracket(\forall \mathrm{R} . \varphi) \rrbracket\) and \(\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket\), so \(\llbracket y \rrbracket \in \llbracket \varphi \rrbracket\)
\(\exists\) applies , then \(\Im \models x\) : \(\exists \mathrm{R} . \varphi\), i.e \(\llbracket x \rrbracket \in \llbracket(\exists \mathrm{R} . \varphi) \rrbracket\),
so there is a \(v \in D\) with \(\langle\llbracket x \rrbracket, v\rangle \in \llbracket \mathrm{R} \rrbracket\) and \(v \in \llbracket \varphi \rrbracket\).
We define \(\llbracket y \rrbracket:=v\), then \(\Im \models x \mathrm{R} y\) and \(\Im \models y: \varphi\)

\section*{Completeness of the Tableau Calculus}
\(\triangleright\) lemma 5.26: Open saturated tableau branches for \(\varphi\) induce models for \(\varphi\).
\(\triangleright\) Proof: construct a model for the branch and verify for \(\varphi\)
P. 1 (Model Construction) Let \(\mathcal{B}\) be an open saturated branch

\(\triangleright\) well-defined since never \(x: c, x: \bar{c} \in \mathcal{B}\)
(otherwise \(\perp\) applies)
\(\triangleright \Im\) satisfies all constraints \(x: c, x: \bar{c}\) and \(x \mathrm{R} y\),
(by construction)
P. 2 (Induction) \(\Im \models y: \psi\), for all \(y: \psi \in \mathcal{B} \quad\) (on \(k=\operatorname{size}(\psi)\) next slide)
P. 3 (Consequence) \(\Im \models x: \varphi\).

\section*{Case Analysis for Induction}
case \(y: \psi=y: \psi_{1} \sqcap \psi_{2}\) Then \(\left\{y: \psi_{1}, y: \psi_{2}\right\} \subseteq \mathcal{B}\)
(\(\sqcap\)-rule, saturation)
so \(\Im \models y: \psi_{1}\) und \(\Im \models y: \psi_{2}\) and \(\Im \models y: \psi_{1} \sqcap \psi_{2}\)
case \(y: \psi=y: \psi_{1} \sqcup \psi_{2}\) Then \(y: \psi_{1} \in \mathbf{B}\) or \(y: \psi_{2} \in \mathbf{B}\)
(\(\sqcup\)-rule, saturation)
so \(\Im \models y: \psi_{1}\) or \(\Im \models y: \psi_{2}\) and \(\Im \models y: \psi_{1} \sqcup \psi_{2}\)
(IH, Definition)
case \(y: \psi=y: \exists \mathrm{R} . \theta\) then \(\{y \mathrm{R} z, z: \theta\} \subseteq \mathbf{B}(z\) new variable)
so \(\Im \models z: \theta\) and \(\Im \models y \mathrm{R} z\), thus \(\Im \models y\) : \(\exists \mathrm{R} . \theta\). (\(\exists_{*}\)-rules, saturation)
(IH, Definition)
case \(y: \psi=y: \forall \mathrm{R} . \theta\) Let \(\langle\llbracket y \rrbracket, v\rangle \in \llbracket \mathrm{R} \rrbracket\) for some \(r \in \Im_{D}\)
then \(v=z\) for some variable \(z\) with \(y \mathrm{R} z \in \mathbf{B}\)
(construction of \(\llbracket R \rrbracket\))
So \(z: \theta \in \mathcal{B}\) and \(\Im \models z: \theta\). (\(\forall\)-rule, saturation, Def)
Since \(v\) was arbitrary we have \(\Im \models y: \forall \mathrm{R} . \theta\).
(c): Michael Kohlhase

\section*{Complexity}
\(\triangleright\) Idea: We can organize the tableau procedure, so that the branches are worked off one after the other. Therefore the size of the branches is relevant of the (space)-complexity of the procedure.
\(\triangleright\) The size of the branches is polynomial in the size of the input formula (same reasons as for termination)
\(\triangleright\) every rule except \(\forall\) is only applied to a constraint \(x: \psi\).
\(\triangleright\) The \(\forall\) is applied to constraints of the form \(x: \forall\) R. \(\psi\) at most as often as there are R-successors of \(x\).
\(\triangleright\) The R-successors of \(x\) are generated by constraints \(x\) : \(\exists \mathrm{R} . \theta\), whose number is bounded by the size of the input formula.
\(\triangleright\) Each application to a constraint \(x: \psi\) generates constraints \(z: \psi^{\prime}\) where \(\psi^{\prime}\) is a proper subformula of \(\psi\).

The total size is the size of the input formula plus number of \(\exists\)-formulae times number of \(\forall\)-formulae.
\(\bowtie\) Theorem 5.27: The consisteny problem for \(\mathcal{A L C}\) is in PSPACE.
\(\triangleright\) Theorem 5.28: The consistency problem for \(\mathcal{A L C}\) is PSPACE-Complete.
\(\triangleright\) Proof: reduce a PSPACE-complete problem to \(\mathcal{A L C}\)-consistency
\(\triangleright\) Theorem 5.29: (Time Complexity)
The \(\mathcal{A L C}\)-consistency problem is in EXPTIME
\(\triangleright\) Proof: Sketch: There can be exponentially many branches(already for propositional logic)

\section*{The functional Algorithm for \(\mathcal{A C C}\)}
\(\triangleright\) Observation: leads to treatment for \(\exists\)
\(\triangleright\) the \(\exists\)-rule generates the constraints \(x \mathrm{R} y\) and \(y: \psi\) from \(x: \exists \mathrm{R} . \psi\)
\(\triangleright\) this triggers the \(\forall\)-rule for \(x: \forall \mathrm{R} . \theta_{i}\), which generate \(y: \theta_{1}, \ldots, y: \theta_{n}\)
\(\triangleright\) for \(y\) we have \(y: \psi\) and \(y: \theta_{1}, \ldots y: \theta_{n}\). (do all of this in a single step)
\(\triangleright\) we are only interested in non-emptyness, not in the particular witnesses
(leave them out)
```

consistent(S) =
if {c,\overline{c}}\subseteqS then false (inconsistent) elseif
'( }\varphi\sqcap\psi)\mathrm{ ' }\inS\mathrm{ and (' }\varphi\mathrm{ ' }\not=S\mathrm{ or ' }\psi\mathrm{ ' }\not=S\mathrm{ )
then consistent(S\cup{\varphi,\psi})
elseif ' }(\varphi\sqcup\psi)\mathrm{ ' }\inS\mathrm{ and }{\varphi,\psi}\not\in
then consistent (S\cup{\varphi}) or
consistent (S\cup{\psi})
elseif forall '( }\exists\textrm{R}.\psi)\mathrm{ ' }\in
consistent }({\psi}\cup({0|'(\forall\textrm{R}.0)'\inS})
else true (consistent)

```
\(\triangleright\) relatively simple to implement
(good implementations optimized)
\(\triangleright\) but: this is restricted to \(\mathcal{A K C}\).
(extension to other DL difficult)

\section*{Extending the Tableau Algorithm by Concept Axioms}
\(\triangleright\) Concept axioms, e.g. child \(\sqsubseteq\) son \(\sqcup\) daughter could not be handled in tableau calculi
\(\triangleright\) Idea: Whenever a new variable \(y\) is introduced (by \(\exists\)-rule) add the information that axioms hold for \(y\).
\(\triangleright\) initialize tableau with \(\{x: \varphi\} \cup \mathcal{C A} \quad(\mathcal{C A}:=\) set of concept axioms)
\(\triangleright\) new \(\exists\)-rule: \(\frac{x: \exists \mathrm{R} . \varphi \quad \alpha \in \mathcal{C} \mathcal{A}}{y: \alpha} \exists_{\mathcal{C A}} \quad \quad\) (apply-co-exhaustively to \(\exists\))

