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Abstract

Truth and proof are central parts of mathematics. Proving (or disproving) seemingly simple
statements often turns out to be one of the hardest mathematical tasks. Yet, doing proofs is
rarely taught in school. Studies on cognitive difficulties in learning to do proofs have shown that
students not only often do not understand or cannot apply basic formal reasoning techniques and
do not know how to use the formal mathematical language, but,at a far more fundamental level,
they also do not understand what it means to prove a statementor even do not see the purpose of
proof at all. Since insight into the importance of proof and doing proofs as such cannot be learnt
other than by practice, learning support through individualised tutoring is in demand.

This thesis has been part of an interdisciplinary project, set at the intersection of pedagogi-
cal science, artificial intelligence, and (computational)linguistics, which investigated issues in-
volved in provisioningautomatedtutoring of mathematical proofs by means of dialogue in natu-
ral language (see Chapter 1). The ultimate goal in this context, addressing the above-mentioned
need for learning support, is to build intelligent automated tutoring systems for mathematical
proofs. The focus of this thesis is on the language that students use while interacting with
such a system: its linguistic properties and computationalmodelling. Contribution is made at
three levels: first, an analysis of language phenomena foundin students’ input to a (simulated)
proof tutoring system is conducted and the variety of students’ verbalisations is quantitatively
assessed, second, a general computational processing strategy for informal mathematical lan-
guage and methods of modelling prominent language phenomena are proposed, and third, the
prospects for natural language as an input modality for proof tutoring systems is evaluated based
on the collected corpora.

Proof tutoring corpora ( Chapter 2)

In order to learn about the properties of students’ languagein naturalistic interactions with a
tutoring system for proofs, two data collection experiments have been conducted. Both ex-
periments were carried out in the so-called Wizard-of-Oz (WOz) paradigm, that is, subjects
interacted with a system simulated by a human. The interaction with the simulated system was
typewritten. The language of the experiments was German; noconstraints on the students’ lan-
guage production were imposed. Naïve set theory and binary relations were selected as the
mathematical domains. In the set theory experiment, students were tutored using one of three
tutoring strategies differing in the granularity of pedagogical feedback. In the binary relations
experiment students were assigned into one of two experimental conditions: one group was
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shown study material formulated using mainly natural language (verbose), while the other group
received mainly formalised content. The hypothesis was that the students’ language would re-
flect the study material presentation format. The key lessonlearnt from the experiments is that
mathematics is a difficult domain for the Wizard-of-Oz setup. While WOz is an established
research methodology in interactive systems, mathematicsas the domain is challenging to the
wizards due to the time-pressure on response generation related to maintaining a believable sys-
tem setup. Certain interface features, in particular, the copy-paste mechanism and the ease with
which it enables text reuse – in our case, stringing mathematical expressions together – produced
extra cognitive load on the wizards. In future experiments,support for the wizard, for instance,
consisting of automated detection of mathematical expression errors, should be considered. The
collected corpus comprises 59 dialogues with 1259 student turns and constitutes the source data
for all our analyses.

Students’ language in computer-based proof tutoring

Qualitative analysis (Chapter 3) The language of informal proofs in textbook discourse has
been previously modelled based on mainly ad hoc analyses, rather than systematic corpus stud-
ies. The language of informal proofs has been described as precise, exhibiting no ambiguity and
little linguistic variation, and consisting of stereotypical, formulaic phrasings in which natural
language is used for the most part to express logical connectives. Contrary to these observa-
tions, our analysis of proof tutoring corpora shows that thelanguage of students’ proofs is rich
in linguistic phenomena at all levels: lexical, syntactic,semantic, and discourse-pragmatic.

The following utterances illustrate proof statements fromour corpora:

x ∈ B =⇒ x /∈ A

B enthaelt keinx ∈ A
(B contains nox ∈ A)

A hat keine Elemente mitB gemeinsam.
(A has no elements in common withB.)

A enthaelt keinesfalls Elemente, die auch inB sind.
(A contains no elements that are also inB)

A ∩B ist ∈ vonC ∪ (A ∩B)
(A ∩B is ∈ of C ∪ (A ∩B))

Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦R−1

(By definition of◦ it follows then that(a, b) is in S−1 ◦R−1)

wennA vereinigtC ein Durchschnitt vonB vereinigtC ist,
dann müssen alleA undB in C sein

(If A unionC is intersection ofB unionC, then allA andB must be inC)

Students’ input is for the most part highly informal and ranges from worded entirely in natu-
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ral language, using a variety of syntactic constructions, through part-worded–part-formalised to
entirely formalised; the longest mathematical expressionconsisted of 145 characters. Mathemat-
ical symbols and natural language are tightly interleaved and parts of mathematical expressions
have to be interpreted in the context of natural language scope-bearing words (see the second
utterance). Symbols are also used as a kind of shorthand for natural language and wording
can follow spoken language syntax when a formal expression is written down in its vocalised
form (the last example). Moreover, natural language wording is imprecise resulting in ambigu-
ity in domain interpretation (e.g. “contain” as subset or membership). Discourse phenomena
include domain-specific referring expressions (e.g. “the left side”) and contextual operators
(“analogously”, “the other way round”). Since the use of mixed language and the imprecision
phenomena are systematic, the key two requirements on a computational interpretation com-
ponent are (i) integrating the semantic import of the symbolic expressions into the meaning of
their cotext and (ii) representation of the imprecise concepts and an appropriate mapping to their
mathematical interpretations. Frequently recurring complex clause structures in paratactic and
hypotactic configurations call for a parsing method in whichcomplex multiple-clause utterances
can be modelled with sufficient generality. For German specifically, the different word order in
main clauses and subordinate clauses need to be modelled in asystematic way.

Quantitative analysis (Chapter 4) In order to assess the diversity in students’ language pro-
duction, a quantitative analysis of students’ language hasbeen carried out. First, a typology
of students’ utterances has been constructed. The typologyfocuses on solution-contributing
utterances (utterances which contribute to the proof beingconstructed directly or at a meta-
level), with the remaining subcategories grouped into one class (meta-level communication).
Second, utterances have been preprocessed into verbalisation patterns which abstract away the
specific mathematical expressions used and the domain terminology. Quantitative analysis is
performed at three levels: first, the students contributions are characterised in terms of their
language “modality” (natural language vs. symbolic notation). The binary relations corpus is
characterised in terms of differences in the language production between the two study mate-
rial conditions. Finally, the distribution of utterance types in both corpora is analysed. Proof-
contributing utterances are further analysed with respectto their function in the proof under
construction (proof steps, declarations of proof strategy, etc.) and the type of content verbalised
in natural language (logical connectives only, domain-specific vocabulary, etc.) Language di-
versity along these dimensions is quantified in terms of type-token ratios over the normalised
linguistic patterns, frequency spectra, and pattern-vocabulary growth curves.

The conducted analyses show that the language of students’ discourse in proofs is not as
repetitive as one might expect. Students use complex natural language utterances not only dur-
ing meta-communication with the tutor, but also when contributing proof steps. The majority
of utterances contain some natural language. Only 28 utterance verbalisations occurred in both
data sets. The frequency spectra and the pattern growth curves show the degree to which the lan-
guage is diverse. The majority of verbalisations are idiosyncratic (single-occurrence patterns).
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Not surprisingly, the majority of the meta-level communication are the students’ requests for
assistance: requests for hints, definitions, explanations, etc. Interestingly, there is a relatively
large number of discourse markers typical of spoken interaction. This suggests that participants
had an informal approach to dialogue style and treated it much like a chat, adapting spoken
language, which they would have otherwise used in a natural setting, to the experiments’ type-
written modality. The key conclusion from the analyses is that in a tutoring setting, even the
seemingly linguistically predictable domain of mathematical proofs is characterised by a large
variety of linguistic patterns of expression, by a large number of idiosyncratic verbalisations,
and that the meta-communicative part of discourse which does not directly contribute to the
solution has an conversational character, suggesting the students’ informal attitude towards the
computer-based dialogues and their high expectations on the input interpretation resources. This
calls for a combination of shallow and deep semantic processing methods for the discourse in
question: shallow pattern-based approaches for contributions which do not add to the proof and
semantic grammars for the proof-relevant content, in orderto optimise coverage.

The analysis of the binary relations data revealed differences in the use of natural language
and mathematical expressions between the two study material conditions. The verbose-material
group tended to use more natural language than the formal-material group and the dialogue turns
of the subjects in the verbose group contained more, but shorter, mathematical expressions. The
formal material group tended to use longer formulas, and less natural language. Since the anal-
ysis of tutors’ contributions showed no significant difference between the two conditions in the
dialogue behaviour with respect to natural language and mathematical expression production,
the differences in dialogue styles were at least partly due to the format of the presentation of the
study material having a priming-like effect. The results onthe influence of the study material
presentation have implications for the implementation of tutorial dialogue systems. On the one
hand, more natural language, be it resulting from a verbose presentation of the study material
or from the students’ individual preference for a particular language style, imposes more chal-
lenges on the input understanding component. In the contextof mathematics, this involves a
reliable and robust parser and discourse analyser capable of interpreting mixed natural language
and mathematical expressions. On the other hand, promptingfor more symbolic language by
presenting students with formalised material imposes stronger requirements on the mathemati-
cal expression parser since longer expressions tend to be prone to errors. The same holds of the
copy-paste functionality: while convenient from the user’s point of view, it may lead to mistakes
of sloppiness in revising the copied text. This, in turn, calls for flexible formula parsing, error
correction, and specific dialogue strategies to address formulas with errors.

Computational processing of informal proofs (Chapters 5 and 6)

Taking into account the range of linguistic phenomena in students’ input and the need for a
principled syntax-semantics interface for the proof contributing content, we propose a deep
grammar-based approach to processing informal proof language. Parsing the mixed language
consisting of natural language words and mathematical expressions is achieved by abstracting
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over the symbolic notation in the course of parsing. Mathematical expressions are represented
in terms of their syntactic types whose possible interactions with the natural language context
is explicitly modelled in the grammar. Parsing is performedusing a combinatory categorial
grammar which builds a semantic dependency representationof the parsed input. The semantic
representation is based on the Praguian notion of tectogrammatics, a language analysis level
which considers the linguistic meaning of utterances, thatis, meaning independent of their con-
text. Tectogrammatical representations are further interpreted in the contexts of mathematical
domain in a step-wise fashion. First, imprecise lexemes aremapped to general concepts through
a semantic lexicon. Then, the general concepts are mapped tomathematical domain concepts
through a linguistically-motivated domain-ontology.

Methods of processing language phenomena which systematically recur in the data, critical
for automated proof tutoring, are proposed. This includes modelling basic syntactic phenomena
(German word order in recurring constructions in mathematics, the mixed language, and the syn-
tactic irregularities characteristic of the mathematicaldomain) and basic semantic imprecision
phenomena. Moreover, we analyse a subset of interesting phenomena, which are not as highly
represented in the corpora, but which are highly complex from a computational processing point
of view: the semantic reconstruction of the “the other way round” operator, and reference to
symbolic notation and propositions. Moreover, mathematical expression correction. Because
the data is sparse, preliminary algorithms are proposed andevaluated in proof-of-concept stud-
ies or corpus studies are conducted as a preliminary step toward algorithm development. The
processing methods proposed confirm that deep parsing usingcategorial grammars which build
tectogrammatical (domain-independent) linguistic meaning representations of the analysed in-
put, lends itself well to modelling a number of phenomena found in students’ informal mathe-
matical language.

Prospects for natural language-based proof tutoring (Chapter 7) The final contribution of
the thesis is a corpus-based performance assessment of the parsing component, the key part of the
proposed input interpretation strategy. The collected corpora of learner proofs are used as data
for an intrinsic evaluation which focuses on proof-contributing utterances. Grammars encoding
verbalisation patterns are systematically tested in simulation experiments as follows: Grammars
are built only based on utterances whichrecur in the development data. (The recurring utterances
stem from 42 dialogues.) Parsers based on grammar resourcesconstructed in this way are tested
on an increasing number of dialogues. Performance is evaluated on two data sets: the data set
constructed from utterances used for grammar development and on a blind set consisting of
verbalisation patterns which occurred only once. Context-free grammars, developed and tested
in the same manner, are used as baseline. Coverage (percentage of test set parsed) and parse
ambiguity is reported.

The results show that hand-crafted semantic resources based on combinatory categorial gram-
mars outperform context-free grammars on the coverage measures while remaining at a manage-
able ambiguity level. Moreover, they confirm our previous conclusion that the language used by
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students to talk about proofs is characterised by a large degree of diversity not only at a shallow
level of specific phrasing, but also at a deeper level of syntactic structures used. Considering that
only 59 dialogues have been available for analysis, we believe that the two corpora are insuf-
ficient, in the sense that they are not representative enough, for a robust proof-tutoring system
to be implemented at the present stage. First, the set of recurring verbalisations is small. This
is against the intuition that the language of proofs should be small and repetitive. Grammars
based on the set theory resources do not scale sufficiently even within-domain. Resources based
on the binary relations data scale better within-domain, while, across-domains the difference in
performance over within-domain data is negligible. More data would need to be collected in
order to draw definitive conclusions. Interestingly, the results point at a methodological issue
for WOz-based data collection strategy in the domain of proofs: Wizard-of-Oz experiments, lo-
gistically complex by themselves and in this case also cognitively demanding on the wizards,
should cover multiple domains of mathematics rather than a single domain per experiment, as
ours did, in order to provide more variety of proof verbalisations at one trial.

Nevertheless, considering that the promising coverage growth results are based on a small
number ofpartially modelled dialogues, we also conclude that as far as languageprocessing is
concerned, natural language as the input mode for interactive proofs is a plausible alternative to
menu-based input or structured editors, provided that moredata and human resources for gram-
mar development are available. We plan to conduct analogouslinguistic analysis of authentic
proofs appearing in mathematical publications in order to verify prior claims as to the linguis-
tic proprieties of this genre and to apply processing methods proposed in this thesis in order to
assess the prospects for automated knowledge extraction from scholarly mathematical discourse.
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Zusammenfassung

Wahrheit und Beweis sind zentrale Teile der Mathematik. DieWahrheit selbst scheinbar ein-
facher mathematischer Sätze zu beweisen (oder zu widerlegen) stellt sich oft als eine der schwierig-
sten mathematischen Aufgaben heraus. Dennoch wird in der Schule selten gelehrt, wie man
Beweise führt. Studien zu kognitiven Schwierigkeiten beimbeweisen Lernen, haben gezeigt,
dass Studenten nicht nur formale Beweistechniken häufig nicht verstehen oder nicht anwen-
den können und nicht wissen, wie die formale mathematische Sprache zu benutzen ist, sondern
sogar auf einer weitaus grundlegenderen Ebene nicht verstehen, was es bedeutet, einen Satz zu
beweisen, oder die Notwendigkeit, Beweise zu führen, überhaupt nicht einsehen. Da Einsicht
in die Bedeutung des Beweises und Beweisen selbst nur durch Üben gelernt werden kann, ist
Lernunterstützung durch individuelles Tutoring (Nachhilfe) gefragt.

Diese Arbeit ist Teil eines interdisziplinären Projektes,das an der Schnittstelle zwischen Päd-
agogik, künstlicher Intelligenz und (Computer-)Linguistik angesiedelt war und das sich mit der
Untersuchung vonautomatisiertem Tutoringmathematischer Beweise in natürlichsprachlichem
Dialog beschäftigt hat (siehe Kapitel 1). Das Fernziel in diesem Kontext, in Bezug auf den oben
angesprochenen Bedarf nach Unterstützung beim Lernen, wäre die Entwicklung von intelligen-
ten automatisierten Tutoring-Systemen für mathematischeBeweise. Der Schwerpunkt dieser Ar-
beit liegt auf der Sprache, die die Studenten während der Interaktion mit einem solchen System
verwenden: ihre sprachlichen Eigenschaften und ihre Modellierung mit dem Computer. Unser
Beitrag findet auf drei Ebenen statt: Zuerst wird eine Analyse der sprachlichen Phänomene in
den Studentenäußerungen zu einem (simulierten) tutoriellen System zum Beweisen durchge-
führt und die Vielfalt der Verbalisierungen wird quantitativ bewertet. Als nächstes wird eine all-
gemeine Verarbeitungsstrategie für informelle mathematische Sprache und Methoden zur Mod-
ellierung von prominenten sprachlichen Phänomenen vorgeschlagen, und drittens werden die
Perspektiven für natürliche Sprache als Eingabemodalitätfür ein tutorielles System für Beweise
auf Grundlage von verfügbaren Korpora evaluiert.

Korpora zu mathematischem tutoriellen Dialog (Kapitel 2)

Um etwas über die Eigenschaften von Studentensprache in plausiblen Interaktionen mit einem
tutoriellen System für Beweise zu lernen, wurden zwei Serien von Datenerhebunsexperimenten
durchgeführt. Beide Versuche wurden im Rahmen des so-genannten Wizard-of-Oz (WOz)-
Paradigmas durchgeführt, d.h. die Versuchspersonen interagieren mit einem System, das voll-
ständig durch einen Menschen simuliert wird. Die Interaktion mit dem simulierten System
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geschah mittels Tastaturinput; es gab keine Einschränkungen bezüglich der Sprachproduktion
der Studenten. Die Experimente fanden auf Deutsch statt. Als mathematische Domänen wurden
naïve Mengenlehre und binäre Relationen ausgewählt. Im Experiment zur Mengenlehre wurden
Studenten mit je einer von drei tutoriellen Strategien unterrichtet. Diese unterscheiden sich in
der Granularität des pädagogischen Feedbacks. Im Experiment zu binären Relationen wurden
die Studenten einer von zwei experimentellen Bedingungen zugeteilt: eine Gruppe bekam Lehr-
material gezeigt, das überwiegend in natürlicher Sprache (verbose) formuliert war. Die andere
Gruppe erhielt hauptsächlich formalisierte Inhalte. Die Hypothese war, dass die Studenten-
sprache die Präsentationsform des Lehrmaterials widerspiegeln würde. Die Haupt-Erkenntnis
aus den Experimenten ist, dass Mathematik für Wizard-of-Oz-Experimenten eine schwierige
Domäne ist. Obwohl WOz eine etablierte Forschungmethode inder Entwicklung von interak-
tiven Systemen darstellt, ist die Aufgabe für den Wizard sehr anspruchsvoll. Dies ergibt sich
aus dem Zeitdrucks bei der Generierung von Systemantworten, der aus der Notwendigkeit re-
sultiert, ein glaubwürdiges Setup aufrechtzuerhalten. Bestimmte Funktionalitäten der benutzten
Schnittstelle, insbesondere der copy-paste-Mechanismusund die Leichtigkeit, mit der es die
Wiederverwendung von Textbausteinen erlaubt - in unserem Fall mathematische Ausdrücke
zusammenzustellen, - erzeugen eine zusätzliche kognitiveBelastung des Wizards. In zukün-
ftigen Experimenten sollte daher Unterstützung für den Wizard, zum Beispiel in Form von au-
tomatischer Erkennung von Fehlern in mathematischen Ausdrücken, berücksichtigt werden. Die
gesammelten Korpora umfassen 59 Dialoge mit 1259 Studenten-Dialogbeiträge.

Die Sprache der Studenten in computer-basierten Beweis-Tutoring

Qualitative Analyse (Kapitel 3) Die Sprache informeller Beweise wurde bisher nur in Lehrbuch-
Diskursen untersucht vor allem auf Grundlage von ad hoc Analysen modelliert. Sie wurde
als präzise und stilistisch “formulaisch” beschrieben, zeige keine Mehrdeutigkeiten und wenig
sprachliche Variation und bestehe aus stereotypischen Formulierungen, in denen natürliche Sprache
hauptsächlich dazu benutzt werde, logische Verknüpfungenauszudrücken. Im Gegensatz zu
diesen Beobachtungen zeigt unsere Korpusanalyse, dass dieSprache der Studentenbeweise re-
ich an sprachlichen Phänomenen auf allen Ebenen ist: lexikalisch, syntaktisch, semantisch und
diskurs-pragmatisch.

Die folgenden Äußerungen zeigen beispielhaft Aussagen ausBeweisen in unseren Korpora:
Die Äußerungen der Studenten sind überwiegend informell und reichen von rein in natürlicher
Sprache mit einer Vielzahl von syntaktischen Konstruktionen, über teils-in-Worten-teils- formal-
formuliert bis hin zu vollständig formalisiert; der längste mathematischen Ausdruck bestand
aus 145 Zeichen. Mathematische Symbole und natürliche Sprache sind eng miteinander ver-
flochten und Teile von mathematischen Ausdrücke müssen im Kontext skopustragender natür-
lichsprachlicher Wörter interpretiert werden (die zweiteÄußerung). Symbole werden auch als
eine Art Kurzschrift für natürliche Sprache verwendet und der Wortlaut folgt mitunter der Syn-
tax gesprochener Sprache, wenn ein formaler Ausdruck in derForm geschrieben wird, wie er
auch gesprochen wird (das letzte Beispiel). Darüber hinausist der Wortlaut natürlicher Sprache
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ungenau, was zu Unklarheiten bei der Interpretation innerhalb der Domäne führt (“ enthalten"
als Teilmenge oder Element einer Menge). Diskursphänomenebeinhalten domänenspezifis-
che referrierende Ausdrücke (z.B. “die rechte Seite”) und kontextuelle Operatoren (“analog”, “
umgekehrt”). Da die Verwendung von gemischter Sprache und die Ungenauigkeitsphänomene
systematisch sind, sind die zwei wichtigsten Anforderungen an eine Komponente zur automa-
tischen Interpretation (i) die Integration des semantischen Gehalts der symbolischen Ausdrücke
in die Bedeutung ihres Kontextes und (ii) die Repräsentation der ungenauen Konzepte und eine
entsprechende Zuordnung zu ihrer mathematischen Interpretationen. Häufig wiederkehrende
komplexe Satzstrukturen in paratakischer und hypotaktischer Konfigurationen erfordern eine
Analysemethode, bei der komplexe Äußerungen aus mehreren Teilsätzen in ausreichend allge-
meiner Form modelliert werden können. Für das Deutsche im Speziellen müssen die verschiede-
nen Wortstellungen in Haupt- und Nebensätzen in systematischer Weise modelliert werden.

Quantitative Analyse (Kapitel 4) Um die Vielfalt bei der Sprachproduktion der Studenten
zu beurteilen, wurde sie quantitativ analysiert. Zunächstwurde eine Typologie der Studen-
tenäußerungen konstruiert. Die Typologie konzentriert sich auf die zur Lösung beitragenden
Äußerungen (Äußerungen, die zu dem aktuellen Beweis direktoder auf einer Meta-Ebene beitra-
gen), während die restlichen Unterkategorien alle zu einerKlasse (Meta-Ebene-Kommunikation)
zusammengefasst werden. Als nächstes wurden Äußerungen zuVerbalisierungsmustern vorver-
arbeitet, die von den spezifischen mathematische Ausdrücken und der spezifischen Terminolo-
gie der Domäne abstrahieren. Eine quantitative Analyse wird auf drei Ebenen durchgeführt:
Zunächst wird die Studentensprache in Bezug auf die sprachliche “Modalität” (natürliche Sprache
vs. symbolische Notation) charakterisiert. Das Korpus zumThema binäre Relationen wird
in Bezug auf Unterschiede in der Sprachproduktion zwischenden beiden Lehrmaterialstypen
charakterisiert. Schließlich wird die Verteilung der Äußerungsarten in beiden Corpora analysiert.
Zum Beweis beitragende Äußerungen werden darüber hinaus mit Bezug auf ihre Funktion im
aktuellen Beweis (Beweisschritte, Erklärungen der Beweisstrategie, usw.) und die Art der In-
halte, die in natürlicher Sprache verbalisiert sind (nur logische Verknüpfungen, domänenspezi-
fisches Vokabular, usw.), analysiert. Die Sprachvielfalt entlang dieser Dimensionen wird durch
das Type-Token-Verhältnis über den normalisierten sprachlichen Muster, Frequenzspektren und
Wachstumkurven von Mustervokabular quantifiziert.

Die Ergebnisse zeigen, dass die Sprache im Studentendiskurs über Beweisen nicht so repetitiv
ist, wie man erwarten könnte. Studenten verwenden komplexenatürlichsprachliche Äußerungen
nicht nur während der Meta-Kommunikation mit dem Tutor, sondern auch, wenn sie Beweiss-
chritte beitragen. Die Mehrzahl der Äußerungen enthält zumindest teilweise natürliche Sprache.
Nur 28 Verbalisierungen von Äußerungen traten in beiden Datensätzen auf. Die Frequenzspek-
tren und die Muster-Wachstumskurven zeigen das Ausmaß der Vielfalt in der Sprache. Die
Mehrheit der Verbalisierungen sind individuell und tretennur ein einziges Mal auf. Es ist nicht
überraschend, dass die Mehrheit der Studentenäußerungen auf Meta-Ebene Bitten um Hilfe sind:
um Hinweise, um Definitionen, um Erläuterungen usw. Interessanterweise gibt es eine relativ
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große Anzahl von Diskursmarkern, die typisch für gesprochene Interaktion sind. Dies deutet da-
rauf hin, dass die Teilnehmer eine informelle Einstellung gegenüber dem Dialogstil hatten und
ihn ähnlich wie einen Chat behandelt haben, indem sie gesprochene Sprache für den geschriebe-
nen Dialog adaptiert hatten, die sie sonst in einer Situation mit einem menschlichen Tutor ver-
wendet hätten. Die wichtigste Schlussfolgerung aus den Analysen ist, dass in einem tutoriellen
Kontext auch die scheinbar sprachlich vorhersehbare Domäne mathematischer Beweise durch
eine große Vielfalt sprachlicher Ausdrucksmuster und einegroße Anzahl von idiosynkratischen
Verbalisierungen geprägt ist, und dass der meta-kommunikative Anteil des Diskurses, der nicht
direkt zur Lösung beiträgt, Konversationscharakter hat, was die informelle Haltung der Studen-
ten gegenüber dem computer-basierten Dialog und ihre hohenErwartungen an den Ressourcen
zur Eingabeinterpretation nahelegt. Dies erfordert eine Kombination von flachen und tiefen se-
mantischen Verarbeitungsmethoden für den Diskurs: flache musterbasierte Ansätze für diejeni-
gen Beiträge, die nicht zum Beweis führen, und semantische Grammatiken für die beweisrele-
vanten Inhalte, um die Abdeckung zu optimieren.

Die Analyse der Daten zu binären Relationen ergab Unterschiede in der Nutzung von natür-
licher Sprache und mathematischen Ausdrücken zwischen denbeiden Lehrmaterialstypen. Die
Gruppe, die wortreiches Lehrmaterial bekam, verwendete tendenziell mehr natürlichsprachliche
Ausdrücke als die Gruppe, die formelreiches Lehrmaterial bekam. Auch enthält der sprachliche
Material der Probanden der Gruppe mit wortreichem Lehrmaterial mehr, aber kürzere mathe-
matische Formeln. Die Gruppe mit formelreichem Lehrmaterial dagegen benutze tendenziell
längere Formeln, dafür aber weniger natürliche Sprache. Dadie statistische Analyse der Tu-
torenbeteiligung keinen signifikanten Unterschied im Dialogverhalten des Tutors in Bezug auf
die Produktion natÃ14 rlichsprachlicher versus mathematischer Ausdrücke zwischen den beiden
Versuchsgruppen zeigte, sind diese Unterschiede im Dialogstil zumindest teilweise auf die Form
der Lehrmaterialspräsentation zurüfürbar; der Lehrmaterialtyp scheint eine Priming-Wirkung
auf die Sprachproduktion der Probanden gehabt zu haben. DieTestergebnisse über den Einfluss
der Lehrmaterialspräsentation haben Auswirkungen auf dieImplementierung von tutoriellen Di-
alogssystemen. Auf der einen Seite stellt der intensive Gebrauch von natürlicher Sprache, sei es
aufgrund einer wortreichen Präsentation des Lehrmaterials oder individueller Präferenzen des
Studenten für einen bestimmten Sprachstil, eine Herausforderung für das Eingabeanalysemodul
eines Dialogssystems dar.

Fürs Verstehen der Fachsprache der Mathematik wird ein zuverlässiger, robuster Parser sowie
ein Diskursanalysermodul benötigt, das in der Lage ist, eine Mischung aus natürlichsprach-
lichen und mathematischen Ausdrücken zu interpretieren. Wenn man, auf der anderen Seite, die
Studenten dazu anregt, eine formelreiche Sprache zu benutzen, indem man ihnen entsprechen-
des Lehrmaterial zeigt, wachsen dadurch die Anforderungenan den Parser für mathematische
Ausdrücke, weil längere Ausdrücke tendenziell fehleranfälliger sind. Das gleiche gilt für die
Copy-Paste-Funktionalität: Auch wenn diese Eingabehilfeaus der Sicht des Benutzers prak-
tisch ist, kann sie zu Flüchtigkeitsfehlern bei der Überarbeitung von kopiertem Text führen. Dies
wiederum erfordert eine flexible Syntaxanalyse mathematischer Formeln, soweir Fehlerkorrek-
tur und spezifische Dialogstrategien für den Umgang mit fehlerbehafteten Formeln.
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Computerbasierte Verarbeitung informeller Beweise (Kapiteln 5 and 6)

Unter Berücksichtigung der Bandbreite linguistischer Phänomene in der Eingabe seitens der Stu-
denten und der Notwendigkeit einer prinzipiellen Syntax-Semantik-Schnittstelle für Inhalte, die
zum Beweis beitragen, schlagen wir einen Ansatz zur Verarbeitung informeller Beweissprache
vor, der auf dem Formalismus der Tiefengrammatik beruht.

Die Analyse der natürlichen Sprache gemischt mit mathematischen Ausdrücken wird durch
Abstraktion von Formeln im Verlauf des Parsings erreicht. Mathematische Ausdrücke wer-
den durch ihre möglichen syntaktischen Typen repräsentiert, deren Wechselwirkungen mit dem
natürlichsprachlichen Kontext explizit in der Grammatik modelliert werden. Der Parsingvor-
gang wird unter Verwendung einer kombinatorischen Kategorialgrammatik ausgeführt, die eine
semantische Dependenzrepräsentation des analysierten Eingabe erstellt. Die auf dieser Weise
erhaltene semantische Struktur gründet auf Tektogrammatik, eine von der Prager Schule pos-
tulierte multistratale Sprachanalyse, die sprachliche Bedeutung von Äußerungen unabhänging
von ihren Kontext betrachtet. Tektogrammatische Darstellungen werden dann schrittweise in
Bezüg auf ihre mathematische Domäne interpretiert. Zunächst werden ungenaue Lexeme mit
Hilfe eines semantischen Lexikons auf allgemeine Konzepteabgebildet. Dann werden allge-
meine Konzepte durch eine sprachlich motivierte Ontologieauf Konzepte der mathematischen
Domäne abgebildet.

Es werden Sprachverarbeitungsmethoden vorgeschlagen fürPhänomene, die systematisch in
den Daten wiederholt auftreten und somit entscheidend für ein automatisiertes Unterrichten
von mathematischen Beweisen sind. Dazu gehört die Modellierung grundlegender syntaktis-
cher Phänomene (deutsche Wortstellung in wiederkehrendenKonstruktionen in der Mathematik,
gemischte Sprache, und syntaktische Unregelmäßigkeiten als Merkmal der betrachteten Domäne)
und grundlegende Phänomene von semantischer Ungenauigkeit. Darüber hinaus wird eine Teil-
menge von interessanten Phänomenen analysiert, die zwar nicht zahlreich in Corpora aufzufinden,
jedoch aus Sicht der Computerverarbeitung sehr komplex sind: die semantische Rekonstruktion
des “umgekehrt”-Operators, das Verweisen auf symbolischeNotation und Propositionen, sowie
das Korrigieren mathematischer Ausdrücke). Da die Daten spärlich sind, werden vorläufige Al-
gorithmen vorgeschlagen und in Proof-of-Concept-Studienevaluiert. In einigen Fällen werden
Korpusstudien als erster Schritt zur Entwicklung von Algorithmen durchgeführt. Die Verar-
beitungsmethoden bestätigen, dass tiefensyntaktische Analyse mit Kategorialgrammatiken, die
domänen-unabhängige Repräsentationen sprachlicher Bedeutung der analysierten Eingabe auf-
bauen, sich gut zur Modellierung einer Reihe von Phänomenenin der informellen mathematis-
chen Sprache der Studenten eignen.

Perspektiven natürlichsprachlicher Beweis-Tutor-Systeme (Kapitel 7) Der letzte Beitrag
der vorliegenden Arbeit ist eine korpusbasierte Leistungsbewertung der Parser-Komponente,
also des wesentlichen Bestandteil der vorgeschlagenen Strategie zur Eingabe-Analyse. Die
gesammelten Korpora von Lernerbeweisen werden als Datensammlung für eine intrinsische
Auswertung herangezogen, die auf solche Äußerungen im Dialog abzielt, die zum Beweis wesentlich
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beitragen. Grammatiken, die Versprachlichungsmuster kodieren, werden systematisch in Simu-
lationsexperimenten wie folgt getestet: Grammatiken werden nur auf Grundlage von Äußerungsmustern
erstellt, die in den ausgewählten Arbeitsdaten wiederholtvorkommen. (Die wiederkehrenden
Äußerungen stammten aus 42 Dialogen.) Parser, die auf so gebauten Grammatikressourcen
basieren, wurden auf einer zunehmenden Zahl von Dialogen getestet. Die Leistung wurde auf
zwei Datensätzen ausgewertet: ein Datensatz, der aus Äußerungen gebaut wurde, die für die
Grammatik-Entwicklung genutzt wurde, und ein Blind-Satz bestehend aus Verbalisierungsmustern,
die nur einmal aufgetreten sind. Kontextfreie Grammatiken, die in der gleichen Weise entwick-
elt und getestet wurden, wurden als Baseline verwendet. Abdeckung (Anteil des Test-Sets, das
geparst werden kann) und Parser-Mehrdeutigkeit werden angegeben.

Die Ergebnisse zeigen, dass manuell erstellte semantischeRessourcen auf der Basis kombina-
torischer Kategorialgrammatiken kontextfreien Grammatiken überlegen sind, was die Abdeck-
ung angeht, aber dennoch ein noch handhabbares Maß an Ambiguität aufweisen. Außerdem
bestätigen sie unsere bisherige Schlussfolgerung, dass die Sprache, die Studenten verwenden,
um über Beweise zu sprechen, von einem großen Maß an Vielfaltgekennzeichnet ist, nicht nur
auf einer flachen Ebene von spezifischen Formulierungen, sondern auch auf der tieferen Ebene
der benutzten syntaktischen Strukturen.

Da nur 59 Dialoge für die vorliegende Untersuchung zur Verfügung standen, glauben wir,
dass die beiden Corpora unzureichend sind, in dem Sinne, dass sie zum aktuellen Zeitpunkt
nicht repräsentativ genug sind für die robuste Implementierung eines Dialogsystems fürs Lehren
mathematischer Beweise. Erstens ist die Menge von Sprachmustern klein. Dies widerspricht
der Intuition, dass die Sprache der Beweise klein und repetitiv sein sollte. Grammatiken, die
auf Ressourcen zur Mengenlehre basieren, lassen sich selbst innerhalb der gleichen Domäne
nicht gut übertragen. Ressourcen auf Grundlage der Daten von binären Relationen sind besser
innerhalb der Domäne übertragbar, doch der Unterschied zurPerformanz in fremden Domä-
nen ist vernachlässigbar. Mehr Daten müssten gesammelt werden, um endgültige Schlüsse zu
ziehen. Interessanterweise deuten die Ergebnisse auf einemethodische Frage für WOz-basierte
Datenerfassungsstrategien im Bereich von Beweisen hin: Wizard-of-Oz Experimente, die per se
logistisch komplex und in diesem Fall auch kognitiv anspruchsvoll für den Wizard sind, soll-
ten mehrere Domänen innerhalb der Mathematik abdecken, nicht nur eine einzige Domäne pro
Experiment, wie im der vorliegende Studie. Dadurch würde man eine größere Vielfalt von Be-
weisverbalisierungen erzielen. Wenn man aber bedenkt, dass die vielversprechenden Ergebnisse
zur Abdeckung einer immer wachsenden Anzahl von linguistischen Phänomenen auf einer rel-
ativ kleinen Anzahl vonteilweisemodellierten Dialoge fußen, stellen wir dennoch fest, dass,
was die Sprachverarbeitung angeht, die natürliche Spracheals Eingabe-Modus für interaktive
Beweise eine plausible Alternative zu Menü-basierter Eingabe oder Struktur-Editoren ist, vo-
rausgesetzt, dass sowohl mehr Daten als auch mehr Fachläutefür Grammatikentwicklung zur
Verfügung stehen. Wir planen, unter anderem, analoge linguistische Analysen von authentischen
Beweisen durchzuführen, die in mathematischen Publikationen erschienen sind, um Behauptun-
gen bezüglich linguistischer Eigenschaften dieses Genreszu prüfen und um die Perspektiven für
einen automatisierten mathematischen Wissenserwerb aus dieser Art von Diskurs zu beurteilen.
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Introduction

Why can’t Johnny prove?
Dreyfus suggests that there are possibly two main reasons: proving is unlike any calculation-
oriented task that students are confronted with before theyget to the point where proofs become
the central mathematical activity. The transition to the kind of knowledge needed for proving is
complex and difficult; especially since criteria for judging acceptability of proofs are not clear
cut (Dreyfus, 1999).1 Multiple other educational studies which attempt to understand the cogni-
tive mechanisms involved in learning to do proofs and the major obstacles that learners encounter
in the process, show that fundamental difficulties arise forstudents already in recognising the
very nature of proof, that is, what a proof is and its role in mathematics (Bell, 1976; Michener,
1978; Chazan, 1993; R. C. Moore, 1994; Sierpińska, 1994; J. Anderson, 1996; Almeida, 2000;
Hanna, 2000, among others). This is not surprising, since, from a pedagogical point of view,
there is little agreement on the notion of proof even among mathematicians and mathematics
teachers (Davis & Hersh, 1981; Hersh, 1997; E. Knuth, 2002) and the role of proof and the
criteria of proof’s validity vary between mathematics foundations (Hanna, 1995). There is also
little agreement as to the pedagogical methods suitable forteaching to do proofs. Almeida (2000)
points out that while for mathematicians a proof is a culminating point in theory development
which involvesintuition, trial , error, speculation, conjecture, and finallyproof, in university
courses students encounter a rather different model:definition, theorem, proof. As a result, stu-
dents tend to think of proofs merely as exercises in demonstration and explanation rather than
as a way of gaining insight into a problem. They exhibit “a lack of concern for meaning, a lack
of appreciation of proof as a functional tool” (Alibert & Thomas, 1991), sometimes even do not
recognise the need for proof at all (Dreyfus, 1999; Almeida,2000; Selden & Selden, 2003), or
merely recognise that they are supposed to give “some” proof(Almeida, 2000). Students often
find themselves in a situation summarised by Hersh as follows:

When you’re a student, professors and books claim to prove things. But they don’t know what’s meant
by ‘prove’. You have to catch on. Watch what the professor does, then do the same thing. Then you
become professor, and pass on the same ‘know-how’ without ‘know-what’ that your professor taught
you. (quoted in (Kerkhove, 2006))

The symbolic notation is only a low-level factor which, however, often also constitutes a serious
cognitive barrier in understanding mathematical concepts(R. C. Moore, 1994; Dorier et al.,
2000; Booker, 2002; Downs & Mamona-Downs, 2005).

1Do check out the reference for the source of the opening line.
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Whatever a student’s fundamental problem in grasping the point of proof, it is uncontroversial
to claim that all mathematics teachers would agree that key in acquiring proving skills is practice.
Practice, practice, practice! One just has to do a lot of proofs. Well, what if Johnny could practice
doing proofs with his computer?. . .

The project of which this thesis was part aimed at realising this very idea. It investigated
the issues involved in provisioning intelligent computational systems which would help students
learn to do proofs the way that a good teacher would do it: by engaging a student in an argu-
mentative dialogue, trying to guide him toward discoveringa reasoning path leading to a proof.
Tutoring interactions of this kind, involving flexible dialogue and encouraging self-explanation,
have been shown to improve learning (J. Moore, 1993); natural language would moreover miti-
gate problems with mathematical notation identified by R. C.Moore (1994) by letting students
to “capitalize and compensate” on their skills: students unskilled in notation could still get credit
for valid proofs. This thesis is concerned with one aspect ofthe project:the language of infor-
mal mathematical discourse, its linguistic properties andcomputational processing. We situate
the problem in the context of three scenarios in which understanding the language of proofs is
relevant: tutoring, interaction with automated mathematics assistance systems, and document
processing. We focus, however, on students’ language in thecontext of tutoring.

Generally speaking, the term “mathematical discourse” maybe broadly understood to re-
fer to any kind of discourse which concerns mathematics: from scientific discussions among
mathematicians or classroom discussions between studentsand teachers, through mathematical
textbooks and scientific publications, to popular science prose. The discourse may be concerned
with analysis of historical developments in mathematics, the evolution of understanding of math-
ematical concepts and of the language used to name them, discussions of examples, explications
of mental representations (ways of thinking about a concept), or simplystatements of mathemat-
ical facts. Steenrod and colleagues (1981) and Bagchi and Wells (1998)refer to the latter kind
of mathematical discourse as themathematical register.

Bagchi and Wells loosely define mathematical register as “text in a natural language, possi-
bly containing embedded symbolic expressions, [that] communicates mathematical reasoning
and facts directly.” Since mathematical register focuses on mathematical facts and the formal
structure, it is presumed that “statements in mathematicalregister [can] be translated into a se-
quence of statements in a formal logical system such as first order logic” (ibid.) Examples of
mathematical register include mathematical definitions, statements of theorems, and proofs of
theorems. The core contributions of this thesis concern mathematical discourse in the sense of
mathematical register as characterised above.2

The most prominent surface characteristic of mathematicaldiscourse is that it is the familiar
mixture of symbols and natural language. While, in principle, proofs can be presented using

2Whenever we use the term “mathematical discourse” or “mathematical language”, we have in mind mathemat-
ical register as defined here and its language, respectively. Other types of mathematical discourse are outside the
scope of this work.
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the symbolic mathematical language alone – as in formal logic, for instance – this presentation
style is not common in communicating mathematics. It has been argued that symbolic notation
does not have to dominate in a proof for it to make a “better” proof (Halmos, 1970).

Support for open-ended natural language in proof tutoring systems requires that the language
understanding component be capable of building such symbolic representation of the learners’
input that it can be subsequently translated into an in inputrepresentation of a deduction sys-
tem responsible for the reasoning tasks. With the view to provisioning such input processing
capabilities we collected a corpus of learner proofs constructed in natural language interactions
(in German) with an anticipated dialogue-based tutoring system simulated by a human. Using
qualitative and quantitative analysis methods, in this thesis we attempt to answer the following
questions based on this data:

• What language phenomena emerge in naturalistic dialogues with a proof tutoring system?

• Does the range of linguistic verbalisations tend to be limited or is the language diverse?
Is the students’ language affected by the way their study material is presented?

• Given the range of language phenomena found in informal mathematical discourse, what
is an appropriate approach to processing this kind of language? What semantic represen-
tation provides the appropriate meaning abstraction for further semantic processing of the
identified language phenomena?

• Can a systematic procedure be defined which would take informal proof-steps as input
and return as output a representation suitable for translation to a domain reasoner’s lan-
guage? What parameters are involved? What processing subcomponents and resources
are needed?

• What is the prospect for automated tutoring of proofs in natural language?

We show that students’ language in computer-assisted tutoring of mathematical proofs is rich
in complex linguistic phenomena (Chapter 3) and characterised by a large variety of verbalisa-
tions, and that students tend to use the kind of language thatthey see employed in the learning
materials that they use for study (Chapter 4). Based on the insights from the linguistic analysis,
we propose an architecture for computational processing ofproof language based on a deep se-
mantic grammar and a strategy for processing the mixed natural and symbolic language typical
of mathematics (Chapter 5). We show how to model selected recurring phenomena systemat-
ically in a semantic framework and propose initial algorithms for those complex phenomena
which would require further data collection for a more thorough analysis and evaluation (Chap-
ter 6). Finally, we show that the grammar formalism on which our language processing archi-
tecture crucially relies, provides good generalistions inmodelling linguistic phenomena (Chap-
ter 7), which let us conclude that the language modelling strategy we propose in this thesis is a
viable contribution toward computational processing of informal mathematical discourse.

15



Contents

Parts of the work presented in this thesis had been publishedin collaborative articles. Material
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1
Background and related work

This chapter introduces the project within which this thesis has been set and summarises the
state of the art in modelling mathematical discourse. We start by presenting the target sce-
narios envisaged for our approach to computational interpretation of mathematical language.
After introducing the basic notions relevant to talking about computational processing of dis-
course in our domain, a high-level architecture of systems involving processing mathematical
language in the target scenarios is outlined. The tasks of each of the architecture components
are briefly summarised. The reminder of the chapter is dedicated to a discussion of related work.
We briefly report on work on modelling mathematical languagein the context of processing user
input in proof tutoring systems, formal models of mathematical language, implemented systems
for processing mathematics, controlled natural languagesfor mathematics, and annotations of
mathematical discourse. The chapter closes with a discussion of implications for our approach.

1.1 Target scenarios

The research reported in this thesis stems from a larger project, DIALOG, whose objective was
an empirical investigation into the issues involved in modelling natural language interaction
with a mathematics assistance system (Pinkal et al., 2001, 2004).1 While the core focus of
the DIALOG project was interactive natural language-basedtutoring, the linguistic analysis of
mathematical language, the language interpretation methods we propose in this thesis, and the
evaluation results we report are relevant in the context of processing mathematical discourse in

1DIALOG was a subproject of the “Resource-adaptive cognitive processes” Collaborative Research Centre
funded by the Deutsche Forschungsgemeinschaft as Sonderforschungsbereich 378.
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general, be it tutorial dialogue or mathematical prose. We envisage three application scenarios
and larger architectures in which they can be applied.

The first scenario and the main motivation of this work, formulated in the introduction, is
computer-based interactive tutoring of mathematical proofs and is related to the project from
which the work stems. The ultimate goal in this context is theprovision of systems for tutoring
mathematical proofs by means of flexible dialogue in naturallanguage. Target users of such
systems are learners of mathematics and mathematics teachers contributing proof exercises. The
linguistic material which needs to be interpreted in this context are the utterances which learners
enter while communicating with the system, be it proof stepsor meta-level speech acts, such as
requests for explanation of domain concepts. The second, related scenario isinteractive proof
construction with the help of human-oriented automated deduction systems. The goal in this
case is the provision of natural language user interfaces for theorem provers, possibly embedded
within larger mathematical document authoring environments. Potential users of such applica-
tions are mathematicians or teachers preparing course materials or textbooks. Different variants
of this scenario might involve not only different degrees oflinguistic richness, but also different
degrees of interaction flexibility: the proof language might be unconstrained or it might be a
controlled natural language, proofs might be constructed either incrementally step by step, each
added step being verified at a time (much like in interactive proof assistance systems) or com-
plete proofs could be checked at once as self-contained discourses. The linguistic material to
be interpreted in this context are proof steps of different complexity constructed by a user of
an automated deduction system, be it a mathematician or a student. The third scenario involves
computational processing of mathematical documents, textbooks or scientific publications, such
as those found in arXiv,2 an online preprints archive. The goal in this case is to enable search,
information retrieval, and knowledge extraction in scholarly mathematical documents. Compu-
tational interpretation of proof discourse in this contextwould be a step toward transforming
these documents into machine-understandable representations and, in a further perspective, to-
ward automated verification of published proofs. While no interactive proof construction is
involved here, this scenario involves authentic mathematical discourse as it is routinely writ-
ten and published by mathematicians. In terms of authenticity of the linguistic material it is
therefore closer to the first scenario and rather more challenging than the second.

