
Computational Logic (320441) Fall 2015

Assignment 4: λ-Calculus
– Given Oct. 20, Due Oct. 29 –

In this assignment, we will implement the λ-calculus in ProLog or Scala. We will build
on our work from the assignment on first-order tableaux, and we will extend the formulae
by types and λ-expressions.
Problem 4.1 (Types)
Represent types as ProLog terms or Scala classes. 10pt

• For ProLog, use constants e and t for the base types, and the infix operator ->

(use the appropriate op declaration). Write a predicate wft/1 that succeeds if its
argument is a well-formed type.

• For Scala define classes E, T (for base types) and Arrow for composite ones.

Problem 4.2 (λ-terms)
Represent function application and lambda abstraction in ProLog or Scala. 5pt

• For ProLog, the types of constants will be given by a functional predicate tconst/2,
which maps every constant to a type, e.g. we represent the fact that the love is
a binary predicate by tconst(love, e -> e -> t). Function application is rep-
resented by the infix operator @, so that we would represent “Peter loves Mary”
as love @ peter @ mary. λ-abstractions will be represented as triples of the form
lambda(x,e,B), where the first argument is the bound variable – we use a ProLog

constant for it, the second is its type, and the third the body (another formula).

Hint: Note that application is left-associative in contrast to the type constructor -> above,
which is right-associative, use the right operator declaration, so that you can save brackets.

• For Scala, define case classes Cons(name, type) and Var(name) for constants and
variables where name is a string and type and λ-type from the previous problem.
Moreover, declare Apply(f,x) and Lambda(x, e, B) where the arguments are the
same as for the ProLog description.

Problem 4.3 (Type-Checking)
10pt

• For ProLog, define a type checking predicate tc/2, where tc(F,T) checks the whether
the type of the formula F is T.

Hint: As the λ-binder introduces type assumptions for bound variables, you will need an
internal predicate tcaux/3, which takes a list of type assumptions for the bound variables
as an argument to make the recursion go through.

Note that the tc can also compute the type of course.

1



• For Scala define a function tc(f) that returns the type of the formula f. Raise an
exception if the input is ill-typed.

Problem 4.4 (Free in)
Find out whether a variable is free in a formula. 10pt

• For ProLog, we have represented variables in the λ-calculus by ProLog variables,
so we will have to determine whether some variable is free in a formula. Write a
predicate freein/2 that does that.

• For Scala, write a function freein(f,x) that checks if x is free in f.

Problem 4.5 (Free/Bound Variables)
15pt

• For ProLog, we have represented variables in the λ-calculus by ProLog variables, so
we will need to have functions (functional predicates) that give us the free and bound
variables of a λ-term.

Hint: For the predicate free interpret any atom (ProLog constant) that is is not a
constant as a variable.

• For Scala, define two functions free(a) and bound(a) that return the free and,
respectively, bound variables from a.

Hint: Totally disregard types in these functions.

Problem 4.6 (Alphabetic Variants)
Check whether two λ-terms can be obtained from each other by renaming bound variables. 10pt
Write a ProLog predicate or a Scala function alphavariants/2 that checks whether two
λ-terms can be obtained from each other by renaming bound variables

Hint: The best way to do this is to recurse down the two formulae in parallel, keeping a table
of variable equivalences.

Problem 4.7 (Substitution)
25pt

We will need a notion of substitution in our representation of the λ-calculus.

• For ProLog, write a predicate subst/4, such that the query subst(a,x,b,R) binds
R to the result of substituting a for every free occurrence of x in b.

Hint: Remember that [B/X](λX A) = A and that for computing [B/X](λY A), where
Y ∈ free(B) we need to rename the variable Y in λY A to avoid variable capture.

• For Scala, write a function subst(a,x,b) that returns result of substituting a for
every free occurrence of x in b.

Problem 4.8 (β-Normalization)
Implement β-normalization in your λ-calculus. 15pt

2



• For ProLog, write a predicate betanf/2, so that the query betanf(X,Y) binds Y to
the β-normal form of X.

• For Scala, write a function betanf(x) that returns the β-normal form of x.

3