Problem: \(\mathcal{C A}:=\{\exists \mathrm{R} . c\}\) and start tableau with \(x: d\)
(non-termination)

\section*{Non-Termination of Tableau with Concept Axioms}
\begin{tabular}{|l|l|}
\hline\(x: d\) & start \\
\(x: \exists \mathrm{R} . c\) & \(\in \mathcal{C} \mathcal{A}\) \\
\(x \mathrm{R} y_{1}\) & \(\exists\) \\
\(y_{1}: c\) & \(\exists\) \\
\(y_{1}: \exists \mathrm{R} . c\) & \(\exists_{\mathcal{C A}}\) \\
\(y_{1} \mathrm{R} y_{2}\) & \(\exists\) \\
\(y_{2}: c\) & \(\exists\) \\
\(y_{2}: \exists \mathrm{R} . c\) & \(\exists_{\mathcal{C A}}\) \\
\(\ldots\) & \\
\hline
\end{tabular}

Solution: Loop-Check:
\(\triangleright\) instead of a new variable \(y\) take an old variable \(z\), if we can guarantee that whatever holds for \(y\) already holds for \(z\).
\(\triangleright\) we can only do this, iff the \(\forall\)-rule has been exhaustively applied.

\section*{c): Michael Kohlhas \\ 152 \\ \(\sqrt{ }\)}

\section*{ABoxes (Database Component of DL)}
\(\triangleright\) Formula: \begin{tabular}{|c|c|}
\(a: \varphi(a\) is a \(\varphi)\) & \(a \mathrm{R} b(a\) stands in relation R to \(b)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline property & example \\
\hline \hline internally inconsistent & tony: student, tony: student \\
\hline inconsistent with a TBox & \begin{tabular}{l}
TBox: student \(\Pi\) prof \\
\(A B o x: ~ t o n y: ~ s t u d e n t, ~ t o n y: ~ p r o f ~\)
\end{tabular} \\
\hline \begin{tabular}{l}
implicit info that is not ex- \\
plicit
\end{tabular} & \begin{tabular}{l}
Abox: tony: \(\forall\) has_grad.genius \\
tonyhas_gradmary \\
\(=\) mary: genius
\end{tabular} \\
\hline \begin{tabular}{l}
info that can be combined \\
with TBox info
\end{tabular} & \begin{tabular}{l}
TBox: cont_prof \(=\) prof \(\Pi\) (Vhas_grad.genius) \\
\(A B o x:\) tony: cont_prof, tonyhas_gradmary \\
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
@
}

\section*{Tableau-based Instance Test and Realization}
\(\triangleright\) Query: do the ABox and TBox together entail \(a: \varphi\)
\(\triangleright\) Algorithm: test \(a: \bar{\varphi}\) for consistency with ABox and TBox. \({ }^{6}\)
(use our tableau)
\(\triangleright\) necessary changes:
(no big deal)
\(\triangleright\) Normalize ABox wrt. TBox
(definition expansion)
\(\triangleright\) initialize the tableau with ABox in NNF
(so it can be used)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Example: add mary: \(\overline{\text { genius }}\) to determine \(A B o x, T B o x \models\) mary : genius} \\
\hline TBox & cont_prof \(=\) prof \(\sqcap\) (\(\forall\) has_grad.genius) & tony: prof \(\Pi\) (\(\forall\) has_grad.genius) tonyhas_gradmary tony: prof & Norm Norm \(\sqcap\) \\
\hline ABox & tony: cont_prof tonyhas_gradmary & tony: \(\forall\) has_grad.genius mary: genius & \[
\stackrel{\sqcap}{\forall}
\] \\
\hline
\end{tabular}
\(\triangleright\) Note: The instance test is the base for the realization
(remember?)
\(\triangleright\) extend to more complex ABox queries:
(give me all instances of \(\varphi\))
\(\Theta\)
(c): Michael Kohlhase

154
\(\bigcirc\)
\({ }^{f}\) EdNote: need to unify abox and tbox judgments.

\subsection*{5.4 ALC Extensions}

\section*{Language Extensions}
\(\triangleright \mathcal{A C C}\) is much more expressive than propositional logic,
(still not enough)
\(\triangleright\) Idea: study more expressive extensions
\(\triangleright\) Need to study:
\(\triangleright\) which new operators?
(are some definable)
\(\triangleright\) translation into predicate logic
\(\triangleright\) are the inference problems decidable? (consistency, subsumption, instance test,...)
\(\triangleright\) what is the complexity of the decision problem?
\(\triangleright\) what do the algorithms look like?
©
© : Michael Kohlhase
155

\subsection*{5.4.1 Functional Roles and Number Restrictions}

\section*{Functional Roles}
\(\triangleright\) Example 5.30: CSR \(\widehat{=}\) Car with glass sun roof
\(\triangleright \operatorname{In} \mathcal{A K C}: C S R=\) car \(\sqcap\) (\(\exists\) has_sun_roof.glass)
\(\triangleright\) potential unwanted interpretation: more than one sun roof.
\(\triangleright\) Problem: has_sun_roof is a relation in \(\mathcal{A L C}\)
(no partial function)
\(\triangleright\) Example 5.31: Humans have exactly one father and mother.
\(\triangleright\) in \(\mathcal{A R C}\) : human \(\sqsubseteq(\exists\) has_father.human) \(\sqcap(\exists\) has_mother.human)
\(\triangleright\) Problem: has_father should be a total function
(on the set of humans)
Solution: Number Restrictions
(see next slide)
\(\bowtie\) Example 5.32: Teenager \(=\) human between 13 and 19
\(\triangleright\) teenager \(=\) human \(\sqcap(\) age \(<20)\) age \(>12\)
(not covered by \(\mathcal{A K C}\))
\(\triangleright\) Solution: concrete domains (outside the scope of this course)
(c): Michael Kohlhase

156
7

\section*{Number Restrictions}
\(\triangleright\) Example 5.33: Car \(=\) vehicle with at least four wheels
\(\triangleright\) Trick: In \(\mathcal{A K C}\) : model car using two new distinguishing concepts \(p_{1}\) and \(p_{2}\) vehicle \(\sqcap\left(\exists\right.\) has_wheel. \(\left.p_{1} \sqcap p_{2}\right) \sqcap\left(\exists\right.\) has_wheel. \(\left.\overline{p_{1}} \sqcap p_{2}\right) \sqcap\left(\exists\right.\) has_wheel. \(\left.p_{1} \sqcap \overline{p_{2}}\right) ~ \sqcap\left(\exists\right.\) has_wheel. \(\left.\overline{p_{1}} \sqcap \overline{p_{2}}\right)\)
\(\triangleright\) Problem: city \(=\) town with at least \(1,000,000\) inhabitants
(oh boy)
\(\triangleright\) Alternative: Operators for number restrictions.