Common to the three scenarios is that, ultimately, the mathematical content expressed in nat-
ural mathematical language – mathematical proofs – needs tobe processed by a reasoning com-
ponent, an automated theorem prover or a proof checker, in order to verify its validity. Previous
work in the latter scenario relied on a dedicated reasoning system whose proof representation
language directly reflected the representation of the discourse structure modelling the proof at
the linguistic level (Zinn, 2006). By contrast to this work,we do not assume that the reasoner
is a dedicated system, directly linked to the language understanding component by means of an
internal representation. Instead, we construct a symbolicrepresentation of the linguistic con-
tent of a proof discourse fragment and rely on a dedicated procedure to interface between this

2http://www.arxiv.org; Last accessed in May 2012
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representation and a formal proof representation requiredby one of theexistingpowerful auto-
mated deduction systems. Below we outline a general architecture of a system for interactive
processing of natural language proofs in the scenarios mentioned above.

1.2 High-level system architecture

Before presenting the overall architecture, we introduce the basic terminology which we will
use while talking about the systems’ components and the interpretation strategy.

The macro-structural domain-relevant discourse unit of interest in our scenarios is a proof. In
the context of a mathematical document, it could be of courseanother mathematical discourse
entity, such as a definition of a concept, a statement of a theorem. An elementary discourse
unit in a proof is a proof step which can consist of a number of elements (an assertion, infer-
ence rule(s) used to derive the assertion, etc.) The relevant general notions in the context of
discourse/dialogue processing are a communicative unit, acontribution, and a discourse model:

Communicative
unit

By a communicative unit (CU) we mean a scenario-specific unitof commu-
nication from the point of view of the macro-structure of thediscourse under
analysis. In the dialogue-based tutoring scenario a communicative unit is a
dialogue turn (more below) which a learner composes while interacting with
the tutoring system. In the interactive proof constructionscenario, depend-
ing on the mode of user interaction, a communicative unit maybe a single
sentence which constitutes a proof statement or a multi-sentence discourse
segment which constitutes an entire proof. In the document processing sce-
nario, it is a discourse segment which comprises an entire proof in a docu-
ment. As anelementary communicative unitwe consider a linguistic clause.
A communicative unit may consist of one or more utterances (see below) in
dialogic discourse or sentences in narrative discourse.

Contribution,
Proof
contribution

In dialogue and conversation analysiscontribution is a basic unit of dia-
logue, a segment “contributed” by one dialogue participant. It is often used
synonymously with the term “turn”. A turn may consist of one or moreutter-
ances, that is, intentional, meaningful communicative acts in aninteraction.
In the tutoring scenario, utterances which add informationto the solution be-
ing constructed we will callsolution-contributing utterances. A proof con-
tribution is a solution-contributing utterance which expresses proof-relevant
content, that is, one or more proof steps or parts thereof. A more detailed
typology of utterances in the tutoring scenario will be presented in Chap-
ter 4. More generally, contributions which express domain-relevant content
we will call domain contributions. Examples of domain contributions in-
clude solution-contributing utterances or students’ requests for explanation
of a concept, for instance: “What is a powerset?”.
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Figure 1.1: The place of the interpretation process in the overall architecture

Discourse
model

A discourse model is a symbolic representation of the structure of discourse.
It is built up (incrementally) out of (parts of) discourse segments as dis-
course analysis progresses and constitutes a representation of the semantics
of the discourse segments and discourse-level relations (for instance, rhetor-
ical relations) between the segments or parts thereof. By semantics of a
discourse segment we mean its linguistic (that is, domain-independent)and
domain-specific interpretation. In particular, it is possible that the former is
known (has been constructed), while the latter is not (a domain-specific in-
terpretation of linguistic content could not be assigned).Moreover, depend-
ing on the linguistic content of the discourse segments, discourse relations
between segments or elementary units may be unknown (underspecified) as
well. In case of dialogic discourse, a discourse model is part of a dialogue
model, which is in turn a symbolic representation of the dialogue structure
and includes a model of the state of the dialogue at any point of interaction
and a model of the dialogue progression.

Independently of the scenario, we assume that mathematicallanguage interpretation is part
of a larger modular mathematical discourse processing architecture whose components perform
specialised tasks specific to the scenarios outlined above.Figure 1.1 depicts the place of the
language interpretation process within a system for processing mathematical discourse, be it di-
alogic or narrative. The language interpretation process operates on communicative units. In this
thesis, we focus on the semantic processing of a subset ofproof contributing utterances. The
process comprises a number of subprocesses whose purpose isto build a symbolic representa-
tion of proof contributions’ semantics both at the domain-independent and the domain-specific
levels. In the approach we propose in this thesis, these representations mediate between the tex-
tual natural language presentation of the proof contributions and a formal proof representation
language constructed at the interface to a domain reasoner.
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Figure 1.2: A high-level architecture of a system for processing mathematical discourse

Figure 1.2 schematically presents a generalised view of an architecture of a computational
system for processing mathematical discourse in the context of the scenarios we described ear-
lier. It comprises the core modules of such a system, including components specific to the
different scenarios. Modules which are common to the three scenarios are marked with solid
lines. The module marked with dashed-lines is an additionalmodule specific to the tutoring sce-
nario. The language interpretation processes are part of the input interpretation module; “input”
is a communicative unit relevant in the given scenario. Semantically processed contibutions are
incorporated into a discourse model and, subsequently, therelevant domain-level units (proof
steps, parts thereof, or entire proofs) are translated intoa formal language of a reasoner. Below
we elaborate on the tasks of each of the architecture components.

Text extraction The purpose of the text extraction module is to identify and isolate the lin-
guistic material relevant for analysis. Text extraction operates at the interface between the input
acquisition module (a GUI, for instance) and the input interpretation module. Its task is to deliver
the text of communicative units in a format which the language interpretation module expects.
This may involve stripping unnecessary markup from the original input or extracting the relevant
units from a larger mathematical discourse (for instance, extracting proofs from a mathematical
document).3

3We include this process for the sake of completeness, however, we do not address it any further in this thesis.
Likewise, we do not address user interface issues. We assumethat the input to the language processing component
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Input interpretation In general, the task of the input analysis module is two-fold. First, it is
to construct a representation of the linguistic meaning andthe domain interpretation of the input
contributions. Second, given the linguistic meaning and depending on whether the contribution
has an interpretation in the mathematical domain (is a domain contribution), it is to identify and
separate within the contribution’s symbolic representation the parts which convey proof steps
(proof contributions), and thus should be passed on to a reasoner, and the parts which a reasoner
does not process, but which, in case of the tutoring scenario, should be processed directly by the
dialogue processing component. The core focus of this thesis is an interpretation strategy for
proof contributions and will be discussed in more detail in Chapters 5, 6 and 7.

Discourse/dialogue processing Discourse processing addresses pragmatic (in the technical
sense of the word) phenomena, that is, semantic phenomena beyond the level of composi-
tional semantics of an utterance and the lexical meaning of words from which the utterance
is composed. This includes processing discourse cohesion phenomena (for instance, resolv-
ing anaphora and referring expressions in general), rhetorical phenomena (identifying rhetorical
relations between elementary discourse units), discoursestructure phenomena (structuring dis-
course units into larger segments expressing a certain purpose), and recognising the illocutionary
force of utterances (the functional role of utterances in a discourse).

In a dialogue processing architecture a discourse model is apart of adialogue model, a struc-
tured representation of the state of dialogue at any point ofinteraction, the so-called “informa-
tion state”, and of the flow of interaction in the given domain. The latter is a representation
of dialogue structure which controls the dialogue progression and specifies ways in which the
information state is to be updated following each contribution. Dialogues may be represented,
for instance, as frame structures (see, for instance, (Bobrow et al., 1977)), state transition graphs
(see, for instance, (Metzing, 1980; McTear, 1998)), information state descriptions with update
rules (D. Traum et al., 1999), a combination of those (state transition graph with information
state update rules (Lemon & Liu, 2006; Horacek & Wolska, 2005b; Buckley & Wolska, 2007,
2008b), or as a probabilistic model (see, for instance, (Young, 2000)). The purpose of the model
of the dialogue structure is to drive the interaction forward by selecting a dialogue move to be
contributed following a contribution of a dialogue system’s user.4

contains only proof contributions, that is, one or more utterances which convey proof steps or parts thereof.
4A dialogue move is a dialogue contribution which expresses acommunicative intention, for instance, that of

requesting information or requesting that some action be performed (a command). Examples of taxonomies of dia-
logue moves developed for dialogue and dialogue systems research include DAMSL (Allen & Core, 1997), DATE (M.
Walker & Passonneau, 2001), or DIT++ (Bunt, 2009). The notion of a dialogue move stems from the notion of a
speech act (Austin, 1962; Searle, 1999). In speech act terms, “information request” or “command” describe the
utterance’sillocutionary force, that is, the speaker’s intention expressed in uttering certain words.

Some dialogue contributions have an implicit or explicit meta-level communicative function of facilitating the
maintenance of the state of knowledge shared between dialogue participants, the “common ground”. These con-
tributions are called “grounding moves” and include, for instance, requests for clarification or acknowledgments.
Grounding is a meta-communicative process in conversational interaction which interlocutors employ to establish
whether the other party has understood what has been said as intended (Isaacs & Clark, 1987; Clark & Schaefer,
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Proof representation processing Proofs are structured discourses whose core elements are
mathematical statements along with references to other statements which justify the validity of
the inferences; these may be theorems or lemmata, or previously inferred statements. Proofs
may be expressed in an informal language admitting of arbitrary natural language verbalisation,
as in textbooks or mathematical publications, or in a formally defined language, as in formal
logic or automated deduction systems. Linguistic properties of informal proof language will
be discussed in Chapter 3. Proof discourse understanding consists in, firstly, understanding the
language of the discourse and, secondly, recognising, understanding, and verifying the validity
of (i) the individual statements, (ii) the relations between them, and (iii) the macro-structure of
the proof. The latter involves, for instance, identifying the justifications of proof steps (be it those
explicitly stated or those left implicit) and the larger reasoning structure into which statements
are organised; this structure may result from the choice of the proof method, as in, for instance,
proofs by induction or proofs by cases. Proof representation processing is concerned with both
of these aspects: the proof language and the proof structure.

The first proof representation related task is to mediate between the symbolic representation of
the proof contributions constructed by the language understanding module and that of a domain
reasoner. Introducing a dedicated interface between theserepresentations ensures modularity
of the overall architecture and a clear separation of linguistic processing and domain reasoning
(see Section 5.1 for further motivation of the interpretation architecture design). From a practical
point of view, this task consists in defining a translation between the symbolic representations
of proof contributions produced by the language understanding process and the language of an
automated prover or proof checker which serves as the domainreasoner.

The second proof representation processing task is to buildand maintain a representation of
the proof which is being constructed in the course of the dialogue: of the statements themselves,
the relations between them, and of the overall structure of the proof. This may, moreover, involve
storing thecorrectnessevaluations of proof contributions, obtained from a domainreasoner, or
other evaluations relevant in deciding on further actions,obtained from specialised modules;
for instance,granularity or relevanceevaluations. In the tutoring scenario, proof contributions
evaluated as invalid or inappropriate in the given context may also need to be stored in order to
provide the tutoring module with information which may be useful in deciding on the immediate
response and an overall pedagogical strategy to adopt.5

Domain reasoning By domain reasoning in the context of the scenarios introduced earlier
we mean theorem proving. Generally speaking then, a domain reasoner needed for this task
is an automated deduction system, however, the detailed task specification is dependent on the

1989; Clark & Brennan, 1991; Clark, 1996). See, for instance, (D. R. Traum, 1994; Matheson et al., 2000; Li et al.,
2006; Bunt et al., 2007) for research on computational models of grounding.

5In the DIALOG project publications we referred to the module performing proof representation processing tasks
in the software systems’ jargon as the “Proof Manager”. Moredetails on the proof structure processing tasks can
be found in (Benzmüller & Vo, 2005; Benzmüller et al., 2009) and on the issues related to automated evaluation of
granularity in (Schiller et al., 2008).
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scenario and its requirements.
Automated deduction has been an active research area of artificial intelligence for over 30 years.

There exist any automated theorem provers, however, not allof them can be immediately used
in the scenarios in question. Theorem provers differ in their proof automation capabilities (the
extent to which they can make inferences or produce entire proofs automatically), in the require-
ments as to the level of detail in the proofs they can verify (that is, whether they can reason at the
level of abstraction at which humans do, in particular, whether they can infer omitted proof steps
and parts of proof steps; this is related to the previous point: the automation capabilities), and
in the type of information they can provide about the automatically inferred steps (for instance,
whether they can be queried about inference rules applied inan automated derivation). They
also differ in the formal languages in which proofs must be specified in order for them to be
processed. In fact, there is no “standard” proof language which all deduction systems use. This
is due, among others, to the fact that the systems are based ondifferent underlying mathemati-
cal foundations, for instance, set theory or type theory, which “speak” different languages. The
high-level representations proposed by Autexier et al. (2004) and Autexier and Fiedler (2006)
are “assertion-level” representations which admit of underspecification typical in proofs pro-
duced by humans. The differences in the input languages to theorem provers is the main reason
why dedicated translations into specific proof languages are needed; in our architecture, this
translation is the responsibility of the proof representation processing module discussed above.

Without making claims as to which existing theorem prover would be best suited for the
scenarios discussed, the requirements on the reasoner can be summarised as follows: In the
document processing scenario, a proof checker would be needed for a proof verification task.
Such a proof checker would have to handle human-oriented underspecified proofs. The interac-
tive theorem proving scenario would require a proof checker, although a fully-fledged theorem
prover would certainly be of help to a proof author.6 Tutoring is perhaps the most demanding of
the three scenarios because of the properties of the proofs produced by learners. First, similarly
to the other scenarios, learner proofs tend to omit proof steps or parts of proof steps, therefore
mechanisms of reconstructing missing proof parts are necessary. Second, learners are prone to
producing false proof steps, therefore, fast falsificationis required. Third, special functionality
may be needed in order to support tutoring, for instance, in deciding on whether a contributed
correct step is relevant in the given proof context, whetherit is of an appropriate granularity, or
in generating tutoring hints. In the DIALOG projectΩMEGA (Siekmann et al., 2003) was used
as the reasoning system. More details on this system and on how it was adapted to support the
kinds of proofs which students produced in our experiments and tutoring itself can be found
in the following publications: (Vo et al., 2003; Autexier etal., 2004; Benzmüller & Vo, 2005;
Autexier et al., 2009; Benzmüller et al., 2009; Autexier et al., 2012). Proofs from the corpora

6We are not aware of large scale evaluations of existing theorem provers as to their capabilities of han-
dling formalisations of authentic proofs published in mathematical conference and journal articles. Nor are
we aware of large scale evaluations of theorem provers supporting natural language; however, see (Wagner
et al., 2007) for an attempt in this direction and (Vershinin& Paskevich, 2000; Verchinine et al., 2008) and
Naproche (http://www.naproche.net; Accessed in May 2012) for controlled natural language approaches.
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collected in the project were also used in a case study with Scunak (C. Brown, 2006a, 2006b).

Tutoring In the tutoring scenario the tutoring module is responsiblefor the pedagogical as-
pects of the interaction. Automated tutoring relies on a symbolic or probabilistic model of
a pedagogical strategy to be adopted in the course of interaction. Effectively, in the tutoring
scenario this is what drives the dialogue: it is up to the tutoring module to decide which di-
alogue move is to be performed at the given dialogue state, once a learner’s contribution has
been grounded at the communicative level,4 and how the given move is to be realised by the
generation process (discussed below).

In order to decide on a dialogue action, a pedagogical strategy model typically refers to the
history of the given learner’s performance in prior and current interactions or assessments, the
so-calledlearner modelor student model(VanLehen, 1987; Elsom-Cook, 1993). The teaching
strategy itself may comprise a static model of pedagogical knowledge on tutoring in the given
domain (see, for instance, (Rosé et al., 2001; Zinn et al., 2003; Fiedler & Tsovaltzi, 2003;
Tsovaltzi et al., 2004)) or a complex adaptive symbolic or stochastic model which adjusts its
behaviour based on, among others, interaction variables and a learner model (Dzikovska et al.,
2007; Forbes-Riley & Litman, 2009; Tsovaltzi, 2010). Recent work on pedagogical strategy
models for intelligent tutoring systems takes into accountsuch aspects of interaction as learner’s
uncertainty as well as affect and emotions in tutoring (see,for instance, (D. Litman & Forbes-
Riley, 2004; D’Mello et al., 2007; Porayska-Pomsta et al., 2008)).

Response generation/Realisation The complexity of the response generation task, that is, the
categories of responses and their form, is dependent on the scenario. In the case of the tutoring
domain it is dependent on the adopted pedagogical strategy,since the complexity of the tutor-
ing strategy directly influences the range of dialogue movesneeded to realise the pedagogical
dialogue actions; which may, in turn, also influence the range of dialogue moves contributed by
learners during interaction. Response types may range fromsimple acknowledgments, through
evaluative or corrective feedback, to hints of various complexity; for instance, hints on omitted
proof elements in the document processing scenario or pedagogical hints realised as part of a
teaching strategy in the tutoring scenario. Dialogue move taxonomies motivated by the tutoring
scenario have been proposed, for instance, in (Marineau et al., 2000; Porayska-Pomsta et al.,
2000; Tsovaltzi & Karagjosova, 2004; Wolska & Buckley, 2008; Campbell et al., 2009).

The standard language generation process comprises three phases each of which involves a
number of substeps (Reiter & Dale, 2000): (i)content and structure determination, that is, se-
lection of information, communicative goal(s), to be communicated and selection of the larger
structure in which it should be communicated, (ii) sentence/utterance planning or so-calledmi-
croplanning, that is, lexical selection, syntactic structure selection, etc., and (iii)surface real-
isation, that is, producing the surface form of the utterance(s) to be communicated from the
representation constructed in the previous two steps (putting the abstract representations of
communicative goals into words). In the tutoring context, the first two phases are of course
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influenced by the tutoring process and the pedagogical strategy it realises. In particular, a ped-
agogical strategy might not only determine the pedagogicalcontent and the dialogue moves to
be communicated at a given dialogue state, but also influencethe high-level decisions as to how
a pedagogically motivated communicative goal is to be broken down into atomic communica-
tive goals, how these atomic goals should be related to one another in rhetorical terms, down to
specifying the lexemes to be used as well as the mood and mode of the utterance(s) to be gener-
ated. We do not elaborate any further here on the generation process itself nor on the methods
employed in building language generation components in tutorial dialogue systems because in
the overall architecture the generation process does not interact directly with the semantic inter-
pretation process which is the main focus of our work. However, further discussion of response
generation issues in the context of mathematics tutoring can be found, for instance, in (Callaway
et al., 2006), while issues involved in natural language verbalisation of proofs, for instance,
in (Huang & Fiedler, 1997; Holland-Minkley et al., 1999; Horacek, 2001a; Fiedler, 2005).

The processes outlined above constitute the core of an architecture for mathematical dis-
course processing for the scenarios we introduced in the beginning of this chapter. A complete
computational system would of course include a number of processes and components which
we will not discuss here at all. Their purpose and functionality would depend on the larger
application scenario. For instance, in the tutoring scenario the proof tutoring system might be
embedded in a larger environment for learning mathematics,such as LEACTIVEMATH (Melis
et al., 2001, 2006) which is itself a complex system incorporating dedicated components for
curriculum development, exercise sequencing, learner modelling, and others. In the interac-
tive proof construction scenario, proofs might be constructed in a mathematical document au-
thoring environment with sophisticated mathematical expression editing capabilities, requiring
a complex graphical interface; as in, for instance, (Wagneret al., 2007; Wagner & Lesourd,
2008). Finally, mathematical document processing for knowledge extraction, information re-
trieval, and semantic search, would necessitate a range of components providing support for
content-oriented services, such as management of digital libraries of mathematical documents
and storage of mathematical knowledge in structured repositories, both of which are active areas
of research in the Mathematical Knowledge Management and Digital Mathematical Libraries
communities. The arXMLiv project, aiming at migrating arXiv documents into an XML-based
representation, is an example of an effort in this direction.7

While the described scenarios are diverse in terms of their purposes, the functionalities they
are intended to offer, the users they target, and, possibly,the language style of their proof dis-
courses (more verbose or less verbose), they all require that the mathematical language is com-
putationally processed in order to enable automated proof checking. In the following section we
give a brief overview of related work on modelling and processing mathematical language.

7XML, eXtensible Markup Language, is a generic document encoding scheme for machine-readable
documents (http://www.w3.org/TR/REX-xml). Further information on arXMLiv can be found at
http://kwarc.info/projects/arXMLiv.
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1.3 Related work

The early history of attempts of building systems for natural language mathematics – Abrams’
Proofchecker (1963), Bobrow’s STUDENT (1964), and Simon’sNthchecker (1990) – has been
summarised in (Zinn, 2004). We do not repeat the summaries here and refer to Zinn’s disserta-
tion’s Section 2.1 for an overview. In this section, we briefly outline related work on modelling
mathematical discourse by pointing out five directions of this research: (i) interactive natural lan-
guage tutoring of proofs, exemplified by the EXCHECK system,(ii) formal (theoretical) models
of mathematical discourse, (iii) implemented systems for processing mathematical discourse,
(iv) controlled natural languages for proofs, and (v) proofannotation languages.

1.3.1 Natural language tutoring of proofs: the EXCHECK system

Partick Suppes’ group at the Stanford University Institutefor Mathematical Studies in the Social
Sciences (IMSSS) were among the pioneers inlarge-scalecomputer-assisted instruction (CAI).
The IMSSS research on computer-based teaching of mathematics dates back to the 1960s8 and
has encompassed a multitude of domains, including, aside from various areas of mathematics,
Slavonic languages, music, and computer programming. In fact, the IMSSS systems from the
1970s and their successors have continued being used in university-level tutoring; for instance,
the VALID system for symbolic logic (Suppes, 1981) and its successors at the Carnegie Mellon
University (Scheines & Sieg, 1994) or the EPGY proof environment at Stanford (McMath et al.,
2001).

EXCHECK is one of the IMSSS systems developed in the mid-1970s. Sincethen, different
versions of the system have taught Stanford students in university-level courses on elementary
logic, axiomatic set theory, and proof theory.9 Much like in our experiments, a student working
with EXCHECK would be presented with lesson material in the domain of interest (set theory for
instance) and asked to solve exercises which involved proving theorems from this domain.

EXCHECK was designed with specific goals in mind (see (R. L. Smith & Blane, 1976)) two
of which are most relevant here. First, it was intended to serve as a base and a practical labo-
ratory for research on natural language processing. Mathematics was chosen as the domain of
foremost interest because on the one hand, its semantics is well-understood, while on the other
hand, informal mathematics and its language offer interesting research problems from the point
of view of both automated problem solving as well as natural language processing. Second,
proof tutoring was intended to be realised at a level appropriate for human problem solving,
rather than driven by the requirements of an underlying proof checking system. Already at the

8The early history of this research is related in (Suppes, 1972).
9Numerous articles related to IMSSS research on CAI, in particular theEXCHECK system, are available on

Patrick Suppes’ corpus website (http://suppes-corpus.stanford.edu). It would be impractical to
cite all the relevant published work here because the resulting list of references would probably be almost as long as
this chapter itself. Therefore, we only cite those papers which specifically address or mention those aspects of the
systems which are of particular interest here; that is, language and dialogue processing. An overview of the systems
and of empirical studies during the first decade of the systems’ use can be found in (Suppes, 1981)
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Table 1.1: A fragment of theEXCHECK input language; examples of formal expressions (left)
and their corresponding natural language verbalisations (right)

Formal Informal

(A x)(E y)(x sub y) For every x there is a y such that x is a subset of y

Function(F) & F:A -> B F is a function and F maps A into B

{x : x neq x} = 0 The set of all x such that x is not equal x is empty

(A A){Dinfinite(A) IFF For all A, A is Dedekind-infinite just in case there is
(E C)(C psub A & C := A)} a C such that

C is a proper subset of A and C is equipollent to A

(∀x)(x ∈ A → x ∈ B) For all x, if x is in A then x is in B

(∀x)(x ∈ B) For all x, x is in B

time of EXCHECK did the IMSSS researchers observe that informal proofs, in particular, stu-
dents’ proofs, substantially differ from formal proofs which can be verified by proof checkers or
constructed by automated deduction systems.EXCHECK was intended to bridge this gap and as
such was among the first, ifthe first automated system addressing human-level theorem prov-
ing.10 The DIALOG project was in fact driven by the same motivations and goals as those behind
theEXCHECK research (Benzmüller et al., 2009).

There is a number of interesting aspects to theEXCHECK system and similarities with the
tutoring system for mathematical proofs envisioned in the DIALOG project.11 First, EXCHECK

allows students to construct proofs in an interactive manner. That is, the system and a student
engage in a dialogue in which the student constructs a proof with the help of the system, step
by step. Second,EXCHECK proofs can be formulated in a “natural style” which is close to the
standard mathematical practice. In particular, the proofscan be informal in the sense that not
all the steps of reasoning must be specified. Moreover,EXCHECK admits of certain flexibility
in the language style of the input: proofs can be written using either symbolic mathematical
expressions or in “mathematical English”. Table 1.1 shows examples of inputs whichEXCHECK

can interpret: both symbolic expressions (in the left-handcolumn of the table) as well as their
corresponding natural language verbalisations (the right-hand column) are shown.12

As the examples illustrate, the range of complexity ofEXCHECK input statements can be quite

10For a recent discussion of various aspects of human-level proofs and human-oriented automated deduction in
the context of the DIALOG project see (Autexier et al., 2004; Benzmüller & Vo, 2005; Autexier & Fiedler, 2006).

11In the following sections we will, as a convention, use present tense when talking about theEXCHECK from the
70s; even if the modernEXCHECK-based systems differ from the original version in functionality.

12Reproduced from (R. L. Smith & Blane, 1976) and (McDonald, 1981); punctuation and capitalisation preserved.
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broad and encompasses from simple to compound formulas as well as utterances formulated en-
tirely in natural language. This coverage is achieved by explicit authoring of input utterances,
that is, specifying the language fragment by means of a grammar. EXCHECK has been concep-
tualised as an environment both for authoring proof exercises and for tutoring itself. As part of
the exercise authoring process a content developer must define a language fragment to talk about
the mathematical theory in question, that is, formulate natural language sentences, such as those
exemplified above, which a student can use. This is done by explicitly writing a context free
grammar for the anticipated language fragment as well as “macro templates” which transform
the parse outputs directly into the internal representation of the proof checker. The language
processing component ofEXCHECK, CONSTRUCT, is presented in detail in (N. W. Smith, 1974)
and (R. Smith & Rawson, 1976). While there are limitations onthe complexity of the natural
language which can be interpreted by the system (for instance, the utterance “Everything is in
B”, which is a possible paraphrase of the licensed input utterances “(∀x)(x ∈ B)” and “For all
x, x is in B”, cannot be parsed), we consider the EXCHECK/CONSTRUCT system the most
impressive of the implemented systems, considering its coverage and the fact that the system
has beenactually usedin teaching proofs; see (Suppes & Sheehan, 1981) and the other reports
at the Suppes’ corpus website on the university-level computer-assisted instruction at Stanford.

1.3.2 Formal analysis of mathematical language

Fox (1999) focuses on certain “non-schematic” occurrencesof variable letters in mathematics
which cannot be modelled in the standard way as referring expressions and proposes to extend
theories of discourse interpretation, such as Discourse Representation Theory, with Fine’s theory
of Arbitrary Objects (Fine, 1983).

Ganesalingam (2009) gives a formal analysis of a wide range of phenomena in mathematical
language, focusing in detail on ambiguity in the symbolic mathematics. His syntactic analysis is
based on context-free grammar and semantics modelled in a variant of Discourse Representation
Theory modified for the language of mathematics. A formal type system is developed to account
for ambiguity in the mixed, symbolic and natural language. Ganesalingam’s ultimate goal is to
“build programs that do mathematics in the same way as humansdo.” Our goals in this thesis
are, by comparison, much more modest and, of course, practically-driven. Two comments are
made in relation to our work (Ganesalingam, 2009, page 23): “The material produced by [users
with ‘little to fair mathematical knowledge’] is not related to the formal dialect of mathematics”
– as we will show, students’ mathematical language exhibitsphenomena found in textbooks as
well as a range of other language phenomena – and “[(Wolska & Kruijff-Korbayová, 2004a)]
treats material in German, whereas we focus exclusively on English”, which seems to suggest
that the language phenomena found in German might be substantially different from those found
in English. We translate our German examples preserving thesyntax and semantics as closely
as possible, in order to illustrate the cross-linguistic nature of the language phenomena found in
our data. Neither Fox’ nor Ganesalingam’s analyses appear to be actually implemented.
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1.3.3 Processing natural language proofs

Ranta (1994b, 1995, 1996) analyses mathematical language in terms of Martin-Lof’s type the-
ory and in subsequent work builds a proof editor with naturallanguage input based on a for-
malisation in the Grammatical Framework (Ranta, 1994a). The final analysis in (Hallgren &
Ranta, 2000) appears to be oriented toward building appropriate type representations based on
the input to the proof editor, rather than toward principledaccount of linguistic phenomena. A
type-theoretical approach motivated by similar goals to Hallgren’s and Ranta’s is also presented
in (Callaghan & Luo, 1997).

Baur (1999) shows an approach based on the LKB system (Copestake, 1999). Parsing is
performed with an HPSG grammar (Pollard & Sag, 1994) adaptedfor mathematical language,
with λ-DRT (Bos et al., 1994) as a semantic construction formalism. Basic phenomena found in
example proof sentences from Chapter 2 of (Bartle & Sherbert, 1982) are addressed.

Likewise, Zinn (2004, 2006) uses only exemplary textbook proofs, from (Hardy & Wright,
1971), to illustrate his approach. Zinn claims that “[t]he syntactic constructions of informal
mathematical discourse are relatively easy, stylised or formulaic and more or less in line with En-
glish grammar rules” and refers to Trzeciak’s collection of“standard phrases” for mathematical
texts (Trzeciak, 1995) noting that “most mathematical arguments could be expressed by instan-
tiating and combining these textual components” (Zinn, 2004, page 56). His linguistic analysis
is also partly guided by rules of good writing style in mathematics, such as those in (D. E. Knuth
et al., 1989). Most of the analysis of language phenomena is dedicated to anaphora and condi-
tionals (Zinn, 2004, page 69ff). Computational processingis based on van Eijck’s and Kamp’s
λ-DRT (Eijck & Kamp, 1997). As Ganesalingam notes it often lacks generalisation (it assumes,
for instance, that all mathematical constants (’1’, ’2’, ’3’, etc.) are explicitly modelled in the lex-
icon), however, it appears that Ganesalingam is not right claiming that an embedded symbolic
expression should not be accessible for reference, as Zinn’s account predicts; consider ’2’ being
accessible in “2 + 15 is prime” (Ganesalingam, 2009, page 20). We will return to this when we
discuss indirect anaphora in Section 3.2.2.5.

Natho (2005) and the TU Berlin Zentrum für Multimedia in Lehre und Forschung (MuLF)
group have developedMARACHNA, a language processing system for extracting knowledge
from mathematical texts written in natural language.13 The language addressed is German,
therefore we review the approach in somewhat more detail.

Like Zinn, Natho claims that the range of linguistic constructions in mathematical language
is limited (Natho, 2005, page 108), sentences with logical operators and quantifiers are in most
cases simple, short, clear, and easily comprehensible, syntactic and semantic ambiguities are
avoided through the use of phrasings with fixed meaning; Table 1.2 shows typical constructions.

13Between February 2005 (the time of publication of Natho’s thesis) and 2008 around 20 ar-
ticles related to MARACHNA have been published by researchers affiliated with MuLF; see
http://eprints.mulf.tu-berlin.de; Last accessed in May 2012. A system based on phrase structure
grammar was presented in the articles from 2005 and 2006, while a system based on HPSG was presented in the
articles from 2007 and 2008. Because the conceptual design and the actual text within the two sets ofMARACHNA’s
publications largely overlap. We will give a reference to only one publication from which a given citation stems.
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Table 1.2: Natho’s language structures in mathematical texts.
Structures
type

Template Meaning

Implication

[VERB1] A, (so/dann) [VERB2]B

A ⇒ B

wennA [SEIN/GELTEN], dann [SEIN/GELTEN]B
wennA [GELTEN], dann [GELTEN]B
falls A [VERB], dann [VERB]B
B [VERB] (nur/höhstens) dann, wennA

A ist hinreichend für/
A ⇒ B

dies ist hinreichend für/
dies ist eine hinreichende Bedingung fürB

A ist notwendig fürB / eine notwendige Bedingung dafür istB B ⇒ A

ausA folgt B

A ⇒ B

A dies hat zu Folge, dass/ man kann folggern, dassB

A folglich [VERB] B

A, dies impliziertB
A, daraus ergibt sich / daraus erhalten wir / das bedeutetB

Equivalence

A ist äquivalent zu/gleichbedeutend mitB

A ⇔ B
A [gelten] genau dann, wennB [gelten]
A [gelten] dann und nur dann, wennB [gelten]
A [sein] hinreichend und notwendig fürB

Quantifier

Für alle/jedes/ein beliebigesx . . .

∀x . . .
Jedes/zu jedemx . . .
Alle x . . .
Seix beliebig . . .

Es gibt einx . . .
∃x . . .Für ein geeignetesx gilt . . .

[SEIN/HABEN] einx . . .

Set
theoretic

. . . ist Element von . . . . . .∈ . . .

. . . kommt in . . . vor . . . ? . . .

Assuption (es) sei . . . / ist . . . / für . . . gegeben (ist/sei) . .. / es gelte . . . assumption: . . .

The number of verbs used in mathematical texts “appears to besmall.” The most frequently
occurring verbs in German are: “sein” (be), “heißen” (be called/termed), “existieren” (exist),
“geben” (be given; corresponding to the English existential constructionthere is/are), and “fol-
gen” (follow). Natho claims that mathematical expressions exhibit specific syntax that is in
principle simple yet “incompatible with the syntactic structures of natural language” (empha-
sis added).14 Some of the proposed analyses appear not linguistically informed; for example,
on page 129, phrases “absolut konvergent” and “linear unabhängig” are given as examples of
phrases with two adjectives one after the other (“zwei Adjektive hintereinander angeordnet”.)

14“Mathematische Symbolfolgen wie z.B. Formeln weisen eine Ihnen eigene Syntax auf, die zwar prinzipiell
einfach ist und auch durch die Prädikatenlogik strukturiert wird, jedoch nicht kompatibel zur syntaktischen Struktur
der natürlichsprachlichen Texten ist.” (Natho, 2005, pages 108–109).

31



1 Background and related work

Linguistic analysis inMARACHNA is based on a four-level “linguistic classification scheme”.
TheSentence Leveland theWord and Symbol Levelof the scheme describe “the characteristic
sentence structures, which are commonly found in mathematical texts” and “[schematizes] sin-
gle symbols, words, and their relations between each other”(Grottke et al., 2006). Assumptions,
propositions, and properties are identified based on “stereotypical syntactic constructs and com-
mon phrases within their sentence structure” (Grottke, Jeschke, Natho, & Seiler, 2005). This
approach is similar to Zinn’s, however, the authors ofMARACHNA seem to be unaware of this
work. Mathematical expressions are “generally” separatedfrom the surrounding text and rep-
resented in MathML15 format. The authors do not specify in which cases other procedures are
applied. Simple mathematical expressions within text are “replaced by placeholders” (Jeschke,
Wilke, et al., 2008) while “some simple symbols and equations can be replaced by natural text
elements” (Jeschke, Natho, et al., 2008). Unfortunately, there are no examples to illustrate this
substitution. MARACHNA does not seem to account for syntactic and semantic interactions
between the two modes of mathematical presentation, mathematical expressions and natural
language, however, the authors plan to extended it to process “more complex formulae” using
“syntactical analysis similar to those used in computer algebra systems in combination with
contextual grammars (e.g., Montague grammars) to correlate the information given in a formula
with information already provided in the surrounding natural language text” (Jeschke, Natho,
& Wilke, 2007; Jeschke, Natho, Rittau, & Wilke, 2007). The authors suggest that “[u]sing this
approach should enableMARACHNA to integrate formulae and their informational content in
the network created by the analysis of the natural language text.”(ibid.) Unfortunately, there is
no specific information as to the use of Montague grammars to process mixed language and the
provided description is too vague to draw conclusions and let alone to compare the method with
our proposal.

Chomskian analysis of an example sentence is shown in (Natho, 2005).16 Unfortunately,
details of processing are not elaborated. A later approach uses TRALE (Müller, 1999), a Head-
Driven Phrase Structure Grammar (HPSG) parser for German. The TRALE parser “has been
extended by expanding the dictionary and grammar to includethe specifics of mathematical
language” (Jeschke, Natho, et al., 2008). The output provides a “comprehensive syntactic and
even some partial semantic information about each sentence.” Unfortunately, neither details on
the HPSG resources nor examples of lexical entries are provided. TRALE’s output “is trans-
formed into an abstract syntax tree, symbolizing the structure of the analyzed sentence”. Because
TRALE cannot process mathematical expressions, formulas and terms must be processed sep-
arately from natural language, however, neither processing complex mathematical expressions
nor interpretation of mathematical expressions within thesurrounding natural language context
has been implemented (Jeschke, Natho, et al., 2008). Jeschke, Wilke, et al. (2008) mention
that the symbols and equations (at this point unanalysed) are “tagged with an identity number,

15http://www.w3.org/MathML (see also the section on annotation languages below)
16“Durch Transformationen wird der Satz in seine Eizelbestandteile zerlegt, Phrasen ersetzt, und Verben um-

sortiert. Dadurch entstehen strukturierte Satzbausteine, die syntaktisch nach dem Chomsky-Modell analysiert werden
können.” (Natho, 2005, page 126)
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and treated like a noun in the NLP analysis”, that is, the sameway as in the approach based on
phrase-structure grammar (Grottke, Jeschke, Natho, Rittau, & Seiler, 2005).

The semantic analysis in the HPSG-based system “is implemented in the form of embed-
ded JavaScript interpreter” which categorises the syntax trees “according to typical structures
characteristic for specific mathematical entities and semantic constructs” (Jeschke, Natho, et al.,
2008). The categorised trees are subsequently transformedinto triple structures using “external
JavaScript rules [which] map typical mathematical language constructs onto the correspond-
ing basic mathematical concepts (e.g., proposition, assumption, definition of a term etc.)” The
triples are further annotated with the information about “the context within the original docu-
ment” and the information about the triples’ “classification within the context of the final OWL
documents . . . [that is] [f]or each element of the triples it has to be decided if they represent
OWL classes or individuals – complicating the semantic analysis.” (ibid.) Due to the general
vagueness of the descriptions it is hard to relate the approach to other approaches and to our
proposal.

1.3.4 Controlled (natural) languages for proofs

SAD (Verchinine et al., 2007), Naproche17 and MathNat (Humayoun & Raffalli, 2010) are ex-
amples of interactive proof construction systems based on controlled natural languages (CNL)
which allow users to enter proof steps using a language that is close to natural language. CNL-
based approaches assume that the vocabulary and the range ofsyntactic structures is a prede-
fined subset of a natural language. Semantic interpretationcan thus be restricted to processing
the specific constructions allowed by the CNL grammar. The above-mentioned CNLs, how-
ever, do not offer a lot of flexibility of linguistic expression, for instance, as far as embedding
symbolic mathematical expressions within natural language or using referring expressions are
concerned. Humayoun and Raffalli claim to resolve certain types of referring expressions within
their MathNat system, however, the reference phenomena addressed appear to be based on an
exemplary constructed discourses rather than on real data and they are of course restricted to
the scope of the predefined CNL. Therefore, it is not clear howwell the reference resolution
methods would perform on a larger scale.18 The Isar of the Isabelle/Isar framework, while not a
CNL, is a formal proof language designed for human readability (Wenzel, 2007). The MIZAR
language (Trybulec, 1978; Rudnicki, 1992) and the SAD’s ForTheL language (Vershinin &
Paskevich, 2000) were designed with the same motivation. While flexible in the sense that they
enable defining new language constructs which can be immediately used within the constructed
discourse, the price is that the discourses need to be self-contained, in that all the vocabulary –
the lexicon along with the lexemes’ semantic interpretations – needs to be formally specified in a
document. Since in this thesis we are interested in natural language proofs we will not elaborate
on controlled natural languages any further.

17http://www.naproche.net; Last accessed in May 2012
18Interestingly, MathNat is a successor of the DemoNat project (http://wiki.loria.fr/wiki/Demonat;

Last accessed in May 2012) which was intended to develop a natural language-based proof tutor for French.
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1.3.5 Proof annotation languages

In parallel to computational processing, manual annotation of proofs has been proposed as a
methodology for studying mathematical discourse or as partof semi-automated processing. Be-
cause manual annotation is not an approach that we can consider in a practical scenario of tutor-
ing we discuss markup languages for mathematics only brieflyfor the sake of completeness.

General languages for annotating mathematics Several markup languages for mathematical
documents have been developed for the purpose of displayingmathematics in web browsers or
in the context of the semantic web. MathML19 and OpenMath20 are markup languages for rep-
resenting the structure and semantics of mathematical notation. OMDoc21 (M. Kohlhase, 2006)
is a general semantics-oriented markup for mathematical knowledge which extends OpenMath
to entire mathematical discourses. The TEX/LATEX-based sTex22 markup, developed by the OM-
Doc’s author, enables semantic annotation of mathematics directly within LATEX documents.

Proof Markup Language ProofML (Schröder & Koepke, 2003) is a linguistically motivated
markup for proofs which focuses on sentence and discourse-level semantic phenomena in proofs,
such as their logical structure (for instance, the scope of the premises, consequents markup),
linguistic quantification devices (quantificational determiner, restrictor, and scope markup), dis-
tributive and collective readings of plurals, and ellipsis. While mathematical documents seman-
tically annotated at this level of detail would be extremelyvaluable for studying the relations be-
tween the linguistic and logical structure of proofs, we arenot aware of any ProofML-annotated
corpora (other than the three-sentence proof provided in the paper’s appendix).

MathLang The purpose of MathLang (Kamareddine & Wells, 2001, 2008) isto enable semi-
automatic computerisation of mathematics written in “common mathematical language” – the
language and style in which mathematicians routinely write– into any language ofany proof
checker. The assumption is that a scientist, while working on a mathematical paper, would
annotate his/her own document by explicitly identifying and labelling segments of text using
the MathLang markup. Unlike ProofML, MathLang distinguishes different levels – “aspects”
in the MathLang terminology – of annotation granularity: the Core Grammar aspect (CGa)
of a document, the Text and Symbol aspect (TSa), and the Document Rhetorical aspect (DRa)
which, from a computational linguistics point of view, together correspond to the following steps
of processing: grammatical analysis, analysis of symbolicmathematical expressions, lexical and
type semantic analysis, and discourse analysis. Here we only briefly outline certain peculiarities
of the CGa and the TSa aspects.

19http://www.w3.org/Math; Last accessed in May 2012
20http://www.openmath.org; Last accessed in May 2012
21http://www.omdoc.org; Last accessed in May 2012
22https://trac.kwarc.info/sTeX; Last accessed in May 2012
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Table 1.3: MathLang’s Core Grammar categories
Category Description Example

term a mathematical object “a+b”, “an additive identity 0”,
“
√

2”

set a collection of objects “N”

noun a family of objects which share common characteris-
tics

“ring”, “number”

adjective a modifier which constructs newnouns; for instance,
by refining old ones

“Abelian”, “even”

statement a unit which has a truth value, describe mathematical
properties

“a = a”, “ P lies betweenQ and
R”

declaration a unit which gives a signature to a newterm, set,
noun, adjective, or statement

“Addition is denoteda + b”

definition a unit which definies new symbols “A ring is . . . ”, “A numberp is
prime whenever . . . ”

context a unit which sets preliminaries prior to astep; for in-
stance, astatement, adeclaration or adefinition re-
stricted to a specific part of a document

“Given a ringR, . . . ”

step a statement, adeclaration or adefinition, a succes-
sion/sequence thereof (i.e. aphrase/block), or acon-
text

“We have . . . ”

The CGa is a kind of type system inspired by Weak Type Theory (Nederpelt & Kamareddine,
2001; Kamareddine & Nederpelt, 2004) and de Bruijn’s mathematical vernacular. Its markup,
shown in Table 1.3, is partly linguistically and partly domain-motivated and corresponds to the
annotation of grammatical categories and certain types of discourse segments in text. A CGa
analysis of an example sentence “There is an element0 in R such thata + 0 = a” is shown
below:23

There is an element0 in R such that a + 0 = a

Each colour-codedannotation boxis further annotated with semantics. The semantics of a
coloured box at the CGa level is indicated in the form of “interpretation attributes” which sym-
bolically represent the domain interpretation of the boxedtext fragment. For example, the blue
term boxes, an element0 and 0 , are tagged with an interpretation attribute0, the boxes

23Examples from (Kamareddine, Lamar, et al., 2007; Kamareddine, Maarek, et al., 2007; Kamareddine et al.,
n.d.).
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a + 0 and a + 0 = a are taggedplus andeq, respectively. A complete annotation of the
example looks as follows:

There is 0 an element0 in R R such that eq plus a a + 0 0 = a a

A text segment colour-coded in this manner can be subsequently rewritten in MathLang’s ab-
stract syntax (Kamareddine et al., 2006) by reading off the annotations:

{ 0 : R; eq ( plus ( a, 0 ), a ); };

The link between the “common mathematical language” and itsformal interpretation is es-
tablished by the TSa level and is facilitated, among others,by souringannotations which, unlike
the CGa categories, are somewhat less linguistically informed. Kamareddine, Lamar, et al.
(2007) observed that in mathematics the surface language does not always directly “match” the
intended domain interpretation. As an illustration of a simple phenomenon which motivated
souring, consider the well known convention of chaining equations:

0 + a0 = a0 = a(0 + 0) = a0 + a0

The obvious interpretation of such a construct is a conjunction in which some terms are dupli-
cated (or shared):

0 + a0 = a0 ∧ a0 = a(0 + 0) ∧ a(0 + 0) = a0 + a0

The purpose ofsouring is to recover the intended meaning, while preserving the imprecise sur-
face realisation in expressions such as above.24 In line with MathLang philosophy,souring is
a tagging task. “Sour bits” are added to the text by means of special type of boxed annota-
tions with a thick frame and a distinct colour. The authors claim thatsouring annotations of
re-ordering, sharing/chaining, andlist manipulationare required in order to handle phenomena
which, in linguistic terminology, can be identified as linearisation, aggregation, and certain types
of ellipsis in natural language and in the language of symbolic expressions.

The souring annotations with examples are illustrated in Table 1.4. A reordering transforma-
tion is performed in cases when the linear order of words or symbols in a text does not agree
with the order pre-defined in the formal language. As an example of this phenomenon Lemar
points out that the formal set membership notation and the linearisation of the prepositional
phrase with “in”, on the one hand, and, on the other hand, the order of arguments of the verb
“contain”, whose intended interpretation is that of set membership do not “match”: We write
and saya ∈ R and “a in R”, but “R containsa”. Thus, he notes, in the latter case the arguments

24The termsouring was invented by analogy with the notion ofsyntax sugaringin programming languages.
“Syntactic sugar” is added to programming languages in order to make their syntax easier to read and write for
humans. Here, the opposite is needed: For the purpose of computerisation and formalisation, the content which is not
realised on the surface must be restored. Therefore, one canthink of the common mathematical language as “sweet”
and of the formalisation language as “sour” (Kamareddine, Lamar, et al., 2007).
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Table 1.4: MathLangsouringtransformations

Phenomenon
MathLang

Boxed
Examplessouring

annotation
terminology

Linearisation Re-ordering position i
in position 2 R

R contains position 1 a
a

in a a R R

Aggregation Sharing/chainingshared

hook-loop
eq x x = shared y y eq = z z

and eq x = hook y eq loop = z

and eq x y eq y z

Ellipsis List manipu-
lation

map,
fold-right,
fold-left,
base, list

map Let list a a and b b belong to R a ringR

a R b R

fold-right forall for all list
a , b in R

base eq
a + b = b + a

forall a R forall b R eq a + b = b + a
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must be reordered so that the intended formal representation, in(a,R), can be obtained. To
this end, the clause “R containsa” is annotated withpositioninformation and this annotation is
used to transform it into a formal representation uniform toall the expressions with the intended
meaning of set membership.Sharedandloop-hooktags are used when a segment has to be du-
plicated. A typical example involves the previously mentioned chaining equations.Folding and
mappingannotations are used in list contexts to repeat a segment foreach element of a list when
the intended repetition was suppressed or elided. A typicalexample which requires this trans-
formation is quantification over multiple variables, that is, clauses such as “for allx, y, z, . . . ”
In the formal language the quantifier is recovered (“unfolded”) for each bound variable. This is
achieved by a transformation which repeats the appropriateannotated segment. While, addmit-
tedly, aggregation and ellipsis resolution do require thata discourse-level interpretation process
recovers the underlying semantics, for instance, by means of a coindexing mechanism, in a way
analogous to the effect of thesouring transformation, clearly, a linguistically informed gram-
mar and a principled syntax-semantics interface would enable analysis without the reordering
transformations.

