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Assignment 0 (Getting started with ProLog) Given Sep.

16., Due Sep. 23.

We will now discuss how to use a ProLog interpreter to get to know the language. The
SWI ProLog interpreter can be downloaded from http://www.swi-prolog.org/. To start
the ProLog interpreter with pl or prolog or swipl from the shell. The SWI manual is
available at http://www.swi-prolog.org/pldoc/

We will introduce working with the interpreter using unary natural numbers as examples:
we first add the fact1 to the knowledge base

unat(zero).

which asserts that the predicate unat2 is true on the term zero. Generally, we can add
a fact to the knowledge base either by writing it into a file (e.g. example.pl) and then
“consulting it” by writing one of the following commands into the interpreter:

[example]
consult(’example.pl’).

or by directly typing

assert(unat(zero)).

into the ProLog interpreter. Next tell ProLog about the following rule

assert(unat(suc(X)) :- unat(X)).

which gives the ProLog runtime an initial (infinite) knowledge base, which can be queried
by

?- unat(suc(suc(zero))).
Yes

Running ProLog in an emacs window is incredibly nicer than at the command line, because
you can see the whole history of what you have done. Its better for debugging too. If you’ve
never used emacs before, it still might be nicer, since its pretty easy to get used to the
little bit of emacs that you need. (Just type “emacs \&” at the UNIX command line to run
it; if you are on a remote terminal like putty, you can use “emacs -nw”.).

If you don’t already have a file in your home directory called “.emacs” (note the dot at
the front), create one and put the following lines in it. Otherwise add the following to your
existing .emacs file:

(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-program-name "swipl"); or whatever the prolog executable name is
(add-to-list ’auto-mode-alist ’("\\pl$" . prolog-mode))

1for “unary natural numbers”; we cannot use the predicate nat and the constructor functions here,
since their meaning is predefined in ProLog

2for “unary natural numbers”.
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The file prolog.el, which provides prolog-mode should already be installed on your ma-
chine, otherwise download it at http://turing.ubishops.ca/home/bruda/emacs-prolog/

Now, once you’re in emacs, you will need to figure out what your “meta” key is. Usually
its the alt key. (Type “control” key together with “h” to get help on using emacs). So
you’ll need a “meta-X” command, then type “run-prolog”. In other words, type the meta
key, type “x”, then there will be a little window at the bottom of your emacs window with
“M-x”, where you type run-prolog3. This will start up the SWI ProLog interpreter, . . . et
voilà!

The best thing is you can have two windows “within” your emacs window, one where
you’re editing your program and one where you’re running ProLog. This makes debugging
easier.

The exercises in this assignment will confront you with the main (conceptual) problems of
programming ProLog, like relational programming, recursion, and a term language. You
do not have to solve them (no points), but they could help you with the programming
tasks in the logic assignment.

3Type “control” key together with “h” then press “m” to get an exhaustive mode help.
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Problem 0.1 Program a predicate for addition in unary representation. The number 3 0pt
in unary representation is the ProLog term s(s(s(o))), i.e. application of the arbitrary
function s to an arbitrary value o iterated three times. Note that ProLog does not allow
you to program (binary) functions,so you must come up with a three-place predicate.

You should use add(?X,?Y,?Z) to meanX+Y = Z and program the recursive equations
X + 0 = X (base case) and X + f(Y ) = f(X + Y ).

If you have mastered addition, try your luck on multiplication and exponentiation.

Solution:

uadd(X,o,X).
uadd(X,s(Y),s(Z)) :- add(X,Y,Z).

The problems for multiplication and exponentiation are quite similar

umult(_,o,o).
umult(X,s(Y),Z) :- umult(X,Y,W), uadd(X,W,Z).
uexpt(_,o,s(o)).
uexpt(X,s(Y),Z) :- uexpt(X,Y,W), umult(X,W,Z).

Problem 0.2 Write predicates for mymember, myappend and myreverse of lists in default 0pt
ProLog, i. e. without using the built-in member/append/reverse predicates.