\section*{(Unqualified) Number Restrictions}
\(\triangleright \mathcal{A} \mathcal{L C}\) plus operators \(\exists_{\geq}^{n} \mathrm{R}\) and \(\forall_{\leq}^{n} \mathrm{R}\)
(R role, \(n \in \mathbb{N}\))
\[
\begin{aligned}
& \qquad \text { Example 5.34: } \begin{aligned}
\text { car } & =\text { vehicle } \sqcap \exists \exists_{>}^{4} \text { has_wheel } \\
\text { city } & =\text { town } \sqcap \exists \exists_{>}^{1,000,000} \text { has_inhabitants } \\
\text { small_family } & =\text { family } \sqcap \forall_{\leq}^{2} \text { has_child }
\end{aligned} \\
& \triangleright \text { Semantics: }[[\exists \geq \mathrm{R}]]=(\{x \in \mathcal{D} \mid \#(\{y \mid\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket\}) \geq n\}) \\
& {\left[\left[\forall_{\leq}^{n} \mathrm{R}\right]\right]=(\{x \in \mathcal{D} \mid \#(\{y \mid\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket\}) \leq n\})}
\end{aligned}
\]
\(\triangleright\) Intuitively: \(\exists_{\geq}^{n} \mathrm{R}\) is the set of objects that have at least \(n\) R-successors.
\(\triangleright\) Example 5.35: \(\exists_{\geq}^{1,000,000}\) has_inhabitants is the set of objects that have at least 1,000,000 inhabitants.
(c): Michael Kohlhase

158

\section*{Translation into Predicate Logic}
\(\triangleright\) Two extra rules for number restrictions:
(very cumbersome)
\(\left.\left.\begin{array}{|rrr|r|}\hline & \exists_{n}^{n} \mathrm{R}^{f o(x)} & \bar{\forall}_{\leq} \mathrm{R}^{f o(x)} \\ \hline \exists y_{1} \cdot \mathrm{R}\left(x, y_{1}\right) \wedge & \ldots & \wedge \exists y_{n} \cdot \mathrm{R}\left(x, y_{n}\right) & \neg \exists y \cdot \mathrm{R}(x, y) \vee \\ \wedge y_{1} \neq y_{2} \wedge & \ldots & \wedge y_{1} \neq y_{n} & \left(\exists y_{1} \cdot \mathrm{R}\left(x, y_{1}\right) \wedge \ldots \wedge \exists y_{n} \cdot \mathrm{R}\left(x, y_{n}\right)\right. \\ \wedge & y_{2} \neq y_{3} \wedge & \ldots \wedge y_{2} \neq y_{n} \wedge \\ y_{n-1} \neq y_{n}\end{array}\right) \forall y \cdot \mathrm{R}(x, y) \Rightarrow\left(y=y_{1} \vee \ldots \vee y=y_{n}\right)\right)\)
\(\triangleright\) Definable Operator: \(=\)
\(\triangleright \stackrel{n}{=} \mathrm{R}:=\exists_{\geq}^{n} \mathrm{R} \sqcap \forall_{<}^{n} \mathrm{R}\) defines the set of objects that have exactly \(n\) R-successors.
\(\triangleright\) Example 5.36: car \(=\) vehicle \(\sqcap \stackrel{n}{=}\) has_wheel (vehicles with exactly 4 wheels)

©: Michael Kohlhase 15
门

\section*{Functional Roles}
\(\triangleright\) Example 5.37: \(\mathrm{CSR}=\mathrm{car} \Pi \stackrel{1}{=}\) has_sun_roof
(CSR = car with sun roof)
has_sun_roof is a relation, but restricted to CSR it is a total function.
\(\triangleright\) Partial functions: Chd \(=\) computer \(\Pi \forall_{\leq}^{1}\) has_hd (computer with at most one hard drive) has_hd is a partial function on the set Chd
\(\triangleright\) Intuition: number restrictions can be used to encode partial and total functions, but not to specify the range type.
```

@)

```
(c): Michael Kohlhase

160
\(\sqrt{7}\)

\section*{Negation Rules}
\(\triangleright\) Observation: to compute the negation normal form, need the rules for the new operators
\[
\begin{array}{|lll|lll|}
\hline \exists_{\geq}^{n} \mathrm{R} & \mapsto & \forall_{\leq}^{n-1} \mathrm{R} & \forall_{\leq}^{n} \mathrm{R} & \mapsto & \exists_{\geq}^{n+1} \mathrm{R} \\
\hline
\end{array}
\]
\(\triangleright\) Proof: by the semantics of the operators
\(\triangleright\) Example 5.38
\[
\begin{aligned}
& 1: \overline{\exists_{\geq}^{5} \text { has_child }}=\forall_{\leq}^{4} \text { has_child } \\
& 2: \overline{\forall_{\leq}^{5} \text { has_child }}=\exists_{\geq}^{6} \text { has_child }
\end{aligned}
\]

\subsection*{5.4.2 Unique Names}

\section*{Unique Name Assumption}
\(\triangleright\) Problem: assuming UNA for ABox constants
\(\triangleright\) Definition 5.39: (Unique Name Assumption)

Different names for objects denote different objects,
(cannot be equated)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\triangle\) Example 5.40:} & Bob: gardener & \multicolumn{2}{|l|}{\(\triangleright\) Bill and Bob are different} \\
\hline & Bob: gardener UNAbomber: gardener & \multicolumn{2}{|l|}{\(\triangleright\) but the UNAbomber can be Bill or Bob or someone else.} \\
\hline \multicolumn{4}{|l|}{\(\triangleright\) Assumption: mark every ABox constant with 'UNA' or ' \(\overline{U N A}\) '} \\
\hline & © : Michael Kohlhase & 163 & \\
\hline
\end{tabular}

Tableau Rules (with ABox Information)

\section*{Example: Solving a Crime with Number Restrictions \\ \(\triangleright\) Example 5.41: Tony has observed (at most) two people. Tony observed a murderer that had black hair. It turns out that Bill and Bob were the two people Tony observed. Bill is blond, and Bob has black hair. \\ (Who was the murderer.) \\ Bill: UNA, Bob: UNA, tony: UNA, muderer: UNA \\ tony: \(\forall_{\leq}^{2}\) observes \\ tony observes Bill \\ tony observes Bob \\ tony observes muderer \\ muderer: black_hair \\ Bill: black_hair \\ Bob: black_hair tony observes Bill tony observes Bob Bill: black_hair Bob: black_hair \\ * \\ ©: Michael Kohlhase 165 7}

\subsection*{5.4.3 Qualified Number Restrictions}

\section*{Negation and Quantifier Elimination}
\(\triangleright\) Negation rules: \(\overline{\exists \sum_{\geq}^{n} \text { R. } \varphi}=\forall_{\leq}^{n-1}\) R. \(\varphi \left\lvert\, \frac{\forall_{\leq}^{n} \text { R. } \varphi}{}=\exists_{\geq}^{n+1}\right.\) R. \(\varphi\)
\(\triangleright\) Example 5.44: \(\quad \exists \geq{ }_{\geq}^{3}\) has_child.teacher \(=\forall_{\leq}^{2}\) has_child.teacher
\(\triangleright\) Example 5.45: \(\quad \overline{\forall_{\leq}^{3}}\) has_child.teacher \(=\exists \underset{\geq}{4}\) has_child.teacher
\(\triangleright\) Quantifier elimination (regular quantifiers no longer necessary)
\(\triangleright \exists \mathrm{R} \cdot \varphi=\exists \underset{\geq}{1} \mathrm{R} \cdot \varphi\)
\(\triangleright \forall \mathrm{R} \cdot \varphi=\overline{\exists \mathrm{R} \cdot \bar{\varphi}}=\bar{\exists} \overline{\geq} \mathrm{R} \cdot \bar{\varphi}=\forall_{\leq}^{0} \mathrm{R} \cdot \bar{\varphi}\)
\(\Theta\)
© © Michael Kohlhase
167
\(\nabla^{7}\)

\section*{Optimizied Tableau Rules [Tob00]}
\(\triangleright\) Definition 5.46: \(\mathcal{T}_{A L C}\) rules plus:
\[
\begin{gathered}
\underset{\substack{\mathcal{B} \\
x: \exists_{\geq}^{n} r \cdot \varphi}}{ } \#(\{y \mid x \mathrm{R} y, y: \varphi \in \mathcal{B}\})<n \quad y \text { new } \\
\hline x \mathrm{R} y \\
y: \varphi \\
y: \xi_{1} \\
\vdots \\
y: \xi_{k}
\end{gathered}
\]
where \(\left\{\psi_{1}, \ldots, \psi_{k}\right\}=\left(\left\{\psi \mid x: \exists \underset{\geq}{m} \mathrm{R} \cdot \psi \in \mathcal{B}\right.\right.\) or \(\left.\left.x: \forall_{\leq}^{m} \mathrm{R} \cdot \psi \in \mathcal{B}\right\}\right)\) and \(\xi_{i}=\psi\) or \(\xi=\bar{\psi}\).