1.4 Discussion

As the second part of this chapter shows, processing naturallanguage proofs has been an “on-
going research project” for decades. In fact, processing students’ natural language proofs had
been previously done on a large scale (at Stanford). Processing mathematical prose is not a new
direction in natural language processing either. So is the problem solved? Far from it. Although
several approaches to computational processing of mathematical discourse have been proposed,
it appears that most of the recent work on the natural language of mathematics has focused on
theoretical models (Fox, Ganesalingam) whereas the coverage of the implemented approaches
have been anecdotal. Baur and Zinn process only a small set ofsentences. Baur models 3
proofs; around 30 sentences in total, of which some have the same syntactic structure. Zinn
“[is] only aware of [his system] being able to completely process the two example construc-
tions in ch. 7.” (Zinn, 2004, page 199); 9 sentences.MARACHNA appears to exist as a proof
of concept implementation that demonstrates the feasibility of the approach “[f]or selected text
elements” (Jeschke, Natho, & Wilke, 2007; Jeschke, Natho, Rittau, & Wilke, 2007); the running
example of a definition of a group consists of 5 sentences. Thedescriptions ofMARACHNA are
too vague, therefore we are not convinced of the scalabilityof the approach.

Unlike Zinn’s approach which relies on a tight correspondence between the representations
produced by linguistic analysis and the representation used for reasoning, we argue that an ar-
chitecture for processing mathematical discourse and an interpretation strategy for processing
mathematical language should be designed in a modular fashion, rather than be coupled with a
prover, in order to be flexible enough to support the different application scenarios outlined in
the beginning of this chapter. In particular, the semantic representation should be independent
of the reasoner system’s input representation, so that the functionality is not bound to a specific
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deduction system. The interpreted linguistic meaning representation which we propose as the
semantic output representation does possess this property.

In practice, with the exception of Ranta’s GF, no reusable grammar resources for mathemati-
cal language appear to exist. We do not use GF for two reasons:First, we choose combinatory
categorial grammar because it is an expressive grammar formalism with a perspicuous syntax-
semantics interface, which enables modelling complex linguistic phenomena in a transparent
way (Steedman, 2000; Baldridge, 2002); for instance, complex coordination phenomena, no-
toriously difficult for grammar formalisms, or word order phenomena. Moreover, the parser
implementation which we use produces logical forms which can encode domain-independent
linguistic meaning, such as those we would like to obtain, interms of dependency semantics.
Our approach is related to Ranta’s in the sense that categorial grammar (CG) is also a kind of
type system. However, CG is a lexicalised grammar and, as we will show in Chapter 7, it pro-
vides good linguistic generalisations. Second, the concrete grammars in GF appear to exist for
a set of constructed examples. In this work, we wanted to model actually recurring phenomena
based on authentic linguistic data. To this end, we collected a corpus of students’ interactions
with a simulated system, in order to investigate language phenomena naturally occurring in this
discourse genre. The following chapter motivates the choice of data acquisition methodology
and outlines the setup of the data collection experiments.
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Corpus acquisition

This chapter summarises two corpus collection experimentsconducted in order to acquire au-
thentic data on pedagogical, mathematical, and linguisticaspects of proofs constructed by stu-
dents in naturalistic computer-mediated tutorial dialogue interactions. The first experiment was
the first, to our knowledge, medium-scale effort to collect empirical data on human-computer
tutorial dialogues on mathematical proofs, on the use of natural language in proof tutoring, and
on dialogue phenomena specific to such interactions. The proof exercises used in the first ex-
periment concerned naïve set theory. Building on the insights from the first experiment we
conducted another experiment on proofs in binary relations. In the second experiment, we were
interested in two issues: first, in the language production –in particular, factors that influence
the character of the language used by the subjects – and second, in the issue of proofs’ granular-
ity, or argumentative complexity, specifically, in the differences between granularity appropriate
from a pedagogical point of view and the kind of granularity required by automated deduction
systems. Before summarising the experiments and presenting the corpora, we discuss the moti-
vation for collecting new data, rather than using existing data – such as textbook proofs or proofs
extracted from scientific publications. After summarisingalternative dialogue research methods,
we motivate our choice of methodology, a system simulation.

2.1 Motivation

Proofs are central to doing and knowing mathematics and omnipresent in mathematical dis-
course. The language of informal proofs can be studied basedon the enormous body of printed
and electronic mathematical publications. In the introductory chapter, we already mentioned
Baur’s (1999) and Zinn’s (2004) work on computational processing of textbook proofs based on
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isolated examples from specific textbooks. Since we are motivated by the same ultimate goal –
automating the linguistic interpretation of proofs – a question arises whether our language pro-
cessing method could be based on the study of the same kind of data. Although this idea seems
rather attractive, mainly because of the ease of access to the research material, there are rea-
sons why textbook proofs alone should not guide the computational analysis when the aim is to
process (i) students’ proofs, (ii) constructed in a dialogue interaction, and (iii) with a computer.

Mathematical textbooks are written by expert mathematicians. The “writing styles” of experts
differ from the styles of novices in maths. They even differ among mathematicians themselves;
proofs of the same theorem presented by different authors may be entirely different even if the
underlying proof “idea” and proof structure are the same. Even the same mathematician might
produce different proofs depending on the audience to whom the proof is addressed:

[...] the style of writing need not be the same when you address yourself to an expert or to a beginner.
[...] For research monographs [...] allowing some looseness in the general organisation, the skipping
of a lot of proofs or comments which are trivial for experts, etc. On the contrary, when it comes
to textbooks aimed at beginners, I am entirely in agreement with Halmos regarding the necessity
of a very tight organisation, and I would even go beyond him with regard to the “dotting of the
i’s”; this may well be annoying to the cognoscenti, but sometimes it will prevent the student from
entertaining completely false ideas, simply because it hasnot been pointed out that they were absurd.

(Dieudonné in (Steenrod et al., 1981))

A common property that expert mathematicians’ proofs should share – aside from validity,
of course, which in the case of textbook proofs we take for granted – is that a proof should be
convincingfrom an argumentative point of view: it should be presented in such way and with
such level of detail that a reader to whom it is addressed can accept it as a proof of the given
proposition. Again, educational material, such as textbooks, requires special attention to detail:

[...] in research monograph a great many things may remain unsaid, since one expects the expert
reader to be able to fill in the gaps; one should, however, evenin that case, remember Littlewood’s ad-
vice: you may very often skip a single line of a proof, but never two consecutive ones. For textbooks,
on the contrary, [...] all the details must be filled with onlythe exception of the completely trivial ones.

(Dieudonné, ibid.)

By contrast, proofs produced by novices in a learning setting often differ from those pub-
lished in textbooks in that they are invalid (use invalid inferences or state false propositions),
incomplete, or otherwise inappropriate from a pedagogicalpoint of view, for instance, use in-
appropriate representations, omit necessary parts of argumentation, or contain formal inaccura-
cies (Selden & Selden, 2003). Proofs constructed in a dialogic tutoring interaction may moreover
contain discarded unsuccessful starts, false conjecturesand conclusions corrected in the course
of tutoring either by the student or the tutor, restarts, or changes of strategy. These kinds of
discourse disfluencies are typical of dialogue in a pedagogical setting and are not often found
in written narrative texts.1 Doing proofs in an interaction with a tutor has a character ofan
argumentative dialogue in which the learner has to provide arguments to show that, on the one
hand, a proposition in question holds or does not hold, and, on the other hand, that he has a deep

1Lakatos’Proofs and refutationsis of course a notable dialogic text.
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understanding of the mathematical objects involved, the relations among them, of the method
employed to find the proof, and of the theorem’s mathematicalimplications, rather than that
he can merely state a theorem or a definition. Thus, analysis of experts’ proofs, such as those
found in textbooks, would omit proof aspects typical of learner presentations and of dialogic
interaction. Textbook proofs can give a general idea of the expectations of the given textbook’s
author as to how rigorous students’ proofs should be. However, since our goal is to understand
and model students’ proofs, acorpusof such proofs is needed.

Interpretive studies into proving and problem solving use research designs that involve col-
lecting corpora on students’ proofs, problem solving, and interaction with tutors in the classroom
or in out-of-school controlled laboratory settings. Common designs in qualitative research in-
clude clinical methods, teaching experiments, and classroom research (Kelly & Lesh, 2000).
Data collection techniques include open-ended surveys, structured task-based interviews, stim-
ulated recall interviews, think-aloud problem solving protocols, field notes and video/audio-
taping of classroom activities (ibid.). Most studies involve interactions between students and
human tutors or between peer students. While some studies doreport on educational uses of
dedicated computer programs such as Computer Algebra Systems (Schneider, 2000; Heid &
Edwards, 2001), proof tutor systems (Suppes & Morningstar,1972; Suppes, 1981; Goldson et
al., 1993; Scheines & Sieg, 1994; Abel et al., 2001; Borak & Zalewska, 2007) or web-based
environments for learning mathematics, also for proof (Ravaglia, Alper, et al., 1999; Ravaglia,
Sommer, et al., 1999; Melis et al., 2001, 2006; Hendricks et al., 2010), at the time this project be-
gan there was no available data on dialogic, natural language interactions with tutoring systems
for proofs. Therefore, in order to learn about the characteristics of tutorial dialogues on proofs,
in particular, about the students’ use of natural language,we performed a series of controlled
experiments to collect data on proofs constructed in our target scenario.

In the reminder of this chapter, after discussing methodological considerations, we present
an overview of the data collection experiments. The experimental design and an overview of
the data collected in the first experiment were summarised previously in (Benzmüller et al.,
2003, 2003; Wolska, Vo, et al., 2004) and in the second experiment in (Benzmüller et al., 2006;
Benzmüller et al., 2006; Wolska & Kruijff-Korbayová, 2006a).

2.2 Methodological considerations

The choice of research methodology adopted to investigate the structure and properties of dis-
course, depends, among others, on the availability of priordata in the area of interest and on the
ultimate research setting: theoretical (foundations) vs.applied (practical). Early foundational
studies in pragmatics and conversation analysis, such as those of Austin, Searle, and Grice,
whose goal was to construct theoretical models of human communication, were predominantly
based on introspection or on studies of human–human dialogues. In applied research on dialogue
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systems, the adopted methodology should facilitate computational modelling and identification
of requirements on the functionality of the systems’ subcomponents. Functional and technical
requirements can be determined using several methodologies, including studying similar sys-
tems through literature research, analysis of existing data, conducting user interviews to elicit
knowledge on the domain and task, by field-study observations of humans performing the task in
question, by rapid prototyping, or partial and full-scale simulations (McTear, 2004). In dialogue
systems design, two of the most commonly employed methods are analysis of large collections
of (transcribed) human-human dialogues and system simulations.

The motivation for choosing the research methodology in this project was two-fold: First, the
goal was to obtain a corpus of students’ dialogues on proofs.Second, it was to identify function-
ality requirements for subcomponents of a prototype system, based on the analysis the collected
data. Especially relevant for the work presented in this thesis were the requirements on the input
interpretation module. Below we briefly discuss frequentlyapplied research methodologies, and
then present the general design of a Wizard-of-Oz study, theexperimental paradigm we adopted.

Related corpora As the fields of speech and dialogue research mature and dialogue systems,
in particular, spoken dialogue systems, slowly become commercial reality rather than purely
academic research (Dahl, 2004; McTear, 2004) corpora collected in large academic projects
become available to the dialogue research community through organised initiatives, such as
the LDC or SIGdial.2 Similarly, as deployed Intelligent Tutoring Systems actually enter class-
rooms (J. Anderson et al., 1995; Koedinger et al., 1997; Vanlehen et al., 2005), samples of
interactions become available. However, most existing tutorial dialogue corpora, do not concern
formal domains such as ours. Notable exceptions are the datarelated to Ms. Lindquist (Heffer-
nan et al., 2004), PACT (Popescu & Koedinger, 2000), and AGT (Matsuda & Vanlehen, 2005),
but the interfaces of those systems support prescripted menu-based user input or short sentence
natural language responses, thus the interactions with those systems do not represent the kind of
flexibility in the use of natural language and dialogue that we aim at.3

Analysis of human–human interaction Study of human–human interaction is an established
methodology in dialogue research which has been employed toinform theoretical modelling
and computational implementation of discourse and dialogue processes; see (Grosz, 1978; Re-
ichman, 1985; Clark, 1996) to mention just a few. Non-interventionist research, such as obser-
vation of student-teacher interactions in a naturalistic classroom setting or field studies of human

2Seehttp://www.ldc.org, http://www.sigdial.org; Last accessed in May 2012
3A corpus of learner interactions with an ITS for teaching calculus has been collected within the LEACTIVE-

MATH project (http://www.leactivemath.org; Last accessed in May 2012). However, the LEACTIVE-
MATH corpus is not publicly available. DemoNat (http://wiki.loria.fr/wiki/Demonat; Last accessed
in May 2012) is another project on automated natural language tutoring of proofs. A sample of French dialogues
obtained in simulated interactions has become available, however, the corpus is too small to make generalisations as
to the properties of the discourse and, especially, as to what language phenomena occurring in French would also
occur in other languages.
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tutoring, is also commonly employed in the mathematics education community (Kelly & Lesh,
2000). When specific research questions are asked, controlled experiments, for instance, one-to-
one semi-structured clinical interviews (Ginsburg, 1981), are conducted. Data analysis in those
settings is based on transcripts of audio- and/or videotaperecordings of student talk (with or
without a teacher), debriefing questionnaires, and/or post-experiment personal interviews with
the subjects conducted by the experimenter. Observations of human tutoring have also been
used in Intelligent Tutoring Systems research to identify those characteristics of human tutor-
ing that make tutor-assisted instruction produce a larger difference in the learning gains than
classroom instruction (Bloom, 1984) and to investigate theweaknesses and limitations of the
state-of-the-art automated tutoring; see, for instance, (Merrill et al., 1992; Aleven & Koedinger,
2000; Heffernan & Koedinger, 2000; Person & Graesser, 2003).

While studying human tutoring in complex problem-solving tasks, such as mathematical
proofs, is interesting in itself, empirical evidence indicates that humans behave differently when
they interact with other humans then when they interact withmachines (Richards & Underwood,
1984; Morel, 1989; N. Fraser & Gilbert, 1991; Dahlbäck et al., 1993; Yankelovich et al., 1995;
Bernsen et al., 1998; Pirker et al., 1999; Shechtman & Horowitz, 2003). Most of the studies
cited here concern spoken dialogue. Richards and Underwood(1984) and Morel (1989), for
instance, found that, aside from speaking more slowly and clearly, in man-machine interaction
humans use a more restricted language, both in terms of syntax and vocabulary, ask fewer ques-
tions, and avoid complex or potentially ambiguous anaphoric references. In a study on tutoring,
Rosé and Torrey (2005) found that students contribute more self-explanation if they believe that
they are interacting with a human than when they believe thatthey are interacting with a com-
puter. Users also “align” with the system in terms of linguistic style; this phenomenon has been
exploited in attempts to shape (or to a certain extent control) users’ input (Leiser, 1989; Ringle
& Halstead-Nussloch, 1989; Zoltan-Ford, 1991; Brennan & Ohaeri, 1994; Tomko & Rosenfeld,
2004). Thus, when performing experiments which involve unrestricted human-human interac-
tions one has to bare in mind that the complexity of the obtained data might be greater, possibly
even beyond the scope of a realistic computer-based scenario, than in an experiment in the target
scenario involving a machine. This may in turn lead to specification of misconceived unrealistic
functionality requirements and it may be difficult to formulate conclusions on how a correspond-
ing man–machine interaction might look.

Rapid prototyping Rapid prototyping (McTear, 2004; Dahl, 2004) is a methodology typically
employed in commercial systems if the task complexity (and the dialogue) allow the designers
to build system’s subcomponents quickly by anticipating possible target interactions or by in-
terviewing the prospective users about their expectations. A prototype system is an autonomous
application which includes the core of the domain-relevantprocessing, which, however, may not
have the full functionality of the final system; for example,the range of accepted user utterances
or the linguistic variation in the generated output may be limited. Such a limited-functionality
system may then be used in pilot usability tests to inform further development. Because of
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the complexity of our target task and the fact that little data exists on dialogue-based computer
tutoring of proofs, early prototyping was not considered asa methodology to be adopted.

Partial and full-scale simulations When the complexity of the task scenario is considerable
and there is no existing system with the anticipated functionality, a simulation may be conducted
in order to collect data on how humans interact in the scenario in question. Aside from giving
insight into the language phenomena and interaction patterns, analysis of the obtained data can
serve to lay out functionality requirements for the system’s subcomponents. Simulation meth-
ods, presently often referred to asWizard-of-Oz experiments, have been long employed in the
human factors research, experimental psychology, usability engineering, and also dialogue sys-
tems (Gould et al., 1983; Kelley, 1984).4

The idea of a Wizard-of-Oz (WOz) experiment is that a human (the wizard) simulates the
role of a hypothetical intelligent application in a laboratory setting by providing the system’s
responses to the experiment participants (the subjects/users). In the case of spoken interaction,
the wizard, for instance, types responses on the keyboard and voice output is synthesised by
a text-to-speech system. The subjects and the wizard are physically separated during the ex-
periment to exclude communication outside the mediation interface. The experiment may be
conducted with the subjects’ prior knowledge of the simulation, however, in order to elicit natu-
ral behaviour, participants are often made to believe that they are interacting with a computer.5

The decisive factors in adopting the WOz methodology for ourstudies were the following:

Authenticity of data The collected data is a believable sample of interactions inthe
target scenario in that the “human factor” causing differences between human interactions
with humans and machines is removed.

Affordability Building a simulation environment is typically easier and less costly than
building a fully-fledged application or even a prototype. Simulation environments created
in previous projects might be reused provided that the new setting is sufficiently similar to
the one for which the original tool was developed and that thetool fulfils the requirements
of the user interface in the new setting.6

Iterative design Kelley (1984) and later N. Fraser and Gilbert (1991) proposed a WOz-
based multi-stage methodology of principled, empirically-grounded iterative development
of complex applications which comprises six steps of systemdevelopment:

4“Wizard-of-Oz” is an obvious reference to a character in the1900 children’s storyThe Wonderful Wizard of
Oz by Baum, in which Oz, the terrible ruler of the Emerald City, turns out to be a marionette operated by a little
old man behind a screen who pulls at strings to make the puppet’s eyes and mouth open. The term was coined
by Kelley. Another term he used wasOZ ParadigmandOZ stood for “Offline Zero”, a reference to the fact that
the wizard interprets the input and responds in real time (see http://musicman.net; Last accessed in May
2012). PNAMBIC (Pay No Attention to the Man Behind the Curtain) is another early name of the technique (N.
Fraser & Gilbert, 1991).

5For ethical reasons, the deceit should be disclosed to the subjects during debriefing after the experiment.
6For each of our experiments, new dedicated simulation toolsenabling alternative methods for mathematical

formula entry have been built; for the motivation, see (Firdler et al., 2004; Benzmüller et al., 2006).
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1. Task analysis The structure of the task is investigated;
2. Deep structure developmentData access functions for the wizard are developed;
3. First run of WOz (simulation)The system is fully simulated by the wizard;
4. First-approximation processor The corpus from the simulation phase is analysed

and the first approximation of the input understanding subcomponent is developed;
5. Second run of WOz (intervention)The system is partly simulated. The component

developed in step 4. is integrated into the simulation environment and the wizard
simulates the remaining parts of the system or intervenes, when necessary, to keep
the dialogue flowing (partial simulation);

6. Cross-validationFinal application testing.

Steps 4., 5 and 6. can be repeated in a cycle an arbitrary number of times.7 In the process
of successive iterations, the initial prototype is gradually refined and the application takes
over the functions simulated by the wizard. Thus, partial simulations provide a way of
empirically validating various aspects of the interactionmodel before its final validation
in experimental usability trials of an implemented autonomous system.

User-centred empirical approach The main purpose of a WOz experiment is for re-
searchers to observe the users’ behaviour during interaction with the anticipated system
and to evaluate the use and effectiveness of its interface, rather than the overall quality of
the entire system. In this sense, the method is by design user-centred.

Support of exploratory research The WOz paradigm lends itself to purely exploratory
research: general studies of human–computer interaction can be carried out using this
methodology without a commitment to application development.

Since Gould et al. and Kelley, the WOz technique has been applied in a variety of settings
and tasks and to address diverse research questions, also in(tutorial) dialogue systems research.
Given the complexity of the tutoring domain and the benefits of an empirical design, we consid-
ered the WOz paradigm an appropriate methodology to achieveour initial goal of data collection.
Two points about the WOz methodology have to be kept in mind though. A major problem in
a real-time simulation involving a human substituting for amachine is the significant cognitive
load on the experimenter and the wizard. The wizard must perform the following tasks in the
shortest possible time while preserving consistency of responses and avoiding erroneous trans-
missions to the user: (1) intercept the input (this may involve just listening to the transmitted
audio or reading text on a screen, but also, in the case of multi-modal input, pointing gestures
and graphical events), (2) interpret it, (3) perform the problem-solving task (this may involve
accessing information from a database or performing reasoning related to the current task state),
and (4) generate a response. It is clear that the wizard’s task is demanding and that flawless
behaviour borders on impossible. Not surprisingly, a recurring observation reported in studies
involving the WOz scenario is that the users found the simulated system slow. This is because

7N. Fraser and Gilbert’s cycle is in essence the same: thesecond or subsequent experimental phasescollapses this
loop into one step; thepre-experimental phasecorresponds to steps 1. and 2., thefirst experimental phaseto step 3.
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wizards tend to pay attention to task-level precision and the quality of the output at the sacrifice
of response-time. Some of the cognitive load can be relievedby using a setup with an interface in
which the wizard’s GUI contains menus of precompiled responses (Dahlbäck & Jönsson, 1989)
or by using a multi-wizard setup (Francony et al., 1992; Amalberti & Valot, 1993).8

The second issue that should be kept in mind is that unrestricted simulation, that is, one in
which the subjects’ and the wizards’ behaviour isnot intentionally constrained, be it by limiting
the design of the interface (to make it reflect arealistic system’simplementation) or by imposing
interaction protocols (to shape the interaction to correspond to arealistic system’scapabilities;
in our case, computationally plausible semantic analysis,tutorial dialogue modelling, language
generation, and reasoning), produces data which correspond to anidealised system, one with all
the processing capacities of a human. To remedy this, the experimental setup can be designed
in such way that it limits the interaction in certain aspects, so that it corresponds more closely to
the anticipated realistic system. The design decisions we made are summarised below.

2.3 Experimental setup

The basic philosophy underlying iterative incremental methodologies is to start simple and to
increase complexity in sequential iterations. Our experimental design decisions reflect this phi-
losophy in that in the technical aspects of the design we favour the simpler over the more com-
plex. The aspect of the interaction which we left unrestricted was the use of language. Below
we briefly discuss ways of shaping human-computer interaction, specifically, in the domain of
mathematics (the interaction modality, constraints on thecommunication language, and the user
interface for mathematical notation) and motivate the choice of the manipulated variables.

Mode of interaction In most real-life situations tutors communicate with students using spo-
ken language. This is certainly true of one-on-one tutoring. At schools and universities, written
communication is used in exams, homeworks, and nowadays also in student-tutor email ex-
changes. (An exception is remote schooling, where written communication may be used more
often than in the typical scenario.) Mathematics is a special science in that in principle it can
be communicated using its language of symbols, mathematical notation, alone. The informal
language of mathematics consists of a mixture of natural language and symbolic notation.9 Typ-
ically, in one-on-one tutoring, knowledge and explanations are conveyed with speech, while
writing serves those situations where visualisation or formality are needed. Thus, we need
both languages to explain maths: justify the inferences in wordsand express mathematical facts
(proof steps) either with words or formulas. The question iswhether we should speak or type.

8Due to the difficulty that our tutors experienced in mentallyprocessing long formulas under stress, in the second
experiment, we modified the experimental setup in order to make it possible for the tutors to start processing the
subjects’ input before it was submitted. We will return to this when we discuss the second experiment in Section 2.6.

9Mathematical language will be discussed in more detail in Chapter 3.
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Speech is the most natural form of human communication. It isalso the preferred modality
in computer-mediated task-oriented dialogues (Rudnicky,1994; Allen et al., 1996). However,
textual interaction has the advantage of easy access to the prior discourse history (Herring, 1999;
Gergle et al., 2004), which is relevant in tutorial dialogues as it helps the student keep track of
what he has learnt and which tasks he has solved. While there are a few spoken tutoring systems
(Mostow & Aist, 2001; Schultz et al., 2003; D. J. Litman & Silliman, 2004), to date the majority
of dialogue-based tutors operate in typewritten mode (Rosé& Freedman, 2000; Heffernan &
Koedinger, 2002; Zinn et al., 2002; Michael et al., 2003).

Speech may be a preference from the point of view of the users because it is faster to produce,
but speech is certainly harder for a machine and, especiallywith mathematics as the domain,
adds complexity to the interface implementation. Whereas considerable progress has been made
in Optical Character Recognition toward recognising handwritten mathematical expressions10

and programs capable of speaking mathematical notation do exist,11 interfaces which enable
speech input for math or combining speech and writing are notcommon. Interestingly, the main
question is not whether the state-of-the-art automatic speech recognition (ASR) systems are in
general powerful enough to support recognition.12 The more fundamental question is: How
should we speak math. . . to a computer? Although seemingly trivial – since we “speak math”
whenever we talk about math – there is more to the question than it appears. The math we speak
is typically accompanied by symbolic notation; the relevant groupings are indicated by pauses
in speech and changes of speech tempo. However, there is no access to these features of speech
in off-the-shelf ASR systems.13 Moreover, if both spoken and written input is to be used, be it
typed on the keyboard or handwritten with a stylus, synchronisation becomes an issue.14

But is learning influenced in any way by the modality in the first place? There is no evidence
so far. In a study which compared human-human and human-computer spoken and typed tu-
torial dialogues D. J. Litman et al. (2004) found that while spoken dialogue is more effective
in that tasks are faster accomplished, the augmented, spoken interface brings no significant dif-
ference in the learning gain by comparison with typed input.Interestingly, speech recognition
errors do not negatively affect learning either (Pon-Barryet al., 2004; D. J. Litman et al., 2004).
Thus, the above-discussed issues, the lack of corpora of computer-based proof tutoring, and the
exploratory nature of our study make the simpler typewritten modality an obvious choice.

10Blostein and Grbavec (1997) give an overview; see also the InftyProject, its publications and references therein
(http://www.inftyproject.org; Last accessed in May 2012).

11Raman’s AsTeR system (1998) is probably best known; Design Science MathPlayer plug-in is another example.
12There is a caveat here: typically, interpretation grammarsin commercial ASR are finite-state. A mathematical

expression parser needs more expressive power because of recursive subexpression embedding (Fateman, 2006)
13Consider speaking a simple set expressionA∩ (B∪C). In English, you probably produce something along the

lines of “A intersection<pause> B union C”, with a marked pause after “intersection” and with“B union C” spoken
faster as one chunk of information. For an ASR system, one would probably have to produce something along the
lines of “A intersection open parenthesis B union C close parenthesis.”

14For further issues in combining speech and writing in interfaces for mathematics, for an answer to the question
of how we can andshouldspeak math, and a description of a system prototype, see (Fateman, 2006).Math Speak &
Write (Guy et al., 2004) and TalkMaths (Wigmore et al., 2010) are other examples experimental systems.
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Use of natural language Since our central research objective was to collect data on the use
of language inauthenticcomputer-mediated tutoring, that is, as it should be if a computer sys-
tem could have all the reasoning capacities of a human, the answer to the question whether to
introduce constraints on the input language is clear: neither the subjects nor the wizards should
be restricted in their use of language. In one experimental condition of the first experiment the
wizard followed a specific tutoring protocol which restricted his interaction and his use of lan-
guage. The language production of the subjects and the wizards was otherwise not constrained
in the other conditions and in the second experiment. Our goal was to find out how the partici-
pants cope with the need for natural language and mathematical expressions in proofs (given the
limitations of the typewritten setup and the lack of spoken communication) and what language
phenomena emerge as a consequence; for instance, whether the language turns out to be sim-
ple with little ambiguity, like in the experiments of Richards and Underwood (1984) or Morel
(1989), and if not, whether the resulting language would have suchcomplexityanddiversitythat
the coverage of a parsing grammar in a prototype system wouldbe poor.15

User interface for mathematical notation User interface design is one of the crucial elements
in achieving natural, efficient communication with a computer. Plausible options for the entry
of mathematical notation which do not involve speech, include: typing on a keyboard (math-
ematical expressions will typically have annotation or markup; as in LATEX), GUI buttons for
mathematical symbols, structured editors (as in EPGY TPE’sProofEd (McMath et al., 2001) or
MathsTiles (Billingsley & Robinson, 2007)), or – the most complex alternative – handwriting16.

The advantage of structured editors is that they provide templates for mathematical notational
constructs and can internally encode the information on their valid types making immediate val-
idation and diagnosis of semantic or syntactic errors possible. A structured editor area in a GUI,
however, explicitly separates the natural language from the mathematical symbolic language
while not guaranteeing that no mathematical notation will appear in the text entry area. LEAC-
TIVEMATH studies on tutoring calculus report on this issue (Callawayet al., 2006; Dzikovska
et al., 2006). Structure-rich markup languages, such as MathML17 or OpenMath18, which are
typically the internal representation in structured mathsnotation editors, are too complex to be
typed in by dialogue participants. LATEX, however, combines structured in-line markup and is
conceptually simple enough to be suitable for the tutoring setting, especially if the mathematical
domain does not involve excessively complex notational constructs. Therefore, while the user
interface implemented for the first experiment offered onlybuttons for entering mathematical
symbols, in the second study our interface enabled also LATEX-like entry of math.

15We attempt to answer these questions in Chapter 3 and in Chapter 4, respectively. In Chapter 7 we evaluate the
coverage of implemented parsing grammars in cross-validation experiments based on the collected corpora.

16FFES (Smithies et al., 2001), Infty (Fujimoto et al., 2003),JMathNotes (Tapia & Rojas, 2004), Web-
Math (Vuong et al., 2010), and Mathellan (Fujimoto & Watt, 2010) are examples of such interfaces; see (Zhang
& Fateman, 2003; Fateman, 2004) for a survey on user interfaces for mathematics.

17http://www.w3.org/Math (Last accessed in May 2012)
18http://www.openmath.org (Last accessed in May 2012)
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Experimental conditions The main goal of the experiments was to collect data on authentic
human-computer tutorial dialogues about mathematical proofs. Thus, with respect to the lan-
guage behaviour in dialogues in our setting, the experiments were of exploratory nature with the
general design facilitating collection of linguistic data. However, both experiments also manip-
ulated one variable related to different aspects of our scenario.

In the first experiment, the exploratory part of was focused on the natural language aspects of
the interaction. The experimental part concerned the pedagogical aspects: three tutoring styles –
minimal-feedback, didactic, and Socratic – were compared with respect to their effect on learn-
ing. In a completely randomised design, subjects were splitinto three groups and tutored by the
same tutor according three predesigned algorithms. The purpose of the manipulation was two-
fold: First, it was to test the effectiveness and completeness of hinting categories which had been
formalised for Socratic tutoring before the experiment. Second, it was to identify limitations of
the predesigned hinting algorithm and to propose improvements based on data analysis.

In the second experiment, we were interested in the factors that might influence language
styles in dialogues on proofs. Specifically, we wanted to findout whether students’ language
production would differ depending on the study material’s presentation form. The subjects were
thus randomly split into two groups and, before tutoring, provided with reading material pre-
sented in a formal or a verbose style. More details on this aspect of the second experiment
follow in Section 2.4.3 of this chapter. The analysis of language production the two conditions
will be presented in Section 4.3.2 of Chapter 4.

2.4 Overview of the experiments

The reminder of this chapter summarises the setup of the experiments and presents an overview
of the collected data. We start by summarising common aspects of the two experiments. Next,
we elaborate on the first and the second experiment and finally, we describe the corpora.

2.4.1 Common aspects

In both experiments the subjects were Saarland University students. With the exception of one
subject in the second experiment, they were native German speakers. The one non-native speaker
had been living in Germany for about 20 years and her German was assessed as of near-native
fluency; the dialogue data of this subject were included in the analyses. The subjects’ prior
knowledge in mathematics declared in pre-experiment interviews ranged from little to fair. All
the wizards (tutors) were native speakers of German with experience in teaching mathematics.

The subjects were solving proofs with a tutoring system simulated in a Wizard-of-Oz setup
described in Section 2.2. During the experiment the subjects and the wizard(s) were seated
in separate rooms connected through a voice channel, and with a one-way window between
the rooms. In case of technical problems unrelated to solving exercises, the subjects could
communicate with an experimenter via a microphone and speakers.
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An experiment session started with an introduction to the experiment by the experimenter who
informed the subject about the recording and logging setup,explained the procedures, handed
out the study material, and demonstrated the interface. Thestudy material was presented on
paper and included the domain background knowledge required to solve the exercises. It was
available to the subjects throughout the duration of the whole session. After the introduction,
the subjects filled out a background questionnaire and were allowed a study time.

The proof problems concerned fundamental mathematics. Thesubjects were not taught a par-
ticular proof, but were allowed to propose their own solution. The expectation was that the tutor
(wizard) would recognise the subject’s line of reasoning and guide the tutorial dialogue accord-
ingly. The subjects were instructed to enter proof-steps rather than complete proofs at once in
order to prompt dialogue. They were also asked to think aloudwhile solving the exercises. In
both experiments the subjects were audio- and video-recorded.

The subjects were interacting with the simulated system through a GUI which included a des-
ignated input entry area for composing messages to the system. The GUI included a button bar
with mathematical symbols and a read-only dialogue historyarea which displayed the previous
student and tutor turns. The subjects could enter their utterances using a keyboard (typing) or a
mouse (clicking on the mathematical symbol buttons). Before starting a session they were shown
the GUI’s functionality and allowed a short time to familiarise themselves with the interface.

The subjects were told that they were participating in an evaluation of an intelligent tutoring
system with conversational capabilities which could understand German and respond in German.
They were told that they could thus use both natural languageand mathematical notation while
solving the exercises. No restrictions on the form or style of the language were specified during
the introduction to the interface. Only in theminimal feedbackcondition of the first experiment
(see “Tutoring” in the Section 2.4.2 below), the wizard usedprecompiled text as responses.
In the other tutoring conditions and in the second experiment, the wizard was unconstrained in
formulating his turns. After the experiment session, the subjects filled out a survey questionnaire
and were informed about the simulation. Participation in the experiment was remunerated.

2.4.2 The first experiment

The setup of the first experiment was the following:

Persons A mathematics graduate with experience in teaching was hired to play the role of
the wizard. Before the experiment he was trained on the use ofthe interface and on the pre-
defined tutoring algorithms. In order to distribute the cognitive load involved in tutoring in the
WOz setup, twohelpers, the authors of the tutoring algorithms, assisted the wizard. The third
person involved was theexperimenterwho introduced the procedure, answered non-task-related
technical questions during the experiment, and debriefed the subjects after the experiment.

Subjects Twenty two subjects participated in the experiment. Their backgrounds were in
humanities or sciences. No prerequisites on completed coursework in mathematics were set as
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criteria for participation. Maths knowledge required for university admission was assumed.

Procedure An experiment session consisted of three phases. First, thesubjects were given
a pretest. Second, they interacted with the simulated tutoring system. Tutoring was performed
in one of the three tutoring conditions described below. Third, the subjects solved a posttest
exercise and were debriefed. A three-phase experiment session lasted about two hours.

User interface The graphical user interface developed for the first experiment consisted of
three areas: the button bar, the dialogue history, and the input line. The button bar contained
buttons with mathematical symbols relevant in the domain. The dialogue history displayed
the prior dialogue turns in a non-editable mode. The wizard’s interface, aside from the same
components, contained a larger main area in which the wizardselected the answer evaluation
categories (see “Tutoring” below) and hint categories to besaved in dialogue log files.

Domain and proof exercises The proofs in the first experiment concernednaïve set theory.
The main reasons for choosing this domain were that, first, naïve set theory is not too complex
and so fundamental that not a lot of background knowledge is required and, second, it has been
previously formalised for proof automation (Suppes & Sheehan, 1981; Benzmüller & Kohlhase,
1998; Ravaglia, Alper, et al., 1999; Benzmüller et al., 2001) and for simple problems within its
decidable fragment, wrong proof steps can be identified by a model generator by searching for
counterexamples (Benzmüller et al., 2001). In this respectnaïve set theory is a good domain of
choice for a prototype system. The following exercises wereused:19

Pre-test K(A) ∈ P (K(A ∩B))
Dry-run K((A ∪B) ∩ (C ∪D)) = (K(A) ∩K(B)) ∪ (K(C) ∩K(D)))
Powerset A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))
Complement If A ⊆ K(B), thenB ⊆ K(A)
Post-test K(A ∪B) ∈ P (K(A))

TheDry-run , Powerset, andComplementproofs were used during the tutoring session. The
easyDry-run proof was presented first and served as a warm-up exercise. The remaining two
proofs were presented in random order. A time limit of 30 minutes per exercise was imposed.

Study material The subjects were given a study material which included mathematical knowl-
edge needed for solving the proof tasks: an introduction to naïve set theory, the definitions of
concepts, theorems and lemmata. The was no limit on the studytime.

Tutoring The tutoring strategy was the manipulated variable in the first study. The sub-
jects were split into three groups and randomly assigned to one of the three tutoring conditions:
minimal feedback, didactic, andSocratic. In the minimal feedbackcondition (control group),
the tutor used standardised phrasing to inform the student only of the correctness and com-

19K stands for set complement andP for powerset.
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pleteness of his proof step. The prescripted phrasing was “Das ist richtig/nicht richig” (This
is correct/incorrect) and “Das ist unvollständig oder nicht ganz korrekt” (This is incomplete or
inaccurate). The tutor did not answer students’ questions; the response to all questions was
phrased “Das kann ich nicht beantworten” (I cannot answer this). In the didactic condition,
the tutor disclosed the next correct step to the student whenever the student would stop mak-
ing progress or explicitly request help. The tutor answeredstudents’ questions. In theSocratic
condition, the tutor executed a predesigned hinting algorithm to help the student discover the
solution by guiding him toward it. The tutor was supported bythe helpers, the authors of the
Socratic algorithm, in deciding which hint should be realised. The surface realisation of the
given hint was left to the tutor. The null hypothesis was thatthe students’ performance in the
three conditions would not differ statistically. Performance was measured based on scoring the
pretest and posttest performance and, unexpectedly, confirmed the hypothesis.20

The tutor’s responsibilities included the following tasks: (i) evaluating the student’s proof-step
in one of the following answer categories:CORRECT, INCOMPLETE ACCURATE, COMPLETE

PARTIALLY ACCURATE, INCOMPLETE PARTIALLY ACCURATE, andWRONG; the assigned cat-
egory was saved in the session log file together with the dialogue transcript, (ii) decide what
dialogue move to make next (for instance, inform about correctness status, give hints, etc.), and
(iii) verbalise it. At the end of each exercise, the tutor summarised the entire proof or, if the
student did not complete the proof, presented a valid proof to the student.

2.4.3 The second experiment

Persons Four tutors were invited to play the role of wizards in the experiment; the wizards
were effectively also subjects in the experiment: by observing multiple tutors we wanted to find
out whether acceptability of different proof-step sizes (granularity) varies between teachers. The
tutors’ background with respect to teaching mathematical proofs was the following:

Tutor 1 Senior lecturer from the Saarland University with several years of experience
in lecturing a courseFoundations of Mathematics

Tutor 2 Professional mathematics teacher, with a few years of teaching experience who
participated in our first experiment

Tutor 3 Recent Saarland University graduate with a degree in teaching mathematics
Tutor 4 Doctoral student from the Saarland University Institute ofTheoretical Mathe-

matics with several years of experience as a TA in various mathematics courses

Onehelperwas operating the audio and the video equipment, starting, stopping, and saving
recordings, and overseeing the technical side of the experiment in general. Twoexperimenters
took turns in taking the responsibility of communicating with the subjects. The experimenter
also decided on which exercises the subject should solve (see “Proof exercises” below).

20The pedagogical aspects of the experiment have been presented in more detail in: (Tsovaltzi et al., 2004; Tso-
valtzi, 2010).
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2.4 Overview of the experiments

Setting The subjects and the experiment team were seated in separaterooms. The wizards and
the experimenter could see the subject on television displays transmitting signal from a dome-
camera in the subject’s room. The subject’s computer was running screen capture software.
In the original setting the wizard could not see the screen capture feed. We thought this was
important as we did not want the wizard to be influenced by subjects’ false starts which were
not submitted to the system. In a realistic setting, an automated system would not have access
to this information either. However, already on the first dayof the experiment, it turned out that
the mathematical expressions produced by subjects were so complex that the response times of
the wizards became unacceptably long. Since the wizards knew that short response time was
important, under this stress condition there was more chance for the wizards to make mistakes
in evaluating subjects’ contributions. We therefore decided to transmit the screen capture feed
to an additional display for the wizards, so that they could start evaluating the expressions as the
subject typed. In come cases of extremely long formulas thisproved critical.21

Subjects Thirty seven students with different educational backgrounds participated. A pre-
requisite for participation was to have taken at least one university level mathematics course.

Procedure Before tutoring, the subjects were shown how to operate the system’s interface,
presented with the study material, and allowed twenty five minutes study time. Next, they in-
teracted with the simulated system. Finally, the subjects were debriefed and filled out a survey
questionnaire. A session lasted about two hours. Pretests and posttests were not administered
due to time constraints on the overall experiment duration.Conducting further experiments was
unfortunately impossible for logistic reasons. Lack of test data did not allow us to perform
more detailed analysis of the relation between the linguistic properties of students’ discourse
and learning; see, for instance, (Ward & Litman, 2006) for aninteresting study on cohesion.

User interface The interaction between the subject and the wizard was mediated by a chat en-
vironment built on top of a customised version of TEXmacs, a LATEX editor operating in thewhat
you see is what you getmode.22 The advantage of using TEXmacs is the availability of multi-
ple options for inserting mathematical expressions: LATEX commands (\cup for set union, etc.),
their German counterparts (\Vereinigung for set union, etc.) as well as traditional GUI but-
tons. The editor also supportscopy-pastefunctionality which enabled copying portions of text
from the prior dialogue. Dialogue history was displayed inread-onlymode. The available math-
ematical expression commands were printed on a handout. Before the session, the experimenter
instructed the subjects on using the GUI and showed the different input modes for formulas. The
subjects had a few minutes time to familiarise themselves with the GUI. The session log files
contain information on the mode in which mathematical expressions were inserted.

21We will return to the formula length problem in Chapter 4 (Section 4.3.2).
22http://www.texmacs.org; Last accessed in May 2012
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Domain and proof exercises The proof exercises were in the domain of binary relations.
Theorems and definitions in binary relations build on naïve set theory and the conceptual com-
plexity of the domain is comparable to naïve set theory. The reason for choosing a new domain
was, among others, to facilitate testing of the scalabilityof the input interpretation component.23

The subjects were asked to prove the following four theorems:

Let R, S, andT be binary relations on a setM .

Exercise W (R ◦ S)−1 = S−1 ◦R−1

Exercise A (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
Exercise B (R ∪ S) ◦ T = (T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1

Exercise C (R ∪ S) ◦ S = (S ◦ (S ∪ S)−1)−1

Exercise E AssumeR is asymmetric. IfR is not empty (i.e.R 6= ∅), thenR 6= R−1

ExercisesW, A, B, andC were selected in such way that once solved they may be used as
justifications in the subsequent proofs.C is a theorem ifS is symmetric, but not in the general
case. The subjects were expected to provide an argument for this. W was a warm-up exercise
andE was presented only to those subjects who had difficulties completing the initial exercise.

The subjects started with exerciseW and would normally follow withA, B, andC, in this
order. The experimenter was monitoring the subjects’ progress on a screen capture display. If
he noticed that a subject was struggling with the warm-up exercise, he could at any time ask the
subject to stop and move on toE. OnceW was completed or the subject was asked to proceed
to E, he could spend as much time on the exercise(s) as he needed. There was no time-limit on
the completion of individual exercises, however, sessionswas kept to about two hours.

Study material The content of the study material was adapted from (Bronstein & Semendja-
jew, 1991) and reviewed definitions and basic theorems in binary relations. Inspired by findings
on alignment effects observed in human-computer dialogues(see discussion in Section 2.2 on
page 45), we wanted to find out whether a similar effect would be induced by the presentation
style of the study material in computer-based tutoring. To this end, in one version material was
presented in aformalway, using mainly formulas. The other version included the same content,
but presented inverboseway which avoided formal notation and used natural languageinstead.
Figure 2.1 illustrates the difference in the presentation of the definition of the subset relation.

The subjects were randomly assigned to the formal study material (FM group) or the verbose
material (VM group) and given the corresponding handout. Subjects were also provided with an
example proof, shown in Figure 2.2, formulated in a mixture of natural language and formulas,
and allowed 25 minutes to revise. Our hypothesis was that thelanguage the subjects would use
to solve the exercises would reflect the study material’s presentation style, that is, the subjects
would “align” to the presentation format. This hypothesis was confirmed.24

23Results will be shown in Chapter 7.
24The analysis of the language production in the two conditions is discussed in Chapter 4.
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SindA,B Mengen und gilt∀x(x ∈ A ⇒
x ∈ B), so heißtA eineTeilmengevon B.
Man schreibt dafürA ⊆ B.

Sind A,B Mengen und gilt daß jedes El-
ement von A auch Element von B ist,
so heißtA eine Teilmengevon B. Man
schreibt dafürA ⊆ B.

(A andB are sets and∀x(x ∈ A ⇒ x ∈
B) holds, thenA is called a subset ofB.
We writeA ⊆ B.)

(If A and B are sets and every element of
A is also an element ofB, thenA is called
a subset ofB. We writeA ⊆ B.)

Figure 2.1: The definition of the subset relation in the formal (left) and verbose (right)
presentation in the second experiment.

Theorem
SeiR eine Relation in einer MengeM . Es gilt: R = (R−1)−1

Beweis
Eine Relation ist definiert als eine Menge von Paaren. Die obige Gleichheit ist demnach
eine Gleichung zwischen zwei Mengen. Mengengleichungen kann man nach dem Prinzip
der Extensionalitaet dadurch beweisen, dass man zeigt, dasjedes Element der ersten Menge
auch Element der zweiten Menge ist. Sei also(a, b) ein Paar inM ×M , dann ist zu zeigen
(a, b) ∈ R genau dann wenn(a, b) ∈ (R−1)−1. (a, b) ∈ (R−1)−1 gilt nach Definition der
Umkehrrelation genau dann wenn(b, a) ∈ R−1 und dies gilt nach erneuter Definition der
Umkehrrelation genau dann wenn(a, b) ∈ R, was zu zeigen war.