Solution:

mymember(X,[X]).
mymember(X,[_|R]):-mymember(X,R).
myappend([],L,L).
myappend([X|R],L,[X|S]):-myappend(R,L,S).
myreverse([],[]).
myreverse([X|R],L):-myreverse(R,S),myappend(S,[X],L).

Problem 0.3 (Trace of a ProLog Program)
With the trace command in ProLog you can look at the execution of a given program 0pt
step by step. Try this command on the program below and explain the trace output.

a(X,Y):-b(X,Y),c(Y).
b(X,Y):-d(X,Y),e(Y).
b(X,_):-f(X).
c(4).
d(1,3).
d(2,4).
e(3).
f(4).

Problem 0.4 0pt

1. Write a program that computes the nth Fibonacci Number (0, 1, 1, 2, 3, 5, 8,
13,. . . add the last two to get the next), using the addition predicate above.

2. Revise the program, so that it uses ProLog’s internal arithmetic. Test your program.
If you ask for another solution (by typing a ;), does it loop? Why? How can you get
around this?
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Solution:

1. ufib(zero,zero).
ufib(suc(zero),suc(zero)).
ufib(suc(suc(X)),Y):-ufib(suc(X),Z),ufib(X,W),uadd(Z,W,Y).

2. The naive solution

fib(0,0).
fib(1,1).
fib(X,Y):- D is X - 1, E is X - 2,fib(D,Z),fib(E,W), Y is Z + W.

indeed loops for the second solution: For instance the query ufib(2,Y). will end up in
the base cases after one call to the recursive clause. If we reject that base case, then
ProLog goes back into the knowledge base and into the recursive clause again, proceeding
to negative numbers and looping. If we change the last line to

fib(X,Y):- X > 1, D is X - 1, E is X - 2,fib(D,Z),fib(E,W), Y is Z + W.

the second recursive call will fail and we obtain the solution we are interested in.

Problem 0.5 (Path Cost)
Represent the graph below as facts in a ProLog knowledge base and write a predicate 0pt
has_path(I,G,C) that is true if there exists a path from node I to node G that is of cost
less or equal to C. Assume that every node has a path to itself with a cost of 0.
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1

3 1

1

2

1
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2
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Here is sample run:

?-has_path(a,g,5).
Yes

Solution:

edge(a,b,2).
edge(a,e,2).
edge(a,f,3).
edge(b,a,2).
edge(b,c,3).
edge(b,f,5).
edge(c,b,3).
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edge(c,d,3).
edge(d,c,3).
edge(d,f,2).
edge(d,h,2).
edge(e,a,2).
edge(e,f,1).
edge(e,g,2).
edge(f,a,3).
edge(f,b,5).
edge(f,d,2).
edge(f,e,1).
edge(f,g,1).
edge(f,h,1).
edge(g,e,2).
edge(g,f,1).
edge(g,h,1).
edge(h,f,1).
edge(h,d,2).
edge(h,g,1).

has_path(G,G,C) :- C >= 0.
has_path(I,G,C) :- C >= 0, edge(I,X,Y), Z is C-Y, has_path(X,G,Z).

Test Cases:

has_path(a,c,2). %-> No
has_path(g,b,5). %-> No
has_path(c,e,-3). %-> No
has_path(a,d,5). %-> Yes
has_path(d,a,5). %-> Yes
has_path(c,c,5). %-> Yes
has_path(h,e,2). %-> Yes

Problem 0.6 (Permutations in ProLog)
0pt

1. Construct a predicate eliminate(X,Y,Z) that eliminates the element X from the
list Y (the result being list Z). If the element is not in the list, the predicate should
yield no solution (false).

2. Use the predicate above to define another predicate, permute(X,Y), that computes
all the permutations of list X. permute(X,Y) is true if Y is a permutation of X.