\section*{Example Tableau}
\(\triangleright\) Example 5.47:
\[
\begin{aligned}
& x: \exists{ }_{\geq}^{3} \mathrm{R} \cdot \varphi \sqcap \forall_{\leq}^{1} \mathrm{R} \cdot \psi \sqcap \forall_{\leq}^{1} \mathrm{R} \cdot \bar{\psi} \\
& x: \exists \exists_{>}^{3} \mathrm{R} . \varphi \\
& x: \forall_{<}^{\Gamma} \text { R. } \psi \\
& x: \forall_{<}^{\frac{1}{2}} \mathrm{R}, \bar{\psi} \\
& x \mathrm{R} y_{1} \\
& y_{1}: \varphi
\end{aligned}
\]
\(\triangleright\) Problem: Naive Implementation: exponential path lengths
\begin{tabular}{|c|c|c|c|}
\hline & (c): Michael Kohlhase & 169 & \[
\nabla_{\substack{m u m}}
\] \\
\hline
\end{tabular}
```

Implementation by "Traces"
$\triangleright$ Algorithm $\operatorname{SAT}(\varphi)=\operatorname{sat}\left(x_{0},\left\{x_{0}: \varphi\right\}\right)$
sat $(x, S)$ :
allocate counter $\# r^{S}(x, \psi):=0$ for all roles R and positive or negative subformulae $\psi$ in
$S$.
apply rules $\sqcap$ and $\sqcup$ as long as possible
If $S$ contains an inconsistency, RETURN *.
while $(\mapsto \geq$ is appliccable to $x)$ do:
$S_{n e u}:=\left\{\mathcal{T}_{A L C} \mathrm{R} x y, y: \varphi, y: \xi_{1}, \ldots y: \xi_{k}\right\}$
where
$y$ is a new variable,
$x: \exists{ }^{n} \mathrm{R} . \varphi$ triggers rule $\mapsto \geq$,
$\left\{\psi_{1}, \ldots, \psi_{k}\right\}=\left(\left\{\psi \mid x: \exists_{\geq}^{m} \mathrm{R} . \psi \in \mathcal{B}\right.\right.$ or $\left.\left.x: \forall_{\leq}^{m} \mathrm{R} . \psi \in \mathcal{B}\right\}\right)$ and
$\xi_{i}=\psi$ oder $\xi=\neg \psi$.
For each $y: \psi \in S_{\text {new }}: \# r^{S}(x, \psi)+=1 \quad$ If $x: \forall_{\leq}^{m}$ R. $\psi \in \mathcal{B}$ and $\# r^{S}(x, \psi)>m$
RETURN *
If $\operatorname{sat}\left(y, S_{\text {neu }}\right)=*$ RETURN $* \operatorname{od}$
RETURN "'consistent"'.

## Analysis

$\triangleright$ Idea: Each R-successor of $x$ triggers a recursive call of sat.
$\triangleright$ There may be exponentially many R-successor, but they are treated one-by-one, so their space can be re-used.
$\triangleright$ The chains of R-successors are at most as long as the nesting depth of operators(linear)
$\triangleright$ Lemma 5.48: Space consumption is polynomial.
$\triangleright$ Lemma 5.49: This algorithm is complete.
$\triangleright$ Proof: Sketch: The global counters $\# r^{S}(x, \psi)$ count the R-successors and trigger rule $\mapsto \leq$.
$\triangleright$ Theorem 5.50: The algorithm is correct, complete and terminating, and PSPACE (no worse than $\mathcal{A R C}$ )
@m @
(c): Michael Kohlhase

171
$\checkmark$

### 5.4.4 Role Operators

## The DL-Zoo: Operator Types

$\triangleright$ Operators on role names
$\triangleright$ role hierarchy and role axioms
$\triangleright$ nominals
$\triangleright$ features (partial functions)
$\triangleright$ concrete domains (e.g. $\mathbb{N}, \mathbb{Z}$, trees $)$
$\triangleright$ external data structures
$\triangleright$ epistemic operators (for programming)
$\triangleright \ldots$
@
© : Michael Kohlhase
172
(belief,... )

Role Hierarchies
$\triangleright$ Idea: specification of subset relations among relations.

$\triangleright$ Example 5.51: role hierarchy as a directed graph $\mathcal{R}$	$\begin{gathered} \text { has_daughter } \sqsubseteq \text { has_child } \\ \text { has_son } \sqsubseteq \text { has_child } \\ \text { talks_to } \sqsubseteq \text { communicates_with } \\ \text { calls } \sqsubseteq \text { communicates_with } \\ \text { buys } \sqsubseteq \text { obtains } \\ \text { steals } \sqsubseteq \text { obtains } \end{gathered}$
@ ©	173

## $\mathcal{A} \mathcal{L C}$ with Role hierarchies (without role operators)

$\triangleright$ Definition 5.52: $\mathcal{T}_{A L C}+$ complex roles instead of role names

$$
\begin{array}{ll}
\frac{x: \exists \mathrm{R} \cdot \varphi}{x \mathrm{R} y} & \begin{array}{c}
x \mathrm{~S} y \\
y: \forall \mathrm{R} \cdot \varphi
\end{array} \\
\mathrm{~S} \sqsubseteq \mathrm{R} \in \mathcal{R} \\
y: \varphi
\end{array} \forall_{\sqsubseteq}
$$

The $\exists$ rule is the same as before

©	(c): Michael Kohlhase	174	





## Special Relations 0 and 1

$\mathrm{R} \sqcap \overline{\mathrm{R}}=0$	empty relation
$\mathrm{R} \sqcup \overline{\mathrm{R}}=1$	universal relation

$\triangleright$ Question: what does $\forall 1 . \varphi$ mean?