(Let R be a relation on a setM . It holds thatR = (R−1)−1 A relation is defined as a set
of pairs. The equation above expresses an equality between sets. Set equality can be proven
by The Principle of Extensionality. We show that every element of one set is also an element
of the other set. Let(a, b) be a pair inM ×M . We have to show that(a, b) ∈ R if and
only if (a, b) ∈ (R−1)−1. (a, b) ∈ (R−1)−1 holds by definition of the inverse relation if and
only if (b, a) ∈ R−1. This in turn holds by the definition of the inverse relation if and only if
(a, b) ∈ R, which was to be proven.)

Figure 2.2: Example proof from the second experiment
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Table 2.1: Number of subjects per tutor and study material condition in the second experiment

No. of subjects Row totalsTutor FM-group VM-group
Tutor 1 2 4 6
Tutor 2 8 2 10
Tutor 3 6 6 12
Tutor 4 4 5 9
Column totals 20 17 37

Tutoring The second experiment had two objectives: the first was to obtain more linguistic
data on proofs and to verify our hypothesis concerning language production. The second objec-
tive was to obtain data onpedagogically acceptable granularityof proofs in a tutoring setting.
By granularity we mean argumentative complexity, the levelof detail in proofs (the number of
gaps which have to be filled in). To this end, we asked the tutors to indicate explicitly their judg-
ments on granularity of every proof-step the students proposed. By analysing tutors’ granularity
judgments, we wanted to find out what characterises pedagogically acceptable and unacceptable
proof-steps, whether acceptability differs between tutors, and how the accepted granularity com-
pares with the level of detail required by automated deduction systems, specifically, theΩMEGA

system (Siekmann et al., 2003). These results can be used to build proof-step granularity models
to support deduction systems in reasoning at a human level.25

The tutors were presented with general guidelines onSocratic tutoring, but unlike in the
previous experiment, they were not provided with any tutoring algorithm. The tutors could
formulate their responses using natural language or formulas, or both. Like in the first exper-
iment, they were asked to annotate the students’ proof contributions with answer categories
along three dimensions: correctness (CORRECT/PARTIALLY CORRECT/INCORRECT), relevance
(RELEVANT/LIMITED RELEVANCE/NOT RELEVANT), and granularity (APPROPRIATE/TOO DE-
TAILED /TOO COARSE-GRAINED). The annotation was inserted during the tutoring session,how-
ever, it was not visible on the subject’s end of the interface. The tutors were also provided with
a headset microphone and asked to record a spoken commentaryon their responses. This gave
us a record of justifications of tutors’ decisions and their comments on the tutoring process.

Table 2.1 shows the number of subjects per tutor and study material presentation. The assign-
ment of study material format to subjects and of tutors to subjects was quasi-random; the tutors
did not know to which experimental condition a given subjectwas assigned.26

25Results of modelling proof step granularity based on our data have been presented in (Schiller et al., 2008).
26Due to subject dropout, distribution of subjects between the study material and tutors is not uniform. Data of a

couple of Tutor 2 VM subjects have been lost due to an error in the WOz software at the beginning of the experiment.
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Table 2.2: Basic descriptive information on the two corpora.

C-I C-II
(Set theory) (Binary relations)

Subjects/Sessions 22 37
No. Turns 775 1906
Mean No. turns per session (sd) 35 (12) 51 (19)
No. students’ turns (% No. turns) 332 (43%) 927 (49%)
Mean No. students’ turns per session (sd) 15 (6) 25 (10)
Mode No. of attempted proofs per subject 3 2

2.5 Overview of the corpora

The main output of the experiments are two corpora of human-computer tutorial dialogues on
mathematical proofs. The first corpus, C-I, comprises 22 dialogue session log files. Aside from
the students’ and tutor’s turns the log files include time-stamps for each turn, answer category
annotations for student turns, and hint category annotations for tutor turns. There are 775 turns
in total, of which 332 are student turns (43%) with 443 utterances.27 The second corpus, C-II,
comprises 37 log files with time-stamp information, annotations of the answer category assigned
by the wizards during tutoring, and the information on the mode in which mathematical symbols
were inserted recorded by the GUI. C-II consists of 1906 dialogue turns of which are 927 are
student turns (49%) with 1118 utterances. Table 2.2 summarises basic descriptive information
on the two corpora. Figures 2.3 and 2.4 at the end of this chapter show example dialogues from
C-I and C-II, respectively. In the figures and throughout this thesis, where relevant, student and
tutor turns are labelled “Sn” and “Tm”; m andn denote turn numbers. If it is clear from the
context that students’ language is meant, “S” labels are omitted.

2.6 Summary and conclusions

We presented two experiments conducted with the objective of collecting data on authentic
human-computer tutoring of mathematical proofs. In order to motivate the experiments, we first
discussed experts’ and learners’ proofs and pointed out differences between them. We briefly
outlined alternative sources of data in dialogue research and motivated the decision to conduct
data collection experiments, rather than refer to existingsources of data, such as textbooks, or
to available tutoring corpora. We also discussed the differences between human-human and
human-computer interactions which justified the decision for the human-computer, rather than
the human-human setup of the experiment. We presented a general overview of the simulation
methodology pursued and motivated the key design decisionstaken as to the mode of interaction,
the communication language, and the features of the interface.

The key lesson learnt from the experiments is that mathematics is a difficult domain for the
Wizard-of-Oz setup. First, mathematical proofs are demanding on the wizard. Given that the

27The criteria for utterance-boundary annotation will be presented in Chapter 4 (Section 4.2.1)
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response time is of major importance in a simulation, the wizard needs support in reconstructing
the students’ reasoning. In the first experiment, the wizard’s helpers were assisting in making
sure that the students’ utterances are correctly checked. In the second experiment, we found out
early on that the tutors had difficulties visually parsing long mathematical expressions produced
by the learners and consequently response times became slow. Some of the wizards voiced this
issue themselves. Therefore, we changed our original setupin the course of the experiment to
allow the wizards to see the subjects’ input as they typed by transmitting the screen capture
output in real-time to an additional computer monitor in thewizards’ room. It is interesting that
this mental overload in processing formulas was observed already in a relatively simple domain.
Certainly, one of the main problems was that the mathematical expressions which the students
produced were indeed of considerable length. Even simple formula prepreprocessing, such as
syntactic validation, would be helpful here. Perhaps in more complex domains, it would even
make sense to let the wizard listen on the subjects’ self-talk through an audio channel.

The second observation concerns the user interface. The TEXmacs interface, while certainly
more flexible and more convenient for the users than the simple GUI from the first experiment,
may have been the “culprit” that introduced the problem discussed in the previous paragraph.
Thecopy-pastemechanism turned out to be a mixed blessing: on the one hand, it was certainly
convenient for the users, but on the other hand, copying ad libitum from the dialogue history
made the input not only more prone to errors of sloppiness, but also unnecessarily complex. It
is not clear how to cope with this problem: sincecopy-pasteis currently standard in computer
programs, suppressing it in a tutoring system appears unnatural. An interim solution could be,
for instance, to highlight in some way the copy-pasted partsof the input for the wizard.

Our decision as to the mode of interaction, typewritten vs. spoken, was probably right. The
technical problems which we experienced during the experiments were easier to solve in this
simpler setup. Also, we have two corpora acquired in similarconditions (comparable), so the
language processing strategy we propose can be evaluated onboth sets of data. As we will show
in Chapter 4 the subjects’ language production strongly differs between the two corpora. We
believe that even the combined set of dialogues is not representative enough yet for building an
input understanding component of a deployable system at this point (see Chapter 4). While it
would be certainly interesting to see how speech and writingcould be built into a WOz experi-
ment on tutoring proofs, this would be a project in itself, outside of the scope of this work.

Finally, we reported on the setup of the experiments and gavea brief overview of the col-
lected corpora. A linguistic analysis of the dialogues revealed a variety of semantic phenomena
both in C-I and C-II. It is interesting that even though the second interface was better suited
for combining natural language and mathematical expressions, in the sense that formulas could
be composed by typing without switching between the keyboard and the mouse, C-I also con-
tains utterances in which natural language and formulas aretightly interleaved. The next chap-
ter, Chapter 3, presents the language of mathematics and mathematical proofs, and reviews the
language phenomena which we identified in the dialogues at a qualitative level. The following
chapter, Chapter 4, presents a quantitative analysis of thediversity of the students’ verbalisations
and the differences in the language production in the two conditions of the second experiment.
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T1: Bitte zeigen Sie:A ∩B ∈ P ((A ∪ C) ∩ (B ∪C)) !
(Please showA ∩B ∈ P ((A ∪ C) ∩ (B ∪ C)) !)

S1: (A ∪ C) ∩ (B ∪ C)) = C

T2: Das ist falsch. Nach der Distributivität gilt:(A ∪C) ∩ (B ∪C) = (A ∩B) ∪C. Somit gilt auch:
P ((A ∪ C) ∩ (B ∪ C)) = P ((A ∩B) ∪ C). Wie geht es nun weiter?
(This is wrong. By distributivity we have:(A∪C) ∩ (B ∪C) = (A∩B) ∪C. Therefore, we also
haveP ((A ∪ C) ∩ (B ∪ C)) = P ((A ∩B) ∪C). How to continue?)

S2: (A ∩B) muss inP ((A ∪ C) ∩ (B ∪ C)) sein, da(A ∩B) ∈ (A ∩B) ∪ C
((A ∩B) must be inP ((A ∪ C) ∩ (B ∪C)) since(A ∩B) ∈ (A ∩B) ∪ C)

T3: Was meinen Sie mit:(A ∩B) muss inP ((A ∪ C) ∩ (B ∪ C)) sein?
(What do you mean by:(A ∩B) must be inP ((A ∪ C) ∩ (B ∪ C))?)

S3: daP ((A ∪ C) ∩ (B ∪ C)) nach Distributivgesetz gleichP ((A ∩ B) ∪ C) ist muss(A ∩ B) in
P ((A ∪ C) ∩ (B ∪ C)) enthalten sein.
(sinceP ((A∪C)∩ (B ∪C)) equals by distibutivityP ((A ∩B)∪C) (A∩B) must be contained
in P ((A ∪ C) ∩ (B ∪ C)) )

T4: Was meinen Sie mit: muss(A∩B) in P ((A∪C)∩ (B ∪C)) enthalten sein. Meinen Sie Element
oder Teilmenge?
(What do you mean by:(A ∩ B) must be inP ((A ∪ C) ∩ (B ∪ C)). Do you mean as element or
subset?)

S4: (A ∩B) ∈ P ((A ∩B) ∪ C)

T5: Meinten Sie vorhin wirklich:(A ∩B) ∈ (A ∩B) ∪ C?
(Do you really mean(A ∩B) ∈ (A ∩B) ∪ C?)

S5: ja
(yes)

T6: Das ist falsch, denn(A ∩B) ⊆ (A ∩B) ∪C. (A ∩B) und(A ∩B) ∪ C sind Mengen und keine
Elemente voneinander. Was folgt als nächstes?
(This is wrong because(A ∩ B) ⊆ (A ∩ B) ∪ C. (A ∩ B) and (A ∩ B) ∪ C are sets and not
elements of each other. What follows next?)

. . .

Figure 2.3: Example dialogue from the set theory corpus (C-I).
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. . .

S9: (R ∪ S) ◦ T = {(a, b)|aRb ∧ aSb} ◦ T

T9: Das ist nicht richtig!
(That is not correct)

S10: = (R ∪ S) ◦ T = {(a, b)|aRb ∨ aSb} ◦ T

T10: Die Gleichheit zum vorigen Schritt ist nicht gegeben!
(The equality with the previous step does not hold)

. . .

S12: = {(a,b)| ∃ c(c ∈ M ∧ ((a,c)∈ {(a,b)|a R b } ∧ (c,b)∈ T )} ∪ {(a,b)| ∃ c(c ∈ M ∧ ((a,c)∈
{(a,b)|a S b }∧ (c,b)∈ T )}

T12: Ja, das ist richtig!
(Yes, that’s correct)

S13: Wollen zeigen (S◦ T) =(T −1 ◦ S−1 ) −1

(Want to show . . .)

T13: Ja. Sie koennen jedoch Ergebnisse von vorhergehenden Aufgaben benutzen.
(Yes. You can however use the results of the previous exercises.)

. . .

S17: Damit gilt: (T−1 ◦S−1 ) −1 ∪(T −1 ◦R −1 ) −1 = (S◦ T) ∪ (R ◦ T) =
(With that it holds . . .)

T17: Korrekt!
(Correct!)

S18: = (R◦ T) ∪ (S◦ T)

T18: Auch korrekt!
(Also correct!)

S19: Nach Aufgabe A ist dies (R∪S)◦T
(By exercise A this is . . .)

T19: Genau richtig!
(Exactly correct!)

S20: Damit folgt die Behauptung
(With that the statement follows)

T20: Gut! Vielen Dank! Druecken Sie nun den Knopf fuer die naechste Aufgabe!
(Good! Thank you! Press button for the next exercise!)

. . .

Figure 2.4: Example dialogue from the binary relations corpus (C-II).
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3
Language phenomena in proofs

In this chapter we discuss language phenomena in students’ proofs. The discussion is based on
the analysis of the corpora presented in Chapter 2, however,where relevant, we point out that
certain phenomena occur systematically both in mathematical prose and tutorial dialogue. We
show that the range of linguistic phenomena in dialogues includes those found in textbooks, but
also a range of phenomena specific to the dialogue setting. Language phenomena are classified
with respect to their lexical, syntactic, semantic, and context-dependent nature, and exemplified
with utterances from the corpora.

The presentation of language phenomena is preceded by an introduction in which mathe-
matical language is presented from two perspectives: as aspecial languageand as a language
acquired in parallel with mathematical understanding. We characterise the properties of special
languages, so-called sublanguages, to show that the language of mathematics can be considered
one and that certain phenomena we identify in our data are itsfeatures as a member of the class
and, as such, are likely to be found in other corpora of mathematical discourse as well.

Next, we refer to observations from cognitive science of mathematics in order to point at a
relation between the language used to communicate mathematics and the stage of mathematical
understanding. The model proposed by Tall, which we summarise, suggests that certain phenom-
ena in the students’ mathematical language – specifically,imprecision of linguistic expression
leading toambiguity– may recurbecausethey are linked to the level of understanding. Again,
this lets us conclude that certain linguistic phenomena in students’ language have a systematic
nature and prioritise modelling those phenomena in a discourse processing architecture.1

1The language of mathematics has been subject of analysis, motivated by goals similar to ours in the doctoral
dissertations of Zinn (2004), Natho (2005), and Ganesalingam (2009). We will sometimes refer to those works in
order to avoid repetition, however, certain overlap is unavoidable. The discussion of language phenomena presented
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3.1 Introduction

In the following two sections, we briefly present mathematical language from two perspectives:
as a sublanguage and as a language acquired in parallel with mathematical understanding. These
two views helpexplainsome of the phenomena observed in the corpora.

3.1.1 Mathematical language as a special language

Language is a type of code. Natural language is a code which enables communication of mean-
ings by means of words. From the perspective of its purpose asa means of communication, lan-
guage is a system consisting of a vocabulary and grammar rules that makes linguistic behaviour
possible. Asublanguage, or aspecial language, as opposed to thegeneral language, is a lan-
guage used by a particular community (social or professional, for instance) or used to talk about
specialised topics, a limited subject matter, for example,within a particular discipline (Harris,
1968; Sager, 1972; Hirschman & Sager, 1982; Grishman & Kittredge, 1986).

Sublanguages tend to diverge from the general language in that they are characterised by a
systematic recurrence of non-standard or even ungrammatical structures, stylistic patterns, high
frequency of certain constructions, conventionalised phrasings, by the use of specially created
terminological systems and special written notation whoseverbalisation may require adhering to
commonly agreed special rules (Kittredge & Lehrberger, 1982; Linebarger et al., 1984; Grish-
man & Kittredge, 1986). Typical examples of special languages are the language of law, with its
characteristic style and choice of wording, hardly comprehensible to the layman, the language of
medicine and pharmacology, with their Latin terminology and frequent use of abbreviations, or
the language of chemistry. The latter is particularly interesting in that it has developed different
code systems to refer to chemical elements and compounds, the first-class entities in the world of
chemistry; for example, referring to the substance commonly known aswaterwe can say or write
hydrogen monoxideusing a technical term (linguistic code), orH2O (symbolic code), or draw
a graphical representation of the compound’s structure (visual code). The formal language of
mathematics can be considered a special language which, much like the language of chemistry,
combines a subset of a natural language with a special kind ofwritten code whose vocabulary,
unlike that of natural language, does not consist of words (in the sense of words of English or
German), but solely of special symbols typically limited tonumbers, letters, multi-character ab-
breviations, and graphical signs, which can be combined according to prescribed rules to form
expressions of arbitrary complexity. This written symbolic code is a kind of conventionalised
notational system that makesrigorousandformal mathematics possible.

The mathematical language we know from school classes, university lectures, and textbooks
– the informal mathematical language – certainly does not consist of the symbolic language
alone. Especially while teaching and learning we do not use such a linguistically limited form of

in this chapter benefited from monographs and articles on mathematical discourse by Halmos (1970), Steenrod et
al. (1981), D. E. Knuth et al. (1989), and Bagchi and Wells (Bagchi & Wells, 1998; C. Wells, 2003, n.d.).
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expression to communicate mathematics. In fact, the symbolic notation often constitutes a seri-
ous cognitive barrier in understanding mathematical concepts (R. C. Moore, 1994; Dorier et al.,
2000; Booker, 2002; Downs & Mamona-Downs, 2005). The language we do use, ever since we
first encounter mathematics in preschool, is our mother-tongue. We start by informally talking
about mathematical objects in natural language in order to understand the concepts intuitively.
Gradually, we learn the mathematical terminology – the technical terms that name the concepts
– observe that certain common words from everyday vocabulary name mathematical notions,
acquiring “mathematical meaning”, and we adopt the new usage. At the same time, much like
learning a foreign language, we learn the new language of mathematical notation and combine
it with natural language. This process of learning the “mathematical language” is not a trivial
one, but the success in understanding mathematics has been shown to crucially depend, among
others, on the learner’s ability to master the ways of mathematical communication; Sfard (2000,
2001) views the process of learning mathematics as developing a special type of discourse.

Efficient communication of mathematics relies heavily on the interaction of the two lan-
guages: the natural language (linguistic code) and the language of mathematical notation (sym-
bolic code). The two languages can be thought of as twomodesof expression which can be not
only flexibly exchanged, but also interleaved. In this sense, informal mathematical language can
be considered “multi-modal”; the symbolic and natural language modes are integrated into the
syntax of the special language of mathematical discourse.

It is useful to realise in the context of mathematics tutoring that mathematical style and lan-
guage, in particular, the level of formality in expressing mathematical statements,evolvesas
learners develop deeper mathematical understanding. Tall(2004a) refers to the different stages
of mathematical cognitive development asthree worlds of mathematicsand explicitly points at
a relation between the stage of understanding in the course of learning and the properties of the
language used to communicate mathematics. In the next section we briefly review Tall’s theory.2

3.1.2 Learning mathematics and mathematical language

From the point of view of cognitive development, understanding (also mathematical) and cre-
ative thinking is crucially dependent on three basic human cognitive activities:perception, ac-
tion, and reflection(Skemp, 1971, 1979). Perception is concerned withobjectsand theirat-
tributes. Objects can be manipulated using acquiredaction schemaswhich, in turn, can them-
selves be perceived as objects (in the sense that they are mental units) and become subject of
thought processes. More sophisticated mental objects can be formed throughreflection on per-
ception and actions. This step-wise cognitive development model is based on thePiagetian
tripartite theory of abstraction: empirical (objects), pseudo-empirical (actions), and reflective
(actions and operations as objects of thought) (Piaget, 1985). Other stratified models of devel-

2Incidentally, though unintended, the structural ambiguity in the reading of “and” in the next section’s title is
actually appropriate: on the one hand, the theory points at adependency betweenlearning mathematicsand the
mathematical languageused at different stages of learning, on the other hand, it isconcerned both withlearning
mathematicsand withlearning mathematical language.
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opment are conceptually related in that they share the underlying common distinction between
the three stages of cognitive development: interaction with the environment (enactive stage),
mental representations and operations on them (iconic thinking), and abstract reasoning (sym-
bolic/formal thinking). In the context of mathematics, thenotion of a number, the construction
of natural numbers, and the extension of the notion of a number (cardinal numbers), for instance,
are based on abstraction and generalisation using sets (objects) and counting (action) and form
an axiomatic and definitional basis for formal proofs in domains in which numbers are objects.

Building on existing established theories of cognitive development, David Tall formulated
a theory of mathematical thinking in terms of (not necessarily sequential) transitions between
three “worlds” of mathematicswhich are distinct, but interrelated, and which reflect the tripar-
tite structure of cognitive development outlined above. Heclaims that the three “worlds” are
characterised by different mechanics and ways of operating, different forms of proof, and, most
interestingly in our context,different use of language.

Tall’s Three Worlds of Mathematics3 The conceptual-embodied orembodied worldis the
world of experiences with our physical and mental reality: our perceptions of things we sense
and interpret. Early conception of numbers and arithmeticsare largely set in the embodied world:
a single object is associated with the number one, a group consisting of one object and another
object, with the number two, etc. Early counting is also embodied. Through reflection and
development of language, we can envisage idealised concepts which do not exist in reality, for
instance, an infinite line that is perfectly straight and infinitely thin or non-euclidean geometries.

The second world, proceptual-symbolic orproceptual world, is the world of symbols used for
calculations. Their crucial property is their dual role: that of denotingprocesses or actionsand
concepts. For instance, the notation1 + 1 represents both the process of addition (counting)
and the concept of a sum (an action encapsulated in a concept representing the result of count-
ing).4 Within the proceptual world we move to more involved number concepts: from fractions
and negative numbers through rational and irrational numbers to complex numbers. Complex
numbers and operations on them are examples of evidence thatsymbol manipulation can be per-
formed without any reference to the embodied world. They canbe, however, also represented
as points in a plane, giving them an embodied interpretation. An abstraction of the notion of
mathematical operation leads also to more sophisticated general concepts, such as limits.

The third world, the formal-axiomatic orformal world, is the world of formal definitions that
specify properties of mathematical structures (for instance, groups, fields, vector and topologi-
cal spaces) using formalised axioms. There are no embodied representations in this world, only
formal symbolic representations. New objects can be definedusing existing axiomatic defini-
tions and their properties can be deduced in formal proofs through which new theorems can be
established, thus building new coherent formal theories.

The embodied world, inhabited by objects and actions on them, is thus linked to the basic

3The following two subsections summarise the main ideas presented in (Tall, 2004b) and (Tall, 2004a)
4This dual nature of mathematical symbolism is also discussed by Sfard (1991).
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activity of perception. The proceptual world with actions on objects, reflections on these actions
and their symbolic representations (which, in turn, are also objects that can be processed) is
linked to the basic (cognitive) activity of performing an action. Finally, the formal world of
axioms can be linked to the activity of reflection upon the properties and relationships between
the objects in the embodied and the proceptual worlds. Tall points not only at the fact that the
three worlds reflect the different ways of understanding mathematics, but also at the fact that
language operates differently in each of these worlds.

The language in the Three Worlds of Mathematics In the embodied world the use of lan-
guage starts with references to everyday world experienceswith mathematical objects. Once
basic categories ofobjects are named(“point”, “line”, “circle”, “square”, and “triangle”) their
properties are described: for instance, squares and triangles “have sides”; squaresare “four-
sided figures with all sides equal and (at least) one right angle”, and so on. Moreover, similar
or related objects can be prescribed: a “four-sided figure with opposite sides equal and (at least)
one right angle” is a “rectangle”. With such descriptive definitions focusing on properties of
objects a learner can build first complex object hierarchies; squares are special kind of rect-
angles, for instance. In the embodied worldthe language is mainly used as a descriptive and
prescriptive tool. The linguistic devices include (complex) noun phrases that name concepts,
property-naming adjectives, adverbs that further qualifyproperties, and basic common verbs
(such as “is,” “has,” “contains”) to talk about relations between the objects.

The action-based proceptual world needs language which cantalk about actions(processes
or algorithms, for instance) and which includes derived or related lexical forms totalk about
objects that correspond to the actions. For the process of counting we need ordinal and cardinal
numbers, for summation or adding, we need the notion of a sum,etc. The conscious use of the
flexibility of language to name processes and concepts represented symbolically and the realisa-
tion that symbols denote both processes and concepts is a major factor in mathematical compre-
hension, in particular, in developing calculating and symbol manipulation skills. An additional
function of language in the procept world isto narrateor report on the conducted operations(for
instance, in the form of a self-talk or an internal monologue), to specify operations that need to
be performed, andto manage progress(by asking questions, stating completion of calculations,
etc.) The main function of the processes is to perform calculations, whilethe main function of
the language is to perform speech acts that correspond to thecalculations; hence the use of
“action” verbs, performative speech acts and the imperative mood in the internal monologue.

The formal world usestechnical language. The technical language is based on everyday
language, however, if everyday words are used, they are usedin a precisely defined technical
sense: afield is not a kind of area, the wordset is not synonymous withgroup, an identity
does not care about its psychological identification,group theoryis not another name for the
theory of the crowd, and azero idealis not an oxymoron. Aside from common words with
new technical meaning, the formal language usestechnical terminologyinvented specifically
for the given mathematical domain or reserved for technicaluse; in the “real world,” it would
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sound rather odd to remark casually about a woman: “I like herdeep brown eyes and the gentle
ellipsoid of her face.” Finally, the formal world, is the world of symbolic language. Definitions,
theorems, and proofs in the formal world refer to axioms unambiguously expressed in a formal
notation. Here,the language is a means of formalisation.A peculiar characteristic of the formal
world is that the structures defined in terms of axiomatic properties do not at all need to have
corresponding embodied counterparts.

The point of the this somewhat lengthy introduction to the chapter was to show that because
of the nature of mathematical language as a special languageand given the type of user we have
in mind, a mathematicslearner, a lot of the phenomena we will describe can be considered uni-
versally characteristic of our setting. Tall’s theory, in particular his observations on the students’
language, explain some of the phenomena in our mathematicaldialogues: the use of impre-
cise language to express mathematical concepts (discussedin Section 3.2.2.4), the use of cer-
tain types of anaphora in referring to objects expressed in symbolic language (Section 3.2.2.5),
verbalisation of symbolic expressions (Section 3.2.1.2),or the action verbs “narrating” proof
construction (Section 3.2.2.4). Moreover, and most importantly, they point at the fact that these
properties of the language (its imprecision, recurrence ofcertain reference phenomena, the oc-
currence of action verbs) are an inherent part of (students’) verbal expression in mathematics.
Thus, the phenomena we discuss in the next section, in particular, those characteristic of infor-
mal language, are not specific to our corpora alone, but rather can be expected to be found in
other corpora of students’ mathematical language as well.

3.2 The language of mathematical proofs

Natural language can be considered inherently unsuitable for mathematics because its interpre-
tation is strongly context-dependent and because of its notorious main flaws: imprecision and
vagueness, which tend to lead to ambiguities in interpretation. Yet, in spite of these “imperfec-
tions”, natural language was for a long time the sole medium for communicating mathematics.

Before symbolism was introduced in the sixteenth century, all of mathematics was done in
ordinary language. In early algebra, solutions to what we know today as polynomial equa-
tions were presented as worded rules in Arabic. In hisShort book of al-jabr and al-muq̄abala,
al-Khwārizm̄ı, an eighth century Persian mathematician, considered quadratic equation prob-
lems formulated as follows:

Property and ten things equals thirty-nine

(x2 + 10x− 39 = 0 in today’s notation) and presented solutions in the following way:

Take the half of the number of things, that is five, and multiply it by itself,
you obtain twenty-five. Add this to thirty-nine, you get sixty-four. Take the
square root, or eight, and subtract from it one half of the number of things,
which is five. The result, three, is the thing. (Kvasz, 2006, page 292)
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In the sixteenth century, Cardano still worked with worded equations (cubus and thing equal
numberfor x3 + bx − c = 0; ibid.) and it was not until Descartes and Viète that the firstsym-
bolic language for equations and manipulation of formulas was introduced. However, counting,
numbers, simple calculations, and “natural language mathematics” had existed since the Babylo-
nian civilisation (ca. 2000–1600 BC); even earlier, since the Sumerian times (ca. 3000–2300 BC)
already. Al-Khw̄arizm̄ı’s description of finding the unknown is in fact perfectly comprehensible
even if it sounds more like a worded recipe or an algorithm5 (for a method known as “completing
the squares”) rather than the kind of solution with which we are more familiar nowadays (using
the discriminant).

What the example illustrates is that natural language, however imprecise, is flexible and re-
markably expressive in that using words (nouns, indefinite and definite descriptions, cardinals)
we canname(abstract) objects and we can furtherrefer to these objects in the subsequent dis-
course using a range of linguistic devices. For instance, inthe English translation of the re-
produced text, the noun phrase “the half of the number of things” introduces a new entity of a
number type into the discourse as well as refers to an entity previously introduced with the noun
phrase “ten things” in the problem description. The new entity is further referred to with its
name, “five”, in the parenthetical clause and evoked again with a pronoun “it”. In order to fol-
low the solution, the reader must just keep track of the discourse referents, much like in ordinary
discourse, and perform the mathematical operations simultaneously. Natural language words
such as “a thing,” “something” serve as placeholders, or natural languagevariables, for which
no symbolic representation existed at the time. The introduction of symbolism for variables by
Viète lead to a revolution not only in written mathematics, but also in mathematical thinking.

Unlike natural language, the symbolic language of mathematics has not been evolving over
many centuries. Most of basic algebra and calculus notationwas established in the seventeenth
and eighteenth centuries in the works of Oughtred, Leibniz,and Euler and conventionalised to a
large extent within a short time. Set theory notation is due to Peano and Cantor (late nineteenth
century) and Russel, Landau and Bourbaki (twentieth century). Most of the calculus notation is
due to Leibniz and Euler (late seventeenth and eighteenth century), and to Gauss, Weierstrass,
and Cauchy (from the nineteenth century on).6

In the following sections we deconstruct the language of mathematics. The analysis is per-
formed from point of view of a computational linguist whose aim is to design and implement
a language processing architecture for mathematical discourse. The task of the interpretation
component in such an architecture is to bridge the gap between informal language of proofs and
a formal language of a mathematics assistance system which performs reasoning tasks (a proof
checker or an automated theorem prover); see Section 1.2. Considering these practical aims,
philosophical aspects of mathematics and mathematical discourse – the nature of the universe of
discourse, the existence of mathematical entities – will not be even touched upon here.

5Nota bene, the origin of the word is al-Khw̄arizm̄ı’s name.
6Cajori’s A History of Mathematical Notations(1993) is the classic source on the subject of math-

ematical symbolic language. A resource on the earliest usesof mathematical symbols is maintained at
http://jeff560.tripod.com/mathsym.html (Last accessed in December 2007)
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3 Language phenomena in proofs

We first analyse the symbolic component alone (Section 3.2.1) and then the familiar informal
mode in which natural language is interspersed with symbolic notation (Section 3.2.2). The
sections have a similar structure: we break the language down to its lexicon, its syntax, seman-
tics, and discourse-pragmatic, context-related phenomena. Most of the example utterances are
directly quoted from our corpora, preserving the original spelling and capitalisation; some of the
quoted mathematical statements are also false. In the English translations we attempt to repro-
duce the phenomena present in the German originals in order to show that they appear across
languages, however, where this is difficult or impossible, we provide additional explanation.

3.2.1 The symbolic language

According to the oft-repeated slogan, all mathematics is isa language. On a cursory look, in a
mathematical paper or textbook one sees hardly anything butits “alien” symbol system which
typically stands out displayed in indented formulas centred on the page. The title of Ervynck’s
detailed analysis of mathematical symbolic language and its syntactic structure,Mathematics
as a foreign language, emphasises precisely this point (Ervynck, 1992). In this section, we
analyse the symbolic language of mathematics from a linguistic point of view: we look at its
lexicon, syntax, discuss semantic and pragmatic phenomena, in particular, its ambiguity, surpris-
ing imprecision, context- and convention-dependence, and“ungrammaticality” (ill-formedness)
in symbolic expressions constructed by learners.

3.2.1.1 Lexicon

The mathematical symbols’ vocabulary typically includes the lowercase and the uppercase (sty-
lised) letters of Latin, Greek, and exceptionally old German and Hebrew alphabets, numbers,
multi-character abbreviations, and a range of non-alphanumeric iconic signs and punctuation
symbols. Unlike in natural language, arbitrary identifierscan be defined to stand for any concept
so long as consistency is maintained. Of course, arbitrary reassignment of known symbols or
assignment of new symbols to concepts for which exiting symbols are widely used would be
counter-productive and might introduce unnecessary confusion, therefore it is not practiced.

Letters, numbers, and their bracketed sequences name mathematical “individuals” in a given
domain (be it primitive objects or complex mathematical structures, such as(x, y) or {1, 2})
and constitute theatomic termsof the formal language. In principle, the symbolic vocabulary
is infinite: letters can be subscripted or superscripted with numbers or punctuation (typically
apostrophes) to obtain an infinite repository:x, x1, x2, . . . orx′, x′′, x′′′, . . . In practice, however,
only a small subset of the infinite lexicon is mentioned explicitly; infinite collections of objects
are marked with an ellipsis symbol (much like in the preceding sentence).

Mathematical operators (relation, function, and binder and quantifier symbols) are typically
iconic signs (=, √ , <, ⊂, +, ∪, ∨, ∀, etc.), accent- and punctuation-like symbols (,̂ ′, !),
mnemonic abbreviations (lim, sin, Im) and letters (Σ, Π, ∂, d). New abbreviations and graphical
signs are continuously introduced as new mathematical objects are being defined.
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Operators come with the notion ofarity, that is, information on the number of arguments
they take, and with information on the types of operands to which they can be applied; this
is analogous to predicate-argument structures of natural language relational lexemes and sortal
restrictions on their arguments. In standard mathematicaltexts, the addition operator,+, for
example, takes exactly two arguments, while the summation operator,Σ, three arguments: the
conditions on the lower and upper summation bounds and the expression representing the terms
being added, of which the first two (the summation bounds) canbe left implicit if they are clear
from the context; this is often the case if summation ranges from minus to plus infinity, for
instance, or if the summation range is given in the text preceding the occurrence of the symbolic
expression.7 The sortal restrictions on the operands are specified by the domain of the concept
(relation or function) for which the operator stands in the given context. The domain, in turn,
is specified in the concept’s definition. The previously mentioned +-symbol, for instance, is
typically defined as an addition operator in (all) number domains, hence, the expressionπ + e
does not violate the sortal restrictions if byπ ande we mean the two real numbers, however, the
corresponding operation on sets is denoted by the set union operator,∪.

Much like natural language needs punctuation symbols, the comma and the full-stop, to de-
limit clauses and sentences, the mathematical language uses parentheses and brackets (square,
curly and angle brackets) to delimit the scope of mathematical operators. In some formal texts,
a square or a bolded dot is used as an additional scope definingpunctuation in order to reduce
the number of parentheses.8 Brackets of different shapes have also a grouping function in the
notation of mathematical objects. For instance, by convention, pairs are enclosed in round paren-
theses, while sets in curly brackets ((1, 2) is an ordered pair with1 as the first and2 as the second
coordinate, while{1, 2} is a set containing these elements).

Also certain punctuation-like symbols serve to denote mathematical concepts. For instance,
single vertical lines denote the absolute value of an expression (|x|) and pairs of vertical lines,
the norm of a vector (‖x‖). Primes and accents (circumflex, check, tilde) tend to havea modify-
ing function: they introduce an object in some way related tothe object they modify. Likewise,
functionally related objects often receive the same letternames distinguished by primes or ac-
cents; for instance, inf ′, a prime marks the derivative of a functionf , X̂ might be chosen to
name the closure ofX. Primes also mark collections of objects of the same type:x′, x′′, . . .

Horizontal and diagonal lines may also act as typographicalseparators, as in the set compre-
hension notation ({x|x > 7}) or in the notation for fractions (717 or 7/17). The comma is used
in enumerations, much like in natural language:∀x, y 6= 0 . . .

3.2.1.2 Syntax

Mathematical expressions are built according to rules of syntax which are often introduced only
informally. In mathematics textbooks, examples of expressions with particular operators are

7We will return to the role of context in Section 3.2.1.4
8Saving on parentheses is common in logic and meta-mathematics; see, for example, the use of dots inPrincipia

Mathematica.
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typically presented together with the definition of the given concept and with natural language
phrases illustrating how the given expression is to be “pronounced”, as in the following definition
from Bartle and Sherbert (1982):9

If A denotes a set and ifx is an element, we shall write

x ∈ A

as an abbreviation for the statement thatx is anelement of A, or that x is a member of
A, or thatx belongs to A, or that the setA contains the elementx, or thatx is in A.

In formalised systems, such as formal logic or proof theory,the syntax of the formal language
(the complete range of licensed expressions, orwell-formed formulas) is explicitly introduced
inductively. Inductive syntax definitions follow a definition schema that starts with an introduc-
tion of atomic terms (constants and variable symbols and conventions for obtaining an infinite
set of those; for instance, using primes or numerical subscripts), followed by a definition of
complex terms (including operator symbols that combine atomic terms into complex terms), and
finally formulas are defined in terms of operators which introduce statements (stand for logical
connectives and predicates). An inductive definition of a language syntax typically closes with a
statement that no expressions other than the ones introduced are licensed in the given formal sys-
tem. The language of first order predicate logic, the simplest language suitable for representing
mathematical facts, may be formulated as follows:

The set of symbols consist of (countably infinite) sets of:

constants (7,π, 13
27 ,⊥, . . .)

individual variables (x, y, z, x′, x′′, A, B, C, . . .)
n-ary functions (+,−, cos, ∪, . . .)
n-ary predicates (<,⊆, =, . . .)
logical connectives (∨, ∧,⇒, . . .)
quantifiers (∀, ∃)

The set of atomic terms consists of all constant and individual variable symbols.
If t1,. . . ,tn are terms andf is an n-ary function, thenft1. . .tn is a term.
If t1,. . . ,tn are terms andP is an n-ary predicate, thenPt1. . .tn is an atomic formula.
If A andB are formulas andx is a variable, then∼A, A⇒ B, A∨B, A∧B, A⇔ B,
∃xA, ∀xA are formulas.

9Boldface type preserved from the original.
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V = { <IND_VAR>,<SET_VAR>, <SET_CONST>, <SET_FUNC>, <MEMB_PRED>, <SET_PRED>
<OPEN_PAR>, <CLOSE_PAR>, <VERTICAL_BAR>, <TERM>, <FORMULA> }

T = { x, y, z, x1, . . . , A, B, C, . . . , ∅,∩,∪, \, . . . ,∈,⊆, =, . . . , [, ], | }
S = SET_EXPRESSION

P :
<INDIVIDUAL _VAR> ::= x | y | z | x1 | . . .
<SET_VAR> ::= A | B | C | . . .
<SET_CONST> ::= ∅
<SET_FUNC> ::= ∩ |∪ | \ | . . .
<MEMBERSHIP_PRED> ::= ∈
<SET_PRED> ::= ⊆ | = | . . .
<OPEN_PAR> ::= {
<CLOSE_PAR> ::= }
<VERTICAL_BAR> ::= |

SET_EXPRESSION ::= <TERM> | <FORMULA>
<TERM> ::= <SET_VAR> | <SET_CONST> | <TERM> <SET_FUNC> <TERM> |

<OPEN_PAR> <INDIVIDUAL _VAR> <VERTICAL_BAR> <FORMULA> <CLOSE_PAR>
<FORMULA> ::= <TERM> <SET_PRED> <TERM> | <TERM> <MEMBERSHIP_PRED> <TERM>

Figure 3.1: A context-free grammar fragment for naïve set theory expressions.

The syntax of symbolic mathematical expressions, at least of their considerable subset, can
be described in terms of context-free grammars (CFG).10 A CFG for a subset of set theory ex-
pressions is shown in Figure 3.1.11 The productions generate well-formed, however, structurally
ambiguous expressions such asA ∩ B ∈ A ∩ B ∪ C. 7 ∗ 7 + 7 is an analogous structure from
arithmetics (neither set union and intersection nor addition and multiplication are associative).
These kinds of structural ambiguities in mathematical expressions are common, however, and
they are immediately resolved based on the assumptions about conventionaloperator precedence
(see Section 3.2.1.4 below). Grouping parentheses, which are part of the grammar, can be used
to explicitly delimit ambiguous expressions, especially if non-default interpretation is intended.

10A context-free grammar,G, is defined as a tuple(V, T, P, S), whereV andT are finite sets of variables and
terminal symbols, respectively,P is a finite set of productions of a formA → α (with A ∈ V andα ∈ (V ∪T )∗), and
S is the start symbol. Context free languages, generated by context-free grammars, were invented independently by
Chomsky and Backus in the 1950s; the general idea dates back to Post’s work on string rewriting production systems
in the 1920s. Already Backus observed that algebra expressions can be analysed in terms of context-free grammars,
while M. Wells (1961) and R. Anderson (1977) were among the first to apply the formalism in computational analysis
of mathematical expressions. Fateman (2004, 2006) points at context-sensitive semantics of mathematical expressions
and argues for the need of more expressive formalisms.

11The grammar is presented in the Backus-Naur form. The abbreviated rule names for the terminal symbols stand
for individual variables (INDIVIDUAL _VAR), set variables (SET_VAR), set constants (SET_CONST), set functions
(SET_FUNC), the membership predicate (MEMBERSHIP_PRED), set predicates (SET_PRED), and opening/closing
parentheses (OPEN_PAR/CLOSE_PAR). The vertical bar, |, denotes alternative. The grammar is of course oversimpli-
fied (it does not, for instance, make a distinction between sets of different order: sets vs. sets of sets); it is only meant
as an illustration of a context-free representation.
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a) <FORMULA>

<TERM> <SET_PRED> <TERM>

<TERM> <SET_FUNC> <TERM> ⊆ C

A ∩ B

b) ⊆

∩ C

A B

Figure 3.2: Tree representations of a mathematical expression; (a) Chomsky-style tree
generated by the context free grammar in Figure 3.1, (b) head-daughter dependency-style.

Internal structure Symbolic mathematical expressions can be represented as derivation trees
of the CFG fragments that generate them. These trees correspond to phrase structure trees of
natural language sentences and represent hierarchical constituency of the expressions’ internal
structure. For instance, based on the grammar in Figure 3.1,the set expressionA ∩ B ⊆ C can
be represented as shown in Figure 3.2 on the left. The three’snodes are labelled with the names
of production rules and leaves are the terminal symbols (symbols from the vocabulary of the
context-free language). The tree on the right represents the same expression in another diagram-
matic presentation, with the operators at the tree-internal nodes and the operands at the leaves.
This representation emphasises the relational nature of the operators and the recursive proper-
ties of the hierarchical structure of mathematical expressions: each complex expression has one
main operator,12 the root of the tree, and any number of atomic or complex subconstituents,
subformulas, and subterms, which, in turn, can be identifiedby their main operator nodes and
by tracing the subtrees headed by those nodes.13 Note that some elements of the (sub-)structures
may be omitted. We will return to this when we discussunderspecification.

Written notation Mathematical expressions written down on paper, a blackboard or rendered
on a computer screen are of two-dimensional character. The vertical dimension is manifested,
for instance, in the notation of fractions: the numerator iswritten above the denominator, the
vertical structure emphasised by the fraction bar. Similarly in the notation for integration, limits,

12Chains of like terms, for instance, in iterated equations orin set expressions, such asA ∪ B ∪ C ∪ D, can be
thought of as right branching trees with the first operator inthe chain as the root.

13There is empirical evidence that both experienced mathematicians as well as learners perceive mathematical
expressions in terms of their syntactic structure, that is,our internal representation of mathematical expressions is
based on the phrasal structure of the expressions’ parse trees (Kirshner, 1987; Jansen et al., 1999, 2000, 2003).
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and iterated sum and product, the bounds are written above and below the operator symbol.
Along the horizontal dimension, symbolic expressions are linearised in a certain order. An

interesting property of the internal tree structure of mathematical expressions is that they may
be presented in different linearisation variants; much like word order in natural language. An
expression can be written in theinfix notation(operators linearised between operands they act
upon), in thePolish notation, also known as prefix notation (operators precede the operands), or
in the inverse Polish notation(operators follow the operands).14 While there is a consistency in
modern Western mathematics to linearise expressions with binary operators in the infix notation,
there is little consistency in linearisation of different unary operators: the factorisation symbol,!,
is postposed with respect to its operand, the negation symbol, ∼ or¬, preposed, the root symbol,√ , preposed, in the notation for derivatives, the prime,′, is postposed, whiled and∂ preposed,
powers of trigonometric functions may be either infixed (sin2x) or postposed ((sin x)2) etc.
There is a special compact infix notation for writing down a series of formulas in a chain. If the
relation between the objects is transitive, the terms can beiterated in a sequence:. . . = . . . = . . .;
similar notation is common for implication (⇒) and equivalence (⇔). A variant of the chain
notation can occur with dual relations (for instance,. . . < . . . > . . . or . . . ⊂ . . . ⊃ . . .).

The hierarchical internal structure, the linearisation convention, and explicit delimitation of
certain subexpressions give rise to a number of visually salient subparts of symbolic mathemat-
ical expressions which can be identified by their spatial location or marked delimitation. First,
the horizontal dimension comes with the left- and right-wise orientation with respect to a cer-
tain point (or vertical line) of reference: the root of an expression’s (sub-)tree (see Figure 3.2b).
Second, the vertical dimension comes with the up- and down-ward orientation with respect to a
certain horizontal line (or point) of reference: the topographic centre-line of a (sub-)expression
in the linearised form (for instance, the fraction bar or a line running through the centre of an
iterated summation symbol).15 Third, due to marked delimitation, bracketed expressions also
form distinguishable objects which, in turn, may embed other bracketed expressions.

Now, the purpose of this and the previous section, in which weillustrated the internal structure
of mathematical expressions and their written form, is to lead up to a later discussion on referring
in Section 3.2.2.5. Visually recognisable forms in mathematical notation give rise to a range of
natural language spatial expressions which can be used to refer to the respective subparts of
mathematical notation, exploiting its internal tree- and spatial structure and the relative location
of its elements. We can, for instance, identify a term to the left of the main operator of an
expression and refer to it as “the left term”, “the term on theleft-hand side”, or “the left side”
(keeping in mind the internal tree structure of the expression)16 or identify a term enclosed in

14Paired symbols written on both sides of an expression (such as parentheses or absolute value vertical bars) are
said to be in anoutfix/circumfixor mixfix/tranfix notation.

15Mathematical expressions’ topographic properties of thiskind are exploited in mathematical OCR; see, for
instance, (Fujimoto et al., 2003; Tapia & Rojas, 2004)

16“Left” and “right” make sense with infix operators; the referring expression “the left side” fails in the context of
P

n, but succeeds in the context of
P

n + m. Referring expressions of this kind may also introduce ambiguities.
Consider, for instance, “the left side” in the context of

P

n + m =
P

m + n.
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parentheses to the right of the main operator and refer to it as “the term in brackets on the right”
or “the right bracket”. In a language interpretation architecture, referents of these expressions
need to modelled. We will return to this in Section 6.3.