Solution:

eliminate(_,[],[]).
eliminate(X,[X|A],B) :- eliminate(X,A,B).
eliminate(X,[Y|A],[Y|B]) :- eliminate(X,A,B), X\==Y.

permute([],[]).
permute([H|T],Y) :- length([H|T],L), length(Y,L),

eliminate(H,[H|T],X1), eliminate(H,Y,Y1),
permute(X1, Y1).
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Problem 0.7 (Binary search)
Implement a binary search predicate in ProLog bin_search(X,L,P). Where L is a sorted 0pt
list of integers, X is an integer value we want to find in the list and P is the position of this
value in the list. Do not concern yourself with the case when X appears multiple times.

Note: Check http://en.wikipedia.org/wiki/Binary_search if in doubt about the algo-
rithm.

Solution:

bin_search_helper(X,S,Y,Y,Y) :- nth1(Y,S,X).
bin_search_helper(X,S,F,L,R) :- F < L, M is (F + L) // 2,

nth1(M,S,E), X =< E, bin_search_helper(X,S,F,M,R).
bin_search_helper(X,S,F,L,R) :- F < L, M is (F + L) // 2,

N is M +1, bin_search_helper(X,S,N,L,R).

bin_search(X,L,P) :- length(L,M), bin_search_helper(X,L,1,M,P).

?- bin_search(1,[1,2,3,14,15,16,17],1).
?- bin_search(17,[1,2,3,14,15,16,17],7).
?- bin_search(14,[1,2,3,14,15,16,17],4).
?- bin_search(15,[1,2,3,14,15,16,17],5).

?- bin_search(0,[1,2,3,14,15,16,17],P).
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Assignment 1 (ProLog for Logics) Given Sep. 16., Due

Sep. 23.

We will now consider a formulation of propositional logic, which we will call PLNQ (Predicate
Logic with No Quantifiers). We have already seen this in class. The idea is to use very
elaborate names for propositional logic: ProLog terms, which encode atomic formulae.

Use ProLog for Talking/Programming about Logics

• Idea: We will use PLNQ (prop. logic where prop. variables are ADT terms)

• represent the ADT as facts of the form

constant(mia).
pred(love,2).
pred(run,1).
fun(father,1)

this licenses ProLog terms like run(mia). and love(mia,father(mia)).

• represent propositional connectives as ProLog operators, which we declare with the
following declarations.

:- op(900,yfx,<>). % equivalence
:- op(900,yfx,>). % implication
:- op(850,yfx,\/). % disjunction
:- op(800,yfx,\&). % conjunction
:- op(750,fx,~). % negation

The first argument of op is the operator precedence, the second the fixity. This
licenses ProLog terms like X > Y. and ~(X).

• Use the ProLog built-in predicate =.. to deconstruct terms: a literal f(a,b)=..Z
binds Z to the list [f,a,b], i.e. the first element of the list is the function/predicate
symbol, followed by the arguments.
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Problem 1.1 Write a simple syntax checker that checks arities in function application 10pt
and complex formulae by writing a predicate wff/14.

Problem 1.2 Remember that we call a set H of atomic formulae in PLNQ a Herbrand 10pt
model; it induces a valuation ν for PLNQ by ν(A) := T, iff A∈H.

Write a couple of example Herbrand models (sets of atomic formulae), using a binary
model/25 relation, given by ProLog facts like the following

model(3,[love(peter,mary),hate(mary,peter)]).

Check well-formedness of the models, using the predicate wff/1 from Problem 1.1.

Problem 1.3 Write a simple evaluator for closed formulae 10pt

evaluate(love(peter,mary) \& hate(mary,peter),3)

should succeed. evaluate should fail if the input is not valid or ill-formed.

Hint: use the built-in predicates \+ (not provable).

Problem 1.4 Write a translator predicate that translates away all logical connectives 10pt
except & and ~.

Problem 1.5 Extend the previous definition of a wff by an operator checking for syntactic 10pt
equality to get PLNQ=.

Hint: Define a new (infix) predicate ===, and extend the predicates defined above by new
clauses.