```
@
```


(c): Michael Kohlhase 178
$\nabla^{\circ}$


## Converse Roles $\left(.^{-1}\right)$

$\triangleright$ Example 5.62:
(set of objects whose parents are teachers)

$$
\begin{aligned}
{\left[\left[\forall \text { has_child }^{-1} . \text { teacher }\right]\right] } & \left.\left.=\left(\left\{x \mid \forall y .\langle x, y\rangle \in \llbracket \text { has_child }^{-1}\right]\right] \Rightarrow y \in \llbracket \text { teacher } \rrbracket\right\}\right) \\
& =(\{x \mid \forall y \cdot\langle y, x\rangle \in \llbracket \text { has_child } \rrbracket \Rightarrow y \in \llbracket \text { teacher } \rrbracket\}) \\
& =(\{x \mid \forall y .\langle x, y\rangle \in \llbracket \text { has_parents } \rrbracket \Rightarrow y \in \llbracket \text { teacher } \rrbracket\})
\end{aligned}
$$

$\triangleright$ Definition 5.63: $\left[\left[\mathrm{R}^{-1}\right]\right]=\llbracket \mathrm{R} \rrbracket^{-1}=\left(\left\{\langle y, x\rangle \in \mathcal{D}^{2} \mid\langle x, y\rangle \in \llbracket \mathrm{R} \rrbracket\right\}\right)$

- Example 5.64:

$$
\begin{aligned}
\text { has_child }^{-1} & =\text { has_parents } \\
\text { is_part_of }^{-1} & =\text { contains_as_part } \\
\text { owns }^{-1} & =\text { belongs_to }
\end{aligned}
$$

## Translation of Role Terms

$\operatorname{tr}^{x, y}(\mathrm{R}) \quad=\mathrm{R}(x, y)$	$=$
$\operatorname{tr}^{x, y}(\mathrm{R} \sqcap \mathrm{S})=\operatorname{tr}^{x, y}(\mathrm{R}) \wedge \operatorname{tr}^{x, y}(\mathrm{~S})$	$\operatorname{tr}^{x, y}(\mathrm{R} \sqcup \mathrm{S})=\operatorname{tr}^{x, y}(\mathrm{R}) \vee \operatorname{tr}^{x, y}(\mathrm{~S})$
$\operatorname{tr}^{x, y}(\mathrm{R} \sqsubseteq \mathrm{S})=\mathrm{tr}^{x, y}(\mathrm{R}) \Rightarrow \operatorname{tr}^{x, y}(\mathrm{~S})$	$\operatorname{tr}^{x, y}(\mathrm{R} \circ \mathrm{S})=\left(\exists z \cdot \mathrm{tr}^{x, z}(\mathrm{R}), \mathrm{tr}^{z, y}(\mathrm{~S})\right)$
$\operatorname{tr}^{x, y}\left(\mathrm{R}^{-1}\right)=\mathrm{tr}^{y, x}(\mathrm{R})$	$\operatorname{tr}^{x, y}(\overline{\mathrm{R}}) \quad=\neg \mathrm{tr}^{x, y}(\mathrm{R})$
$\overline{\nabla \mathrm{R} . \varphi}{ }^{f o(x)}=\left(\forall y . \mathrm{tr}^{x, y}(\mathrm{R})\right) \Rightarrow \bar{\varphi}^{f o(y)}$	$\overline{\mathrm{R} .} \varphi^{f o(x)}=\left(\exists y \cdot \mathrm{tr}^{x, y}(\mathrm{R}), \bar{\varphi}^{f o(y)}\right)$

$$
{\overline{\forall{\overline{\mathrm{R}} \circ \mathrm{~S} \sqcap \mathrm{~T}^{-1}} . c}}^{f o(x)}
$$

$$
\triangleright \text { Example 5.65: } \quad=\forall y . \neg \operatorname{tr}^{x, y}\left(\mathrm{R} \circ \mathrm{~S} \sqcap \mathrm{~T}^{-1}\right) \Rightarrow c(y)
$$

$$
=\forall y \cdot \neg\left(\exists z \cdot \mathrm{R}(x \wedge z) \wedge \operatorname{tr}^{z, y}\left(\mathrm{~S} \sqcap \mathrm{~T}^{-1}\right)\right) \Rightarrow c(y)
$$

$$
=\forall y \cdot \neg\left(\exists z \cdot \mathrm{R}(x \wedge z) \wedge \operatorname{tr}^{y, z}(\mathrm{~S} \sqcap \mathrm{~T})\right) \Rightarrow c(y)
$$

$$
=\forall y \cdot \neg(\exists z \cdot \mathrm{R}(x \wedge z) \wedge \mathrm{S}(y \wedge z) \wedge \mathrm{T}(y \wedge z)) \Rightarrow c(y)
$$

## Connection to dynamic Logic

$\triangleright$ Dynamic Logic is used for specification and verification of imperative programs (including non-deterministic, parallel) $\triangleright$ Similar to $\mathcal{A L C}$ with role terms (role terms as program fragments)
$\triangleright$ Domain of interpretation of a DynL formula is the set of states of the processes $(\llbracket \forall R . \varphi \rrbracket=$ "in all states after executing $\mathrm{R}, \varphi$ holds")

$\mathrm{R} \sqcap \mathrm{S}$	parallel execution of R and S
$\mathrm{R} \sqcup \mathrm{S}$	execution of R or S (nondeterministically)
$\mathrm{R} \circ \mathrm{S}$	execution of S after R
$\overline{\mathrm{R}}$	execution of a program that is not R
$\mathrm{R}^{-1}$	execution of an undo operation
$? \psi$	test whether $\psi$ holds (not in $\mathcal{A C C}$ )

© : Michael Kohlhase

## Tableaux Calculus: $\mathcal{A L C}+$ Role Terms

$\triangleright$ Definition 5.66: complex roles instead of role names

$$
\frac{\begin{array}{c}
x: \exists \mathrm{R} \cdot \varphi \\
x \mathrm{R} z \\
x \mathrm{R} y \\
y: \varphi
\end{array}}{\mathrm{R}} \quad \frac{\mathcal{B}}{x: \forall \mathrm{R} \cdot \varphi} \quad \mathcal{B} \models x \mathrm{R} y
$$

$\triangleright$ Problem: What is $\mathcal{B} \models x \mathrm{R} y$
( $\mathcal{B}$ is the current branch)
$\triangleright$ Simple case: no role composition $\circ$ and no converse roles.$^{-1}$.
$\triangleright$ then $\mathcal{B} \models x \mathrm{R} y$, iff $(\{\mathrm{S} \mid x \mathrm{~S} y \in \mathcal{B}\}) \cup\{\overline{\mathrm{R}}\}$ inconsistent in PL0
(decidable)
$\triangleright$ General case: $\mathcal{B} \models x \mathrm{R} y$, iff $\left(\left\{\operatorname{tr}^{u, v} \mathrm{~S} \mid u \mathrm{~S} v \in \mathcal{B}\right\}\right) \cup\left\{\operatorname{tr}^{x, y}(\overline{\mathrm{R}})\right\}$ inconsistent in PL1 (undecidable in general)

## Special Cases for $\mathcal{B} \models x \mathrm{R} y$

$\triangleright$ no role composition o
$\triangleright$ then $\mathcal{B} \models x \mathrm{R} y$, iff $\left(\left\{\operatorname{tr}^{x, y} \mathrm{~S} \mid x \mathrm{~S} y \in \mathcal{B}\right\}\right) \cup\left\{\operatorname{tr}^{x, y}(\overline{\mathrm{R}})\right\}$ inconsistent in PL1 (as set of ground formulae).
$\triangleright$ role complement only for role names
$\triangleright$ then $\left(\left\{\operatorname{tr}^{u, v} \mathrm{~S} \mid u \mathrm{~S} v \in \mathcal{B}\right\}\right)$ is a set of ground formulae and $\operatorname{tr}^{x, y}(\overline{\mathrm{R}})$ only contains constants and variables in the clause normal form.
$\triangleright$ The general case is undecidable, therefore the naive tableau approach is unsuitable
. Michael Kohlhase 184

### 5.4.5 Role Axioms

## General Role Axioms

has_daughter $\sqsubseteq$ has_child	daughters are children   sons are children   has_son $\sqsubseteq$ has_child
hass and daughters are disjoint   has_child $\sqsubseteq$ has_son $\sqcup$ has_daughter	children are either sons or daughters