Verbalisation Aside from referring to salient parts of notation, as exemplified above, we also
read symbolic expressions out loud. Vocalisation routinely accompanies writing in a form of
think-aloud (for instance, at the blackboard) or internal monologue. In mathematical textbooks,
examples of natural language verbalisation may accompany introduction of new symbolism, as
the paragraph on set membership notation, cited earlier in this section, illustrates (see page 72).
In mathematical articles, a comment on wording may accompany introduction of new notions
and their notation which the given article defines for the first time. Ways of symbolism wording
for “known” concepts is rarely explicitly stated in textbooks and certainly never in articles.17

Learners must simply sooner (or later) “pick it up” in the classroom on their own. It is useful to
realise in the tutoring context that this may result in misconceptions as to how symbolic expres-
sions should be meaningfully read. Booker (2002) discussesdifficulties that learners experience
in understanding mathematics as a result of inconsistencies in the language used to talk about
mathematics, especially its symbolism, and as a result of the fact that the verbal language bears
no connection to the symbolic language used to record mathematical facts. Likewise, Thompson
and Rubenstein (2000) stress the importance of teaching howto verbalise mathematics and even
suggest vocalisation of symbolic notation as one of oral strategies in teaching.18

While we are not aware of systematic studies addressing the linguistic structure of symbolic
expressions spontaneously verbalised by expert mathematicians or learners,19 it appears that in
many cases, verbalisation of symbolic expressions followsthe rules of syntax of the natural
language in question, whereas the syntactic structures used in verbalisation reflect the object
or proposition status of the entity which the expression denotes. Hence, terms (objects) are
verbalised using noun phrase syntax, while formulas (propositions) using verb phrases.20

17“Known” in inverted commas because what is assumed to be known is also often left implicit . . .
18Thompson and Rubenstein mention an example of a misconception about reading the logarithm notation which

surfaced only by coincidence when a student in the class actually read an expressionlog28 out loud as “log of two to
the eighth.” The authors cite Usiskin (1996) arguing that “[i]f a student does not know how to read mathematics out
loud, it is difficult to register the mathematics . . . ”

19But see (Karshmer & Gillan, 2003; Gillan et al., 2004) for a cognitive psychological study on understanding
key issues in reading and understanding mathematical equations.

20There is a number of studies addressing speech interfaces for mathematical notation in the context of voice nav-
igation in scientific documents and, above all, in the context of access to mathematics for the visually impaired. Since
Raman’s pioneering work on ASTER (Raman, 1994, 1997) there has been growing interest in various aspects of spo-
ken interfaces for mathematics. (See, for instance, (Stevens et al., 1996; Guy et al., 2004; Ferreira & Freitas, 2004;
Fitzpatrick, 2002, n.d.; Fateman, 2004, 2006) and references therein.) Pontelli et al. (2009) survey (multi-modal)
accessible mathematics. Existing speech-enabled systemsinclude MathTalk, MathSpeak, MathGenie MathPlayer,
LAMBDA, AudioMath, TalkMaths. Fateman, among others, discusses a number of problems related to vocalisation
of symbolic mathematical expressions, in general, however, studies aimed at accessibility necessarily tend to focus
on wording which conveys the semantics unambiguously, independently of whether the proposed wording would
be actually spontaneously produced by humans. Unique interpretation is ensured, among others, by special “lexical
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There is often more than one way of verbalising a given symbolic expression. For instance,
the symbol for a function of one variable,x, written asf(x) can be verbalised in English as
a bare noun phrase “f of x” or simply “f x,” a function of two variables,x andy, written as
f(x, y) can be verbalised as “f of x and y” or “f of x y,” etc. Arithmeticexpressions can be
verbalised in different ways bringing out their process or concept nature. The term2 + 2, for
instance, can be verbalised as a cardinal number, “two plus two” (with the word “plus” in the
function of preposition, “two, with two added”) or as coordinated cardinals, “two and two” (with
the conjunction, “and”, conveying aggregation). The equality symbol can be verbalised as the
verb “equal(s)” or with a copula construction (“be” in the sense of identity) or using action
verbs, such as “make” or “give,” which bring out theprocess-conceptduality of the symbolic
language (Sfard, 1991; Tall, 2004a). The specific worded realisation depends on context (the
term2 + 2 in isolation or within running text is not likely to be realised as “two and two,” but
rather as “two plus two,” whereas in an equation both phrasings are possible, as in2 + 2 = 4.).

Aside from valid syntactic structures, symbolic expressions are sometimes verbalised using ir-
regular syntax.21 There is a range of symbolic forms which can be verbalised using idiosyncratic
syntax which does not correspond to their internal structure. In English, arithmetic expressions
can be worded as instructions (commands) in imperative mood. For instance,2 + 2 − 1 = 3
can be realised as “two add two take away one leaves three,” which basically comprises four
ellipted utterances (“(To/We have) two (objects); add two (objects), remove one (object), . . . ”)
Another class of irregularities comprises ungrammatical utterances. In English, this can be il-
lustrated with the verbalisation of set expressions, for instance, “A union B equals B union A”
for A ∪ B = B ∪ A. With “A” and “B” treated as proper noun categories, and “union” as a
common noun, the structure “A union B” is ungrammatical, yetsuch structures are routinely
used to read expressions of this form. Examples of language artefacts related to irregular syntax
in vocalisation which occurred in our corpora will be shown in Section 3.2.2.3 (page 95).

3.2.1.3 Semantics

However formalised, mathematical expressions are often written in an underspecified way.22

Omission of information may lead, in turn, to ambiguity. Classical lexical ambiguity is also
found in mathematical language. In the following, these phenomena and the role of context and
convention in disambiguation are briefly discussed.

indicators,” key-words which signal grouping. For instance, the expression(a+ b)/(c+d) might be verbalised as “a
plus b all over quantity c plus d,” where “all” signals the endof a term, “over” is short for “divided by” and “quantity”
signals a start of a new grouping (Fateman, 2006). Fitzpatrick (2002, n.d.) argues for effectiveness of speech prosody
and standardised prosodic effects; see (O’Malley et al., 1973; Streeter, 1978; Stevens et al., 1996; Ferreira & Freitas,
2005) for investigation of prosodic correlates of mathematical expression structures.

21Only two examples are shown; data collection would be neededfor a systematic analysis of the phenomenon.
22By underspecificationwe mean here omission of information, rather than underspecified semantic representa-

tion in a technical sense.
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Underspecification Frequently occurring forms of underspecification in the symbolic notation
areomission of notation elementsandsuppression of parametersboth of which can be explained
in pragmatic terms as adherence to Maxims of Quantity and Manner in mathematics; discussed
further in Section 3.3 (page 113ff).

Delimitation symbols, in particular, brackets are one typeof commonly omitted notation el-
ements. From a formal point of view, unbracketed expressions may be considered syntactically
ambiguous; the expression2 + 2 ∗ 2 could be (in principle) interpreted as another name either
for 8 or 6. This kind of underspecification is, however, typically immediately resolved based
on assumptions on operator precedence. While operator precedence is rarely explicitly stated,
in some domains (for instance, basic arithmetics) it is considered “common knowledge”, an
obvious part of generalconventionsin the given domain (see Section 3.2.1.4).

C. Wells (2003) points out another common type of underspecification in the symbolic ex-
pressions: suppression of arguments (parameters) of certain types of operations. An obvious
example of suppression of parameters is the notation using primes for derivatives of functions of
one variable. Indexed sums or products are often written with imprecisely specified summation
bounds, however, in many cases, the omitted parameters are either explicitly stated in the natural
language text surrounding the symbolic expression or can beinferred from it. For instance, if in
a given paragraph or sectionn is declared to be a natural number, an underspecified expression∑

n can be interpreted as
∑n=∞

n=0 or
∑n=∞

n=1 , depending on whether the adopted convention is
for the set of natural numbers to include zero or not.

Ambiguity Ambiguities in the symbolic language result from the fact that mathematical sym-
bols are oftenpolysemous. One symbol may denote different objects depending on the context in
which it is used, in particular, on the subarea of mathematics in question; this can be considered
a special case oflexical ambiguityin mathematical language.

The omnipresent equality sign,=, is a notorious example of a polysemous symbol. Depend-
ing on context, the equality sign takes different types of operands as arguments and is interpreted
accordingly.23 Object naming symbols, certain punctuation, and typographical layout have the
same property; for instance, the dot may occur as the multiplication symbol, the decimal sepa-
rator, or as punctuation separating the bound variable(s) and the body in a quantified formula, a
superscripted number may be interpreted as a power operator(22, x2), except in the context of

functions, where it may denote the n-th derivative (d2F (x)
dx2 ), unless it is a−1, in which case it is

an inverse function (f−1), unless, of course, it is indeed an exponent ((sin x)−1). Even special
layout elements can be polysemous; consider the horizontalbar in 7

13 vs. dy
dx

. Table 3.1a shows
other examples of polysemous notation and their interpretations.

Given the abundance of polysemy, it is no wonder that learners struggle with notation (R. C.
Moore, 1994; Dorier et al., 2000; Downs & Mamona-Downs, 2005). However, an experienced
reader can in most cases disambiguate the symbolic notationinstantaneously using context and
his knowledge of mathematical conventions.

23This kind of multi-purpose use of operators corresponds to function or methodoverloadingin programming.
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Table 3.1: Examples of ambiguous symbols, (a), and alternative notational conventions, (b).

a) b)
⊃ superset “A is a proper subset of B”A ⊂ B

proper superset A ( B
implies

= number, set, function equality “A is a subset of B”A ⊂ B
index assignment (as in

∑∞

n=0) A ⊆ B
name assignment (f(x) = x2 + 1)

(x, y) open interval “p implies q” p⇒ q
ordered pair p→ q
inner product p ⊃ q
single-dimensional vector Cpq

3.2.1.4 Conventions and context

The use and the interpretation of the so-called “formal” mathematical language is to a large
extent governed by convention and the mathematical context. Although in principle any symbol
can be defined to denote any object (for instance, the symbolA could be declared to stand for
the subset relation) certain traditional conventions are generally followed and the knowledge of
these conventions is assumed of the recipient of a mathematical text.

By convention, certain symbols have fixed interpretations (ℵ0,∞, ∅, or the Arabic and Roman
number symbols), while others systematically evoke preferred readings in specific contexts (π, e,
ℜ,

∑
,
∏

, ǫ, δ, i, etc.). Objects of certain types are typically denoted by specific symbols. For
instance, functions are typically denoted by the primed, sub- or super-scripted letterf , groups
by uppercaseG, relations by uppercaseR (following the mnemonic convention), summation
index variables byn or i, and sets by uppercase letters from the beginning of the alphabet.
Also by convention, functionally related objects tend to bedenoted by the same letter names
distinguished by accents (circumflex, check, tilde, bar) orprimes (X̂ might be chosen to name
the closure ofX), upper-case letters tend to be used for structures (structured mathematical
objects) and lower-case letters for the elements of structures, primes are used to mark collections
of objects of the same type (x′, x′′,. . . for the elements of a setX), and stylised letter shapes and
typefaces for specific distinguished objects (blackboard bold style or German Altschrift, fraktur,
for specific number sets: reals, integers, complex).

The choice of symbols itself is also a matter of convention. For instance, the subset relation
is denoted as⊂ by some authors and as⊆ by others, open/closed intervals may be denoted as
(., .)/[., .] or as(., .)/< ., . >, the cardinality of a setS asK(S), K(K(S)), ‖S‖, etc. National
and cultural conventions may differ; for instance, in Western Europe and North America, the
symbols∃ and∀ are used for the existential and the universal quantifier respectively, while in

79



3 Language phenomena in proofs

Eastern Europe the symbols
∨

and
∧

are still used; although the Western convention tends to
take over. Also, different conventions are applied in mathematics and in natural sciences or
engineering; for instance, in algebra vectors are denoted by boldface letters from the end of
the alphabet (x) while in physics the arrow notation is common (~Vx for thex-component of a
velocity vector), the imaginary part of a complex number is denoted withi in maths and typically
with j in engineering.24 Table 3.1b shows other examples of notational alternatives.

Knowledge of mathematical conventions plays a role in interpreting symbolic notation, in par-
ticular, in interpreting expressions which appear ambiguous. Already in elementary arithmetics
we are taught that multiplication should be performed before addition, hence, the expression
2 + 2 ∗ 2 can be unambiguously interpreted without the parentheses.This interpretation ex-
ploits the notion ofprecedenceamong operators, that is, rules that state which operators must be
applied first or which operators have “higher” and which “lower” precedence.25

Finally, interpretation of the symbolic notation depends on context, both thetextual context
as well as themathematical domain contextin which the given notation is used. For instance,
in the context of binary relations,(x, y) is not likely to denote an interval and in the context of
complex numbers, the lowercasei is reserved for the imaginary part of a complex number and
when a summation index over complex numbers is used, it should be different fromi. Similarly,
concatenated symbols are interpreted with respect to theircontext; while77 denotes a natural
number,7x typically denotes multiplication,31

2 addition, whereassin x functional application
(application of the sine function to the argumentx).

3.2.1.5 Errors in the symbolic language

Learning the language of mathematics, much like learning a foreign language, involves making
mistakes. Therefore, it is not surprising that symbolic expressions produced by students are
prone to errors, both of form and substance. While texts written by mathematicians contain
only valid and pertinent statements, learners’ discourse may contain statements that are false or
irrelevant in the given context. These are errors of substance, ofpragmaticnature. Diagnosing
and addressing these types of errors requires knowledge beyond the mere knowledge of the
symbolic language, namely, the knowledge of the given domain, the ability to reason within this
domain and, in the case of tutorial dialogue, the knowledge of pedagogical criteria (for instance,
what is an appropriate size of a proof step from a pedagogicalpoint of view).

In general, before a semantic and pragmatic evaluation of a symbolic expression can take
place, the expression must be ascertained to be meaningful in the given symbolic language. An
expression iswell-formedwhen it conforms to the rules of syntax for expressions from the given
mathematics subarea or to the rules of admissible simplifiedpresentations (for instance, rules

24See (Libbrecht, 2010) for further examples and (A. Kohlhase& Kohlhase, 2006) for a discussion on communi-
ties of practice in mathematics and implications on representation of mathematical notation.

25A thorough precedence table for mathematical operators canbe found on the Mathematica website:
http://reference.wolfram.com/mathematica/tutorial/OperatorInputForms.html (Last
accessed in May 2012)
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which permit to reduce the number of parenthesis without introducing ambiguity; we mentioned
this already in Section 3.2.1.1.) Well-formedness concerns an expression’s structure, its syntax
and the properties of the lexical identifiers of which it is composed.

There is a range of errors affecting the form of mathematicalexpressions which render them
ill-formed and thereby meaningless. Unlike mathematical textbooks and research publications,
in which most errors of form can be most likely attributed to unfortunate typographical oversight
and only rarely to misconstrued reasoning or lack of knowledge, students’ writing may contain
errors which are due to genuine misconceptions. Moreover, computer-based mathematics can
be additionally error-prone due to keyboarding or interface problems. Students’ input may be
especially affected in this respect because the blackboardand paper still remain the primary
media for written mathematics up to the level of university education.

Generally speaking, errors of form in the symbolic languagecan be categorised into two broad
classes ofstructuralandsemanticerrors. Structural errors affect the syntactic structure of math-
ematical expressions, while semantic errors affect their semantic interpretation.26 Expressions
with structural errors cannot be parsed by a standard normative grammar for well-formed expres-
sions in the given domain. Expressions with semantic errors, while structurally valid, cannot be
assigned a meaningful interpretation or, in case of truth-valued expressions, are simply false. A
well-formed and semantically meaningful proof step may be still inappropriate forpragmatic
reasons: it may be irrelevant for the given task or, even if relevant, it may be too much of an “ar-
gumentative shortcut,” too large a step. Pragmatic errors arise at the level of proof steps (rather
than individual symbolic expressions) and in the given proof discourse context.

An analysis of the two corpora of tutorial dialogues revealed a number of further subcategories
of form errors produced by learners. Among structural errors there are two subcategories:Seg-
mentationerrors are possibly an artefact of keyboard input and are dueto omitting white-space
or punctuation (in the notation for pairs,(sr) in place of(s, r), for instance) resulting in fused
identifiers. Delimitation errors arise from inappropriate use of parentheses: eitheropening or
closing parenthesis may be omitted (Parenthesis mismatch), both parentheses may be omitted in
a term which requires bracketing (Missing parentheses), or double (or more) unnecessary paren-
theses may be used (Superfluous parentheses). Finally, a constituent, atomic or complex, may
be omitted resulting in aConstituent structureerror corresponding to invalid predicate-argument
structure in natural language. Among semantic errors, a distinction can be made between lex-
ical errors and correctness errors. Lexical errors arise from inappropriate use of identifiers: an
expression may contain an identifier which has not been defined in the given context (Unknown
identifier) or a known identifier may be used inappropriately (Inappropriate identifier). As a
result of the latter an expression becomesill-typed: some of the expression’s operators are ap-
plied to incompatible operands; this corresponds to a violation of sortal restrictions in natural
language. Correctness errors have to do with validity of truth-valued expressions (formulas).

26While we are not aware of systematic studies dedicated solely to form errors in the symbolic language, there
is a number of related studies in the larger context of mathematics learning disabilities; see (Magne, 2001) for an
extensive bibliography on special educational needs in mathematics and also, for instance, (Kennedy et al., 1970;
Babbitt, 1990; Hall, 2002; Melis, 2004) for error patterns in problem solving in general.
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Table 3.2: Categories of errors in students’ mathematical expressions

Error category Description Code

Structural errors Expression ill-formed I
Segmentation Omission of white-space or punctuation I-1
Delimitation Inappropriate use of grouping symbols I-2

Parentheses mismatch Opening or closing parenthesis missing I-2-a
Missing parentheses Required parentheses omitted I-2-b
Spurious parentheses Extra parentheses I-2-c

Constituent structure Constituent missing I-3

Semantic errors Incorrect or unknown identifiers or invalidstatement II
Unknown identifier Identifier not defined in context II-1
Wrong identifier Known identifier used incorrectly II-2
Correctness error False statement II-3

Pragmatic errors Logical argument invalid or inappropriate III
Relevance error True expression unrelated to solution III-2
Granularity error Inappropriate proof step size III-3

The two subclasses of pragmatic errors have to do with relevance and granularity of proof steps.
An overview of the error categories is shown in Table 3.2.27

Table 3.3 shows examples of flawed expressions from C-I and C-II and their corresponding
error categories given the identifiers defined for the proof exercises in the experiments.28 Exam-
ples (e1)–(e5) illustrate structural errors. In (e1) not only a space between the operator symbolP
and the identifierC, but also the parentheses required for the powerset operator are missing; as a
result, the tokenPC is an unknown identifier (lexical error). The expression (e2) is incomplete
(closing bracket missing), (e3) is structurally ambiguousbecause the required brackets have
been omitted, whereas in (e4) duplicate brackets are unnecessary. In (e5) the second constituent
in the pair object is missing. Examples (e6)–(e18) illustrate semantic errors. The lexical errors
in (e6) are most likely due to sloppy keyboarding: not only are the set identifiersa andb in the
wrong case, but also the symbolp is used in place of the set identifierB; even if we accepted the
lower-case symbols as a typos,p would still be an example of inappropriate identifier use (oper-
ator in place of a variable symbol). In (e7) undeclared variables,x andy, are used even though a

27The classification summarises only observations based on the two collected corpora. Thus, it is not meant as
exhaustive. Earlier error categorisations were presentedin (Horacek & Wolska, 2005a, 2006a) and issues related to
generating responses to erroneous statements in (Horacek &Wolska, 2007, 2008)

28Defined symbols were:A, B, C, M for first order sets,R, T, S for relations,x, y, z for individual variables,
P for the powerset of a set,K for set complement, and−1 for the inverse relation, as well as basic naïve set theory
and predicate logic symbols. Erroneous symbols are boxed; empty boxes denote omitted symbols. Previous context,
where relevant, is shown in square brackets. Error codes refer to Table 3.2.
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Table 3.3: Examples of invalid symbolic expressions from students’ proofs.

Erroneous expression Error code

(e1) P ((A ∪ C) ∩ (B ∪ C)) = PC ∪(A ∩B) I-1, I-2-b, II-1

(e2) ∃z ∈M : ((x, z) ∈ R ∧ (z, y) ∈ T ) ∨ ((x, z) ∈ S ∧ (z, y) ∈ T I-2-a

(e3) (a, b) ∈ R ◦ T ) ∩ S ◦ T I-2-b

(e4) (R ∪ S) ◦ T = ( ((R ◦ T ) ∪ (S ◦ T )) ) I-2-c

(e5) S−1 ◦R−1 = {(x, y)|∃z(z ∈M∧ (x, y ) ∈ S−1 ∧ (z, y) ∈ R−1)} I-3

(e6) ( p ∩ a ) ∈ P ( a ∩ b ) II-1

(e7) [(b, a) ∈ (R ◦ S), z ∈M ] . . .( x , z ) ∈ R und( z , y )∈ S II-1

(e8) (x ∈ b ) 6∈ A II-1, II-2

(e9) A ⊆ K(B) thenA 6∈ B II-2

(e10) [M : set] . . .(x, y) ∈ M II-2

(e11) x ⊆ K(A) II-2

(e12) (T−1 ◦ S−1)−1 ∪ (T−1 ◦R−1)−1 ⇔ (y, x) ∈ (T−1 ◦ S−1) ∨ (y, x) ∈ (T−1 ◦R−1) II-2

(e13) (R ∪ S) ◦ T = {(x, y)|∃z(z ∈M ∧ (x, z) ∈ { x | x ∈ R∨ x ∈ S} ∧ (z, y) ∈ T )} II-2

(e14) ∃z ∈M : (x, y) ∈ R ◦ T ∨ (x, y) ∨ S ◦ T II-2

(e15) R ∪ S = {x|x ∈ R ∧ x ∈ S} II-3

(e16) (R ◦ S)−1 = {(x, y)|∃z(z ∈M ∧ (y, z) ∈ R−1 ∧ (z, x) ∈ S−1)} ⊆ S−1 ◦R−1 II-3

(e17) P ((A ∩B) ∪ C) = P (A ∩B) ∪ P (C) II-3

(e18) [(s, r) ∈ (R ◦ S)−1] . . . (s, r) ∈ R ◦ S II-3

previous declaration was made for the given context,b anda. Examples (e8)–(e11) illustrate the
common confusion of the subset and membership relations on sets. (e8) contains additionally
an unknown symbolb. In (e10) the student appears to think thatM contains pairs (is a relation)
whereasM was declared as a set in the task definition. A type mismatch arises due to a wrong
operator for a definition in (e12). In (e13), the same variable,x, is used in two contexts in which
it would have to be of different types: first as an element of a pair and then as an element of a set.
In (e14) unrelated operators have been confused:∨ in place of∈. (e16)–(e18) are examples of
logically incorrect statements: in (e16) and (e17) a stronger and weaker assertion, respectively,
is expected (about equality of sets rather than inclusion, or vice versa). A logical error in (e18) is
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(1) S: Es bleibt zu zeigen:(R ∪ S) ◦ S = (R ∪ S) ◦ S−1

T: <correct, appropriate, relevant>
Ist diese Aussage allgemein gueltig?
(Is this statemen valid in the general case?)

S: Ja.
(Yes.)

T: <incorrect / II-3, appropriate, relevant>
Koennen Sie das beweisen?
(Can you prove it?)

S: Es sei(x, y) ∈ (R ∪ S) ◦ S, also gibt es einz ∈M mit (x, z) ∈ R ∪ S
und(z, y) ∈ S
(Let (x, y) ∈ (R ∪ S) ◦ S, then there is az ∈M such that(x, z) ∈ R ∪ S)

T: <correct, appropriate, irrelevant / III-2>
Ihre Folgerung stimmt.
(Your conclusion is correct.)

(2) S: (R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
T: <correct, appropriate, relevant>

Das ist richtig!
(That’s correct!)

S: (R ◦ T ) ∪ (S ◦ T ) = (T−1 ◦R−1)−1 ∪ (T−1 ◦ S−1)−1

T: <correct, too coarse-grained / III-3, relevant>
Wie kommen Sie darauf? Gehen Sie in kleineren Schritten vor!
(How did you get this? Please use smaller steps!)

(3) S: Wenn(x, z) ∈ S−1 und(z, y) ∈ R−1, dann giltS−1 ◦R−1

(If (x, z) ∈ S−1 and(z, y) ∈ R−1, thenS−1 ◦R−1 holds)
T: <partially correct, too detailed / III-3, relevant>

Meinen Sie vielleicht(x, y) ∈ S−1 ◦R−1?
(Do you mean(x, y) ∈ S−1 ◦R−1, perhaps?)

Figure 3.3: Examples of proof steps inappropriate with respect to relevance and granularity.

caused by swapped variables. Among pragmatic errors, illustrated in Figure 3.3,29 (1) illustrates
a step which the tutor considered irrelevant (definition instantiation in S20). The last two are step
size errors: in (2) the student restates the proposition to be proven, an open goal, in his second
step (too coarse-grained) and in (3) the tutor considered spelling out the definition unnecessary

29Tutors’ evaluations of correctness, granularity, and relevance of the steps are shown in angular brackets along
with the corresponding categories from Table 3.2.

84



3.2 The language of mathematical proofs

Table 3.4: Possible sources of symbol confusion and the resulting errors

Possible error source Examples Resulting error category

Dual operator ⊆ | ⊇,⊂ | ⊃, ∩|∪, ∧|∨ II-3, III-2
Stronger/weaker relation ⊂ | ⊆ ,⊆ | =,⊃ | ⊇,⊇ | = II-3, III-2
Conceptually related relation⊆ | ∈,⊂ | ∈,⊇ | ∋,⊃ | ∋,⇔ | = II-2, II-3, III
Typographic artefact ∪|∨, ∩|∧, K|P , a|b, P |B II, III

(too detailed). As mentioned previously, pragmatic errorsare of different nature than structural
and semantic errors; recognition of these errors involves not only reasoning but also pragmatic
criteria, for instance, pedagogical criteria stemming from the adopted pedagogical strategy and
the student model.

A closer look at the most common erroneous expressions reveals a certain systematism within
the class of semantic errors which may be due to systematic misconceptions that students have
about pairs of set theoretic and logical operations. A subclassification of semantic and pragmatic
errors with respect to their possible source is shown in Table 3.4. Often recurring errors result
from students confusing operators which are “dual”, in a broad sense of the word, with respect to
each other. Examples of these include the logical conjunction and disjunction (dual with respect
to negation), the set union and set intersection (dual with respect to set complement; analogous to
the former), and (partial) order relations on sets (subset vs. superset); example (e14) in Table 3.3
illustrated erroneous conjunction in place of disjunction. Confusion about ordering relations re-
sults, moreover, in statements which are weaker or strongerthan the expected statements, as
in (e16) and (e17). A large number of errors have to do with confusion about the set hierarchy
(sets vs. sets of sets) and the set membership and set inclusion relations which are conceptually
related, as in (e8)–(e11). Misconceptions related to theseconcepts have been previously dis-
cussed by Zazkis and Gunn (1997) and Bagni (2006). Set equality and logical equivalence, as
in (e12), are another pair of confusable relations found; see, for instance, (Kieran, 1981; Sáenz-
Ludlow & Walgamuth, 1998; E. Knuth et al., 2005) for a discussion on students’ problems with
equality and equivalence. The last group of errors, involving unrelated symbols, may be simply
artefacts of typographic or shape similarity, or genuine typo or oversight errors.

What is interesting and relevant from the point of view of computational processing is that the
tutors rarely rejected utterances withDelimitationerrors, even if there was more than one:

(4) S: ∃z(z ∈M ∧ (((x, z) ∈ R ∧ (z, y) ∈ T ) ) ∨ ( (x, z) ∈ S ) ∧(z, y) ∈ T ))) =

∃z(z ∈M ∧ (x, z) ∈ R∧ (z, y) ∈ T ) ) ∨∃z(z ∈M ∧ (x, z) ∈ S∧ (z, y) ∈ T )

T: <correct, appropriate, relevant>
Bis auf Klammerung korrekt. Fahren Sie fort!
(Correct up to bracketing. Go on!)
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The tutor accepted ill-formed steps of this type in 53 cases.Only in 7 cases did the tutor ex-
plicitly request a correction. What this means is that tutors tended to focus on the higher-level
proving task, rather than on low-level syntactic details. Ideally, a cooperative automated system
should behave analogously, which, in turn, means that it needs a robust parser for mathematical
expressions, with a correction mechanism. In Section 6.4 wepresent a preliminary study aimed
at correcting some of the error categories.

3.2.2 The informal language

While the formal language of mathematics consists of symbolic expressions, the most prominent
characteristics of theinformal language is the familiar combination of natural language phrases
and symbolic expressions, with symbolic expressions smoothly embedded into the natural lan-
guage text. In this section we turn to this informal language.

3.2.2.1 Multi-modality

A typical sentence from a mathematical proof, be it in a textbook or in tutorial dialogue, may
look, for instance, as follows:

(5) Wennx ∈ B dannx /∈ A
(If x ∈ B thenx /∈ A)

(6) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)
(K(A ∪B) is by DeMorgan-1K(A) ∩K(B))

(5) is a prototypical conditional statement. (6) states an equality between two sets and provides
a justification. The equality is expressed with a predicate worded in natural language, “ist” (is),
and two symbolic expressions,K(A ∪ B) andK(A) ∩K(B), denoting sets. The justification
is expressed in words using an adverbial construction, “nach + Dative” (by). While the equality
could be stated with the equality sign, there is no standard symbolic notation for justifications of
proof steps innarrativemathematical text; justifications are signalled in naturallanguage.30

In the tutorial dialogues in our corpora, this kind of embedding of symbols within natural
language occurs also in variants which are not likely to be found in textbooks or publications:

(7) A ∩B ist ∈ vonC ∪ (A ∩B)
(A ∩B is ∈ of C ∪ (A ∩B))

(8) Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦R−1

(By definition of◦ it follows then that(a, b) is in S−1 ◦R−1)

30(Unlike in tabular proof presentations, such as Fitch-style natural deduction, in which rule names, typically
abbreviated, are highlighted by their placement in a dedicated layout area, along with references to line labels.)
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3.2 The language of mathematical proofs

(9) A auch⊆ B
(A also⊆ B)

In (7) and (8) the set membership symbol,∈, and relation composition symbol,◦, have been
used as a kind of shorthand for a part of the object of the main predicate, “to be an element
of” or prepositional phrase “of composition”. These examples illustrate two tendencies in infor-
mal mathematical discourse: one towardnatural language verbalisationand the other toward a
telegraphic style. The same sentence could be expressed more economically using a symbolic
expression alone, yet wording is perhaps more natural. In (9) an additive adverb is verbalised
within the formula. There is no symbolic notation corresponding to the intended meaning of
“auch” (also), however, from the mathematical point of view, the adverb does not add any math-
ematical content, so it could be omitted altogether.31

The most interesting characteristics of the two language modes which form the informal math-
ematical language is that they arecomplementaryand interchangeablewith respect to each
other: they can be flexibly interleaved, either one, the other, or both can be used to express
the same mathematical content, and different parts of mathematical content can be expressed
using one mode or the other. Examples (10) through (14) illustrate these properties:

(10) x ∈ B =⇒ x /∈ A

(11) Wennx ∈ B dannx /∈ A
(If x ∈ B thenx /∈ A)

(12) B enthaelt keinx ∈ A
(B contains nox ∈ A)

(13) A hat keine Elemente mitB gemeinsam.
(A has no elements in common withB.)

(14) A enthaelt keinesfalls Elemente, die auch inB sind.
(A contains no elements that are also inB)

All the above utterances express the same content: the claimthat the setsA andB are disjoint.
They do this, however, using different language modes: (10)using symbols alone, (11) and (12) us-
ing mixed language, and (13) and (14) using natural languagewith only the set names expressed
as symbols. The difference between (11) and (12) is in what isverbalised: the implication in (11)
and the relation between the set elements in (12).32 While in (11) the symbolic and natural lan-
guage parts form independent constituents, there is a constituent overlap of a kind between the
symbolic and natural language parts in (12): the scope of theworded negation “kein” (no) is
only overx, a part of the symbolic expression following it. Similar interaction and textual con-
text dependence can occur with other scope-bearing naturallanguage word categories, such as

31We will return to the discussion of pragmatic aspects in mathematical discourse in Section 3.3
32A classification of proof contributions with respect to the type of content worded in natural language will be

presented in Chapter 4 (Section 4.3.4).
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(generalised) quantifiers (all, every, any, only, etc.) The scope of the overlap (that is, of the
quantifier) is dependent on the semantic context. IfB is a set whose elements are mathematical
formulas, the expressionx ∈ A could be considered a mention of a particular element of this
set. In this case the scope of negation would be over the entire expression. Structures of this type
are also found in textbooks and publications. (13) and (14) show that the same content can be
naturally expressed using words alone with only atomic terms, the set variables, expressed as
symbols, and that various natural language syntactic constructions can be employed. In (13),
a complex predicate “gemeinsam haben” (have in common) is used; “haben” (have) is a kind of
support verb here; the actual lexical meaning is expressed by the adverb “gemeinsam” (in com-
mon). In (14) a complex noun phrase with a relative clause post-modification is used.

Much like symbolic language can be fluently embedded within natural language, the opposite
is also possible: natural language can be incorporated intosymbolic expressions. This occurs
when there would be no benefit of the symbolic presentation because the focus is not on the
formalisation of the worded concept; that is, if the symbolic representation is not relevant and
would only cause unnecessary additional cognitive load on the part of the reader. Consider for
example the following expressions which introduce a certain number set:

A = { p | p ∈ Z ∧ ∃x ∈ Z, p = 2x + 1 }
A = { p | p ∈ N ∧ (∀x ∈ N, ∀y ∈ N, p|xy ⇒ p|x ∨ p|y) }
A = { p | p ∈ N ∧ ¬∃x ∈ N, ∃y ∈ N (x < p ∧ y < p ∧ xy = p) }
A = { p | p ∈ N ∧ ∃x ∈ N, p = x + 2 ∧ ¬∃x ∈ N,∃y ∈ N, ((x + 2) ∗ (y + 2) = p)}

and their counterparts in informal language with embedded natural language text:

A = { p | p is odd}
A = { p | p is prime}

Unless the purpose of these examples were to symbolically formalise the notions of an odd
or a prime number, the natural language presentation of a familiar concept is preferred. These
examples show that the symbolic notation, merited for its brevity and succinctness, is not always
that brief. Hence, natural language wording is also preferred for concepts whose formalisation is
difficult or complex. We will return to this and related issues when we discuss Gricean Maxims
in mathematical discourse in Section 3.3. What all the examples in this section illustrate is that
parsing symbolic expressions in the context of natural language surrounding them is a basic
requirement that a computational interpretation module for mathematical language must fulfil.

3.2.2.2 Lexicon

The vocabulary of the mixed language of mathematics consists of the vocabulary of the symbolic
notation and the vocabulary of natural language. The latterfollows its own morphology and
orthography rules. As illustrated above the two language modes can be tightly interleaved. The
vocabulary of symbols may be used to substitute entire natural language phrases (π for “the ratio
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of the circumference of a circle to its diameter” or∈ for “is an element of”/“belongs to”) which
often do not even form linguistic constituents (∀ for “for all”, ⇔ for “if and only if”, or 6∈ for
“is not an element of”). Mathematical symbols typically do not undergo linguistic inflectional
processes in writing33 other than acquiring genitive forms, as in “x’s value” or “A’s elements”.

3.2.2.2.1 Technical vocabulary The lexicon of mathematical language consists of a subset
of the lexicon of ordinary language, thegeneral lexicon, and a terminological part specific to
the mathematical domain, theterminological lexicon. In this respect, mathematical language
is lexically more complex than everyday language. Many mathematical words have Greek or
Latin origin; “isosceles”, “asymptotic”, “idempotent,” etc. There is a set of lexemes coined as
neologisms, for instance, “pathocircle,” “polygenic,” “ultraradicals”.34 Some lexemes from the
general lexicon acquire special technical meaning in the context of mathematics (meaning re-
striction or specialisation) and in most cases the new meanings are impossible to guess: the terms
“group” or “field” are such examples. In the process of meaning specialisation, a common word
may also obtain a new grammatical category, for instance, “integral,” an adjective in the general
lexicon, a noun in the mathematical terminology.35 Thompson and Rubenstein (2000) discuss
lexical phenomena in mathematical language from the point of view of potential problems which
may arise during learning. Table 3.5 summarises a fragment of their classification.36

33In verbalisation they do of course.
34Examples fromMathematics and the imaginationby E. Kasner and J. Newman
35An interesting resource on the earliest uses of mathematical terminology is maintained at

http://jeff560.tripod.com/mathword.html (Last accessed in May 2007) H. Becker’s work traces the
evolution of mathematical concepts in the 19th century and the changes in the terminology and the semantics of the
language used (H. Becker, 2006).

A digression: A lot of mathematical terminology (technicalterminology in general) in Western languages – En-
glish, German, and French – have the same etymological roots: Latin, Greek, or Arabic. (See (Schwartzman,
1994) for the origins of English mathematical terms.) By contrast, Polish terminology bears no resemblance to
the Western counterparts: compare, for instance, “integral”/“Integral”/“intégrale” vs. “całka”, “differential”/ “dif-
férentielle”/“Differential” vs. “ró̇zniczka, or “derivative”/“dérivée” vs. “pochodna”. A lot of the Polish terminology
is due to Józef Jakubowski’s translations of French works and JanŚniadecki’s contributions to popularising mathe-
matics.Śniadecki believed that in order for mathematics to be accessible, itshoulduse national terminology and the
vocabulary should be derived from common words by analogy with their use in known contexts (Śniadecki, 1813).

36Only one example from each mathematical area is given. For further examples, see the original source. The
category descriptions are reproduced as in the original text, except we do not refer to English since the phenomena
are cross-linguistic. A simpler classification of lexical phenomena was previously proposed by Shuard and Rothery:
Mathematical words are classified into three types: (i) technical words (those which have meaning only in mathemat-
ics; for instance, “square centimeters”), (ii) lexical words (those which have a similar meaning in mathematics and
in everyday language, for instance, “reminder”, “origin”), (iii) everyday words (those which occur both in everyday
language, but can have both similarand differentmeanings in mathematics and everyday language, for instance,
“points”, “change”); (Shuard & Rothery, 1984), as reportedin (Raiker, 2002).

The importance of understanding the differences in word usage between everyday language and mathematical
language in the process of learning mathematics has been also discussed in (Kane et al., 1974; Usiskin, 1996; Raiker,
2002), to mention just a few. Booker (2002) attributes the difficulties that children experience in mathematics to the
inconsistencies in the language and a lack of connections between the way ideas are represented, the language to talk
about them, and the symbols used to record them.
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3 Language phenomena in proofs

Table 3.5: A fragment of Thompson and Rubenstein’s classification of lexical phenomena
in mathematical language (Thompson & Rubenstein, 2000).

Lexical phenomenon Examples

Words shared by mathematics and everyday lan-
guage, but with distinct meanings

prime, imaginary, right (angle), combination, tree

Words shared with natural language, with compa-
rable meanings, the mathematical meaning being
more precise

equivalent, limit, similar, average, and

Terms found only in mathematical context quotient, asymptote, quadrilateral, outlier, contra-
positive

Words with more than one mathematical meaning inverse, base, round, range, dimension
Modifiers change mathematical meaning in im-
portant ways

value vs. absolute value, root vs. square root,
bisector vs. perpendicular bisector, number vs.
random number, reasoning vs. circular reasoning

Idiomatic mathematical phrases at most, one-to-one, if-and-only-if, without loss
of generality

3.2.2.2.2 Multi-word lexical units A multi-word expression (MWE) is a general term used
for different kinds of linguistic units consisting of two ormore words, be it phrasal lexemes,
phraseological units or multi-word lexical items. These include: named entities (names of
places, persons, organisations, etc.), idioms ( “get off scott free” and “Bob’s your uncle”),
phrasal collocations (“make a claim”, “take a stand”), conventional metaphors (argument is
journey: “follow an argument”, argument is balance: “shakyargument”, argument is war: “de-
fend an argument”), proverbs and sayings (“As you saw, so shall you reap”, “The truth will out”,
“Unless a miracle happens”), similes (“lie like a pro”, “cunning as a fox”), and routine formulae
(“you know what I mean”, “beyond any doubt”). We used the moregeneral term “multi-word
units” here, rather than “multi-word expressions,” because the latter, under current interpreta-
tions, are typically associated with non-compositionality of meaning. Mathematical discourse is
abound in multi-word units; some of which are also non-compositional.

The obvious multi-word named entities, aside from numeric expressions, include names of
theorems, lemmata, conjectures, hypotheses, and axioms, which are often named after the re-
searcher who introduced them, for instance, “Peano’s Axioms”. Named entities of this type
often appear in different syntactic, lexical, and spellingvariants, for instance, Peano’s Axioms
are also known as “Dedekind-Peano axioms” or “Peano postulates”, the name of De Morgan’s
laws can also be referred to as “De Morgan laws” or “the laws ofDe Morgan”.

The two tutorial dialogue corpora contain numerous occurrences of multi-word names of set
theory and binary relation theorems and lemmata which were presented to the students in the
study material. Below are examples of students’ referencesto the De Morgan’s laws (left) and

90



3.2 The language of mathematical proofs

to the distributivity laws (right) found in the corpora (spelling and capitalisation preserved):

DeMorgan-Regel-1 Distributivitaet von Vereinigung ueberden Durchschnitt
de-Morgan-Regel 1 Distributivität von Vereinigung über Durchschnitt
DeMorgan-1 DAS GESETZ DER DISTRIBUTIVITIT VON
De-Morgan-Regel-2 VEREINIGUNG UBER DURCHSCHNITT
deMorgan-Regel-1 Distributivitaet von Durchschnitt ueber Vereinigung
de morgan regel 2 der Distributivitaet 1

The two De Morgan laws were labelled “De Morgan Regel 1” and “De Morgan Regel 2” in
the study material and distributivity laws “Distributivität von Vereinigung über Durchschnitt”
and “Distributivität von Durchschnitt über Vereinigung”.As the examples illustrate, learners
use their own rather unpredictable spelling and segmentation of names (hyphens in place of
white-space, for instance), even of those which were presented to them in a specific form.37

Moreover, a number of technical terms in mathematics (namesof mathematical concepts and
objects) are multi-word units, for instance, “degrees of freedom” or “dot product.” Much as in
the case of named entities, different lexical variants of concept names denoting the same object
may exist, for instance, “δ function”, “Dirac’s delta function,” or “Dirac’s delta” are names of
the same concept. Multi-word constructions which incorporate symbolic expressions, such as
“δ function” or “α-stable” (stochastic process), are not uncommon. Set theory itself has a few
multi-word domain terms, for instance, “the universal set”(“die Universelle Menge” in German)
or “the power set” (“Potenzmenge”, a compound in German).

Finally, certain conventional mathematical phrasings canbe considered domain-specific col-
locations orroutine formulaein the sense of Wray and Perkins (2000).38 Examples include
natural language translations of propositional logic connectives, such as “A if and only if B,”
“A andB”, “if A, thenB”, as well as other fixed phrases, such as “without loss of generality,”
“what was to be shown,” or “This completes the proof.”39 (A full-text search for the phrase
“This completes the proof” on the entire arXiv repository returned over 29000 hits.)40 All of
these expressions have their German, also multi-word, counterparts and occurred in the corpora.

Abbreviations Much like ordinary language, the language of mathematics uses abbreviations,
i.e. shortened forms of words and phrases: initialisms, acronyms, or syllabic abbreviations.
Aside from those found in ordinary language, e.g., “e.g.” or“i.e.” in English, mathematics uses
its own domain-specific abbreviations: references to sidesof mathematical formulas, “the left-
hand side” and “the right-hand side”, are often abbreviatedwith “l.h.s.” or “LHS” and “r.h.s.” or
“RHS”, the end of a proof is signalled with the Latin “q.e.d.”or “QED”, a well-formed formula

37Of course, these examples can be recognised automatically based on simple string matching rules.
38“[A] sequence, continuous or discontinuous, of words or other meaning elements, which is, or appears to be,

prefabricated: that is, stored and retrieved whole from memory at the time of use, rather than being subject to
generation analysis by the language grammar” (Wray & Perkins, 2000).

39Trzeciak (1995) compiled a thematic list of the most common mathematical formulaic phrasings.
40Full text search performed onhttp://arxiv.org/find on August 21, 2010.
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is a “wff”, “if and only if” is shortened to “iff”, etc. Some abbreviations are used in specific
subareas of mathematics more often than in others: in probability theory, for instance, some
of the standard terms are often abbreviated: “almost surely” with “a.s.”, “infinitely often” with
“i.o.”, “almost every” or “almost everywhere” with “a.e.” Some abbreviations are so specific
that without the knowledge of the particular field in which they are used, it is impossible to
unfold them, for instance, the French-origin “càdlàg” or “cadlag” and its English equivalent,
“RCLL”. Examples of German abbreviations which occurred inthe two corpora include different
spelling variants of the following:

General language abbreviations:
d.h. das heißt (this means)
bzw. beziehungsweise (respectively)
Bsp. Beispiel(e) (example(s))
z.B. zum Beispiel (for example)

Maths-specific abbreviations:
o.B.d.A. ohne Beschränkung der Allgemeinheit (without loss of generality)
q.e.d. quod erat demonstrandum
s.t. such that

While most abbreviations are specific to the natural language of the discourse, Latin abbrevia-
tions, such as “q.e.d.” in mathematics, are used internationally. Interestingly, one of our students
consistently used the English “s.t.” in the German discourse.

3.2.2.3 Syntactic phenomena

In general, the natural language part of the informal language of mathematics follows the syntax
of the national language of the discourse, English, German,etc.41 While in textbook and publi-
cation proofs most utterances (or sentences in this case) are in indicative mood, tutorial dialogue
contains also other clause types (all examples from C-II):

Indicatives state unqualified mathematical facts,
Interrogatives ask questions, for instance, request information on concept definition:

“Was ist eine inverse Relation?” (What is an inverse relation?)
Imperatives command to perform actions, for instance, to state proof steps or give help:

“Gib mir doch mal ein konkretes Bespiel wie man Beweise in derMengen-
lehre loest!” (Give me a concrete example of a proof in set theory!) or “erk-
laere die DefinitionR◦S in Worten!” (explain the definition ofR◦S in words!)

Exclamatives express emotions: “Schwachsinn!” (Nonsense!) or “Das beantwortet meine
Frage nur zur Haelfte!” (That’s only half an answer to my question!)

A whole range of natural language syntactic clause structures available in the language of the dis-

41(Up to certain irregularities discussed further in this section.)

92



3.2 The language of mathematical proofs

course can be found in learner proofs in tutorial dialogue. The most frequent type of construction
is the conditional. Zinn discusses conditionals in mathematics at length in his Chapter 4 (Zinn,
2004), therefore, we will not repeat the discussion of conditionals here nor in the section on
semantics. Below, we only illustrate the complexity of the syntax of utterances involving condi-
tionals found in the learner corpora, with three examples:

(15) wennA ⊆ K(B), dannA 6= B, weil B 6= K(B)
(if A ⊆ K(B), thenA 6= B, becauseB 6= K(B))

(16) ∀(x, y) gilt: wenn(x, y) ∈ (R ◦ S)−1 dann(x, y) ∈ S−1 ◦R−1

und wenn(x, y) ∈ S−1 ◦R−1 dann(x, y) ∈ (R ◦ S)1

((∀(x, y) it holds: if (x, y) ∈ (R ◦ S)−1 then(x, y) ∈ S−1 ◦R−1

and if (x, y) ∈ S−1 ◦R−1 then(x, y) ∈ (R ◦ S)−1))

(17) fuer(a, b) ∈ (R ∪ S) ◦ T gilt: entweder(a, x) ∈ R oder(a, x) ∈ S,
weil (a, b) ∈ (R ∪ S), wenn(a, b) ∈ R oder(a, b) ∈ S und gleichzeitig gilt
(x, b) ∈ T
((for (a, b) ∈ (R ∪ S) ◦ T it holds: either(a, x) ∈ R or (a, x) ∈ S
because(a, b) ∈ (R ∪ S) if (a, b) ∈ R or (a, b) ∈ S and at the same time
(x, b) ∈ T holds))

The quoted utterances contain multiple clauses: subordinated or coordinated and subordinated.
Their clause patterns can be summarised as follows:

wennA dannB weil C
wennA dannB und wennC dannD

entwederA oderB weil C wennD oderE undF

Extended concatenation of clauses is unusual both in spokenand in written language. How-
ever, many occurrences of conjoined clauses of this kind canbe found in our learner cor-
pora. In terms of computational processing, this calls for agrammar formalism in which com-
plex multiple-clause utterances of this type could be modelled with sufficient generality. (In a
context-free grammar, every instance of clause ordering would have to be modelled explicitly in
order to obtain all the possible structural analyses; a suboptimal solution.) Specific to German
is, moreover, the difference in word order between main clauses and subordinate clauses. The
former exhibit the so-called verb-second word order (roughly speaking, the inflected verb is the
second constituent), while the latter exhibit verb-last order (the inflected verb is the last con-
stituent). The resulting dependencies require that the grammar formalism be expressive enough
for the syntax-semantics interface to return valid interpretations.

