Computational Logic (320441) Fall 2015 Assignment 4: λ -Calculus – Given Oct. 20, Due Oct. 29 –

In this assignment, we will implement the λ -calculus in ProLog or Scala. We will build on our work from the assignment on first-order tableaux, and we will extend the formulae by types and λ -expressions.

Problem 4.1 (Types)

Represent types as ProLog terms or Scala classes.

- For ProLog, use constants e and t for the base types, and the infix operator -> (use the appropriate op declaration). Write a predicate wft/1 that succeeds if its argument is a well-formed type.
- For Scala define classes E, T (for base types) and Arrow for composite ones.

Problem 4.2 (λ -terms)

Represent function application and lambda abstraction in ProLog or Scala.

• For ProLog, the types of constants will be given by a functional predicate tconst/2, which maps every constant to a type, e.g. we represent the fact that the love is a binary predicate by $tconst(love, e \rightarrow e \rightarrow t)$. Function application is represented by the infix operator @, so that we would represent "Peter loves Mary" as love @ peter @ mary. λ -abstractions will be represented as triples of the form lambda(x,e,B), where the first argument is the bound variable – we use a ProLog constant for it, the second is its type, and the third the body (another formula).

Hint: Note that application is left-associative in contrast to the type constructor -> above, which is right-associative, use the right operator declaration, so that you can save brackets.

For Scala, define case classes Cons(name, type) and Var(name) for constants and variables where name is a string and type and λ-type from the previous problem. Moreover, declare Apply(f,x) and Lambda(x, e, B) where the arguments are the same as for the ProLog description.

Problem 4.3 (Type-Checking)

- 10pt
- For ProLog, define a type checking predicate tc/2, where tc(F,T) checks the whether the type of the formula F is T.

Hint: As the λ -binder introduces type assumptions for bound variables, you will need an internal predicate tcaux/3, which takes a list of type assumptions for the bound variables as an argument to make the recursion go through.

Note that the tc can also compute the type of course.

10pt

 $5 \mathrm{pt}$

• For Scala define a function tc(f) that returns the type of the formula f. Raise an exception if the input is ill-typed.

Problem 4.4 (Free in)

Find out whether a variable is free in a formula.

- For ProLog, we have represented variables in the λ -calculus by ProLog variables, so we will have to determine whether some variable is free in a formula. Write a predicate freein/2 that does that.
- For Scala, write a function freein(f,x) that checks if x is free in f.

Problem 4.5 (Free/Bound Variables)

• For ProLog, we have represented variables in the λ -calculus by ProLog variables, so we will need to have functions (functional predicates) that give us the free and bound variables of a λ -term.

Hint: For the predicate free interpret any atom (ProLog constant) that is is not a constant as a variable.

• For Scala, define two functions free(a) and bound(a) that return the free and, respectively, bound variables from a.

Hint: Totally disregard types in these functions.

Problem 4.6 (Alphabetic Variants)

Check whether two λ -terms can be obtained from each other by renaming bound variables. $10 \mathrm{pt}$ Write a ProLog predicate or a Scala function alphavariants/2 that checks whether two λ -terms can be obtained from each other by renaming bound variables

Hint: The best way to do this is to recurse down the two formulae in parallel, keeping a table of variable equivalences.

Problem 4.7 (Substitution)

We will need a notion of substitution in our representation of the λ -calculus.

• For ProLog, write a predicate subst/4, such that the query subst(a,x,b,R) binds R to the result of substituting a for every free occurrence of x in b.

Hint: Remember that $[\mathbf{B}/X](\lambda X \cdot \mathbf{A}) = \mathbf{A}$ and that for computing $[\mathbf{B}/X](\lambda Y \cdot \mathbf{A})$, where $Y \in \text{free}(\mathbf{B})$ we need to rename the variable Y in $\lambda Y \cdot \mathbf{A}$ to avoid variable capture.

• For Scala, write a function subst(a,x,b) that returns result of substituting a for every free occurrence of x in b.

Problem 4.8 (β -Normalization)

Implement β -normalization in your λ -calculus.

25pt

15pt

10pt

15pt

- For ProLog, write a predicate betanf/2, so that the query betanf(X,Y) binds Y to the β -normal form of X.
- For Scala, write a function betanf(x) that returns the β -normal form of x.