4the /1 is the notation for a unary predicate.
5the first parameter just denotes the number of the model.
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Assignment 2 (A logical Analysis of ND1
=) Given Sep

30., Due Oct 7.

The objective of this assignment is to perform a full logical analysis of first-order natural
deduction with equality.

• Definition 2.1 (First-Order Logic with Equality) We extend PL1 with a new
logical symbol for equality =∈Σp

2 and fix its semantics to I(=) := {〈x, x〉 |x∈Dι}.
We call the extended logic first-order logic with equality (PL1

=)

• We now extend natural deduction as well.

• Definition 2.2 For the calculus of natural deduction with equality ND1
= we add the

following two equality rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the result
of replacing that subterm with B.

Again, we have two rules that follow the introduction/elimination pattern of natural de-
duction calculi.

The biggest single problem in this assignment is Problem 2.2, you can work as a team
of two on this. The other problems are warm-up problems or side-issues, they are to be
solved individually.
Problem 2.1 (Soundness of ND1

=)
Establish formally that first-order natural deduction calculus ND1

= is sound. 20pt

Problem 2.2 (Model Existence for ND1
=)

Show a model existence theorem for PL1
= along the lines of the one for PL1 we covered in 50pt

class. In particular you will need to
1. come up with a notion of abstract consistency class for PL1

=. This will involve
coming up with one or more conditions ∇i

= that deal with the (semantic) properties
of equality.

Hint: If you look ahead at ?prob.plnqeqtab-complete? and what you will have to prove
there, this may give you ideas for the ∇i=.

2. show that the abstract consistency class can be compactified.
3. establish Hintikka sets and their properties and show an extension result.
4. build a model for PL1

= from Hintikka sets.

Hint: This is place, where things are different than in class. Think about how to construct
an Herbrand model instead of a valuation; to get the interpretation of equality right, you
will have to make a quotient construction.
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Problem 2.3 (Completeness of ND1
=)

With the model existence theorem from Problem 2.2, establish the completeness of ND1
=. 20pt

If you cannot prove completeness for the calculus, extend it with suitable inference rules.
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Assignment 3 (Getting your hands dirty with MMT) Given

Oct. 5., Due Oct. 11.

Problem 3.1 (Completing ND0 in MMT)

We have developed an MMT encoding for propositional logic PL0 and the propositional 20pt
calculus ND0 of natural deduction.

1. Extend them with the remaining connectives and inference rules from the slides.
2. Test your encoding by theorems whose proofs use all inference rules in the encoding.

Problem 3.2 (Testing the MMT encoding of ND1)

We have developed an MMT encoding for the first-order logic PL1 and the first order 10pt
calculus ND1 of natural deduction. Test your encoding by theorems whose proofs use all
inference rules.

Problem 3.3 (PL1
= and ND1

= in MMT)

Give MMT encodings for PL1
= and ND1

=. Test them by theorems whose proofs use all 20pt
inference rules.
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Assignment 4 (Tableaux and Unification) Given Oct.

13, Due Oct. 21

Problem 4.1 Revise the evaluator from Assignment 1 to a tableau theorem prover/model 15pt
generation procedure for closed PLNQ formulae that only contain the connectives for
conjunction (∧) and negation (¬).

Problem 4.2 Extend the model generator from Problem 4.1 to one that works on arbitrary 15pt
PLNQ closed formulae.

Hint: You can use the translation predicate (function in Scala) from Assignment 1.

Problem 4.3 (Prolog only)
For Prolog, extend the representation of PLNQ to first-order logic, by adding variables 15pt
and quantifiers.

Hint: Extend the signature by facts of the form var(x).. Yes, we will use constants for variables
(at the moment).

Problem 4.4 (First-Order Unification)
Write your own Prolog predicate function for first-order unification using the unification 30pt
algorithm U from the lecture.