Aside from clause structure complexity, informal mathematical language is also characterised
by certain syntactic idiosyncrasies due to its mixed nature. Students’ language in tutorial dia-
logue exhibits, additionally, syntactic irregularities which are normally never found in textbooks
or scientific publications. These characteristics are illustrated in the following sections.
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Syntactic categories of mathematical expressionsIn Section 3.2.2.1, we showed examples
of mathematical expressions smoothly integrated into the syntax of natural language:42

(18) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)

(19) Wennx ∈ B dannx /∈ A

(20) B enthaelt keinx ∈ A

(21) A auch⊆ B

(22) A ∩B ist ∈ von C ∪ (A ∩B)

In (18) and (19) symbolic expressions, terms and formulas, are used in place of complete valid
constituents: subject and object noun phrases in (18) and main and dependent clauses in (19).
This kind of symbolic expression embedding is easy to explain. The key observation here is that
mathematical expressions can be naturally interpreted as corresponding to two linguistic syn-
tactic types: clauses and noun phases, and the consistency in how mathematical expressions are
embedded into natural language context stems from this correspondence. In most cases, math-
ematical formulas (proposition denoting) correspond to natural language clauses, while mathe-
matical terms (object or type denoting) andmentionsof mathematical formulas, as in “A ⊆ B
is a formula,” correspond to noun phrases. This is in turn because in the symbolic language
formula-forming operators correspond to natural languagepredicates (with “be” as a support
verb if the operator does not have a verb reading), term-forming operators to natural language
relational nouns, and atomic terms (variables and constants) to nouns.43 (19) is a grammati-
cal sentence under the standard grammar of German (and English) because the formulas’ main
operators fill in for the predicates (or their parts, as in thecase of∈).

The next example, (20), illustrates another recurring typeof embedding of symbolic expres-
sions which on the surface have an appearance of formulas. In(20) a natural language sentential
predicate is already present. This signals the need for syntactic reinterpretation of the symbolic
expression such that the utterance is paraphrased as “B contains nox which is an element ofA”.
Under this interpretation, only the left-hand side of the formula is in the scope of the negation
word preceding it, filling the role of a direct object of the main verb, “contain”, pre-modified
by the negation word, while the remaining part of the expression serves as a post-modifying re-
strictive relative clause, of which the formula-forming operator is the main predicate (here, with
“be” as a support verb). Thus, the syntactic chunk “nox ∈ A” is read as “nox which is inA.”44

Several observations can be made of this syntactic configuration: First, the interaction of sym-
bolic expressions of type formula with the left linguistic context appears to be an artefact of the

42English translations on page 87.
43Formula mentions, such as the one presented, must be reinterpreted to be treated as a whole, a “name”, in

order to arrive at the right interpretation. The question ofhow to treat mathematical terms semantically – as definite
descriptions, for instance – can be left aside at this point.

44Alternative readings could be “nox such that it is inA” or “no suchx thatx is in A”. The simplest construction
is adopted.
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fact that formulas are written ininfix notation. Thus, “containsx ∈ A” is licensed, whereas the
same expression in prefix notation, “contains∈ x A”, would not result in a meaningful reading
and it is questionable that in postfix notation, “containsx A ∈”, would read naturally. Second,
the distribution of linguistics context which licence sucha reading is not random and includes
categories which form valid constituents with individual-denoting (as opposed to eventuality-
denoting) words in their right context: in English and German these are transitive verbs (preced-
ing the symbolic expression), nouns and adjectives, quantifiers, and a negation word.45 Finally,
only individual-denoting constituents of a symbolic expression can interact with the preceding
context. Thus, in order to recover the reading, a meaningfulobject-denoting substructure must
be identified in the symbolic expression, based on its parse tree: the subexpression to the left of
the main operator is the one which enters into a dependency relation with the left context, while
the other substructure headed by the top-node becomes its dependent.

Finally, the last two examples, (21) and (22), show that mathematical expression “fragments”
can be also embedded into natural language text. (21) shows that an adverb can modify a sen-
tential predicate expressed in the symbolic language and (22) that formula-forming operators,
which otherwise serve as predicates, can also serve as namesof objects formed by their predica-
tion. Here, the symbol∈ (“be an element of”) fills in for the nominal object (“element”) of the
predicate “be”; similarly,⊆ could be used in place of the noun “subset” and∪, an object-forming
operator, would work in “A ∪B is a∪ of A andB” (a constructed example).

These last two uses illustrate a tendency towardstelegraphic stylein learner language in which
symbolic notation is used as a kind of shorthand for the corresponding natural language wording.
While the latter two forms are perhaps too informal to be encountered in textbooks, it is plausible
that they can occur in written student homeworks, exams, or,as is the case here, as input to a
tutorial system. In a computational processing framework this calls for a lexicon representation
and an approach to parsing which would enable systematic treatment of symbolic expressions
embedded within text, be it complete constituents or fragments, on a par with natural language
lexemes and phrases.

Irregular syntactic constructions As a sublanguage, informal mathematical language admits
of constructions which outside of mathematical discourse would be considered syntactically
invalid. One type of syntactic irregularity is an artefact of how symbolic notation is verbalised
(discussed in Section 3.2.1). For instance, an expressionA ∪B, when spoken, will be typically
read from left to right as it is written by substituting wordsfor symbols: “A union B”, resulting
in a construction which is not only ungrammatical, but does not yield the intended semantics
of “the union of A and B” under any standard interpretation ofcompounds of this type either.46

45The list is based on an ad hoc analysis of textbook discourse.A further more systematic analysis of a large
corpus of mathematical discourse is needed. In (Wolska, 2013) we make a step in this direction.

46The expressionA ∪ B corresponds to a natural language construction involving two nouns,A andB, and a
relational noun “union (of)”. In an analogous constructionin natural language, for instance “friend of Peter and
Paul”, the alteration “Peter friend Paul” is ungrammatical.
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Example (23) illustrates a similar construction in German which appeared in C-I:

(23) wennA vereinigtC ein Durchschnitt vonB vereinigtC ist, dann müssen
alleA undB in C sein
(If A unionC is intersection ofB unionC, then allA andB must be inC)

Here, the student uses the construction “NP vereinigt NP” twice. This is a corrupt German
participial construction with the verb “vereinigen” (unify) which in its grammatical predicate-
argument structure requires a prepositional phrase “mit + Dative” (with). Another irregular
syntactic construction resulting from writing an expression as it is spoken is illustrated below:

(24) Wenn(b, z) in R ist, ist danna in R hoch minus eins?
(If (b, z) is in R, then isa in R to minus one?)

In this example, the student verbalises the notation for inverse relation as “hoch minus eins”
(to minus one), the way it is normally read aloud when exponentiation is involved. The con-
struction “hochNUMBER” is syntactically marked in German: “hoch” as a modifier of a number
category appears exclusively in the mathematical context,and normally only in spoken verbal-
isation.47 The fact that it is found in type-written tutorial dialogue suggests that the learner
adopted an informal conversational style of interaction and assumed that understanding spoken
language style should be within the capabilities of the system’s input interpretation component.
Interestingly, non-canonical telegraphic syntax of this kind appears also in mathematical text-
books. Natho (2005, page 109) quotes the construction “f injektiv” (f injective) with the copula
verb omitted. This type of syntactic reduction is another manifestation of the telegraphic style.

Syntactic ambiguities Finally, natural language structures, especially complexmulti-clause
utterances, are prone to syntactic ambiguities. This is illustrated in the example (25), in which a
structural ambiguity is introduced by the worded coordination:

(25) x ∈ B und somitx ⊆ K(B) undx ⊆ K(A) wegen Voraussetzung
(x ∈ B and thereforex ⊆ K(B) andx ⊆ K(A) given the assumption)

The alternative readings of the utterance can be represented schematically as follows:

[ [ A und somit B ] und [ C wegenD ] ]
[ [ A und somit [ B und C ] ] [ wegenD ] ]
[ A und somit [ [ B und C ] [ wegenD ] ] ]

The previously presented example (17) (page 93) exhibits similar structural ambiguity. Since
domain inference is needed to evaluate the propositional content of the utterances, a linguistic
interpretation module alone cannot identify the most likely reading, however, its parser should be

47The word “hoch” (highly/upwards) is an adverb in German and usually appears in participial constructions such
as “hoch kompiliziert” (highly complicated).
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capable of parsing complex conjoined clauses of this type and identifying structurally ambiguous
readings, be it by representing them in a compact way or by enumerating alternative parses.

3.2.2.4 Semantic phenomena

Ordinary language and the language of mathematics sometimes use the same vocabulary, but
its mathematical meaning differs from its meaning in natural language.48 Quantifiers and con-
nectives are examples of such words, often confused by learners in formalisation. The natural
language quantifier “any” can be used either in the existential (as in “Did you see any movie
lately?”) or universal (as in, “Any dream will do.”) sense. This “sloppiness” of natural language
may lead to a confusion when “any” is used in an imprecise routine mathematical construction
“for any”. A similar problem arises with “and” and “or”. As a logical connective in mathe-
matics “and” has a unique meaning: that of a truth functionalconjunction. In natural language,
however, “and” can have other meanings than that of a logicalconjunction: for instance, that
of a discourse marker introducing a rhetorical relation denoting result, implication, or temporal
sequence, or that of an additive particle. In mathematics the meaning of “A or B” can be para-
phrased as “eitherA or B or both” and, naturally, different truth conditions apply to inclusive
and exclusive disjunction. While natural languages typically do have a linguistic device to ex-
press the exclusive meaning (for instance, “either . . . or . .. ” in English) “or” may be used in
both contexts. The following sections illustrate semanticphenomena in informal mathematical
language which require special processing resources for computational interpretation.

Imprecision While mathematics istheprecise discipline par excellence, its informal language
is remarkably imprecise. The following examples illustrate the phenomenon:

(26) B enthaelt keinx ∈ A
(B contains nox ∈ A)

(27) also gilt ferner, daA undB keine gemeinsamen Elemente haben, dassK(A),
definiert alsU \A, die MengeB enthält
(therefore sinceA andB have no common elements,K(A), defined asU \ A,
contains the set B)

(28) daraus folgt, dass(z, y ∈ R−1 und(x, z) in S−1

(from that it follows that(z, y ∈ R−1 and(x, z) in S−1)

(29) (A ∩B) muss inP ((A ∪ C) ∩ (B ∪ C)) sein, da(A ∩B) ∈ (A ∩B) ∪ C
((A ∩B) must be inP ((A ∪ C) ∩ (B ∪C)) since(A ∩B) ∈ (A ∩B) ∪ C)

In the first two utterances, the students used the predicate “enthalten” (contain); in (26),B, a
first order set, is its subject andx, a set element, its object and in (27),K(A), a first order set, is
the subject andB, also a first order set, the object. The predicate “contain” is, however, imprecise

48We already showed some examples of confusable vocabulary while discussing the lexicon; see page 88.
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(ambiguous). In the context of set theory,CONTAINMENT may refer toSUBSET/SUPERSETor
ELEMENT relation. In the context of symbolic mathematical expressions,CONTAINMENT could
be also interpreted as structural composition; one expression being a structuralSUBEXPRESSION

of another.49 In (26) the ELEMENT relation is meant, while in (27) theSUBSET relation is
intended. Similarly ambiguous is the locative prepositional phrase with “in” in the next two
examples. In (28) theELEMENT reading is intended. In (29), while theELEMENT reading more
plausible, it is not clear whether the student realises the difference between the two relations
considering the error in the dependent clause (A, B, andC are first order sets).

The examples illustrate the fact that in informal mathematical language mathematical con-
cepts are named using common words which are imprecise (recall the examples from Table 3.5
on page 90) but which do have precise mathematical interpretations.50 The same common word
or construction may be used to name a class of conceptually related mathematical notions, espe-
cially if the mathematical notions are conceptualised as precisified subclasses of a more general
concept, as is the case with different types ofCONTAINMENT above.

In fact, in the course of learning mathematics, students areoften explicitly told toconcep-
tualisemathematical concepts as analogous to specific real-world images, that is, to buildcon-
ceptual metaphorsin their minds which visualise mathematical notions. Lakoff and Núñez
(2000) take a radical stance on mathematical understandingin Where mathematics comes from
claiming that all of mathematics is a mental product which arises from ourembodiedminds,
everyday experiences, and from human mind’s unconsciousempirical cognitive mechanisms,
such as metaphors and image schemata. In line with Lakoff’s prior cognitive linguistic theories
Lakoff and Núñez attribute (almost all) mathematical understanding to the process of under-
standing layers ofmathematical conceptual metaphors, inference-preserving mappings between
conceptual domains: a source domain, from which metaphorical expressions are drawn, and a
target domain, the domain which is being interpreted. Mathematical metaphors make it possible
to understand complex, abstract mathematical notions (targets) in terms of simple, concrete no-
tions from our everyday reality (source domains). For example, abstract sets can be understood
via the (physical)containermetaphor: The notion of a set is conceptualised as a container; a set
is a container with things in it. The things may be simple things or sets of things. Given this
image, we can conceptualise different configurations involving containers: one container inside
another, as in the former examples, or two containers with different things in them:

(30) B vollstaendig ausserhalb vonA liegen muss, also im Komplement vonA
(B has to be entirely outside ofA, therefore in the complement ofA)

49If in the previous context there would have been an assignment of B to a formula in whichx ∈ A is a subex-
pression, the structural composition reading could be intended.

50Also Halmos (1970, page 144) comments on the natural language wording used for set relations.
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(31) dann sindA undB vollkommen verschieden, haben keine
gemeinsamen Elemente
(thenA andB are completely different, have no common elements)

“Lying outside”, (30), and “being different”, (31), are informal natural language descriptions
of an empty intersection of sets. A mental image of a container evokes a vague relation of
similarity between containers (here, the property of two containers being different) and relations
and properties associated with containers, such as location (here, of one container’s content).

Although the authors do not make specific claims as to the language phenomena resulting
from the mapping, the theory appears to explain the fact thatthe language used to talk about sets
reflects the language used to talk about the source domain of the metaphor, containers: hence,
we talk about sets “containing” elements, to express the setmembership relation, and about sets
“being contained in” or simply “being in” another set, to express the subset relation. The result-
ing ambiguity in the interpretation of the specific mathematical set relation meant is an artefact
of the imprecision of the natural language phrasing. However, since the phenomenon is system-
atic, a computational interpretation component needs a representation of the imprecise concept
names and an appropriate mapping to the possible specific mathematical interpretations. Notice
moreover that this kind of ambiguity appears also in textbook discourse (recall, for instance, the
previously quoted definition of set membership from (Bartle& Sherbert, 1982); see page 72 of
this chapter) which all the more motivates this as a basic requirement for a computational pro-
cessing architecture. In our domain model specific mathematical relations are subsumed under
more general relations reflecting the conceptual structurediscussed above; see Section 6.2.1.

The metaphor mechanism can result in further imprecise wording: following theCONTAINER

metaphor, students can of course think of smaller and largercontainers, as in the example below:

(32) Der Schnitt von zwei Mengen ist kleiner gleich der kleineren dieser Mengen,
also ist das Komplement des Schnitts größer gleich das Komplement
der kleineren Menge
(The intersection of two sets is smaller equal the smaller of these sets,
so the complement of the intersection is larger equal the complement of the
smaller set)

“Smaller” and “larger” refer to sets’ cardinalities ratherthan their physical size, of course.
Note that while natural language introduces imprecision, it is an imprecision in the sense of

ambiguity, that is, a discrete set of possible interpretations (precisifications) exists. Mathematics
is in general void ofvaguenessin that mathematical concepts areprecisely defined. There exist,
however, technical terms, also used in definitions, which are inherently vague. Consider, for
instance, the mathematical uses of “almost all” (all exceptfor finitely many or all except for a
countable set) or “sufficiently large” (greater than some number).
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Contextual operators Consider the following two examples from the corpora:

(33) Wenn alleA in K(B) enthalten sind und dies auch umgekehrt gilt, muß es sich
um zwei identische Mengen handeln
(If all A are contained inK(B) and this also holds the other way round,
these must be identical sets)

(34) S5: es gilt natürlich:P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B)
(it holds of course:P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B))

S6: nein doch nicht... andersrum
(no not that either... the other way round)

“Umgekehrt” and “andersrum” or their English counterpart,“the other way round”, are com-
plex operators which require contextual interpretation. In the first example, (33), “the other other
way round” is ambiguous: the clause “and this also holds the other way round” may be inter-
preted as “und alleK(B) in A enthalten sind” (and all K(B) are contained inA) or as “und
alle B in K(A) enthalten sind” (and all B are contained inK(A)), the intended interpretation.
In the first interpretation, the entire dependent substructures of the head verb “enthalten”,A and
K(B), are involved, whereas in the second, only parts of substructures,A andB, are involved
(the directly dependent nodes, but not their dependents; assuming we analyse mathematical ex-
pressions in terms of the same dependency syntax as in natural language analysis). In (34) the
entire dependent subtrees of the predicate expressed in thesymbolic language,⊆, are involved,
however, the scope of the semantic reconstruction involvescontent which appeared two dialogue
turns prior to the turn with the operator; following S5 the tutor uttered “Wirklich?” (Really?)
upon which the student revised his proof step in S6 with “the other way round”.

“The other way round” is a typical example of acontextual operator. Kay (1989) defines con-
textual operators as “lexical items or grammatical constructions whose semantic value consists,
at least in part, of instructions to find in, or impute to, the context a certain kind of information
structure and to locate the information presented by the sentence within that information struc-
ture in a specified way”. Other items which have this propertyand which have been discussed in
the linguistic literature include “respective”, “respectively”, and “vice versa” (B. Fraser, 1970;
McCawley, 1970; Kay, 1989). Interpretation of operators ofthis type is non-trivial precisely due
to their contextual and parasitic nature: the context needed for interpretation may span multiple
clauses (or even dialogue turns in our case), it may contain multiple candidate arguments for
the operator, and the candidates may appear in a variety of syntactic and semantic-dependency
configurations. Computational interpretation must involve identifying the scope of the semantic
reconstruction and a transformation process which recovers the implicit propositional content.

While the scope of “the other way round”-like operators may span a number of clauses, the
scope of “analogously”, another contextual operator, may span entire larger discourses. The
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following examples illustrate the complexity of the phenomenon:

(35) S13: (R ◦ T ) ist definiert als{(x, y)|∃z(z ∈M ∧ (x, y) ∈ R ∧ (y, z) ∈ T )}
((R ◦ T ) is defined as{(x, y)|∃z(z ∈M ∧ (x, y) ∈ R ∧ (y, z) ∈ T )}.)

S14: (S ◦ T ) ist genauso definiert.
((S ◦ T ) is defined in the same way.)

S15 (S ◦ T ) ist analog definiert.
((S ◦ T ) is defined in an analogous way.))

(36) Der Beweis von(T−1 ◦ S−1)−1 = (S ◦ T ) ist analog zum Beweis von
(T−1 ◦R−1)−1 = (R ◦ T ).
(The proof of(T−1 ◦ S−1)−1 = (S ◦ T ) is analogous to the proof of
(T−1 ◦R−1)−1 = (R ◦ T ).)

(37) Der Beweis geht genauso wie oben
(The proof goes the same way as above)

In (35) interpreting “analog” (analogously) requires an appropriate variable substitution in
the definition of the composition of relations which the student formulated two turns earlier
in the dialogue. Note that the tutor did not accept the student’s first phrasing with “genauso”
(the same way) and asked for clarification: “Was heisst ‘genauso’?” (What does ‘genauso’
mean?).51 In (36), however, “analogously” is used in place of an entireproof which spanned
about 15 student turns. In this case, the complete previous proof object would have to undergo a
rewriting transformation involving multiple variable substitutions. In the case of definition, (35),
the phrasing “genauso” was not accepted, however, following (37) the tutor accepted it in the
case of a larger proof. This is justified because here “the same” is more plausible to refer to the
high-level proof structure, rather than the specific variable instantiations, as is the case with the
definition. “Proofs by analogy” of this type occur frequently in textbooks and publications.

From a computational point of view, interpreting “analogously” or “genauso” in the case of
proof steps or entire proofs, would involve, first, identifying candidate objects in the previous
discourse representation, which could undergo a transformation and, second, identifying paral-
lels between the object currently under discussion and the candidate objects retrieved from the
previous discourse. While in the case of “the other way round” the transformation is at the level
of linguistic entities and can operate on linguistic representations, the transformation needed
for “analogously” does not operate on linguistic entities,but rather on domain objects built up
by a domain reasoner based on discourse analysis: a deduction system’s proof or proof step
representations, and is therefore outside of the scope of this thesis. Our approach to semantic
reconstruction of “the other way round” will be presented inChapter 6.

Adjectives Mathematical adjectives are interesting from the point of view of their semantic
properties and their computational representation. Consider, for instance, the terms “left inverse”

51The tutor apparently overlooked a typo in the variable naming.
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and “right inverse”. In a set with a binary operation,∗, and an identity elemente, a is a left
inverse andb is a right inverse ifa ∗ b = e. However, by convention, an element is called an
“inverse” (or “two-sided inverse” alternatively) when it is botha left inverse and a right inverse
with respect to∗. Thus, from the point of view a taxonomy of mathematical objects theis-a
relation holds in a counter-intuitive direction: it isnot alwaysthe case that a left inverseis-an
inverse and a right inverseis-an inverse, which would be the case if pre-nominal modification
worked the way it usually works with adjectives in natural language. The cases of an “ideal”
and “left/right ideal” are analogous in this sense. Typicalattributive adjectives also exist in
mathematics; “monotonic/monotone”, as in “monotonic function”, is an example.

The second class of interesting adjectives are those which can be used predicatively. Examples
of such adjectives include properties of relations, such assymmetry, commutativity, etc. When
expressed in an adjectival form in natural language they arepart of copular constructions such
as the one illustrated below:

(38) Da die Mengenvereinigung kommutativ ist, . . .
(Since set union is commutative, . . .)

When formalised mathematically, commutativity of a binaryoperation∗ on a set is defined as
x ∗ y = y ∗ x for all the set elementsx andy; for the set union operation this would be instan-
tiated asA ∪ B = B ∪ A, whereA, B are sets. In this representation, a functional operator is
involved and a structural result is defined. In natural language, as in (38), commutativity is pred-
icated of set union. Informally, this could be represented symbolically asCOMMUTATIVE (∪),
that is, a property is predicated of a function. Thus, the structure of the two representations is
different and needs to be mapped. The same holds of the other relation and function properties
such as “symmetric”, “distributive”, “connected”, etc. Ingeneral, the meaning of mathematical
adjectives, denoting properties of mathematical objects,is formally defined and a computational
language understanding component needs to be able to represent a mapping between the natural
language adjectival use and the formal representation. In particular, in a tutorial dialogue sys-
tem, this mapping has to link to an automated deduction system’s internal representation, so that
the validity of an assertion such as (38) can be verified.

Verbs In the course of problem solving learners verbalise “actions” which they intend to per-
form on terms and formulas before they actually carry out theappropriate formal operation. The
following examples illustrate this:

(39) Ich zerlege jetzt die Potenzmenge:P (C ∪ (A ∩B)) ⊇ P (C) ∪ P (A ∩B)
(I’m now splitting the power set:P (C ∪ (A ∩B)) ⊇ P (C) ∪ P (A ∩B))
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(40) Ich scḧtze die Vereinigung der Teilmenge abP (C) ∪ P (A ∩ B) ⊇ P (A ∩B)
⊇ A ∩B
(I’m estimating the union of the subsetP (C) ∪ P (A ∩ B) ⊇ P (A ∩ B) ⊇
A ∩B)

(41) Nun wendet man das Relationenprodukt nochmals an, oder?
(The relation product should be applied now, right?)

(42) damit kann ich den oberen Ausdruck wie folgt schreiben:K((A ∪ B) ∩ (C ∪
D)) = K(A ∪B) ∪K(C ∪D)
(thus I can write the above expression as follows:K((A ∪ B) ∩ (C ∪D)) =
K(A ∪B) ∪K(C ∪D))

This kind of language is characteristic of Tall’s procept world (see Section 3.1.2, page 65) in
which focus is on actions, procedures, and algorithms. In order to obtain a complete interpreta-
tion of the intended proof-step a formalisation of meaningsof such “actions” would be needed.

The information about the fact that elements of the procept language occurred in the stu-
dent’s solution could be useful for the tutoring system’s pedagogical module to reason about the
student’s knowledge state. This, however, means that an automated system would have to be
able to verify whether the result of the operation actually performed on a symbolic expression
can be indeed considered an instance of “splitting”, “estimating”, “applying”, or “(re-)writing”.
This would in turn mean that the semantics of these actions would have to be operationalised.
While “applying” a lemma or a theorem or “rewriting” an expression could be formalised in
relatively straightforward way,52 a symbolic operationalisation of “splitting” is not so obvious;
notice moreover that in the quoted example (39) the argumentof the verb “split” has to be type
recast: it is not the power set object that is being “split”, but rather the term headed by the power
set operator. Further similar examples will be discussed inthe next section when we talk about
bridging references.

3.2.2.5 Discourse phenomena

The discussion of discourse phenomena in mathematical discourse should perhaps start with an
introduction on denoting. Mathematics is a tricky area in this respect; we will not attempt even
a brief digression into the philosophical – ontological or epistemic – aspects of mathematics.
These areas are outside of the research scope of this thesis.The purpose of this section is far
more down-to-earth: in the following sections, we will merely illustrate a number of discourse
reference phenomena in proofs. In relation to referring, two points need to be mentioned about
the universe of discourse.

Mathematics is about mathematical objects and, even more importantly, relations between

52The predicate “apply”, for instance, can be modelled as a two-place function with arguments of typesMATH -
EXPR (mathematical expression) andTHEOREM, returning a result of typeMATHEXPR which should have the prop-
erty that it can be derived from the inputMATHEXPR in one step by rewriting usingTHEOREM.
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them. At the conceptual level, mathematical discourse talks aboutmathematical entities, makes
statements,propositionsor claims, about these entities and ascribesmathematical properties
to both the entities and the propositions. Mathematical objects – non-physical, timeless and
spaceless, formally defined abstract entities – are evoked in mathematical discourse by their
names. The words that name them are technical terms of mathematics. Mathematical objects
in the domains of our corpora include sets, relations, and operations on sets and relations (set
union, intersection, relation composition, etc.) which are themselves mathematical objects too.

Although in principle all of mathematics can be done in the mind and mathematical con-
cepts can be considered purely mental constructs which do not need words, mathematics is of
course communicated: in the form of natural language, as in our experiments, or using other
means, such as diagrams or graphs. Words, phrases, and sentences of the formal mathemati-
cal language,mathematical expressions, are symbolic textual representations of mathematical
objects, relations, and propositions. This structured textual notation can be written in a precise
formal way (as is the case in formal logic or proof theory) or semi-formally. We talked about the
properties of the symbolic language already in Section 3.2.1 The written representations are of
course themselves mathematical objects and mathematical discourse talks about them as well.
Thus, among reference phenomena, aside from the usual anaphoric references found in natural
language, in mathematical discourse other types of references are to be expected: references to
the textual mathematical signs (notation) or parts of thesesigns and references to mathematical
propositions or sets of propositions which form a proof or part of a proof, that is, larger mathe-
matical discourse objects. We discuss and illustrate thesephenomena in the following sections.

Referring to domain objects Both definite and bare noun phrases can be used as specific ref-
erences to refer to domain objects or as generic references to refer to domain concepts. For in-
stance, “die Vereinigung” (the union) in (43) below is a specific reference, whereas “die Potenz-
menge” (the power set) in (44) is a generic reference to power set as a type:

(43) Die Vereinigung der MengenR und S enthaelt alle Element ausR und alle
Element ausS.
(The union of the setsR andS contains all elements fromR and all elements
fromS)

(44) und für die Potenzmenge gilt:P (C ∪ (A ∩B)) = P (C) ∪ P (A ∩B)
(and for the power set it holds:P (C ∪ (A ∩B)) = P (C) ∪ P (A ∩B))

The interpretation of the reference “Potenzmenge” in (45) below is unclear:

(45) S1: A ⊆ (A ∪ C) , B ⊆ (B ∪ C), also(A ∩B) ⊆ ((A ∪ C) ∩ (B ∪ C))
(A ⊆ (A ∪C) , B ⊆ (B ∪ C), thus(A ∩B) ⊆ ((A ∪ C) ∩ (B ∪ C)))

S2: Potenzmenge enthaelt alle Teilmengen, also auch(A ∩B)
(Power set contains all subsets, thus also(A ∩B))
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S2 in (45) can be interpreted as an informal paraphrase of thedefinition of a power set, in which
case the reference is generic, or the learner may have meant the power set of the specific instance
of a set in S1,((A ∪ C) ∩ (B ∪ C)), in which case the reference is specific.

Aside from evoking defined objects, mathematical discoursemay contain references to named
theorems, lemmata, definitions, or proofs. These entities are also mathematical objects and they
are often referred to by their proper names as in (46):

(46) Ich benutze das Extensionalitaetsprinzip
(I’m using the Extensionality Axiom)

The definite noun phrase “das Extensionalitaetsprinzip” (Axiom of Extensionality) is a non-
anaphoric reference to a class of statements intentionallyequivalent to the following:

A = B ⇔ ∀ x (x ∈ A⇔ x ∈ B), whereA, B : sets

Other examples of named mathematical objects of this type inour domains include: “De Mor-
gan Regeln” (De Morgan Laws) or “Distributivgesetz” (Distributive property). Proof methods
or strategies, likewise, have names, for instance, “indirect proof” or “proof by contradiction”,
“(Cantor’s) diagonal proof”; specific proofs can be named entities as well, for instance, “the
Euclid’s proof” (of the Pythagorean theorem), “the Wiles’ proof”, or “the Hales proof”. In most
contexts, occurrences of these references are non-anaphoric.

Referring to (parts of) symbolic notation When mathematics is committed to written form,
referring devices can be also used to relate to symbolic expressions in discourse or to their parts.
Both direct – anaphoric – and indirect – bridging – references to (parts of) symbolic notation
can be found in mathematical discourse. Both types of references are illustrated below.

Direct reference In a direct reference acoreference relationexists between two discourse ref-
erents: the one introduced by the referring expression (called theanaphor) and another one
introduced previously (called theantecedent); the two expressions denote the same entity. Pro-
totypical anaphoric references are pronouns, illustratedbelow:53

(47) Da, wennA ⊆ K(Bi) sein soll,A Element vonK(Bi) sein muss. Und wenn
Bi ⊆ K(A) sein soll, muss esi auch Element vonK(A) sein.
(Because if it should hold thatA ⊆ K(B), A must be an element ofK(B).
And if it should hold thatB ⊆ K(A), it must be an element ofK(A) as well.)

(48) S1: Wie istR ◦ S definiert?
(How is R◦ S defined?)

53Coreferring discourse entities marked with matching subscripts.
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T1 R ◦ S := { (x, y) | ∃zi(zi ∈M ∧ (x, zi) ∈ R ∧ (zi, y) ∈ S}
(R ◦ S := { (x, y) | ∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S})

S4 istzi nur fuer die Definition eingefuehrt oder hat esi einen anderen Sinn?
(is z introduced only for the definition or does it have a differentmeaning?)

In (47), the pronoun “es” (it) is used to refer to a term in a formula, a set variableB in the
previous clause. The syntactic function of the anaphor, subject of the clause, is parallel to the
syntactic function of the antecedent in the formula verbalisation. Syntactic parallelism between
the anaphor and a candidate antecedent is used in computational anaphor resolution as a strong
indicator of coreference. Similarly, in (48), the pronoun “es” is referring to a variable naming a
member of a set,x, which was first introduced a couple of turns earlier in the dialogue.

Coreference between variables in mathematics is dependenton the type of denotation that the
given variable has (specific unknown vs. continuous unknownvs. arbitrary fixed object, and
so on), the logical structure of the argument (the function and scope of the discourse segment
in which the variable is found), and quantification (instances of the same variable name in two
existentially quantified formulas do not necessarily corefer).54 The very notion of a variable,
the meaning of variables, and quantification has been shown to cause major difficulties to learn-
ers (Epp, 1999; Dubinsky & Yiparaki, 2000; Selden & Selden, 2003). A typical error in the use
of variables from one of our corpora is shown below:

(49) S18: Daraus folgt(R∪S)◦T = {(x?, y) | ∃z(z ∈M∧(x, z) ∈ {x? | x? ∈ R∨x? ∈
S} ∧ (z, y) ∈ T )}
(From that follows(R ∪ S) ◦ T = {(x?, y)|∃z(z ∈ M ∧ (x, z) ∈ {x?|x? ∈
R ∨ x? ∈ S} ∧ (z, y) ∈ T )})

T19: Was bedeutet die Variablei xi bei Ihnen?
(What is the meaning of the variablex?)

S19: xi hat zwei Bedeutungen esi kommt in zwei verschiedenen Mengen vor
(x has two meanings it appears in two different sets)

T20: Benutzen Sie bitte fuer die zwei verschiedenen Bedeutungen vonx zwei ver-
schiedene Bezeichnungen.
(Please use two different designations for the two differentmeanings ofx.)

In (49) the same name,x, is introduced with the intention of denoting two differententities.
The entities are moreover of different types: in one case,x is a variable in a pair,(x, y), and in
the other case, a set member variable in a set constructor. This kind of ambiguous designation is
invalid in a proof, so the tutor asks for clarification, “Was bedeutet die Variablex bei Ihnen?” (in
which “die Variablei xi” is an example of appositional anaphoric reference). An anaphor appears
also in the clarification subdialogue: the pronoun “es” in the second clause of S19 corefers with
the x in the preceding clause and in the tutor’s turn, however, a coreference chain cannot be
established with the previous occurrences ofx due to the ambiguous designation.

54See (Kapitan, 2002) for a discussion on the nature of variables in mathematics.
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The last examples illustrate pronominal adverbs, (50) and (51), referring to complex terms
and formulas and, (52), an anaphoric epithet which identifies an expression by its type, (52):

(50) S1: [R ◦ S ]i := {(x, y) | ∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)}
S2: Nun will ich das Inverse [ davon ]i

(Now I want the inverse of that)

(51) Dann gilt fuer die linke Seite, wenn [C ∪ (A∩B) ]i = [ (A∪C)∩ (B ∪C) ]i
der BegriffA ∩B dann ja schon dadrin und ist somit auch Element [ davon ]i.
(Then for the left side, ifC ∪ (A∩B) = (A∪C)∩ (B ∪C) the termA∩B is
already there and thus also an element of it)

(52) T: [ R ◦ S := { (x, y) | ∃z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)} ]i.
S: So, und was ist dasM in [ der Formel ]i?

(Right, and what is theM in the formula?)

Other examples of anaphoric epithets include “the term”, “the variable”, “the constant”, as well
as named results of operations (“the sum”, “the union”, “thefactors”), named components of
symbolic expressions (“the numerator”, “the denominator”), etc.

Indirect reference Bridging is a term introduced by Clark (1975) for definite noun phrases
identifying a referent which has not been introduced explicitly, but which is “associated” with
a previously evoked entity.55 Bridging references can be used to identify mathematical expres-
sions by their typographical features or physical properties (“the left side”), the linear order of
their constituents (“the first term”), their structural groupings or delimited subexpressions (“the
bracket”), or the type of object they denote (“the complement”, when it refers to a term headed
by the complement operator). The following dialogue fragment exemplifies the phenomenon:

(53) T1: Bitte zeigen Sie:A ∩B ∈ P ((A ∪ C) ∩ (B ∪ C))!
(Please show:A ∩B ∈ P ((A ∪ C) ∩ (B ∪C))!)

S1: Distributivitaet von Vereinigung ueber Durchschnitt:A∪(B∩C) = (A∪B)∩
(A ∪ C) Hier dann also:C ∪ (A ∩ B) = (A ∪ C) ∩ (B ∪ C) Dies fuer [ die
innere Klammer ]i. Auf [ der linken Seite ]j A∩B. Hierfuer gilt Fall 10: Falls
A ∈ P ((A ∪ C) ∩ (B ∪ C)) undB ∈ P ((A ∪ C) ∩ (B ∪ C)) = A ∩ B ∈
P ((A ∪ C) ∩ (B ∪ C))
(Distributivity of union over intersection: . . . So here: . . .This for the inner
bracket. On the left sideA ∩B. Case 10 applies here: If . . . and . . .)

55Other terms used for this kind of reference are “indirect anaphora” (Chafe, 1972, 1976), “associative
anaphora” (Hawkins, 1978), or “inferrable” (Prince, 1981).
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S2: Dann gilt fuer [ die linke Seite ]j , wennC ∪ (A ∩ B) = (A ∪ C) ∩ (B ∪ C)
der BegriffA ∩B dann ja schon dadrin und ist somit auch Element davon.
(Then for the left side it holds, if . . . the termA ∩ B is already there and thus
also an element of it)

S3: A∩B auf [ der linken Seite ]j ist∈ vonC∪(A∩B), was ja nur durchC erweitert
wird. Es kommt auf [ der rechten Seite ]k ja nurC als Vereinigungsmenge
zuA ∩B hinzu.
(A ∩ B on the left side is∈ of C ∪ (A ∩B), which is extended only byC. On
the right side is onlyC intersected withA ∩B.)

The definite noun phrases “die innere Klammer” (the inner bracket), “die linke Seite” (the left
side) and “the right side” in S1, S2, and S3 refer to a structural parts of the formula in T1 and
they are all used in a bridging sense: “the left side” and “theright side” refer to the terms left
and right of the top-node operator in the formula (rather than to the general areas to the left and
right, respectively,) while “the inner bracket” refers to abracketed subterm embedded in another
bracketed term, rather than to a bracket itself in the sense of a grouping element. (In English, of
course, yet another interpretation of the reference “bracket”, without the adjectival modification,
would be possible in algebra. Lexical interpretation is, asalways, dependent on the domain;
here, mathematical subarea). The reference “die innere Klammer” is in this case unfortunately
ambiguous: the singular “Klammer” may refer to either(A ∪ C) or (B ∪ C) both of which are
bracketed subterms of the termP ((A ∪C)∩ (B ∪C)); the plural “Klammern” was most likely
intended, but mistyped.

The next set of examples, (54) through (56), illustrate bridging references to terms by means
of the names of objects which the terms denote:

(54) T1: Bitte zeigen Sie: [K((A ∪ B) ∩ (C ∪ D)) ]? = ([ K(A) ]? ∩ [ K(B) ]?) ∪
([ K(C) ]? ∩ [ K(D) ]?)!
(Please show:K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))!)

S2: de morgan regel 2 auf [ beide komplemente ]i angewendet
(de morgan rule 2 applied to both complements)

(55) S2: hab mich verschrieben [P ((A ∪ C) ∩ (B ∪ C)) ]? = [ P (C ∪ (A ∩B) ]?
(made a typoP ((A ∪ C) ∩ (B ∪ C)) = P (C ∪ (A ∩B))

S5: habe probleme mit [ der potenzmenge ]i, kann siei nicht ausrechnen bzw mir
siei vor augen fuehren!
(have problems with the power set, can’t calculate it, can’t see it)

(56) S33: Nach Aufgabe W ist(S ◦ (S ∪R)−1)−1 = [ ((S ∪R)−1)−1 ◦ S−1 ]i
(By Exercise W: . . . holds)

S34: Diesi ist nach Theorem 1 gleich [(S ∪R) ◦ S−1 ]j
(This is by Theorem 1 equal to(S ∪R) ◦ S−1)
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S35: Ein Element(a, b) ist genau dann in [ dieser Menge ]j, wenn es einz ∈M gibt
mit (a, z) ∈ S ∪R und(z, b) ∈ S−1

(An element(a, b) is in this set if and only if there is anx ∈ M such that
(a, z) ∈ S ∪R und(z, b) ∈ S−1)

The quantified noun phrase “beide Komplemente” (both complements) in S2 of (54) refers to
a pair of terms headed by the complement operator in T1. The plural in this case is multiply-
ambiguous. First, there is an ambiguity between the distributive and collective reading, and
second, there are five complement-headed terms in the preceding formula. It is clear, however,
that only two pairs of those are equally plausible as antecedents:K(A) andK(B) or K(C) and
K(D); in fact, De Morgan rule has to be applied to both, pair-wise.

There are two ways of interpreting the definite noun phrase “der Potenzmenge” (the power
setDat.) in S5 of (55). On the one hand, it may be referring to a term headed by the power set
operator in S2 (rather than the power set operator itself) which contains the following expression:
P ((A∪C)∩(B∪C)) = P (C∪(A∩B)). Under this interpretation, the reference is ambiguous
since there are two power set-headed subexpressions. On theother hand, it is more plausible to
interpret it non-anaphorically, as a generic reference. Since the student had a general problem in
understanding the concept of a power set, so it is unclear which one he meant.

In (56) the definite noun phrase “diese Menge” (this set) in S35 is again a bridging reference
to the set defined by the composed relation denoted by the term(S ∪ R) ◦ S−1 in S34. Yet
another related type of bridging reference, of which we did not have examples in the corpora,
are bridging references to structures by means of their underlying objects; in the context of
groups, for instance, given a setG and a binary operation∗, one could refer to “the groupG”.
Bridging references of this kind occur frequently in textbook discourse.56 (56) also exemplifies
a discourse deictic reference to a part of a mathematical expression: “dies” (this) in S34 points
at the term on the right-hand side of the equality in S33.

Ganesalingam suggests that Zinn’s (2004) analysis of structured mathematical terms which
makes their subterms available for reference is incorrect:“[Zinn’s analysis] frequently makes
incorrect predictions about anaphor, even though this is one of the great strengths of Discourse
Representation Theory. For example, consider the discourse: ‘2 + 15 is prime. It is divisible
by 1 and 17 (only).’ Zinn’s analysis incorrectly predicts that ‘2’ is an available anaphoric an-
tecedent at the end of this discourse (Zinn, 2004, pages 106–7)” (Ganesalingam, 2009, page 20).
Considering the phenomena illustrated above, Zinn’s analysis appears well-justified; even the
quoted example could continue along the lines of “The left term is prime”, for which, clearly,
‘2’ would need to be an available antecedent. In fact, Zinn’sexample (93a) on the quoted
page 106: “1, 1, 2, 3, 5, 8, 13, 21, . . . in which [ the first two terms ] are . . . ” also supports this,
as do his other examples (43c–e) on page 74 which illustrate the same phenomenon (albeit under
an unfortunate heading of “Deictic form”).

56C. Wells (2003, page 239) points out that this is an example ofparameter suppression.
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The question which substructures of mathematical expressions should be available for refer-
ence does not have an obvious answer. The purpose of the discussion in Section 3.2.1.2 was
to show that certain substructures of mathematical expressions can be considered salient: they
are valid constituents, in terms of the expression’s tree structure, and they are distinct in the
Western-tradition infix notation. Constituent structure analysis is also supported by studies on
human perception of mathematical expressions (Jansen et al., 1999, 2000, 2003). Considering
this and the observations on referring from our corpora, both atomic and complex subterms, in-
cluding the information on their bracketing, should be available for reference. Now, the operator
nodes of the expressions would need to be modelled too if meta-level discussion on mathemati-
cal expressions were to be allowed (a student could refer to “the plus sign” for instance), as well
as the type of their result (see examples (54) and (56)). Thatis, not onlyK and◦ as the symbols
themselves can be candidate antecedents, but the expressions headed by the operators need to be
available, as already mentioned, along with the information on the type of objects they denote
(a set; the type of the result to the complement operation andof relation composition).

Referring to propositions Both in our data as well as in narrative mathematical discourse
pronouns, demonstratives and adverbial pronouns refer to propositions as well as sequences of
propositions which form a proof. The examples below illustrate this:

(57) S: ∃z ∈M , so dass(x, z) ∈ S−1 und(z, y) ∈ R−1

(∃z ∈M such that(x, z) ∈ S−1 and(z, y) ∈ R−1)
T: Richtig. Wissen Sie, ob ein solchesx existiert?

(Correct. Do you know whether suchz exists?)
S: Nein

(No)
T: Erinnern Sie sich daran, dass [ es einz gibt mit (x, z) ∈ S−1 und

(z, y) ∈ R−1 ]i.
(Do you remember that there is az such that(x, z) ∈ S−1 and
(z, y) ∈ R−1.)

S: Ja, ich habe esi vorausgesetzt
(Yes, that was the assumption)

(58) S7: Also ist [(z, x) ∈ S und(y, z) ∈ R ]i und damiti auch [(y, x) ∈ R ◦ S ]j
(Therefore(z, x) ∈ S and(y, z) ∈ R holds and by that also(y, x) ∈ R ◦ S)

S8: [ Somit ]j ist (x, y) ∈ (R ◦ S)−1

(Given that it holds that(x, y) ∈ (R ◦ S)−1)

In (57), the pronoun “es” (it) is used, as in ordinary discourse, to refer to a proposition, in
this case, an assumption restated in the tutor’s turn T19. More interesting are references with
adverbial pronouns exemplified in (58). “Damit” (with this) in S7 refers to the proposition stated
in the first conjunct of the coordinated clauses. “Somit” (with that) in S8 may refer to the
conjunction of the assertions in S7 or only to the last assertion (marked withj in the example).
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On the one hand, in most cases, as here, references of this kind are underspecified in terms of
their scope. On the other hand, their function is to signal the logical structure of the argument:
the antecedent of “somit” or “damit” provides justificationfor the subsequent statement. In order
to resolve the scope of such references, and so to reconstruct the intended logical structure of
the proof, domain reasoning is needed.

Signalling proof structure and status Proofs are structured discourses. The discourse struc-
ture and linguistic realisation of a proof are dictated by the employed reasoning: the proof
method and the sequence of inferences. Certain proof types have a characteristic form and el-
ements: a proof by induction consists of a base step part and an inductive step, a proof by
contraction has an assumption of the negated proposition and a contradiction, and proof by
cases a sequence of case distinctions. The logical structure of the reasoning is made explicit in
the proof using linguistic means: there exists conventional wording typically used to signal the
proof method employed, the proof step elements (assertions, justifications, etc.), and the end of
the proof. Aside from these proof components, students’ proofs constructed in an interactive
setting contain contributions which are typically not found in textbooks nor scientific publica-
tions. A broader characterisation of utterance types identified in the corpora will be presented in
Chapter 4. Here, we focus only on those student contributions which add information about the
solution being constructed, that is, contain information related to the proof. A classification of
these types of contributions, based on our corpora, is shownin Table 3.6.

From the point of view of their function, solution-related contributions can be divided into
object-level and meta-level types. At the object-level, that is, at the level of the actual proof,
four categories of contributions were found in the corpora:Proof stepsare the actual complete
or partial proposed steps in a proof. A minimal proof step consists of a proposition. The propo-
sition may be an inferred assertion or an assumption. A complete inferred proof step consists
of an assertion and a justification (a warrant) of the validity of the inference (by reference to
proved claims or axioms and valid inference rules). The assertion can be formulated as a formal
statement or a natural language statement in an indicative or conditional/hypothetical mood. A
justification of a claim can be signalled using discourse connectives (in German: “aber”, “und”,
“weil”, “da”, “dann”, etc.; in English: “thus”, “hence”, “therefore”, “because”, etc.), other ad-
verbial connectives, such as those discussed in the previous section (‘damit”, “somit”, “deshalb”,
“also”), or descriptively using appropriate wording, for instance, “aufgrund des Extensionalitaet-
sprinzips”, “aus Symmetriegründen” (Due to extensionality/symmetry), or “Begründung: . . . ”
(Justification: . . .) Much like the adverbial pronouns, discourse connectives are scope bearing,
but their scope is many cases underspecified.57 In most cases, moreover, the link between a new
proposition and the previous propositions is not overtly given at all. Note that underspecifica-
tion manifested in unclear scope of discourse markers signalling the logical structure in proofs

57Adverbs such as those mentioned take two arguments, both of which may span multiple assertions. In English,
one argument immediately follows and the other may take scope over just the previous assertion (here: a previous
step) or over a larger discourse (here: a number of proof steps, along with their justifications; a subproof).