$\triangleright$ Translation of an axiom $\rho: \quad \operatorname{trr}(\rho)=\forall x, y \cdot \operatorname{tr}^{x, y}(\rho)$

$$
\begin{aligned}
& \operatorname{trr}(\text { has_child } \sqsubseteq(\text { has_son } \sqcup \text { has_daughter })) \\
= & \forall x, y . \text { tr }^{x, y}(\text { has_child } \sqsubseteq \text { has_son } \sqcup \text { has_daughter }) \\
= & \forall x, y \text {.has_child }(x \Rightarrow y) \Rightarrow \text { has_son }(x \vee y) \vee \text { has_daughter }(x \vee y)
\end{aligned}
$$

## $\mathcal{A L C}+$ Role Terms + Role Axioms $\rho$

$\triangleright$ Idea: Tableau like for $\mathcal{A C C}+$ role terms $\quad(\mathcal{B}, \rho \models x \mathrm{R} y$ instead of $\mathcal{B} \models x \mathrm{R} y)$
$\triangleright$ Simple case: no role composition $\circ$ and no converse roles.$^{-1}$.
(decidable)
$\triangleright$ then $\mathcal{B}, \rho \models x \mathrm{R} y$ iff $(\{\mathrm{S} \mid x \mathrm{~S} y \in \mathcal{B}\}) \cup \rho \cup\{\overline{\mathrm{R}}\}$ inconsistent in PL0
$\triangleright$ General case: $\mathcal{B}, \rho \models x \mathrm{R} y$, iff $\left(\left\{\operatorname{tr}^{u, v} \mathrm{~S} \mid u \mathrm{~S} v \in\left(\mathcal{B} \cup \operatorname{trr}(\rho) \cup\left\{\operatorname{tr}^{x, y}(\overline{\mathrm{R}})\right\}\right)\right\}\right)$ inconsistent in PL1 (undecidable in general)
$\triangleright$ no role composition $\circ$ (decidable)
$\triangleright$ then $\mathcal{B}, \rho \models x \mathrm{R} y$, iff $\left(\left\{\operatorname{tr}^{x, y} \mathrm{~S} \mid x \mathrm{~S} y \in\left(S \cup \operatorname{trr}(\rho) \cup\left\{\operatorname{tr}^{x, y}(\overline{\mathrm{R}})\right\}\right)\right\}\right)$ inconsistent in PL1 (as set of formulae without functions).
$\triangleright$ role complement only for role names
(decidable)
$\triangleright$ then $\left(\left\{\operatorname{tr}^{u, v} \mathrm{~S} \mid u \mathrm{~S} v \in \mathcal{B}\right\}\right)$ is a set of ground formulae and both $\operatorname{tr}^{x, y}(\rho)$ and $\operatorname{tr}^{x, y}(\overline{\mathrm{R}})$ only contain constants and variables in CNF


### 5.4.6 Features

## ALCF: Features

$\triangleright$ Idea: Features are partial functions.
$\triangleright$ Idea: $\mathcal{A L C F}$ is $\mathcal{A L C}+$ features + special constraints on feature paths
$\triangleright$ Definition 5.67: Let $\mathcal{F}:=\left\{f, g, f_{1}, \ldots\right\}$ be a set of features, then we define the $\mathcal{A} C \mathcal{F}$ formulae by
$F_{\mathcal{A C O}}:==F_{\mathcal{A C C}} \mid$ R. $_{\mathcal{A} \mathcal{L} \mathcal{F}}|\pi \uparrow| \pi=\pi \mid \pi \neq \pi$ where $\pi:==f \mid f \circ \pi$
$\triangleright$ Definition 5.68: The semantics of the $\mathcal{A L C}$ part is as always.

1. The meaning of a feature $f$ is a partial function $\llbracket f \rrbracket: \mathcal{D} \times \mathcal{D} \rightarrow \mathcal{D}$.
2. $\llbracket f \circ \pi \rrbracket(x):=\llbracket \pi \rrbracket(\llbracket f \rrbracket(x))$
3. $\llbracket \pi \uparrow \rrbracket:=(\mathcal{D} \backslash \operatorname{dom}(\llbracket \pi \rrbracket))$
4. $\llbracket f . \varphi \rrbracket:=(\{x \in \operatorname{dom}(\llbracket \pi \rrbracket) \mid \llbracket f \rrbracket(x) \in \llbracket \varphi \rrbracket\})$
5. $\llbracket \varphi=\omega \rrbracket:=(\{x \in(\operatorname{dom}(\llbracket \pi \rrbracket) \cap \operatorname{dom}(\llbracket \omega \rrbracket)) \mid \llbracket \pi \rrbracket(x)=\llbracket \omega \rrbracket(x)\})$
6. $\llbracket \varphi \neq \omega \rrbracket:=(\{x \in(\operatorname{dom}(\llbracket \pi \rrbracket) \cap \operatorname{dom}(\llbracket \omega \rrbracket)) \mid \llbracket \pi \rrbracket(x) \neq \llbracket \omega \rrbracket(x)\})$


## Examples

$\triangleright$ Example 5.69: persons, whose father is a teacher: person $\square$ had_father.teacher
$\triangleright$ Example 5.70: persons that have no father: person $\sqcap$ had_father $\uparrow$
$\triangleright$ Example 5.71: companies, whose bosses have no company car: company $\Pi$ has_boss o has_comp_car
$\triangleright$ Example 5.72: cars whose exterior color is the same as the interior color: car $\sqcap$ color_exterior $=$ color_interior
$\triangleright$ Example 5.73: cars whose exterior color is different from the interior color: car $\Pi$ color_exterior $\neq$ color_interior
$\triangleright$ Example 5.74: companies whose Bosses and Vice Presidents have the same company car: company $\Pi$ has_boss $\circ$ has_comp_car $=$ has_VP $\circ$ has_comp_car

	© : Michael Kohlhase	188	,

## Normalization

$\triangleright$ Normalization rules

$$
\begin{aligned}
\overline{f \cdot \varphi} & \rightarrow f \uparrow \sqcup f \cdot \varphi \\
\overline{\pi=\omega} & \rightarrow(\pi \uparrow) \omega \uparrow \sqcup \pi \neq \omega \\
\overline{\pi \neq \omega} & \rightarrow(\pi \uparrow) \omega \uparrow \sqcup \pi=\omega \\
f \circ \pi \uparrow & \rightarrow f \uparrow \sqcup f \circ \pi \uparrow
\end{aligned}
$$

$\triangleright$ Example 5.75: (for the last transformation)

$$
\text { has_boss } \circ \text { has_comp_car } \circ \text { has_sun_roof } \uparrow=\ldots
$$

i.e. the set of objects that do not have a boss, plus the set of objects whose boss does not have a company car plus the set of objects whose bosses have company cars without sun roofs


## Tableau Calculus

$\triangleright$ Definition 5.76: The calculus is an extension of $\mathcal{T}_{A L C}$.

$\underline{x: f . \varphi}$	$\underline{x: \pi=\omega}$	$\frac{x: \pi \neq \omega}{x \pi y}$		$\underline{x f \circ \pi y}$	$\begin{aligned} & \mathcal{B} \\ & x f y \quad \neq y, z \\ & x f z \end{aligned}$
$x f y$	$x \pi y$	$x \pi y$ $x \omega z$		$x f y$	
	$x \omega y$	$\begin{aligned} & x \omega z \\ & y \neq z \end{aligned}$		$z \pi y$	$[y / z] \mathcal{B}$
		$x: c$	$x f y$		
	$x: \perp$	$x: \bar{c}$	$x: f \uparrow$	$x \neq x$	
	*	*	*	*	

$\triangleright$ Theorem 5.77: The calculus is correct, complete and terminating.
$\triangleright$ Theorem 5.78: It can be implmented in PSPACE

