Computational Logic (320441) Fall 2015

Assignment 4: \-Calculus
— Given Oct. 20, Due Oct. 29 —

In this assignment, we will implement the A-calculus in ProLog or Scala. We will build
on our work from the assignment on first-order tableaux, and we will extend the formulae
by types and A-expressions.

Problem 4.1 (Types)

Represent types as ProLog terms or Scala classes.

e For ProlLog, use constants e and t for the base types, and the infix operator ->
(use the appropriate op declaration). Write a predicate wft/1 that succeeds if its
argument is a well-formed type.

e For Scala define classes E, T (for base types) and Arrow for composite ones.

Problem 4.2 (A-terms)
Represent function application and lambda abstraction in ProLog or Scala.

e For ProLog, the types of constants will be given by a functional predicate tconst/2,
which maps every constant to a type, e.g. we represent the fact that the love is
a binary predicate by tconst(love, e -> e -> t). Function application is rep-
resented by the infix operator @, so that we would represent * 7
as love @ peter @ mary. A-abstractions will be represented as triples of the form
lambda(x,e,B), where the first argument is the bound variable — we use a ProLog
constant for it, the second is its type, and the third the body (another formula).

Hint: Note that application is left-associative in contrast to the type constructor -> above,
which is right-associative, use the right operator declaration, so that you can save brackets.

e For Scala, define case classes Cons(name, type) and Var(name) for constants and
variables where name is a string and type and A-type from the previous problem.
Moreover, declare Apply(f,x) and Lambda(x, e, B) where the arguments are the
same as for the ProLog description.

Problem 4.3 (Type-Checking)

e For ProLog, define a type checking predicate tc/2, where tc(F,T) checks the whether
the type of the formula F is T.

Hint: As the A-binder introduces type assumptions for bound variables, you will need an
internal predicate tcaux/3, which takes a list of type assumptions for the bound variables
as an argument to make the recursion go through.

Note that the tc can also compute the type of course.

10pt

opt

10pt



e For Scala define a function tc(£f) that returns the type of the formula f£. Raise an
exception if the input is ill-typed.

Problem 4.4 (Free in)
Find out whether a variable is free in a formula. 10pt

e For ProLog, we have represented variables in the A-calculus by ProLog variables,
so we will have to determine whether some variable is free in a formula. Write a
predicate freein/2 that does that.

e For Scala, write a function freein(f,x) that checks if x is free in f.

Problem 4.5 (Free/Bound Variables)
15pt

e For ProLog, we have represented variables in the A-calculus by ProLog variables, so
we will need to have functions (functional predicates) that give us the free and bound
variables of a A\-term.

Hint: For the predicate free interpret any atom (ProLog constant) that is is not a
constant as a variable.

e For Scala, define two functions free(a) and bound(a) that return the free and,
respectively, bound variables from a.

Hint: Totally disregard types in these functions.

Problem 4.6 (Alphabetic Variants)

Check whether two A-terms can be obtained from each other by renaming bound variables. 10pt
Write a ProLog predicate or a Scala function alphavariants/2 that checks whether two
A-terms can be obtained from each other by renaming bound variables

Hint: The best way to do this is to recurse down the two formulae in parallel, keeping a table
of variable equivalences.

Problem 4.7 (Substitution)

25pt
We will need a notion of substitution in our representation of the A-calculus.
e For ProLog, write a predicate subst/4, such that the query subst(a,x,b,R) binds
R to the result of substituting a for every free occurrence of x in b.
Hint: Remember that [B/X](A X.A) = A and that for computing [B/X](AY.A), where
Y € free(B) we need to rename the variable Y in \ Y. A to avoid variable capture.
e For Scala, write a function subst(a,x,b) that returns result of substituting a for
every free occurrence of x in b.
Problem 4.8 (5-Normalization)
Implement S-normalization in your A-calculus. 15pt



e For ProLog, write a predicate betanf/2, so that the query betanf (X,Y) binds Y to
the S-normal form of X.

e For Scala, write a function betanf (x) that returns the g-normal form of x.