111



3 Language phenomena in proofs

Table 3.6: Categories of solution-related student contributions

Category Description
Proof contributions

Proof step Contributes a proof step or part of a proof step
Proof strategy States a solution strategy to be adopted
Proof structure Signals solution structure
Proof status Signals the status of the (partial) solution

Meta-level
Self-evaluation States an evaluation of own step
Restart Signals that a new attempt at a proof is being started
Give up Signals abandoning the solving task

is present also in textbooks. Again, in order to resolve the underspecified scope,human-level
deductive reasoning is needed, that is, knowledge beyond mere semantic interpretation.

A declaration ofproof strategyis a statement which does not bring the proof forward, but
based on which the intended line of reasoning to follow can beanticipated. It can be signalled
using wording such as “Beweis durch⊆ und⊇” (Proof by⊆ and⊇) or “es genügt zu zeigen
. . . ” (it is enough to show . . .), etc. Byproof structurewe mean explicit signals of a proof’s
structural composition. This includes utterances such as “Schritt 1:” (Step 1) or “Ich mache eine
Fallunterscheidung” (I’m making a case distinction). Proof statusis a category for utterances
which signal the current state or status of the proof, for instance, “q.e.d.”, “Damit ist insgesamt
gezeigt . . . ” (With that we have shown . . .), or a more informal “Hälfte geschafft” (Half done).

Unlike proofs in textbooks or scientific publications, students’ solutions may be invalid (false)
or not goal-oriented; a student may be going in the wrong direction or may not know at all
how to proceed. In proofs constructed with tutor’s assistance, students can communicate this
kind of meta-level information about their solution to the tutor. While all the proof contribution
categories are also found in scientific publications, the latter contribution types are more likely to
appear only in pedagogical contexts. Among meta-level solution-related communication, three
types of contributions were found in the corpora:Self-evaluationsare student’s own evaluations
of the validity, granularity, or relevance of a proof step (or steps) which he proposed. Examples
of such utterances include: “ich habe die falsche Richtung benutzt” (I used the wrong direction
(of an implication)) or “Korrektur: . . . ” (Correction: . . .); the latter being an implicit self-
evaluation. If a solution attempt is not successful, a student canrestart and try a new solution
signalling that the previous one is abandoned: “Ich beginneden Beweis neu” (I’m starting the
proof anew) or “Wieder von vorne” (Once again from the beginning). Finally, if a student cannot
find a solution, he may decide to give up: “Ich gebe auf” (I’m giving up), “Bitte die richtige
Antwort!” (Show me the right solution, please!).
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3.3 Pragmatic aspects in mathematical discourse

From a pragmatic58 point of view the main purpose of the language of mathematicsis to convey
“mathematical content,” that is, factual propositional information about mathematical objects,
relations, and properties. Thus, on the one hand, in G. Brownand Yule’s terminology mathe-
matics is atransactional discourse(G. Brown & Yule, 1983). On the one hand, a mathematical
proof is a form ofpersuasive discourse, a “validating act”, in which the speaker (the proof’s
author) is attempting to convince the hearer/reader that certain mathematical facts hold (Hersh,
1993). A proved mathematical assertion becomes a theorem and can be invoked in another proof
to make new inferences. Assertions without proofs can only appear if they are postulated to be
true (axioms), conditionally assumed to be true (hypotheses), or explicitly declared as such (con-
jectures). From a pedagogical point of view a proof is also aneducational tool: by constructing a
proof a learner is attempting to convince, himself and the teacher that his argumentation is based
on understanding, rather than on mere repetition of memorised theorems and lemmata, and
he is discovering relations between mathematical concepts, thereby deepening his understand-
ing (Hanna, 1990; Sfard, 2001); hence the importance of the learner showing (justifying) how
the proposed proof steps have been derived. Much like in any other dialogue situation, partic-
ipants of mathematical dialogue follow certaincooperative principles59 and make assumptions
as to the stock of knowledge that is shared between them. On the part of the tutor, cooperativity
involves contextual interpretation: resolving underspecified scopes, covert arguments, and ref-
erences, both in the natural language and in the symbolic notation (discussed in Section 3.2.1.3)
as well as resolving semantic ambiguities due to imprecise language (Section 3.2.2.4). At the
proof-level, it involves filling in the gaps in coarse-grained reasoning. These concern also mathe-
matical prose. From the pedagogical point of view, it may also involve ignoring certain low-level
errors in favour of the higher goal of teaching mathematicalargumentation (Section 3.2.1.5).

Unlike in other areas of human activity, in mathematics the truth of claims hasthe central
place; the Gricean maxim of quality is asine qua non.60 There are interesting aspects to how the
other Gricean maxims regulate mathematical proofs. The maxim of quantity is manifested in
the differences in level of detail,granularity, between various mathematical expositions. What
is too much and too little information depends on the author’s assumptions as to what the ad-

58In a technical sense of the word.
59Grice’s Cooperative Principle (Grice, 1975) states that a conversational contribution should be made “such as

is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange.” Cooperative
communication is governed by conversational maxims:Quality: Try to make your contribution one that is true.
1. Do not say what you believe to be false. 2. Do not say that forwhich you lack evidence;Quantity: 1. Make
your contribution as informative as is required (for the current purposes of the exchange). 2. Do not make your
contribution more informative than is required;Relation:Be relevant;Manner: Be perspicuous. 1. Avoid obscurity
of expression. 2. Avoid ambiguity. 3. Be brief. Avoid unnecessary prolixity. 4. Be orderly.

60Paradoxically, the Quality Maxim is routinely flouted in oneof the standard proof methods: proof by contradic-
tion, in which a false statement is stated to be assumed to be true. This, however, serves the method’s higher goal of
showing that the assumption is invalid by reaching a contradiction, thereby proving the original proposition.
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dressee knows – the common ground – and the purpose of the exposition. A mathematical
textbook for novices differs in the level of detail from a scientific paper intended for experts;
see also Chapter 2 (page 42). Violation of the maxim may result in incomprehensible textbooks
(overestimated assumed knowledge: too much information omitted) or in tedious mathematical
articles (underestimated assumed knowledge: too much information included). In a tutoring
setting, it is the tutor who, based on his assumptions on the student’s knowledge, monitors the
level of detail. A poorly performing student may be requiredto make some reasoning steps and
justifications explicit which a good student may be allowed to skip; examples of tutor’s reactions
to the granularity of students’ proof steps were shown in Section 3.2.1.5.61

There are two interesting aspects torelevancein the context of mathematics: one concerns
the mathematical content and the other the informal language. Earlier in this section we said
that the purpose of mathematical discourse is to communicate facts. In receiving mathematical
discourse, the relevance of the presented content should betaken for granted: if something
is said, it must be relevant and said for a reason. A mathematical proof does not admit of
arbitrary facts if it is to fulfil its purpose of persuading, but rather only of those facts that make
the addressee more convinced. An irrelevant assumption maylead to undesired implicatures.
Halmos (1970, page 138) illustrates this with the followingexample: “‘If R is a commutative
semisimple ring with unit andx andy are inR, thenx2− y2 = (x− y)(x+ y)’ The alert reader
will ask himself what semisimplicity and a unit have to do with what he had always thought was
obvious.” Likewise, irrelevant notation should be omittedand certain propositions, while true,
may be unnecessary from the point of view of the argument. Students, however, do contribute
irrelevant steps; we showed examples of such proof contributions in Section 3.2.1.5.62

The other aspect of relevance concerns the language of mathematical discourse. The formal
language of mathematics, due to the nature of mathematics itself, is void of emphatic expres-
siveness and redundancy typical in natural language. Attitude or sentiment toward the pre-
sented facts, any information which cannot be expressed in the formal language or repetition
of previously stated information is superfluous from the mathematical point of view.63 How-
ever, informal mathematical discourse, especially in pedagogical context, does contain this kind
of “irrelevant” content: statements may be reworded, paraphrased, or repeated for emphasis in
order to facilitate understanding and recall or because of the limits of the addressee’s attention
span. Both the student and the tutor may explicitly linguistically markinformationally redundant
contributions in order to bring out the fact that they are (orshould be) already part of common
ground.64 Moreover, certain linguistic expressions may be used as part of the mathematical “jar-
gon” or for stylistic reasons to make the text “read more naturally.” Linguistic means to convey
this extra-mathematical content include adverbs, as in “A also⊆ B” (previously quoted from

61Granularity in human reasoning has been discussed by Hobbs (1985) and granularity in proofs by Rips (1994).
A computational framework for evaluating granularity in the context of proof tutoring has been proposed
in (Benzmüller & Vo, 2005; Autexier & Fiedler, 2006; Schiller et al., 2008)

62Computational aspects of judging relevance are further discussed in (Benzmüller & Vo, 2005).
63(Except, of course, in formal systems in which formulas are explicitly reiterated.)
64See (Karagjosova, 2003) for a linguistic analysis and (Buckley & Wolska, 2007) for a computational model.
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the corpus; see page 87) or discourse markers which do not contribute information on the logical
structure of the proof, such as “moreover” or “now”. From thepoint of view of mathematics,
even naming theorems is unnecessary, but it makes communication of mathematics easier. There
is no place for this kind of information in a formal representation for an automated reasoner; for
computational processing of learner language this means that shallow methods could be used to
identifying such lexical material and to simplify the inputpreserving only the relevant content.

The maxim of manner is manifested in how proofs are presented. A remarkable property
of formal mathematics is its precision. A formal proof contains no ambiguity, however, the
symbolic notation may render it unreadable, a violation of the maxim of manner; recall the
formal notation of sets of odd numbers and primes on page 88.65 While an informal proof
presented in natural language may contain ambiguities and irrelevant linguistic content (the kind
mentioned above), it is typically cognitively easier to follow than a formal proof consisting of
mathematical notation alone. The mode of presentation of mathematical discourse depends,
in turn, on the purpose of the exposition and the intended addressee: In the tutoring setting
different factors play a role than in textbooks or scientificpublications. (Which brings us back
to the motivation for collecting data specific to tutoring setting; see Section 2.1 of Chapter 2.)

3.4 Conclusions

In the beginning of this chapter we presented mathematical language from the point of view
of its properties as a sublanguage and as a kind of “foreign” language which students have to
master in the course of learning mathematics. We have shown that phenomena typical to sublan-
guages, such as symbolic representations (Sections 3.2.1 and 3.2.2.1), deviant rules of grammar
and recurrence of certain characteristic constructions (Section 3.2.2.3), as well as phenomena
typical of various stages of mathematical cognitive development, such as imprecision of linguis-
tic expression leading to ambiguity (Sections 3.2.2.4 and 3.2.2.5) or self-talk describing actions
on the objects of discourse (Section 3.2.2.4), indeed occurin our corpora. Thus, modelling these
phenomena in a language processing architecture for students’ proofs should receive priority.

As we mentioned earlier, the examples in Section 3.2.2.1 show that a method of parsing sym-
bolic expressions tightly interleaved with natural language is the fundamental functionality re-
quired for a computational interpretation module for mathematical language. Neither Zinn (2004)
nor Natho (2005) offer a transparent computational solution to this problem although both do
mention examples of such constructions. Zinn models constants and variables, effectively, as
individual referents in DRSs with operators in complex terms and formulas as predicates in the
DRSs’ conditions and shows how to model only simple cases of appositive noun phrases and
copula constructions in mixed language where the symbolic expression forms an atomic con-
stituent (see Section 5.2 of (Zinn, 2004)). The approach lacks generalisation (individual atomic
terms in the lexicon), modularity (single module for processing symbolic expressions and natural

65Halmos famously remarked “The best notation is no notation”in (Halmos, 1970, page 144) and Gillman coined
the termsymbolitisfor overuse of symbols in mathematical writing (Gillman, 1987, page 7).
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language), and is somewhat cumbersome by comparison with our approach proposed in (Wolska
& Kruijff-Korbayová, 2004a). Natho claims to analyse the natural language and the symbolic
language separately inMARACHNA (see (Natho, 2005, Section 3.3.3, discussion of Example
3.3.16, page 121)). While examples of constructions with scope-bearing words interacting with
parts of mathematical expressions are mentioned, for instance, “Es gibt eine ∈ G . . . ” (There
is an e ∈ G) on page 143ff., no illustration of how they are handled is given and the result of
the analysis of the symbolic expressions is not integrated into the final interpretation result. In
the “Outlook” section of (Jeschke, Natho, et al., 2008), which appears to be the most recent
publication of theMARACHNA group, the authors say that “[including the content of formulas
in the analysis and representation . . . ] is not implemented.However, we are investigating an
approach to rectify this deficiency. Therefore the use of a syntactical analysis, similar to those
used in computer algebra systems in combination with contextual grammars (e.g. Montague
grammars) to correlate the information given in a formula with information already provided
in the surrounding natural language text, is proposed.” However, no further details on how the
Montague grammars would be realised are provided.

The presence of abbreviations in mathematical discourse, especially those with full stops, in-
troduces extra complexity into the problems of computational sentence-boundary detection and
word-tokenisation for mathematical discourse (Grefenstette & Tapanainen, 1994). A common
approach is to create a lexicon of frequent abbreviations tohelp disambiguate occurrences of
full stops (Reynar & Ratnaparkhi, 1997; D. J. Walker et al., 2001; Mikheev, 2002); see, for
instance, (Schmid, 2000; Kiss & Strunk, 2006) for unsupervised approaches. Clearly, for math-
ematical discourse, a domain-specific abbreviations lexicon is needed.

The existence of two subsets of lexica in mathematical discourse, general and domain-specific
(Section 3.2.2.2), motivate the need for modularity in the lexicon representation. First, a general
lexicon should comprise general natural language vocabulary and the basic vocabulary of logic,
necessary for any branch of mathematics. Second, separate domain-specific lexica should be
accessed in specific contexts, depending on the mathematical domain of discourse. Both lexica
should include a representation of multi-word expressions. A plausible approach would be to
identify fixed phrases, such as “dann und nur dann” (if and only if), already in preprocessing
using shallow methods and to encapsulate them for further processing. Domain-specific lexica
should, in turn, link to appropriate knowledge bases with formalised knowledge on the given
domain.66 The approach we propose in Chapter 5 is based precisely on this type of abstraction
over domain-specific terminology; in Chapters 4 and 7 we showthat even upon this lexical
abstraction the students’ language nevertheless proves surprisingly linguistically diverse.

Since imprecision phenomena are systematic and imprecision is cooperatively resolved, a
computational interpretation component needs a representation of the imprecise concept names
and an appropriate mapping to the possible specific mathematical interpretations. Notice more-
over that this kind of ambiguity appears also in textbook discourse (recall, for instance, the

66MBase (M. Kohlhase & Franke, 2001) is an example of such a resource. See (Fiedler et al., 2002; Horacek et
al., 2004) for a discussion on the interface issues.
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previously quoted definition of set membership from (Bartle& Sherbert, 1982); see page 72
of this chapter) which all the more motivates this as a basic requirement for a computational
processing architecture. In order to account for discoursereferences to parts of mathematical
expressions, three issues have to be taken into account: First, the set of substructures of mathe-
matical expressions which are relevant to resolving references must be identified, for instance,
by a systematic corpus study and by observations on common usage of references to specific
mathematical expression parts. Second, symbolic representations of these entities must be in-
cluded in the domain knowledge representation. And third, the substructure entities must be
available for reference in the discourse model. An anaphor resolution algorithm needs to iden-
tify plausible reference scopes within complex symbolic expressions within which antecedent
search should be performed. We address some of these issues in Section 6.3. Aside from coop-
erative interpretation of imprecise language, cooperative interpretation of ill-formed expressions
is needed. The fact that the tutors hardly ever explicitly requested that errors in the symbolic
language be corrected suggests that focus should be on problem solving; that is, an intelligent
tutoring system should be capable of cooperative reaction even if formulas are ill-formed. In
Section 6.4 we show results of a study on error correction based on the common sources of
errors showed in Section 3.2.1.5.

Finally, frequent occurrence of complex clause structuresin paratactic and hypotactic config-
urations calls for a grammar formalism in which complex multiple-clause utterances could be
modelled with sufficient generality. (In a context-free grammar, every instance of clause ordering
would have to be modelled explicitly in order to obtain all the possible structures; a suboptimal
solution.) For German specifically, the different word orders in main clauses and subordinate
clauses need to be modelled in a systematic way. This requires an expressive enough grammar
formalism with a syntax-semantics interface capable of constructing appropriate semantic repre-
sentations. Moreover, structurally ambiguous readings (Section 3.2.2.3) need to be represented
(be it in a compact underspecified way or by enumerating alternative parses) since the linguis-
tic processing module is not in a position to disambiguate the intended reading. In Chapter 5
we motivate the choice of Combinatory Categorial Grammar asa grammar formalism which
enables perspicuous modelling of various phenomena observed in the corpora, in Chapter 6 we
show how we model basic German syntax relevant for mathematical discourse, and finally, in
Chapter 7 we show that the CCGs we have developed based on our data provide better linguistic
generalisations than CFGs, while remaining at manageable levels in terms of grammar ambigu-
ity. Before presenting our approach to modelling language phenomena, in the next chapter, we
analyse the diversity of students’ productions in quantitative terms.
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Quantitative analysis of the students’ language

In this chapter we quantitatively analyse the diversity in the students’ language. Both corpora
described in Chapter 2 are used as data. The analysis is performed at a “shallow” level in sense
that we only look at linguistic verbalisation patterns, that is, the actual wording patterns, and at
the patterns’ shallow (quantitative) characteristics. The purpose of the analysis is to verify two
hypotheses: The first hypothesis stems from prior claims made based on textbook mathematical
discourse which suggested that the language of proofs tendsto be simple and repetitive (Zinn,
2004; Natho, 2005); we postulate, to the contrary, that the students’ language is complex and
diverse. The second hypothesis is that the language of students’ interaction is influenced by the
style of presentation of the study material (see “Study material” in Section 2.4.3). The analy-
sis is moreover intended to inform and motivate the choice ofcomputational input processing
methodology for a tutoring system for mathematical proofs.

We start by classifying the students’ utterances within their dialogue context. Next, we outline
the preprocessing procedures. The results are presented asfollows: First, the students’ language
is characterised in terms of linguistic “modality” (natural language vs. symbolic notation). The
binary relations corpus is characterised in terms of differences in the language between the two
study material conditions. Then, we look at the distribution of utterance types in both cor-
pora. Proof contributing utterances are further analysed with respect to their function in the
proof under construction (proof steps, declarations of proof strategy, etc.) and the type of con-
tent verbalised in natural language (logical connectives only, domain-specific vocabulary, etc.)
Linguistic diversity along these dimensions is quantified in terms of type-token ratios over the
normalised linguistic patterns, frequency spectra, and pattern-vocabulary growth curves. Mate-
rial presented in this chapter appeared in (Wolska & Kruijff-Korbayová, 2006a; Wolska, 2012)
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Solution-contributing Other Uninterpretable
Proof contribution Request help

Proof step Yes/No
Proof strategy OK
Proof structure Answer
Proof status Address

Meta-level Agree
Self-evaluation Cognitive state
Restart Self-talk
Give up Session

Discourse marker (DM)
Politeness/Emotion/Attitude (P/E/A)

Figure 4.1: Typology of students’ utterances

4.1 Utterance typology

Students’ contributions in a tutoring interaction may fulfil several functions. We already showed
examples of dialogues from both corpora in Chapter 2 (pages 61 and 62), however we did not
point out different functional types of students’ utterances. Figure 4.2 shows two further excerpts
which exemplify different utterance types found in our data. As the examples illustrate, students
contribute not only proof steps – complete or incomplete, asin C-I S5 (a justification of the
statement is not given), explicit or implicit, as in C-II S8 (a high-level description of a set of
steps is given rather than explicit proof steps) – but also other content which adds to the solution
indirectly, as in C-II S1 (a solution strategy to be adopted is described) or C-II S11 (a proof
structure to follow, case distinction, is signalled) or which does not add to the solution at all, as
in C-II S9 (help is requested). In order to investigate linguistic diversity of students’ language
at a level corresponding to different contribution types, we designed a typology of students’
utterances based on the two corpora. The present classification builds on previously proposed
dialogue move taxonomies for tutorial dialogue (Marineau et al., 2000; Campbell et al., 2009;
L. Becker et al., 2011) and has been adapted specifically for the proof tutoring domain based on
the analysis of our data. The classifications by Marineau et al., Campbell et al., and L. Becker
et al. model students’ contributions at a high-level and aretoo coarse-grained at the task-level
(here: proving) for our purposes. Our previous classification presented in (Wolska & Buckley,
2008) was designed with dialogue modelling in mind, rather than analysis of language diversity
or input interpretation, and it does not make distinctions which are relevant here either.

The classification we propose, shown in Figure 4.1, has a shallow hierarchical structure focus-
ing onSolution-contributingcontent. All the non-solution contributing utterances aregrouped
into one category,Other, with an extra classUninterpretablefor utterances whose semantics or
pragmatic intent could not be interpreted; for instance, because they were cut off mid-utterance.
The distinction between theSolution-contributingclass andOther is that withsolutionsthe stu-
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C-I

S1: WennA ⊆ K(B), dannA ∩B = ∅
(If A ⊆ K(B), thenA ∩B = ∅)
. . .

S5: inK(B) sind allex, die nicht inB sind
(in K(B) are all x which are not inB)

. . .

C-II

S1: Ich moechte zunaechst(R ◦ S)−1 ⊆ S−1 ◦R−1 beweisen
(First I would like to prove(R ◦ S)−1 ⊆ S−1 ◦R−1)

S2: Sei(a, b) ∈ (R ◦ S)−1

(Let (a, b) ∈ (R ◦ S)−1)

. . .

S6: Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦R−1

(By definition of◦ it follows then that(a, b) is in S−1 ◦R−1)

. . .

S8: Der Beweis geht genauso wie oben , da in Schritt 2 bis 6 nur Aequivalenz
umformungen stattfinden

(The proof goes exactly as above since in step 2 to 6 there are only equivalences)

S9: wie kann ich jetzt weitermachen?
(how can I continue now?)

. . .

S11: 1. Fall: Sei(a, b) ∈ R
(1. Case: Let(a, b) ∈ R)

S12: Ich habe mich vertippt. Korrektur: Sei(a, z) ∈ R
(I made a typo. Correction: Let(a, z) ∈ R)

. . .

S17: Ich habe gezeigt:(a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T∨ (a, b) ∈ S ◦ T
(I have shown:(a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T ∨ (a, b) ∈ S ◦ T )

. . .

S24: Dann existiert einz, so dass(a, z) ∈ (R ∪ S) und(z, b) ∈ T
(Then there exists anz such that(a, z) ∈ (R ∪ S) and(z, b) ∈ T )

S25: Nach Aufgabe A gilt(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
(By Exercise A(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ) holds)

. . .

S29: Da die Mengenvereinigung kommutativ ist, koennen wir dieses in student 25 einsetzen
und erhalten die Behauptung
(Since set union is commutative, we can use what’s in student 25 and obtain the theorem)

. . .

Figure 4.2: Examples of students’ utterances from both corpora
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dent is adding information to the solution he is constructing, be it by contributing a step or
steps, changing the meta-level status of the solution (for instance, stating that a new attempt at
a solution will be made) or by signalling a revision or an evaluation of an already contributed
solution. TheOtherclass may also comprise utterances which express students’knowledge, but
only those explicitly elicited by the tutor (Answer). The classification of utterances which do
not contribute solution steps is coarse-grained for two reasons: First, we are mainly interested
in the analysis of students’ proof language. Second, as willbecome clear in Section 4.3.3 the
frequency of theOtherutterance types is in general low; with the exception ofHelp requests.

TheSolution-contributingutterances are subdivided into two subclasses:Proof contributions
with four subclasses (Proof step, Proof strategy, Proof structure, Proof status) andMeta-level
contributions with three subclasses (Self-evaluation, Restart, andGive up). The utterance classes
are described below and exemplified:

Proof step Contributes a proof step or part of a proof step. Examples of utterances
of this type include C-I S1 and S5 and C-II S2 and S6 in Figure 4.2, as
well as the utterance “Begruendung:A ⊆ (U \ B)” (Justification: . . .)
which specifies only the justification of a proof step.

Proof strategy States a solution strategy already adopted or about to be adopted. Ex-
amples include “Ich benutze das Extensionalitaetsprinzip” ( I’m using the
Extensionality Axiom), “Beweis durch⊆ und⊇” (Proof by⊆ and⊇).

Proof structure Signals the structure of the solution being constructed, asin C-II S1 in
Figure 4.2 or “Ich mache eine Fallunterscheidung” (I’m making a case
distinction), “Hinrichtung” (Forward direction).

Proof status Signals the status of a (partial) solution: “Damit ist eine Inklusion be-
wiesen” (And so one subset relation is shown) or “q.e.d.”

Self-evaluation States an evaluation of own step: “Ich habe mich vertippt” (I’ve made a
typo), “Schwachsinn” (Nonsense), or “Korrektur” (Correction:).

Restart Signals that new attempt at a proof is being started: “neuer Anfang” (new
start) or “Wieder von vorne” (Once again from the beginning).

Give up Signals abandoning the solving task: “Ich moechte die Antwort wissen”
(I would like to know the solution), “ich gebe auf” (I’m giving up).

The non-solution-contributing utterances,Other, are subdivided into 11 subclasses:

Request help Requests assistance explicitly: “Ich brauche einen Tip” (I need a hint),
“Wie ist R ◦ S definiert?” (How is R ◦ S defined?), “bin ich auf dem
richtigen Weg?” (am I on the right track?)

Yes/No A “yes” or “no” answer
OK A simple acknowledgment: “okay”
Agree Expresses agreement: “du hast natuerlich recht” (of course you’re right)
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Address Provides anon-elicitedreaction to a previous contribution: “Das beant-
wortet meine Frage nur zur Haelfte!” (This answers my question only
halfway!), “Die Klammer koennte ich nach meinem Dafuerhalten auch
ganz woanders setzen!” (The bracket could just as well be in a different
place if you ask me!)

Answer Provides anelicitednon-Yes/No answer to a question posed:
T: “Was sind moegliche Eigenschaften von binaeren Relationen?”
(What are the possible properties of binary relations?)
S: “symmetrisch” (symmetry)

T: “Was bedeutet die Variablex bei Ihnen?”
(What does the variablex mean?)
S: “〈u〉x hat zwei Bedeutungen〈/u〉 〈u〉es kommt in zwei verschiedenen
Mengen vor〈/u〉” (x has two meanings it occurs in two different sets)

Cognitive state Expresses the state of knowledge or understanding: “ich weiss nicht, was
ich mit den Tips anfangen soll” (i don’t know what i can do with these
hints!), “Das weiss ich” (I know that.)

Self-talk Expresses an unelicited comment: “Fraglich was ist unterschied zwis-
chen= und∩” (The difference between= and∩ is questionable), “Muss
mit der Differenz zusammenhaengen” (Must have something to do with
the difference.)

Session Expresses a meta-level statement related to the tutoring session itself:
“Allerdings ist Aufgabe E (wie Du es bezeichnest) bei mir Aufgabe A!”
(Actually Exercise E (as you call it) is called Exercise A here!), “wie
waere es, Aufgabe W nach hinten zu verschieben und mit Aufgabe A zu
starten?” (how about postponing Exercise W and starting with A?)

Discourse Marker The utterance has a sole discourse marker function: “Na ja” (Right...),
“Also gut” (Good then.)

Politeness/Emotion/
Attitude

The utterance is a conventional politeness form or has the sole function of
expressing the speaker’s emotion or attitude: “Sorry!”, “Ich werde Dich
im Geschaeft umtauschen” (I will exchange you at the shop!), “Keine
PAnik” (Don’t panic), “NERV!” ( [annoyance])

Note that the classification can be mapped to previously proposed classifications of dialogue
actions in tutoring. For instance, the categoryProof contributioncorresponds toAssertions
in (Marineau et al., 2000),Contribute domain contentin (Wolska & Buckley, 2008),Informa-
tion Exchange : Assertin (L. Becker et al., 2011), and comprises the categoriesSolution-step
andSolution-strategyfrom (Buckley & Wolska, 2008a). Following the general scheme proposed
in (Campbell et al., 2009) our class ofProof contributionswhich do not explicitly signal infor-
mational redundancy would be further coded in theNoveltydimension for steps which contribute
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new content (C-II S17 is a counter-example) and in theMotivationdimension asInternal or Ex-
ternal, depending on whether they have been elicited by the tutor. Utterances in theMotivation:
Externalcategory would be found, among others, in ourAnswercategory.

The presented utterance typology has been developed by an exhaustive analysis of all stu-
dents’ utterances in all dialogues from the two corpora and based on the insights from applying
our previous tutorial dialogue coding scheme presented in (Buckley & Wolska, 2008a) and its
generalisation presented in (Wolska & Buckley, 2008).1 Over multiple annotation cycles, we
arrived at a reference annotation which will be used in the following sections. At present, the
utterance typology has not been applied by independent annotators and evaluated in terms of
inter-coder agreement. Notice, however, that classification of utterances into the critical cate-
gories, the solution-contributing classes, do not requirelinguistic knowledge, but rather domain
knowledge of set theory and binary relations and knowledge of methods of proof. Assuming
clear understanding of proof-related notions, no ambiguity is expected. Therefore, reannotation
has been omitted. Moreover, the classification has been designed in such way that cross-category
confusion is minimised. Among theOtherclass,Request help, Agree, Cognitive state, Session,
Yes/No, OK, Discourse markerare clear-cut. The first four are semantically clearly distinguish-
able, while the latter three can be considered for the most part lexically defined. Within the
remaining four classes confusion may arise betweenAddressandSelf-talk, however, there were
only two instances of the latter and the distinction was madeonly because in the dialogue con-
text theSelf-talkutterances appear to refer to the students’ own contribution and have a character
of think-aloud comments, whereasAddressestend to refer to the tutors’ contributions. The dis-
tinction between the elicitedAnswerand the non-elicitedAddressappears clear-cut. Utterances
such as “The hint was rather lousy” could be mistakenly classified asP/E/A(that is, interpreted
as expressing an attitude toward the tutor’s hint, a plausible alternative), however, this can be
avoided by placing the decision question targeting theCognitive stateclass higher in the an-
notation scheme’s decision tree. Within theSolution contributingutterances,Meta-leveltypes
are clear-cut. A confusion may arise betweenProof strategyandProof structureif an annotator
should not understand the notion of proof strategies, however, again, the frequency of the classes
is low relative to the frequency of the majority classes,Proof stepandRequest help.

4.2 Preprocessing

Three types of preprocessing transformations have been performed on the students’ data before
the analysis: First, utterance boundaries have been identified, second, mathematical expressions
have been normalised, and third, a number of textual normalisations have been performed with
the goal of abstracting over domain-specific terminology and eliminating spelling and writing
mechanics differences. Details of corpus preprocessing are outlined below.

1Utterance identification guidelines we followed will be presented in the next section.
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4.2 Preprocessing

4.2.1 Turn and utterance preprocessing

Turns in both corpora were sentence-tokenised based on a standard set of end-of-sentence punc-
tuation marks. Word-tokenisation was performed using a standard tokeniser. The output of the
sentence tokenisers was verified and manually corrected where necessary.

Turns were then segmented into utterances. While a sentenceis typically defined as a unit
of speech containing a subject and a predicate, there is no precise linguistic definition as to
what constitutes an utterance. Broadly understood, an utterance is an intentional, meaningful
communicative act in an interaction. An utterance may consists of a word, a phrase, or a complex
sentence with embedded clauses. It may form a complete turn,but a turn may also consist of
more than one utterance. For the purpose of this study, in particular also for the purpose of
utterance type annotation, the notion of an utterance was operationalised as follows:

• An utterance never spans more than one turn or one sentence;

• Multiple clauses conjoined with conjunctions (“und” (and), “oder” (or), “aber” (but),
“weil” ( because), “für (for), “also” (so), “wenn” (if ), “als”/“wann” (when), etc.) were
considered one utterance;

• Multiple clauses conjoined without conjunctions were considered separate utterances;

• “If-then” constructions, also omitting the words “if” or “then”, were considered a single
utterance;

• The following non-sentential fragments, not containing a subject, were considered ut-
terances: noun phrases, discourse markers (also inserts, such as “acha”, “oh”, “naja”,
“schoen” (nice)), colloquial subject-drop phrasings in indicative and interrogative mood,
single question words and ellipted questions (for instance, “Fertig?” (Done?)), politeness
phrases (such as “sorry”, “Danke”), exclamatives (“Weitere Hilfe!” (Further help!)), non-
sentential answers to questions, including acknowledgments, for instance, “ok”, “klar”
(that’s clear), as well as yes/no answers.

Examples of tokenised multi-utterance turns from Figure 4.2 are shown below (vertical bars,|,
mark token boundaries,〈u〉 and〈/u〉 mark utterance boundaries; here and further: “O” labels
the original utterance, “P” the preprocessing result):

O: Dann gilt auch : Allex, die inB sind, sind nicht in A
P: 〈u〉|Dann|gilt|auch|:|Alle|x|,|die|in|B|sind|,|sind|nicht|in|A|〈/u〉
O: 1. Fall: Sei(a, b) ∈ R
P: 〈u〉|1.|Fall|:〈/u〉 〈u〉Sei|(a, b) ∈ R|〈/u〉
O: Ich habe mich vertippt. Korrektur: Sei(a, z) ∈ R
P: 〈u〉|Ich|habe|mich|vertippt|.|〈/u〉 〈u〉|Korrektur|:|〈/u〉 〈u〉|Sei|(a, z) ∈ R|〈/u〉
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4 Quantitative analysis of the students’ language

4.2.2 Preprocessing mathematical expressions

In both corpora, mathematical expressions were identified semi-automatically, using a regular-
expression grammar. The grammar comprised a vocabulary of letters, mathematical symbols
(unicode or LATEX), brackets, braces, delimiters, etc. The parser’s outputwas manually verified
and corrected where necessary.2 The quantitative analyses were conducted based on turns and
utterances in which the identified mathematical expressions have been substituted with a sym-
bolic tokenMATHEXPR. As we will show in Chapter 5 utterances preprocessed this way can
be parsed using a lexicalised grammar if the information on the expression’s type – term or for-
mula – is known. With this in mind, we therefore also classifythe symbolic expressions into
one of the following categories: (i) atomic terms:VAR, for set, relation, or individual variables,
(ii) non-atomic terms:TERM (object-denoting expressions) or _TERM_ (term-forming opera-
tion symbols appearing in isolation, as in the example utterance (8) in Section 3.2.2.3 of the
previous chapter; underscores denote non-realised (missing) arguments), etc. and (iii) formulas,
FORMULA, for truth-valued statements, _FORMULA_ (statement-forming operators appearing in
isolation), etc. Examples of utterances from Figure 4.2 before and after mathematical expression
preprocessing are shown below:

O: DaA ⊆ K(B) gilt, alle x, die inA sind sind auch nicht inB
P: DaMATHEXPRFORMULA gilt, alle MATHEXPRVAR , die in MATHEXPRVAR sind

sind auch nicht inMATHEXPRVAR

O: Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦R−1

P: Nach der Definition vonMATHEXPR_TERM_ folgt dannMATHEXPRTERM

ist in MATHEXPRTERM

4.2.3 Textual normalisations

Following extensive research into the properties of spokenand written discourse (Chafe & Tan-
nen, 1987; Biber, 1988), recent studies on computer-mediated communication (CMC) – or elec-
tronic discourse more generally – have shown that, much likespoken language differs from
written language, the language of type-written computer-mediated communication shares some
properties with spoken language, however, it also possesses textual and linguistic characteris-
tics which are not typical of standard written language (Maynor, 1994; Crystal, 2001; Hård af
Segerstad, 2002; Baron, 2003). Among those non-standard characteristics are the frequent use
of abbreviations and acronyms, words and phrases written inall capitals or all lower-case, ex-
tensive use of certain punctuation marks and lack or incorrect (random) use of other punctuation

2We do not report precision results on mathematical expression identification and parsing as it is not the focus
of this work. It is assumed that an end-to-end system provides an entry method for mathematical expressions which
would enable clear, possibly real-time, identification of mathematical expressions. This could be accomplished
by explicitly defining “math mode” delimiters, for instance, as key combinations indicating the start and end of
mathematical expression strings or as textual delimiters analogous to the $-symbols in LATEX.
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(for instance, excessive use of the exclamation mark, lack of or incorrect use of commas, lack
of valid end-of-sentence punctuation), and the use of emoticons. Type-written tutorial dialogue
shows qualities which are found both in spoken and written language and those of CMC. It
is prone to textual ill-formedness due to the informal setting and the telegraphic nature of the
linguistic production.

In order to avoid the effects of CMC-specific qualities of thelearners’ productions at the
utterance-level, prior to the quantitative analysis learners’ utterances were normalised with re-
spect to certain writing mechanics phenomena (alternativespelling variants, capitalisation, punc-
tuation) and with respect to the wording of common abbreviations. A number of lexical normal-
isations were performed on lexemes and phrases in order to avoid spurious diversity due to
domain-specific terminology and task-specific contextual references. Different lexical realisa-
tions of single and multi-word domain terms and conventional speech acts were substituted with
symbolic tokens representing their lexical, in case of the former, or communicative, in case of the
latter, types. Discourse-specific references were likewise normalised. General language expres-
sions and references other than those mentioned below as well as general mathematical terms
(such as “assumption”, “definition”, for instance) were notnormalised. All the normalisations
were performed semi-automatically; the results of a preprocessor were reviewed and corrected
manually in case of errors. Details of textual normalisations are summarised below.

Spelling The German umlaut diacritics were replaced with their underlying vowels and an “-e”.
Theeszettligatures were replaced with double “s”. Spelling mistakeswere identified and cor-
rected using the German aspell, a Linux spell-checker, whose general dictionary has been ex-
tended with a custom dictionary of relevant domain terms.

Punctuation Repeated consecutive occurrences of the same punctuation symbols were re-
placed with a single occurrence (“!!!” with “!”; “....” with“.”, etc.) Punctuation in abbreviations,
missing or incorrect, has been normalised (“bzw.” for “b..zw” “d.h.” for “d.h”, etc.). In the final
analyses inter-sentential and end of sentence/utterance punctuation was ignored.

Abbreviations Upon correcting punctuation, different correct and incorrect lexical variants of
common abbreviations were substituted with symbolic tokens. These included,BSPfor different
spelling and capitalisation variants of “z.B.” (e.g.), BZW for “bzw.” (respectively), OBDA for
“o.B.d.A.” (without loss of generality), DH for “d.h.” (that is), QED for “q.e.d.”, ST for “s.t.”
(such that), OK for “ok”, “oki”, “Okay”, etc.

Common speech acts and inserts Conventional expressions of gratitude, such as “Danke”,
“VIELEN DANK” and apologies, for instance, “Tut mir leid”, “Sorry”, “Verzeihung”, were
substituted with tokensTHANKYOU andAPOLOGY, respectively. “Ja”/“Nein” responses were
substituted with the tokenYESNO. Conversational inserts and other discourse markers such as
“So”, “Na ja” were substituted with the tokenDISCOURSEMARKER.
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4 Quantitative analysis of the students’ language

Domain terms and domain-specific references Different lexical variants of nominal and ad-
jectival domain terms which were included in the preparatory material have been mapped to
a single form,DOMAINTERM. If single-word domain terms were part of a multi-word term
which can be considered a named entity, the multi-word term was normalised. For instance,
“DE-MORGAN-1”, “DeMorgan-1”, “DeMorgan-Regel-1”, “de morgan regel 2” all mapped to
DOMAINTERM, as did “Distributivitaet von Vereinigung ueber den Durchschnitt” as a multi-
word term (a name of a statement/theorem), as well as “symmetrisch” as a single-word term.

Non-deictic references to proof exercises, such as “Aufgabe W” (Exercise W), theorems pro-
vided in the preparatory material, such as “Theorem 9” or “9”, parts of proof structure, such as
“Schritt 1” (Step 1), or turns in the dialogue history, such as “Student 25”3, were mapped to the
tokenREFERENCE. Deictic references, such as “obiges” (the above) were not normalised.

Different conventional wordings used to signal the end of a proof, such as “quod erat demon-
strandum”, “was zu zeigen war” (which was to be shown), “woraus der beweis folgt” (from
which the proof follows), “Damit ist der Beweis fertig” (which completes the proof), etc., were
mapped to the token corresponding to the “q.e.d.” abbreviation, QED.

Capitalisation The analyses were performed on corpus utterances normalised as above with
case-insensitivematching. Examples of utterances from Figure 4.2 preprocessed as outlined in
this section are shown below:

dann existiert einMATHEXPR so dassMATHEXPR undMATHEXPR

nachREFERENCEgilt MATHEXPR

daDOMAINTERM DOMAINTERM ist koennen wir dieses inREFERENCEeinsetzen
und erhalten die Behauptung

nachREFERENCEundREFERENCEgilt MATHEXPR

Further in this chapter we will refer to students’ contributions preprocessed in this way as “ver-
balisation patterns”, “utterance patterns”, or simply “patterns”. Whenever we say “turns” or
“utterances” we mean turns or utterances preprocessed as described above.

4.3 Diversity of verbalisation patterns

We begin the quantitative analysis with a high-level overview of the amount of natural language
in the students’ contributions by looking at the distribution of turns and utterances formulated
using mathematical symbols alone, using natural language alone, and using natural language
interleaved with mathematical symbols and at the differences in the amount of natural language
verbalisation between the two study material conditions inC-II. Next, we focus only on ut-
terances formulated usingsomenatural language. We first look at the distribution of utterance
types, as defined in Section 4.1, in the two corpora. Then we take a closer look at theProof

3References of this form are artefacts of our dialogue display interface. In the dialogue history, student turns
were numbered and labelled “Student 1”, “Student 2”, etc. while tutor turns were labelled “Tutor 1”, etc.
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4.3 Diversity of verbalisation patterns

contributionutterances, in particular at theProof stepcategory in terms of the type of content
that is verbalised. We summarise the most frequently encountered linguistic forms – linguistic
verbalisation patterns– by category, and analyse the growth of the diversity of forms with the
increasing corpus size. In all analyses we consider the two corpora separately and also a larger
corpus consisting of the two corpora combined into one data set (C-I & C-II).

Two frequency counts are reported in the descriptive statistics tables throughout this chap-
ter: “Total” denotes the number of turn/utterance instances (that is, tokens or “vocabulary size”;
where by “vocabulary” here we mean linguistic patterns). “Unique” denotes the number ofdis-
tinct types (unique pattern types). The proportion of these two measures is known as “type-token
ratio”. The two raw frequencies rather than the summarised measure are provided because the
number of tokens is different for each cell in the tables, so the raw counts are more informative.

Aside from frequency distributions, we plot frequency spectra. Spectrum visualisations are
typically used with word frequencies to show a frequency distribution in terms of number of
types by frequency class, where a frequency class is a set of (sets of) instances with the same
number of occurrences in the data. In other words, they show how manydistinct types(y-axis)
occur once, twice, and so on (x-axis), thus revealing the degree of skewedness of the types
distribution; the earlier the tail withy around 1 starts, the more idiosyncratic types are likely to
exist in the data. We use verbalisation patterns – preprocessed utterances – as units of analysis.4

4.3.1 Mathematical symbols vs. natural language

As the first approximation of linguistic variety in learner proof discourse, we analyse the stu-
dents’ contributions in terms of two types of content modalities: natural language and symbolic
expressions. Table 4.1 shows the distribution of turns and utterances in both corpora with re-
spect to natural language and symbolic content. ME denotes turns and utterances consisting
of symbolic expressions alone, NL those consisting of natural language alone (as in C-II S8 or
C-II S29), and ME & NL those consisting of natural language interleaved with mathematical
expressions (C-I S1, C-II S6, or C-II S24).

In both corpora the majority of turns and utterances containsome natural language (turns: 54%
NL/ME & NL vs. 46% ME in C-I and 70% vs. 30%, respectively, in C-II; utterances: 57%
NL/ME & NL vs. 43% ME in C-I and 73% and 27%, respectively, in C-II). There are 640turn-
level NL/ME & NL patterns in C-I and C-II considered in isolation and 626 in C-I & C-II and
728utterance-level patterns in C-I and C-II in isolation vs. 700 in C-I & C-II. This means that
there are only 14 NL/ME & NL turn-level patterns and only 28 utterance-level patterns which
occur both in C-I and C-II. Verbalisation patterns which occurred in both corpora are shown
in Table 4.2. Overall, 69% of the utterances in C-I & C-II contain some linguistic material,
among which there are 700 distinct verbalisation patterns.There is proportionally more natural
language in C-II even though, as we will show in the next section, the participants in the formal
study material condition were less verbose than those in theverbose material condition.

4The zipfR package (Evert & Baroni, 2007) used to generate frequency spectra. Only the first 15 frequency
classes are shown since in all cases the frequency of the larger classes oscillated between 0 and 5.
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Table 4.1: Descriptive information on learner proof discourse in terms of content modality:
symbolic (ME), natural language (NL), and natural languageinterleaved with symbolic

expressions (ME & NL)

C-I C-II C-I & C-II
Unique / Total Unique / Total Unique / Total

Turns 147 / 332 497 / 927 628 / 1259
ME 2 / 153 2 / 274 2 / 427
NL 34 / 51 134 / 162 163 / 213
ME & NL 111 / 128 361 / 491 463 / 619

Utterances1 200 / 443 531 / 1118 702 / 1561
ME 2 / 189 1 / 300 2 / 489
NL 64 / 92 185 / 278 240 / 370
ME & NL 134 / 162 345 / 540 460 / 702

1Non-empty utterances after removing punctuation (see preprocessing
in Section 4.2; A single occurrence of an utterance consisting of a question
mark alone (in C-II) is included in the NL category.)

Table 4.2: Verbalisation patterns found in both corpora

Solution-contributing patterns Other

es giltMATHEXPR was istMATHEXPR

dann istMATHEXPR ich brauche hilfe
also istMATHEXPR warum nicht
MATHEXPR undMATHEXPR YESNO

daraus folgt dassMATHEXPR OK

daraus folgtMATHEXPR THANKYOU

damit istMATHEXPR APOLOGY

damit gilt MATHEXPR DISCOURSEMARKER

somit istMATHEXPR

dann istMATHEXPR undMATHEXPR

das heisstMATHEXPR

ausMATHEXPR folgt MATHEXPR

MATHEXPR ist DOMAINTERM

also giltMATHEXPR undMATHEXPR

also gilt auchMATHEXPR

MATHEXPR ist DOMAINTERM von MATHEXPR

also ist auchMATHEXPR

das gleiche gilt fuerMATHEXPR

DOMAINTERM

QED
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4.3 Diversity of verbalisation patterns

Table 4.3: Distribution of students’ turns by content modalities and study material condition

Content modality
FM-group VM-group

(N=471) (N=456)

ME 200 (42%) 74 (16%)
ME & NL 184 (39%) 307 (67%)
NL 87 (18%) 75 (16%)

4.3.2 The effect of the study material presentation

Recall that the second data collection experiment was set upto test a hypothesis concerning
the students’ language production. The hypothesis was thatthe format of the study material
presentation, formal vs. verbose, would influence the students’ language, resulting in proofs
presented using mainly the symbolic mathematical language(formal) or using mainly the mixed
or natural language (verbose). C-II comprises 927 students’ turns (Table 2.2), 471 in the formal
material condition (FM-group) and 456 in the verbose material condition (VM-group).