```
@COME|GHISESEWNED
```

(c): Michael Kohlhase


### 5.4.7 Concrete Domains

## $\mathcal{A L C}$ with "concrete Domains" (Examples)

Formula	Concrete Domain
person $\sqcap$ age $<20$	real numbers
persons younger than 20	
company $\Pi$ has_CEO o has_comp_car o price) $>\$ 100000$	natural numbers
companies with CEOs with expensive car	
car $\sqcap$ height $>$ width	natural numbers
cars that are higher than wide	strings
person $\sqcap$ first_name $<$ last_name	
persons whose first name is lexicograhpically smaller than their last name	
person $\sqcap$ has_father o studiesbefore(has_mother o studies	
persons whose fathers have studied before their mothers	

## Concrete Domain

$\triangleright$ Definition 5.80: A concrete domain is a pair $\langle\mathcal{C}, \mathcal{P}\rangle$, where $\mathcal{C}$ is a set and $\mathcal{P}$ a set of predicates.
$\triangleright$ Example 5.81:
$\triangleright \mathcal{C}=\mathbb{N}$ and $\mathcal{P}=\{=,<, \leq,>, \geq\} \quad$ (natural numbers)
$\triangleright \mathcal{C}=\mathbb{R}$ and $\mathcal{P}=\{=,<, \leq,>, \geq\}$
(real numbers)
$\triangleright \mathcal{C}=$ temporal intervals, $\mathcal{P}=\{$ before, after, overlaps, $\ldots\} \quad$ (Allen's interval logic)
$\triangleright \mathcal{C}=$ facts in a relational data base, $\mathcal{P}=S Q L$ relations

## Admissible Concrete Domains

$\triangleright$ Idea: concrete domains are admissible, iff $\mathcal{P}$ is decidable.
$\triangleright$ Definition 5.82: Let $\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathcal{P}$, then conjunctions $P_{1}\left(x_{1}, \ldots\right) \wedge \ldots \wedge P_{n}\left(x_{n}, \ldots\right)$ are called satisfiable, iff there is a satisfying variable assignment $\left[a_{i} / x_{i}\right]$ with $a_{i} \in \mathcal{C}$. (the model is fixed in a concrete domain)
$\triangleright$ Example 5.83: $\mathcal{C}=$ real numbers

$$
\begin{array}{lll}
P_{1}(x, y)=\exists z .\left(x+z^{2}=y\right) & \text { satisfiable }(z=\sqrt{y-x}, \text { e.g. } x=y=1, z=0) \\
P_{2}(x, y)=P_{1}(x, y) \wedge x>y & \text { unsatisfiable } \\
\hline
\end{array}
$$

$\triangleright$ Definition 5.84: A concrete domain $\langle\mathcal{C}, \mathcal{P}\rangle$ is called admissible, iff

1. the satisfiability problem for conjunctions is decidable
2. $\mathcal{P}$ is closed under negation and contains a name for $\mathcal{C}$.
(c): Michael Kohlhase

194
$\checkmark$

## ALC(C)

$\triangleright$ Syntax: $F_{\mathcal{A L C C})}:==F_{\mathcal{A C O F}} \mid P(\pi, \ldots, \pi)$
$\triangleright$ Example 5.85: a female human under 21 can become a woman by having a child mother $=$ human $\sqcap$ female $\sqcap$ ( $\exists$ has_child.human)
woman $=$ human $\sqcap$ female $\sqcap($ mother $\sqcup$ age $\geq 21)$
here age $\geq 21 \in F_{\mathcal{A L C C})}$, since it is of the form $P$ (age)

$$
(P=\lambda x \cdot x \geq 21)
$$

$\triangleright$ Semantics: Semantics of $\mathcal{A K C}(\mathcal{D})$
$\triangleright \mathcal{D}$ and $\mathcal{C}$ are disjoint.
$\triangleright P\left(\pi_{1}, \ldots, \pi_{n}\right)=\left\{\begin{array}{l|l}x \in \mathcal{D} & \begin{array}{l}\text { there are } y_{1}=\llbracket \pi_{1} \rrbracket(x), \ldots, y_{n}=\llbracket \pi_{n} \rrbracket(x) \in \mathcal{C} \\ \text { with }\left\langle y_{1}, \ldots, y_{n}\right\rangle \in \llbracket P \rrbracket\end{array}\end{array}\right\}$
Warning: $\llbracket \bar{\varphi} \rrbracket=\mathcal{D} \backslash \llbracket \varphi \rrbracket$, but not $\llbracket \bar{\varphi} \rrbracket=\mathcal{D} \cup \mathcal{C} \backslash \llbracket \varphi \rrbracket$
@
© : Michael Kohlhase
195
T
!

## Negation Rules and Tableau Calculus

$\triangleright$ Let $\top_{\mathcal{C}}$ be the name for the concrete domain (as a set) and $\bar{P}$ the negated predicate for $P$
( $\mathcal{C}$ is admissible)
$\triangleright$ New negation rule: $\quad \overline{P\left(\pi_{1}, \ldots, \pi_{n}\right)} \rightarrow \bar{P}\left(\pi_{1}, \ldots, \pi_{n}\right) \sqcup\left(\forall \pi_{1} \cdot \top_{\mathcal{C}}\right) \sqcup \ldots \sqcup\left(\forall \pi_{n} \cdot \top_{\mathcal{C}}\right)$
$\triangleright$ New tableau rule

$$
P_{1}\left(x_{11}, \ldots, x_{1 n_{1}}\right)
$$



Exam		
$\bigcirc$	©: Michael Kohlhase	$\bigcirc$

### 5.4.8 Nominals



## Semantics

$\triangleright$ Definition 5.93: $\llbracket\left\{a_{1}, \ldots, a_{n}\right\} \rrbracket$ is the set of objects with names $a_{1}, \ldots a_{n}$.
$\triangleright$ Definition 5.94: $\llbracket \mathrm{R}: a \rrbracket$ is the set of objects that have $\llbracket a \rrbracket$ as R-successor

$$
\begin{array}{ll}
\llbracket\left\{a_{1}, \ldots, a_{n}\right\} \rrbracket & =\left\{\llbracket a_{1} \rrbracket, \ldots, \llbracket a_{n} \rrbracket\right\} \\
\llbracket \mathrm{R}: a \rrbracket & =(\{x \in \mathcal{D} \mid\langle x, \llbracket a \rrbracket\rangle \in \llbracket \mathrm{R} \rrbracket\})
\end{array}
$$

$\triangleright$ Definition 5.95: (Negation Rules)

$$
\begin{aligned}
\overline{\left\{a_{1}, \ldots, a_{n}\right\}} & =\text { invariant } \\
\overline{\mathrm{R}: a} & =\forall \mathrm{R} \cdot \overline{\{a\}}
\end{aligned}
$$

$\triangleright$ Example 5.96: $\overline{\text { had_friend: Eva }}$
(the complement of the set of friends of Eva)
$=\forall$ had_friend. $\overline{\{E v a\}} \quad$ (the set of objects that do not have Eva as a friend)

199

## Example Language with Nominals

$\triangleright$ We consider the following language: $\mathcal{A L C}+$ unqualified number restrictions $\left(\exists \exists_{\geq}^{n} \mathrm{R}, \forall_{\leq}^{n} \mathrm{R}\right)$, some role operators ( $\sqcap, \circ, \cdot^{-1}$ ), $\left\{a_{1}, \ldots, a_{n}\right\}, \mathrm{R}: a$
$\triangleright$ Example 5.97: persons that have at most two friends among their neighbors and whose neighbors are Bill, Bob, or the gardener person $\sqcap \forall_{\leq}^{2}$ (has_friend $\sqcap$ has_neighbor) $\sqcap$ ( $\forall$ has_neighbor. $\{$ Bill, Bob, Gardener $\}$ )
$\triangleright$ Example 5.98: companies with at least 100 employees that have a car and live in Bremen company $\sqcap \exists{ }_{\geq}^{100}$ has_empl o has_comp_car $\sqcap$ has_empl olives_in: Bremen


## Tableaux Calculus (only T-Box)

$\triangleright$ Definition 5.99: The calculus consists of the $\mathcal{T}_{A L C}$ rules together with:

$$
\begin{aligned}
\frac{a: \bar{B}}{\{\ldots, a, \ldots\}} & \frac{x:\left\{a_{1}, \ldots, a_{n}\right\}}{\left[x / a_{1}\right] \mathcal{B} \mid \ldots\left[x / a_{n}\right] \mathcal{B}} \quad
\end{aligned}
$$

$\triangleright$ Theorem 5.100: The calculus is correct, complete, and terminating
$\triangleright$ Proof: very technical but not terribly difficult using the techniques developed so far.

### 5.5 The Semantic Web

The Current Web
$\triangleright$ Resources: identified by URI's, untyped
$\triangleright$ Links: href, src, . . . limited, non-descriptive
$\triangleright$ User: Exciting world - semantics of the resource, however, gleaned from content
$\triangleright$ Machine: Very little information available - significance of the links only evident from the context around the anchor.


## The Semantic Web

$\triangleright$ Resources: Globally Identified by URI's or Locally scoped (Blank), Extensible, Relational
$\triangleright$ Links: Identified by URI's, Extensible, Relational
$\triangleright$ User: Even more exciting world, richer user experience
$\triangleright$ Machine: More processable information is available (Data Web)
$\triangleright$ Computers and people: Work, learn and exchange knowledge effectively


## What is the Information a User sees?

## WWW2002

The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact

Registered participants coming from australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire

On the 7th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event? Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web, ? Ian Foster: lan is the pioneer of the Grid, the next generation internet?

@	(c): Michael Kohlhase	204	ACOBS UNIVERSIT