Problem 4.5 (First-Order Tableaux)
Extend the tableau procedure from the previous exercises to first-order logic. Implement 25pt
standard tableaux and free variable tableaux.
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Assignment 4 (λ-Calculus) Given Oct. 20, Due Oct. 29

In this assignment, we will implement the λ-calculus in ProLog or Scala. We will build
on our work from the assignment on first-order tableaux, and we will extend the formulae
by types and λ-expressions.
Problem 4.1 (Types)
Represent types as ProLog terms or Scala classes. 10pt

• For ProLog, use constants e and t for the base types, and the infix operator ->

(use the appropriate op declaration). Write a predicate wft/1 that succeeds if its
argument is a well-formed type.

• For Scala define classes E, T (for base types) and Arrow for composite ones.

Problem 4.2 (λ-terms)
Represent function application and lambda abstraction in ProLog or Scala. 5pt

• For ProLog, the types of constants will be given by a functional predicate tconst/2,
which maps every constant to a type, e.g. we represent the fact that the love is
a binary predicate by tconst(love, e -> e -> t). Function application is rep-
resented by the infix operator @, so that we would represent “Peter loves Mary”
as love @ peter @ mary. λ-abstractions will be represented as triples of the form
lambda(x,e,B), where the first argument is the bound variable – we use a ProLog

constant for it, the second is its type, and the third the body (another formula).

Hint: Note that application is left-associative in contrast to the type constructor -> above,
which is right-associative, use the right operator declaration, so that you can save brackets.

• For Scala, define case classes Cons(name, type) and Var(name) for constants and
variables where name is a string and type and λ-type from the previous problem.
Moreover, declare Apply(f,x) and Lambda(x, e, B) where the arguments are the
same as for the ProLog description.

Problem 4.3 (Type-Checking)
10pt

• For ProLog, define a type checking predicate tc/2, where tc(F,T) checks the whether
the type of the formula F is T.

Hint: As the λ-binder introduces type assumptions for bound variables, you will need an
internal predicate tcaux/3, which takes a list of type assumptions for the bound variables
as an argument to make the recursion go through.

Note that the tc can also compute the type of course.

• For Scala define a function tc(f) that returns the type of the formula f. Raise an
exception if the input is ill-typed.
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Problem 4.4 (Free in)
Find out whether a variable is free in a formula. 10pt

• For ProLog, we have represented variables in the λ-calculus by ProLog variables,
so we will have to determine whether some variable is free in a formula. Write a
predicate freein/2 that does that.

• For Scala, write a function freein(f,x) that checks if x is free in f.

Problem 4.5 (Free/Bound Variables)
15pt

• For ProLog, we have represented variables in the λ-calculus by ProLog variables, so
we will need to have functions (functional predicates) that give us the free and bound
variables of a λ-term.

Hint: For the predicate free interpret any atom (ProLog constant) that is is not a
constant as a variable.

• For Scala, define two functions free(a) and bound(a) that return the free and,
respectively, bound variables from a.

Hint: Totally disregard types in these functions.

Problem 4.6 (Alphabetic Variants)
Check whether two λ-terms can be obtained from each other by renaming bound variables. 10pt
Write a ProLog predicate or a Scala function alphavariants/2 that checks whether two
λ-terms can be obtained from each other by renaming bound variables

Hint: The best way to do this is to recurse down the two formulae in parallel, keeping a table
of variable equivalences.

Problem 4.7 (Substitution)
25pt

We will need a notion of substitution in our representation of the λ-calculus.

• For ProLog, write a predicate subst/4, such that the query subst(a,x,b,R) binds
R to the result of substituting a for every free occurrence of x in b.

Hint: Remember that [B/X](λX A) = A and that for computing [B/X](λY A), where
Y ∈ free(B) we need to rename the variable Y in λY A to avoid variable capture.

• For Scala, write a function subst(a,x,b) that returns result of substituting a for
every free occurrence of x in b.

Problem 4.8 (β-Normalization)
Implement β-normalization in your λ-calculus. 15pt

• For ProLog, write a predicate betanf/2, so that the query betanf(X,Y) binds Y to
the β-normal form of X.

• For Scala, write a function betanf(x) that returns the β-normal form of x.
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