```
What the machine sees
 WWW
```



```
 \(\mathcal{S}\rceil \nabla-\sqcup \lambda \backslash \supseteq \dashv\rangle \|\rangle \|\rangle\langle\langle ৬\rceil \downarrow\)
 \(\mathcal{H} \backslash \backslash \backslash \cap \downarrow \square \Leftrightarrow\langle-\sqsupseteq-\mid\rangle\rangle \Leftrightarrow \mathcal{U S A}\)
 \(\triangle \infty \infty\) § \(-\dagger \in \prime \prime \in\)
```











```
\(\Theta\)
```

Solution: XML markup with "meaningful" Tags

```


```

    <date>爪 }\infty\infty\{\\\dagger\in|\prime\in</date>
    ```

```

    \dashvП| 
    ```


```

    \ddagger-\\nablal</participants>
    ```


```

    <program>S \ \rceil-||\rceil|J\\{\\nabla|\\\
    ```


```

    \\ப<speaker></program>
    ```
```

@M\#\#\#\#\#\#\#
(c):Michael Kohlhase
2 0 6
7

```
```

What the machine sees of the XML
< $\llcorner$ ) $\downarrow \uparrow\rceil$ >WWW

```



```

Need to add "Semantics"
$\triangleright$ External agreement on meaning of annotations E.g., Dublin Core
$\triangleright$ Agree on the meaning of a set of annotation tags
$\triangleright$ Problems with this approach: Inflexible, Limited number of things can be expressed
$\triangleright$ Use Ontologies to specify meaning of annotations
$\triangleright$ Ontologies provide a vocabulary of terms
$\triangleright$ New terms can be formed by combining existing ones
$\triangleright$ Meaning (semantics) of such terms is formally specified
$\triangleright$ Can also specify relationships between terms in multiple ontologies
@
c): Michael Kohlhas
208
$\checkmark$

### 5.6 Description Logics and the Semantic Web

## Resource Description Framework

$\triangleright$ Definition 5.101: The Resource Description Framework (RDF) is a framework for describing resources on the web. It is a XML vocabulary developed by the W3C.
$\triangleright$ Note: RDF is designed to be read and understood by computers, not to be being displayed to people
$\triangleright$ Example 5.102: RDF can be used for describing
$\triangleright$ properties for shopping items, such as price and availability
$\Delta$ time schedules for web events
$\triangleright$ information about web pages (content, author, created and modified date)
$\triangleright$ content and rating for web pictures
$\triangleright$ content for search engines
$\triangleright$ electronic libraries
E
©): Michael Kohlhase

## Resources and URIs

$\triangleright$ RDF describes resources with properties and property values.
$\triangleright$ RDF uses Web identifiers (URIs) to identify resources.
$\triangleright$ Definition 5.103: A resource is anything that can have a URI, such as http://www. jacobs-university.de
$\triangleright$ Definition 5.104: A property is a resource that has a name, such as author or homepage, and a property value is the value of a property, such as Michael Kohlhase or http: //kwarc.info/kohlhase
(a property value can be another resource)
$\triangleright$ Definition 5.105: The combination of a resource, a property, and a property value forms a statement (known as the subject, predicate and object of a statement).
$\triangleright$ Example 5.106: Statement: The [author] ${ }^{\text {pred }}$ of [this slide]subj is [Michael Kohlhase] ${ }^{\text {obj }}$

```
@
```

(c): Michael Kohlhase

210
$\checkmark$

## xmL Syntax for RDF

$\triangleright$ RDF is a concrete xmL vocabulary for writing statements
$\triangleright$ Example 5.107: The following RDF document could describe the slides as a resource

$$
<? \text { xml version=" } 1.0 " ?>
$$

<rdf:RDF xmlns:rdf=" http://www.w3.org/1999/02/22-rdf-syntax-ns\#" xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://svn. kwarc.info/.../slides/kr/en/rdf.tex"> [dc:creator](dc:creator)Michael Kohlhase</dc:creator>
[dc:source](dc:source)http://wnw.w3schools.com/rdf</dc:source>
$</$ rdf:Description $>$
</rdf:RDF>
This RDF document makes two statements:
$\triangleright$ The subject of both is given in the about attribute of the rdf:Description element
$\Delta$ The predicates are given by the element names of its children
$\triangleright$ The objects are given in the elements as URIs or literal content.
Intuitively: RDF is a way to write down ABox information in a web-scalable way.
@ © Michael Kohlhase

## RDFa as an Inline RDF Markup Format

$\triangleright$ Problem: RDF is a standoff markup format (annotate by URIs pointing into other files)
$\triangleright$ Example 5.108:
<div xmlns:dc="http://purl.org/dc/elements/1.1/">
$<h 2$ property="dc:title">RDF as an Inline RDF Markup Format $</ h 2>$
$<$ h3 property=" dc:creator" $>$ Michael Kohlhase $</ h 3>$
<em property="dc:date" datatype="xsd:date" content=" \(20091111 ">\) November 11., 2009</em>
$</$ div>
https://svn.kwarc.info/.../slides/kr/en/rdfa.tex
http://purl.org/dc/elements/1.1/titte


## OWL as an Ontology Language for the Semantic Web

$\triangleright$ Idea: Use Description Logics to talk about RDF triples.
$\triangleright$ An RDF triple is an ABox entry for a role contraint $h \mathrm{Rs}$
$\triangleright$ Example 5.109: $h$ is the resource for lan Horrocks, $s$ is the resource for Ulrike Sattler, and R is the the relation "hasColleague" in

```
<rdf:Description about="some.uri/person/ian_horrocks">
 <hasColleague resource="some.uri/person/uli_sattler"/>
</rdf:Description>
```

Idea: Now collect similar resources in classes, and state rules about them in a way, so that we can use inference to make kwnowledge explicit that was implicit before (saves us lots of work!)
$\Perp$ Idea: We know how to do this, this is just $\mathcal{A} \mathcal{C}+$ !!!

© : Michael Kohlhase
213
门

```
The OWL Language
 \(\triangleright\) Three species of OWL
 \(\triangleright\) OWL Full is union of OWL syntax and RDF
 \(\triangleright\) OWL DL restricted to FOL fragment
 \(\triangleright\) OWL Lite is "easier to implement" subset of OWL DL
\(\triangleright\) Semantic layering
 \(\triangleright\) OWL DL \(\hat{=}\) OWL Full within DL fragment
 \(\triangleright\) DL semantics officially definitive
 \(\triangleright\) OWL DL based on SHIQ Description Logic(\(\mathcal{A C C}+\) nubmer restrictions, transitive roles, inverse roles, role inclusior
 \(\triangleright\) OWL DL benefits from many years of DL research
 \(\triangleright\) Well defined semantics, formal properties well understood (complexity, decidability)
 \(\triangleright\) Known reasoning algorithms, Implemented systems (highly optimized)
@
(c): Michael Kohlhase
214
\(\checkmark\)
```


## References

[Tob00] Stephan Tobies. PSpace reasoning for graded modal logics. Journal of Logic and Computation, 11:85-106, 2000.


[^0]:    ${ }^{2}$ EdNote: introduce this above

[^1]:    ${ }^{4}$ EdNote: rationalize the semantic macros for syntax!