Measures In order to investigate the differences in dialogue styles with respect to language
production we first compared the general dialogue characteristics in terms of distribution of
turns by content modality (mathematical expressions, ME, vs. mixed language, ME & NL, vs.
natural language alone, NL) and session lengths measured asthe total number of turns (Session
length). Then, we compared the followingsessionand turn characteristics: number of math-
ematical expressions (ME tokens), number of natural language tokens including punctuation
(NL tokens), and mathematical expression lengths measuredin characters (ME-length). Note
that by ME tokens we mean the number of mathematical expressions, that is mathematical ex-
pressions normalised as described in the previous section;individual symbols are not counted.
Occurrences of formulas, terms, as well as single charactertokens intended to represent relation
or set symbols were counted as ME tokens. ME-lengths were computed by counting all char-
acters intended to form a mathematical expression, including punctuation and single character
tokens for variables and constants; ill-formed expressions were included.5

If parametric assumptions were met (as per Shapiro-Wilk andLevene tests), two-sided inde-
pendent samples t-test was used to compare the means of the above-mentioned measures be-
tween groups; otherwise the Mann-Whitney-Wilcoxon test was used. The significance level
was set at 0.05. Statistical differences between means shown in descriptive summary tables are
marked in bold; standard deviations are given in parentheses.

Turns by content modality Table 4.3 shows the absolute numbers and proportions (percent-
age) of students’ turns which consisted of mathematical expressions alone (ME), natural lan-

5The figures presented here differ from those in (Wolska & Kruijff-Korbayová, 2006a) for two reasons: here we
exclude turns automatically generated by the interface when student clicked on the next exercise button or ended the
session and we include punctuation as tokens. These discrepancies do not affect the overall comparison results.
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Table 4.4: Means and standard deviations of session lengthsin the formal and verbose condition

Measure
FM-group VM-group

(N=471) (N=456)

Session length 48.50 (15.89) 55.06 (22.78)

Table 4.5: Means and standard deviations on the students’ language production variables

Measure FM-group VM-group

ME tokens 26.95 (10.49) 44.70(21.74)
NL tokens 93.00 (89.03) 151.18(103.03)

p
er

se
ss

io
n

ME-length 27.79(17.64) 12.45 (8.85)

ME tokens 1.14 (1.12) 1.67(1.70)
NL tokens 3.95 (5.65) 5.63(6.02)

p
er

tu
rn

ME-length 32.53(27.71) 15.69 (14.16)

guage alone (NL), and of a mixture of natural language and mathematical expressions (ME &
NL). A cursory comparison based on these measures shows thatthe largest proportion of turns in
the FM-group consisted of mathematical expressions alone,while in the VM-group of a mixture
of mathematical expressions and natural language. Also, the proportion of turns consisting of
symbolic material alone was larger in the group presented with formalised material; 42% of all
student turns in the FM-group vs. 16% in the VM-group.

Session length Table 4.4 shows the means and standard deviations of sessionlengths in the
two conditions. The dialogues in the verbose material conditions tended to be longer, however,
the difference in the session lengths between the two conditions is not statistical (p > 0.10).

Students’ language production Finally, we compare the students’ language production per
session and per turn in detail. The average number of mathematical expression tokens per session
was 35.11 (18.67) and the average number of natural languagetokens was 119.73 (98.82). The
average mathematical expression length in the dialogues was 17.35 (20.55) characters.

Table 4.5 summarises two sets of measurements: mean numbersof natural language tokens
(NL tokens), mathematical expression tokens (ME tokens), and mean mathematical expression
length (ME-length). The top part of the table shows the averages for the entire sessions (per
session). The bottom part shows the same measurements averaged for turns (per turn).

While there was little difference between the VM- and FM-groups in the number of turns
which contained natural language words alone (see Table 4.3), the average number of natural
language words per session and turn is higher in the VM-group(p<0.05). The average number
of mathematical expressions per session and turn was also higher in the VM-group (p<0.01),
however, the average mathematical expression length was significantly higher in the FM-group
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Table 4.6: Distribution of utterance types

C-I C-II C-I & C-II
Unique / Total Unique / Total Unique / Total

Solution-contributing 149 / 187 335 / 548 465 / 735
Proof contribution 143 / 180 326 / 539 450 / 719

Proof step 138 / 171 287 / 469 407 / 640
Proof strategy 4 / 4 25 / 30 29 / 34
Proof status 1 / 5 7 / 24 7 / 29
Proof structure - / - 7 / 16 7 / 16

Meta-level 6 / 7 9 / 9 15 / 16
Self-evaluation 2 / 2 5 / 5 7 / 7
Restart 1 / 2 3 / 3 4 / 5
Give up 3 / 3 1 / 1 4 / 4

Other 46 / 64 193 / 267 231 / 331
Request help 16 / 16 136 / 154 149 / 170
Yes/No 1 / 18 1 / 24 1 / 42
Cognitive state 15 / 15 15 / 16 30 / 31
Politeness/Emotion/Attitude 2 / 3 14 / 21 14 / 24
Discourse marker 1 / 1 1 / 21 1 / 22
Answer 5 / 5 14 / 15 19 / 20
OK 1 / 1 1 / 6 1 / 7
Address 1 / 1 5 / 5 6 / 6
Session - / - 4 4 / 4
Agree 2 / 2 1 / 1 3 / 3
Self-talk 2 / 2 - / - 2 / 2

Uninterpretable 3 / 3 4 / 4 7 / 7

(p<0.01). Note that the maximal mathematical expression length was 145.00 characters in the
FM-group and 110.00 in the VM-group. The relatively large ME-lengths may be an artefact of
the interface’s copy-paste mechanism. The students tendedto copy formulas from the previous
dialogue or the study material into their input-line and modified or extended them, thus building
longer and longer expressions; recall that we recorded the students’ screen capture feed (see
Section 2.4.3 of Chapter 2) and were able to observe this behaviour.

The analysis of the same statistics for the tutor turns showed that there was no significant
difference in the tutors’ language production between the two conditions: none of the dialogue
and turn differences for word and formula counts were significant. Interestingly, systematic and
statistical differences were found, however, while comparing the student and the tutor language
behaviour, that is, comparing, for instance, the NL/ME-token distributions between students
and tutors. In both conditions, the tutors used more naturallanguage and fewer mathematical
expressions than the students. We did not analyse the the ME-length distributions further due to
the previously-mentioned copy-paste artefacts.

From this point on we focus on a subset of the data: we look at student utterances only and
only those which do contain natural language (NL and ME & NL categories in Tables 4.1 and
4.3). We start by looking at the distribution of utterance types.
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4.3.3 Distribution of utterance types

Table 4.6 shows the distribution of utterance types, as defined in Section 4.1, in both corpora.6

The majority of utterances in both corpora are solution-contributing, 74% of all utterances in
C-I and 67% in C-II, and most of them proof steps. This is not surprising of course. The
second experiment involved more complex proofs requiring,for instance, considering cases and
proving both directions of a bi-conditional, which resulted in explicit verbalisations not only of
proof steps, but also of the proving strategy, the proof structure, and in students signalling that a
complex proof (or its part; for instance, one direction of a bi-conditional) is completed.

Among the non-solution-contributing types, the largest class, 51%, are help requests of differ-
ent specificity; from general requests (such as “Hilfe!” (Help!) to specific requests, for instance,
for providing a definition (such as “Wie lautet die Definitionder Operation−1?” (What’s the
definition of−1?) or “Erklaere die DefinitionR ◦ S in Worten!” (Explain the definition ofR ◦ S
in words!)), or questions whether propositions hold (such as “Ist(a, z) in R?” (Is (a, z) in R?)
or “Elemente von(R ◦ S) ◦ T sind Tripel der Form(x, y, z), oder?” (Elements of(R ◦ S) ◦ T
are triples of the form(x, y, z), right?)) The second largest category are closed-class types,
YES/NO and OK, which together make up 15% of all the non-solution-contributing utterances.
The second largest category of open-ended verbalisations are meta-cognitive statements on the
state of knowledge (or, for the most part,lack of knowledge), 31 occurrences. Statements such
as “Keine Ahnung mehr wie der Nachweis korrekt erbracht werden kann” (No idea how the
proof can be correctly produced) or “Verstehe die definition nicht” (Don’t understand the defini-
tion), can be of course interpreted as indirect requests for help. Interestingly, only one utterance
wording appeared more than once, “Dann weiss ich nicht weiter” (So I’m lost).

Aside from the two common variants of expressions of gratitude (“Danke”/“Vielen Dank”
(Thank you/Thank you very much)) and the four common German variants of apologies (“Tut mir
leid”/“Entschuldigung”/“Verzeihung”/“Sorry”), the remaining expressions of emotions and atti-
tude (thePoliteness/Emotion/Attitudeclass) were idiosyncratic and unpredictable, and spanned
both positive polarity emotions, for instance, “Das macht Spass mit Dir” (It’s fun!) and negative
polarity (“Wollen Sie mir nun Mathematik beibringen oder wollen Sie mich pruefen???” (Do
you want to teach me math now or do you are you giving me a test???), “NERV!!” ( [annoy-
ance])). Not surprisingly, idiosyncratic were also the occurrences of the remaining open-ended
classes,AnswersandAddresses, whose content is entirely determined be the preceding context,
that is, the tutor’s contribution which triggered them.

It is interesting that there were 22 occurrences of discourse markers and that they had a col-
loquial character, the kind typical of spoken language: “nadoll”, “na ja” (oh well), “oh”, “hm”,
“ach so” (oh, I see), “halt” (hang on). The variety of discourse markers suggests that the subjects
treated the dialogues much like natural spoken interaction, even though they were typewritten.

6Only the utterance types with more than five occurrences willbe discussed here. Utterance types with lower
frequency of occurrence are too sparse for any conclusions about their wording.
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Figure 4.3: Frequency spectra: Utterance types (x-axis log-scaled)

Figure 4.3 shows the frequency spectra (explained on page 129) of all the utterance types and
of the two major classes. It is clear from the plot that the distribution of distinct verbalisations
is heavily skewed. For all subsets of pattern types, the number of patterns occurring three to
five time is less than 10. The tail of patterns with frequency 1starts between 5-10 or more
occurrences. In the “All utterance types” category, the frequency-1 class covers 597 instances,
whereas the remaining classes together 475 instances (44%). The frequency spectra also show
that the data is sparse and even though some utterance types have a high frequency of occurrence
(Table 4.6) they consist of mainly idiosyncratic linguistic patterns. Of course, most interesting
from the point of view of formalisation are the core argumentative utterances which build up a
proof. Therefore, we now take a closer look at the verbalisations of proof contributions.

4.3.4 Proof contributions

Since the ultimate goal of this work is to enable computational translation of natural language
into a formal language of a deduction system, aside from the three classes of proof-level de-
scriptions – proof strategy, proof structure, and proof status (see Table 4.1) – in the analysis that
follows we distinguish three subclasses of proof steps. Thesubcategorisation takes into account,
on the one hand,the type of content expressed in natural languageand, on the other hand,the
type of linguistic knowledge which needs to be encoded in order for formalisation to be possible.

The simplest case for translation are steps in which naturallanguage is used only for logical
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4 Quantitative analysis of the students’ language

operators (connectives and binders/quantifiers) or to signal proof step components, and where
no discourse context nor domain-specific linguistic information is needed for interpretation. By
proof step components we mean elements of a deduction system’s proof language such as the
declarative proof script language presented in (Autexier et al., 2012). In order to formalise proof
steps of this kind, the only knowledge needed is the natural language vocabulary and syntax of
logical connectives and of the proof structural markers (proof discourse connectives); that is,
only a basic interpretation lexicon. Examples of this classof verbalisations include:7

WennA ⊆ K(B), dannA ∩B = ∅
(If A ⊆ K(B), thenA ∩B = ∅)
Sei(a, b) ∈ (R ◦ S)−1

(Let (a, b) ∈ (R ◦ S)−1)

We will refer to this class asLogic & proof step componentswhich stands for “natural language
logical connectives and proof step components”.

The second and third class of verbalisations are those whichrequire contextual and domain
knowledge for interpretation and formalisation. If beyondthe type of content described above,
only domain concepts from the domain(s) of the proof (here: set theory and binary relations) and
discourse references have to be translated, then the proof step belongs to the categoryDomain
& context. The domain concepts may be named using single or multi-worddomain terms,8 but
also using informal wording, such as the locative prepositional phrase with “in” to stand for the
set membership relation. Examples of the second class of proof steps include:

in K(B) sind allex, die nicht inB sind
(in K(B) are all x which are not inB)

Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦R−1

(By definition of◦ it follows then that(a, b) is in S−1 ◦R−1)

Nach Aufgabe A gilt(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
(By Exercise A it holds that(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ))

In the last example, the reference “Aufgabe A” (Exercise A) needs to be resolved. Note, however,
that the utterance “Es gilt nach Definition ausserdemS−1◦R−1 = . . . ” (By definition it moreover
holds that . . .) belongs to the classNL logic & proof step componentsbecause no domain-
specific vocabulary is needed; the word “definition” is in thebasic lexicon of mathematics.

Finally, the third class comprises those steps which are notspecified explicitly, but rather
indirectly as high-level meta-descriptions of a (possiblycomplex) transformation which needs
to be performed in order to reconstruct the intended step. Anexample of such as complex proof
step is C-II S8 in Figure 4.2: “Der Beweis geht genauso wie oben, da in Schritt 2 bis 6 nur
Aequivalenz umformungen stattfinden” (The proof goes exactly as above since in step 2 to 6

7Examples shown as they occur in the corpus; for analysis, utterances preprocessed as described in Section 4.2.
8See the paragraph on normalisation of domain terms and domain-specific references in Section 4.2.3
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Table 4.7: Descriptive information on proof contributions

C-I C-II C-I & C-II
Unique / Total Unique / Total Unique / Total

Proof step 138/ 171 287 / 469 407 / 640
Logic & proof step components 54 / 80 136 / 286 175 / 366
Domain & context 78 / 85 140 / 171 216 / 256
Meta-level description 6 / 6 11 / 12 16 / 18

Proof strategy 4 / 4 25 / 30 29 / 34
Proof structure - / - 7 / 16 7 / 16
Proof status 1 / 5 7 / 24 7 / 29

there are only equivalences). Other examples include:

Analog geht der Fall, wenn(a, z) ∈ S
(The case for(a, z) ∈ S is analogous)

de morgan regel 2 auf beide komplemente angewendet
(de morgan rule 2 applied to both complements)

(S ◦ T ) ist genauso definiert
((S ◦ T ) is defined the same way)

Complex proof steps of this kind will be referred to asMeta-level description. The three
subclasses ofProof contributionsare summarised below:

Logic & proof step components Only logical connectives and components of a proof step
need to be interpreted,

Domain & context Domain terminology and contextual references need to
be interpreted (as well as, possibly, logical connectives
and proof step components),

Meta-level description An indirect proof step specification needs to be inter-
preted (as well as, possibly, all of the above).

An alternative proof step classification has been proposed by Wagner and Lesourd (2008). The
classification is also verbalisation-oriented and was designed with a motivation similar to ours,
however, it is imprecise. First, it is not clear whether the classsimple connectionsaccommodates
utterances with adverbs or adverbial phrases, such as “Moreover, as previously shown, it follows
that . . . ” Second, and more importantly, the distinction betweenweakly verbalisedandstrongly
verbalisedformulas is unclear.Weakly verbalisedformulas are defined as those “where some
relations or quantifiers are partly verbalised”, whilestrongly verbalisedformulas as those “where
all relations and quantifiers are fully verbalised”. Based on these definitions it is not clear why
the example “a is the limit of (an)n∈N ”, given in the paper, should be classified asweakly
verbalised, whereas “For allǫ holds: there exists an0(ǫ) ∈ N with . . . ” asstrongly verbalised;
clearly, the set membership relation inn0(ǫ) ∈ N is not verbalised.
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Figure 4.4: Frequency spectra: Proof step types (x-axis log-scaled; y-axis range extended
to match Figure 4.3 for comparison)

Table 4.7 shows descriptive statistics on proof contributions, with proof steps subclassified as
described above. Not surprisingly, the wording of proof contributions which refer to proof-level
concepts – proof strategy and proof structure – is diverse. Wording of proof status information
is repetitive; indeed, most often only the end of the proof issignalled explicitly and most often
using the abbreviation “q.e.d.”9 Now, also not surprisingly, within the class of proof steps,the
more complex the content, the more varied the wording. Meta-level descriptions of proofs are al-
most entirely idiosyncratic. Only two utterance patterns occurred more than once: “MATHEXPR

ist analog definiert” (MATHEXPR is defined analogously) and “das gleiche gilt fuerMATHEXPR”
(The same holds forMATHEXPR). The wording of proof steps in theDomain & contextcate-
gory is also diverse: 92% of instances are distinct in C-I, 82% in C-II, and 84% overall. Most
repetitive patterns are found in theLogic & proof step componentsclass: 67% of all utterance in-
stances in this category are distinct in C-I, only 47% in C-II, and 48% in both corpora combined.
Overall, 63% of proof step verbalisations (from all the three categories) are distinct.

Figure 4.4 shows the frequency spectra of the three proof step categories in the combined cor-
pus, C-I & C-II. Again, the distribution is heavily skewed. In the largest category,Domain &
context, 210 out of the 216 unique patterns occur only once or twice; that is 97% (191 patterns
occur once; 75% of all instances in this category). In theLogic & proof step componentscate-

9Recall that the different spelling and verbalisation variants of “q.e.d.” have been normalised.
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4.3 Diversity of verbalisation patterns

Table 4.8: Top-10 most frequent utterance patterns expressing proof steps

Type Linguistic pattern Frequency
seiMATHEXPR 54
es giltMATHEXPR 13
wennMATHEXPR dannMATHEXPR 12
alsoMATHEXPR 12
dann istMATHEXPR 11
also istMATHEXPR 9
MATHEXPR undMATHEXPR 8
MATHEXPR ist dannMATHEXPR 7
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daraus folgtMATHEXPR 7
daraus folgt dassMATHEXPR 7

nachREFERENCE MATHEXPR 7
DOMAINTERM 7
nachREFERENCEist MATHEXPR 4
MATHEXPR nachREFERENCE 3
DOMAINTERM von MATHEXPR ist DOMAINTERM MATHEXPR 3
ausREFERENCEfolgt MATHEXPR 3
wegen der formel fuerDOMAINTERM folgt MATHEXPR 2
oderMATHEXPR wegenDOMAINTERM von MATHEXPR 2

D
o

m
ai

n
&

co
n

te
xt

nachREFERENCEgilt MATHEXPR 2
nachDOMAINTERM gibt es einMATHEXPR mit MATHEXPR 2

MATHEXPR ist analog definiert 2
das gleiche gilt fuerMATHEXPR 2
gleiches gilt mitMATHEXPR 1
DOMAINTERM auf beideDOMAINTERM angewendet 1
der fall MATHEXPR verlaeuft analog 1
der beweis vonMATHEXPR ist analog zum beweis vonMATHEXPR 1
beweis geht genauso wie oben da inREFERENCEbis REFERENCEnur

DOMAINTERM umformungen stattfinden 1
analog geht der fall wennMATHEXPR 1

M
et

a-
le

ve
ld
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cr
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n

andersrum 1
die zweiteDOMAINTERM ergibt sich aus der umkehrung aller bisherigen beweisschritte 1

gory, around 150 out of the 175 unique patterns, 73%, occur once or twice, and there are only 8
patterns with at least five instances of occurrence (128 patterns occur once, 35% of instances in
this category). Table 4.8 shows the top-10 most frequent linguistic patterns in the three classes of
proof steps from the combined corpus, C-I & C-II, with their frequency of occurrence. Recall,
moreover, that only 20 solution-contributing utterances occurred in both corpora (see Table 4.2).

4.3.5 Growth of the diversity of forms

Finally, we are interested in how the diversity of forms evolves with an increasing number of
conducted dialogues. Specifically, we would like to know howmany dialogues are needed to
have observed most of the verbalisation patterns.
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Figure 4.5: Growth of verbalisation patterns over 10 randomdialogue sequences

Figure 4.5 shows a plot of a variant of the type-token (vocabulary growth) curve (Youmans,
1990). The verbalisation patterns are used as vocabulary. On the x-axis is the number of dia-
logues seen. Rather than the raw type count, the y-axis showsthe proportion of observed pattern
types out of all pattern types in the given corpus.10 10 random sequences of dialogues have
been generated; for the C-I & C-II plot, the corpora were combined in random order and 10
sequences were drawn from the combined set.

What can be seen from the graphs is that the pattern vocabulary grows linearly, showing,
however, a large variance over the 10 samples drawn. The tendency is similar in both corpora: on
average, half of the patterns have been seen at about 40% of the data sets and 80% of the patterns
at about 77% into the data set in C-I (ca. 17 dialogues) and 70%in C-II (ca. 26 dialogues). In
the combined corpus, however, half of the patterns have beenseen already about 32% into the
data set on average. 80% of the patterns have been seen about 70% into the data set on average
(ca. 41 dialogues).

4.4 Conclusions

It is clear from the results that the language of students’ discourse in proofs is not as repetitive
as one might expect. Students use complex natural language utterances not only during meta-
communication with the tutor, but also when contributing proof steps. 57% of all utterances in

10198 NL + ME & NL utterance patterns in C-I, 530 in C-II, and 700 in C-I & C-II; see Table 4.1.
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C-I and 73% in C-II contained some natural language. The factthat natural language was more
often used in the C-II corpus may be explained by the fact thatthe binary relations proofs were
more complex than the set theory proofs. However, set theoryis very naturally expressed in
natural language, so the reason why this was the case would need further investigation.

An analysis of the C-II data revealed differences in the use of natural language and mathe-
matical expressions between the two study material conditions. The VM-group tended to use
more natural language than the FM-group and the dialogue turns of the subjects in the VM-
group contained more, but shorter, mathematical expressions. The FM-group tended to use
more and longer formulas overall, and less natural language. Since the tutors’ statistics showed
no significant difference between the two conditions in the tutors’ dialogue behaviour with re-
spect to language and mathematical expression production,the differences in dialogue styles
were at least partly due to the format of the presentation of the study material having a priming-
like effect. However, another factor that may have contributed to the differences could involve
individual differences in the mathematical skills of the students or specific dialogue styles of
subject-wizard pairs having to do with the student’s skills.

The results on the influence of the study material presentation have implications for the imple-
mentation of tutorial dialogue systems. On the one hand, more natural language, be it resulting
from a verbose presentation of the study material or from thestudents’ individual preference for
a particular language style, imposes more challenges on theinput understanding component. In
the context of mathematics, this involves a reliable and robust parser and discourse analyser ca-
pable of interpreting mixed natural language and mathematical expressions. On the other hand,
prompting for more symbolic language by presenting students with formalised material imposes
stronger requirements on the mathematical expression parser since longer expressions tend to
be prone to errors. The same holds of the copy-paste functionality: while convenient from the
user’s point of view, it may lead to mistakes of sloppiness inrevising the copied text. This,
in turn, calls for flexible formula parsing, error correction (such as the one we present in Sec-
tion 6.4), and specific dialogue strategies to address formulas with errors (such as our those we
proposed in (Horacek & Wolska, 2007, 2008)).

From the pedagogical point of view, the format of the study material presentation should be
adequate to the tutoring goals. For example, in teaching formal proofs more rigour should be
imposed than in informal proofs. The material should be alsoadapted to the skills of the stu-
dent: formal material presented to a novice may lead to an inefficient dialogue centering around
such issues as syntactic formalities, instead of the higher-level goal of teaching problem solv-
ing (recall the discussion in Chapter 2). The general issue arising here is what study material
formulation a tutoring system should present to the student. An advantage of verbose mate-
rial, including worded explanations, is that novice students, in particular those unfamiliar with
formal notation, can compensate for this weakness and stillattempt to build proofs using their
problem solving skills. Advanced students might be able to express proofs formally anyhow,
while the verbosity of the material might encourage them to produce conceptual sketches of
proofs typical of skilled mathematicians. As previously mentioned, this assumes that the tutor-
ing system’s interpretation and dialogue management modules can handle a variety of discourse
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and dialogue phenomena, including potentially telegraphic fragmentary utterances and informal
natural language descriptions which we discussed in Section 3.2.2.

The wording of proof steps is surprisingly diverse and the language used in the two corpora
is different. The fact that only 28 utterance verbalisations occurred in both data sets is surpris-
ing. Among the 28 common patterns there were only 20 common proof step verbalisations, the
majority of theLogic & proof step componentstype. This low number of common patterns is
reflected in the type-token plot (Figure 4.5) which exhibitsa steady increase with only one area
of slower growth in the combined corpus, about 20-25% into the randomly-ordered data set.

The difference in the linguistic diversity of the proof language (the proof contributions class)
in the two corpora can be also seen in the different distributions of distinct linguistic patterns
(Table 4.7). Among theLogic & proof step componentsclass, 67% of the verbalisations were
distinct in C-I and 47% in C-II. In theDomain & contextclass, 92% of all the verbalisations
were distinct in C-I and 82% in C-II. That is, the language in C-II appears more repetitive. In
both corpora, however, the language in the latter class of proof steps is more heterogeneous than
in the former.11 The frequency spectra and the pattern growth curves show further the degree to
which the language is indeed diverse. In theLogic & proof step componentsclass, 81% of the
distinct types were single-occurrence utterances (81% in C-I and 72% in C-II). In theDomain
& contextclass, 90% of the types were single-occurrence (96% in C-I and 85% in C-II).

Not surprisingly, the majority of the meta-level communication are the students’ requests for
assistance: requests for hints, definitions, explanations, etc. Out of the 170 help requests, 149
(88%) were distinct verbalisations; 136 single-occurrence patterns. A further subclassification
of help requests might reveal more homogeneity in the wording within subcategories.

The relatively large number of discourse markers, typical of spoken interaction, suggests that
participants had an informal approach to dialogue style andtreated it much like a chat, adapting
spoken language, which they would have otherwise used in a natural setting, to the experiments’
typewritten modality. This is a known phenomenon (Hård af Segerstad, 2002). The diversity of
verbalisations may be partly due to this.

The key conclusion which can be drawn from the analyses is that in a tutoring setting, even the
seemingly linguistically predictable domain of mathematical proofs is characterised by a large
variety of linguistic patterns of expression, by a large number of idiosyncratic verbalisations, and
that the meta-communicative part of discourse which does not directly contribute to the solution
has an conversational character, suggesting the students’informal attitude towards the computer-
based dialogues and their high expectations on the input interpretation resources. This calls for
a combination of shallow and deep semantic processing methods for the discourse in question:
shallow pattern-based approaches for contributions whichdo not add to the proof and semantic
grammars for the proof-relevant content, in order to optimise coverage. In the next chapter we
propose a language processing architecture for analysing students’ proof language. In Chapter 7
we show that deep lexicalised grammars provide better generalisation and thus better scalability
in terms of coverage for this type of discourse than a phrase-based formalism.

11TheMeta-level descriptionsare too sparse to draw conclusions (18 occurrences overall).
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In this chapter we describe an architecture for processing informal mathematical discourse. We
start by motivating the general properties of the architecture and of the interpretation strategy
which we propose. Then we present the high-level interpretation processes, discuss their com-
ponents and the employed methods of language analysis. The presentation of the interpretation
strategy for mathematical discourse is divided into two parts: In Section 5.2.3, we present the
basic approach to processing mathematical language motivated by the most prominent language
phenomena discussed in Chapter 3 and show a complete walk-through analysis of an example
utterance from the corpus in Section 5.3. The following chapter, Chapter 6, shows how we
model selected language phenomena found in our corpora in more detail and discusses various
extensions to the basic resources for processing a subset ofthe language phenomena. Material
presented in this chapter appeared in (Wolska & Kruijff-Korbayová, 2004a; Wolska et al., 2010).

5.1 Rationale of the approach

The approach to mathematical discourse processing which weadopt rests on a number of well-
motivated design principles: The underlying philosophy ofour approach ismodularity, that is,
encapsulation of information required for the different processing tasks and of the processes
themselves, andparameterisation. In order to be able to address the peculiarity of mathematical
discourse, that of fluently interleaving natural language and mathematical notation (discussed in
Chapter 3) we argue that the interpretation strategy for mathematical language should be such
that the information contributed by the two language modes can be seamlessly integrated into the
semantics of utterances presented in the mixed language. Wepropose to achieve this by means
of encapsulation of symbolic contentanda uniform processing strategy, the same for utterances
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presented in natural language as well as those presented in mixed language. Considering the
complexity of the language phenomena and the fact that we areaiming at a uniform analysis of
language phenomena of various complexity, we argue fordeep linguistic analysisas method of
providing a systematic and consistent account of the mixed-language discourse and propose a
step-wise interpretation processin which a representation of the utterance’s semantics is grad-
ually enriched with more specific information. Finally, we argue that the output representation
produced by the language processing component should not bespecific to a proof representation
language of a particular deduction system. It should be rather alinguistically-motivated output
representation, independent of a domain reasoner. In the following sections we briefly elaborate
on the motivation behind these design decisions.

Modularity and parameterisation Modularity in complex systems is a desirable feature as
such because, among other reasons, rigorous definition of modules’ interfaces facilitates ex-
change of processing methods. In language processing, modularity is a natural choice because
the individual linguistic processing tasks are structurally and functionally different. In the case
of mathematical discourse, it is also motivated by the fact the specification of the processes of
certain architecture components needs to be parameterisedwith respect to a number of vari-
ables (which we will discuss in Section 5.2.1) in order to facilitate portability across scenarios.
First, at the level of the larger architecture, the linguistic analysis (which operates on language
input) and domain reasoning (which operates on constructedsymbolic representations of proof
contributions) are clearly separated (see Figure 1.2 on page 21). Second, the architecture en-
capsulates language processing subcomponents which processing input in a step-wise fashion,
contributing information at different levels of granularity of linguistic analysis. Thus, similarly
to Zinn’s (2006) andMARACHNA’s (Jeschke, Wilke, et al., 2008) approaches we argue for a
highly modular architecture for processing mathematical discourse. However, our architecture
includes components whose processes are functionally self-contained and which the other ap-
proaches integrate into larger components (for instance, mathematical notation processing) or do
not mention at all (for instance, parsing mixed language or interpretation of imprecise wording).

Encapsulation of mathematical expressions and uniform processing As illustrated in Sec-
tion 3.2.2.1, mathematical notation can be seamlessly embedded into natural language. While
in certain contexts, the presence of symbolic expressions may be a source of deviation from
the norms of syntax of natural language,1 symbolic expressions behave just like other linguis-
tic entities in that they enter into grammatical and semantic relations with other constituents in
a sentence (or dialogue utterance). Therefore, we propose to treat mathematical notation con-
stituents occurring within natural language utterances the same way as linguistic content, while
abstracting from the individual symbols which are part of the mathematical expressions. In other
words, we argue for uniform processing of the two language modes at the level of utterance or

1Non-standard syntax is, however, characteristic of sublanguages of which mathematical language is an example.
We discussed these phenomena in Sections 3.1.1 and 3.2.2.3
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sentence syntax in which meaningful constituents of mathematical expressionsas wholes, rather
than symbols individually, are treated as tokens by the natural language parser.

The interpretation process we propose comprises a number ofsteps during which mathe-
matical expressions are first encapsulated and subsequently analysed as structured linguistic
constituents represented as special lexical or clausal units (“pseudo-lexemes”) in the parser’s
grammar. In the course of parsing, content encapsulated in this way is treated on a par with
natural language lexical units. This approach is superior to that of representing individual sym-
bols of mathematical notation within the parser’s lexicon,as proposed by Zinn (cf. (Zinn, 2004,
Section 5.2)) because it supports modularity and parameterisation: parsing mathematical expres-
sions can be delegated to a dedicated mathematical notationparser which has access to its own
resources and parsing knowledge adapted to the notation format and mathematical domain in
question. Clearly, it is also superior toMARACHNA’s approach in which mathematical notation
within sentences is not at all analysed in the context of the natural language within which it
is embedded (see (Jeschke, Wilke, et al., 2008)), which obviously results in information loss.2

More details and example analyses will be presented in Sections 5.2.2, 5.2.3, and in Chapter 6.

Deep linguistic analysis Traditionally, two approaches to language processing are distin-
guished in computational linguistics: “shallow processing” typically refers to approaches based
on more or less coarse-grained lexico-syntactic information, such as information on word classes
(parts of speech), phrase (noun phrases, verb phrases, predicate-argument structures) and clause
structure, or statistical word co-occurrence information, but without or with only limited access
to semantics. Information and document retrieval is typically performed based on this kind of
“shallow” information. At the other end of the spectrum is “deep processing” which uses se-
mantic parsers to construct a symbolic representation of (possibly underspecified) semantics,
so-calledlogical form, based the sentence’s surface form. Logical forms represent context-
independent (literal) meaning of sentences (utterances) and they are typically represented using
some form of logic notation, such as the Montagovian (simply-typed) lambda calculus or other
quantified or quantifier-free languages (see, for instance,(Alshawi & Crouch, 1992; Copestake
et al., 1995)). Shallow processing offers robustness – while the result of processing may not
be always correct, a result is always produced – however, while it is possible to produce some
semantic representation based on shallow processing, the representation may be incomplete.3

Therefore, considering the fact that we aim at a formal representation which can be reliably
mapped to an input language of a deduction system, we argue for the deep processing approach
for mathematical discourse.

The advantage of a deep approach is that the syntax-semantics interface, that is, the mapping

2The same approach, proposed in (Wolska & Kruijff-Korbayová, 2004a), has been also adopted in LEACTIVE-
MATH project (Callaway et al., 2006).

3A variety of language processing architectures can be described ashybrid approaches, that is, approaches
which either use both shallow and deep methods for processing language or attempt to integrate various processing
components. Heart of Gold (Schäfer, 2006) is an example of a hybrid system in which such an integration is done in
a principled way using (R)MRS as semantic representations (Copestake et al., 2005).
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of lexico-syntactic forms to logical forms, is well-definedand ensures precision in meaning as-
signment thanks to the explicit definition. Semantic representations are derived in a principled
way based on the notion ofcompositionality of meaning.4 Deep semantic parsers use carefully
hand-crafted grammars, typicallylexicalised grammars, which encode language phenomena
based on principled linguistic analysis. Examples of such formalisms are Head-driven Phrase
Structure Grammar (HPSG) (Pollard & Sag, 1994), Lexical-Functional Grammar (LFG) (Bres-
nan, 2001), or Categorial Grammar (CG) (Ajdukiewicz, 1935;Bar-Hillel, 1953; Lambek, 1958).

At the core of the processing architecture we propose are Combinatory Categorial Grammar
(CCG) and a dependency-based semantic representation. CCGis a variant of categorial gram-
mar in which categories (categorial grammar types) associated with lexemes are combined using
a set of rules (Steedman, 2000). The specific “multi-modal” variant of CCG and its implemen-
tation which we adopt provide a way of controlling derivations by restricting rule application
through the use of features on categories and modes on category-building operators (more in
Section 5.2.3.1). These mechanisms are particularly relevant when modelling languages with
relatively free word order, such as German. Our semantic representations, produced in parallel
with syntactic category derivations, are based on the Praguian notion oftectogrammaticsand re-
flect thesemantic dependency structureof the parsed sentences (Sgall et al., 1986). Semantics in
this sense is context-independent and models theliteral meaningof the input utterances. Thus,
our basic formalisation of the language of mathematics is interms of thelinguistic meaningof
mathematical content, modelled as a semantic dependency structure. This structure is formally
represented using Hybrid Logic Dependency Semantics (HLDS) (Baldridge & Kruijff, 2002),
a semantic formalism based on the syntax of hybrid modal logic (Blackburn, 2000). Linguis-
tic meaning is subsequently interpreted in the context of the mathematical domain of discourse
and the semantic representation is enriched with domain-specific information (see below). De-
tails on parsing and further processing of the dependency structures will follow in Section 5.2.3
of this chapter and in Section 6.1 of the next chapter. An illustration of semantic interpretation
based on transforming dependency structures will be shown in Section 6.2.2 when discussing
the interpretation of the “the other way round” operator.

Step-wise interpretation Similarly to many other language processing systems, the architec-
ture we propose for processing mathematical language is based on a sequence of analysis steps
which attempt to provide gradually more specific information about the input under analysis.
Once high-level information on the structure of a communicative unit is known (that is, informa-
tion on the utterance units’ boundaries and the boundaries of symbolic mathematical expressions
within the utterance units) meaning assignment starts withsemantic parsing; briefly outlined
above. At this stage, our basic semantic representation iscontext-independentand represents
the linguistic meaning of an utterance under considerationin terms of a dependency structure.

4 The notion “logical form” goes back to the work of Tarski, Russell, and Frege. The “Principle of composition-
ality” is due to Frege. Work on formal “translation” of natural language sentences into logic dates back to the early
70s and the work of Montague, Partee, Dowty, May, and Cooper,among others.
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Subsequent analysis steps operate on this representation attempting to assign a more precise,
domain-specific, interpretation to its elements. These subsequent interpretation processes enrich
the original semantic representation with further information if it can be found based on the ded-
icated resources: a semantic lexicon and a linguistically-motivated domain model. The resulting
output representation can be thought of as aninterpreted dependency structure. The interpreta-
tion process will be further elaborated in Section 5.2.3.2,while more details on the structure of
the interpretation resources will be presented in Section 6.2.1.

Linguistically-motivated reasoner-independent output representation In the overall archi-
tecture for processing mathematical discourse we envisage– recall Figure 1.2 (page 21) – the
domain reasoning and the language processing tasks are clearly separated. The reason for this
is that a generic language interpretation component does not possess knowledge to reason about
the discourse at the domain level; that is, reason about the proofs. Linguistic analysis is what
it is: it is an analysis of thelanguageitself. While certain inferences can be made based solely
on the verbally expressed content (for instance, sortal restrictions violations), many domain-
specific mathematical inferences cannot. For instance, it is impossible to decide on the scope
of a sentence-initial discourse marker “hence”, which introduces a conclusion fromone or more
previously stated proof steps, without the knowledge of thelogical structure of the proof. There-
fore, we argue that the core linguistic analysis in a proof discourse processing system may stop
short of any interpretation which requires knowledge of mathematics beyond the knowledge
of the languageused to talk about mathematics. The representation itself should belinguis-
tic, rather than express the communicated mathematical content directly in a formal language of
logic or of a specific deduction system. On the contrary: in order to facilitate portability, the out-
put representation of the language interpretation processshould not be specific to any particular
deduction system. Such are our HLDS-based interpreted semantic dependency representations.
The translation of these representations into an input language of a domain reasoner should be
performed by the proof representation processing component – see Section 1.2 – as this trans-
lation is entirely reasoner-specific, that is, dependent onthe input language of the deduction
system employed for domain reasoning tasks.

In the following sections, we present a modular architecture for processing informal math-
ematical discourse designed according to the principles discussed above. We first introduce
the core components of the architecture and then elaborate on our approach to computational
interpretation of informal proof discourse in the scenarios introduced in the beginning of this
chapter. The presentation of the interpretation strategy proper is divided into two parts: First we
present the basic analysis steps which address a set of simple, but frequent linguistic phenomena
and illustrate the analysis process with a walk-through example. Methods of modelling specific
selected phenomena in students’ language are presented in Chapter 6.
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Figure 5.1: An architecture for processing informal mathematical language
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5.2 Language processing architecture

The language processing architecture we propose for mathematical discourse is built on a pipeline
of (standard) larger language processing subcomponents: (i) preprocessing, (ii) parsing, and (iii)
sentence- and discourse-level interpretation. The designand functionality of these components
is motivated by the properties of mathematical language, discussed in Chapter 3. The overall
architecture is shown in Figure 5.1. In the reminder of this chapter we present the individual pro-
cessing components and their functionality, including thecore contribution of this thesis: an in-
terpretation strategy for the language of mathematical proofs. Details on how specific language
phenomena are processed will be presented in the next chapter. When discussing the interpreta-
tion strategy we focus on proof contributions and do not address other types of communicative
units. Non-solution-contributing utterances would lend themselves better to shallow processing
methods since, first, they do not need a translation to formallanguage, and second, due to the va-
riety in their verbalisations (Section 4.3.3). We start by introducing three obvious variables with
respect to which a larger system for processing mathematical language must be parameterised.

5.2.1 Parameters

In order to facilitate portability across scenarios, the mathematical language processing archi-
tecture is parameterised with respect to the following three variables:

• the natural language of the contributions,

• the mathematical domain,

• and the format of the mathematical notation.

Parameterisation with respect to the input language is a obvious: parsing is language-specific,
hence the architecture’s input analyser should support grammars, or language models in gen-
eral, of different natural languages in which proof contributions can be expressed. The language
models, in turn, should comprise appropriate terminological lexica for the mathematical subarea
of the given discourse. (These are also dependent on the mathematical domain of the proof
discourse under analysis.) Before syntactic and semantic analysis can proceed, preprocessing
modules prepare the input for parsing by identifying utterances, (multi-)word units, and ele-
ments of mathematical notation within the input communicative units. Sentence (or utterance)
and word boundary detection by themselves are language specific. The process of identifica-
tion and analysis of mathematical notation, however, must be specialised both with respect to a
mathematical domain (the set of symbols used and their semantics differ across domains; recall
the discussion in Section 3.2.1) and also with respect to thenatural language of the input (in
English, for instance, the token “a” needs to be disambiguated between an indefinite article and
a mathematical symbol). Identification of symbolic mathematical expressions within natural
language needs to be moreover parameterised with respect tothe input format in which mathe-
matical expressions are entered. LATEX (D. Knuth, 1986) is a de facto standard for mathematical
document formatting for scientific publications. While thedocument processing scenario would
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Figure 5.2: Preprocessing

most likely involve LATEX-based documents, possibly further processed using a dedicated math-
ematical document processing system, such as LaTeXML (Stamerjohanns et al., 2010), tutoring
environments and web-based interactive proof checkers would typically offer a graphical user
interface with buttons for entering mathematical symbols.In this case, the underlying repre-
sentation format for mathematical expressions might be MathML5 or OpenMath6 or, as was the
case with our corpora, a custom format for representing mathematical symbols as ascii text, for
instance, for the purpose of storing interaction logs. In Figure 5.1 the components marked with
downward diagonal lines are those whose resources are specific to the natural language, up-
ward lines mark dependence on mathematical domain, and crossing lines mark processes which
depend on both the language and the mathematical domain.

5.2.2 Preprocessing

By “preprocessing” in language technology one understandsthe part of text processing whose
purpose is to prepare the input for the analysis proper. Typical preprocessing steps include
sentence and word boundary detection (or tokenisation), simple stemming or full morphological
analysis, part of speech tagging, that is, identifying a lexeme’s word class, etc.

Our parsing process is based on a lexicalised grammar, that is, all word forms as well as their
word classes are explicitly specified in the parser’s lexicon (see Section 5.2.3.1). Therefore, in
the present architecture, input is not stemmed nor part of speech tagged. However, preprocessing
mathematical discourse, as well as any type of technical discourse which uses mathematics as
its formal language, aside from the standard sentence and word tokenisation, involves identify-
ing and analysing symbolic mathematical expressions as well as identifying domain terms, the
technical vocabulary of the special language. Figure 5.2 shows a general preprocessing pipeline
for mathematical discourse. The three preprocessing stepsare outlined below.

5See footnote 19 on page 34
6See footnote 20 on page 34
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5.2.2.1 Sentence and word tokenisation

The purpose of the tokenisation process is to segment the input contributions into utterances
(or possibly sentences) and word-like units (tokens), thatis, identify utterance and word bound-
aries. As we have pointed out before, sentence and word boundary detection is language spe-
cific. Moreover, in order to account for the symbolic expressions embedded within the natural
language text, the process distinguishes between tokens which are natural language lexemes and
those which form part of symbolic mathematical expressions.

Although conceptually simple, in general, automatic sentence and word tokenisation are non-
trivial tasks; see (Grefenstette & Tapanainen, 1994) for a discussion of tokenisation issues. Ap-
proaches to sentence boundary detection in narrative text range from simple heuristics to sta-
tistical, machine learning approaches; see, for instance,(Reynar & Ratnaparkhi, 1997; Palmer
& Hearst, 1997; Mikheev, 2000; Silla & Kaestner, 2004; Kiss &Strunk, 2006). In dialogue-
based interaction input may be ill-formed, in particular, punctuation may be omitted. In the two
collected corpora, 40% of utterances either lacked the finalpunctuation or the utterance final
punctuation was non-standard, for instance, a comma or colon were used, as in (59) and (60):

(59) Dann ist(A∪C) = A , und(B∪C) = B , daraus folgt der Beweis ,A∩B ∈
P (A ∩B)
(Then(A ∪ C) = A, and (B ∪ C) = B hold, the proof follows from this,
A ∩B ∈ P (A ∩B))

(60) das wars: wennA ⊆ K(B), dann sindA und B verschieden, haben keine
gemeinsamen Elemente ,daraus folgt, dassB ⊆ K(A) sein muss
(that’s it: if A ⊆ K(B), thenA andB are different, have no common elements,
it follows from that thatB ⊆ K(A) must hold)

Since tokenisation issues are not the main focus of this work, we implemented only simple
procedures for the tokenisation step of preprocessing, which, however, ensured that our en-
tire data set is correctly processed. Sentence and word tokenisation of both corpora has been
performed using a set of regular expressions, as in the method proposed by Grefenstette and
Tapanainen. Sentence and word tokenisers were iterativelytuned in such way that both of our
corpora have been correctly processed, that is, we adjustedand extended the regular expressions,
reprocessed the data, and verified the accuracy by inspecting the results, until the corpora were
processed without errors. For the purpose of the evaluationpresented in Chapter 7, utterances
have been manually segmented as described in Chapter 4. Since we focus on semantic analysis,
we do not address the tokenisation step any further in this thesis.

5.2.2.2 Domain term identification

Mathematics, as a specialised domain, is rich in technical vocabulary, domain terms which name
the objects about which mathematical discourse treats. Clearly, an architecture for processing
mathematical discourse needs to be capable of identifying and interpreting mathematical ter-
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minology. Examples of technical vocabulary from both of ourcorpora as well as from other
mathematical subareas, both single and multi-word units, were presented in Section 3.2.2.2.
Because our experiments were set in only two mathematical domains, set theory and binary re-
lations, and covered only small subsets of those domains, the set of technical terms appearing in
the corpora is not large: there are 111 instances of nominal (noun phrase) domain terms in the
set theory corpus and 250 instances of nominal domain terms in the binary relations corpus.

Terminology identification and extraction as well as identification of multi-word expressions
are research subareas of computational linguistics in their own right. Corpus statistics and ma-
chine learning are the currently prevalent approaches to domain term identification and MWE
tasks. Examples of recent work in these areas include (Frantzi et al., 2000; Pazienza et al.,
2005) or (Kubo et al., 2010). In the context of the restricteddomains of our experiments we
can employed a simple lexicon-based approach to identifying domain terms. For the purpose of
the analyses presented in Chapter 4 and the evaluation in Chapter 7, domain terms have been
identified based on a list extracted from the collected corpora and from the background reading
material presented do the experiment participants; see experiments’ overview in Section 2.4.
The list included all the wording variants for each term, both for single- and multi-wordnominal
units (examples of different wording variants of de Morgan’s Laws and of the Law of Distribu-
tivity of Union over Intersection have been shown in Section3.2.2.2). In order to account for
misspellings and inflection suffixes, a simple fuzzy matching procedure based on string edit dis-
tance (Levenshtein) has been implemented in order to identify all occurrences of domain terms.
Output of the domain term tagger has been verified and corrected manually. Since in this thesis
we do not focus on domain term identification as such, we ascertained that the terminology lists
are exhaustive for the collected corpora and we do not address the domain term identification
process any further. However, important from the point of view of the interpretation strategy is
how domain terms are treated during processing.

In the approach we propose, nominal single- and multi-word domain terms, once identified,
are abstracted over in the course of syntactic and semantic parsing. The meaning of domain
terms is incorporated into semantic representations at theinterpretation stage, following seman-
tic parsing. In practice, as part of preprocessing, we substitute each occurrence of a domain
term in a contribution with a symbolic token which represents it; the same way as described
in Section 4.2.3. This can be considered a kind of textual normalisation step. In our imple-
mentation the stringDOMAINTERM was used to represent technical terminology. We argue that
this approach is well-motivated and adequate for mathematical discourse for two reasons: First,
once a (multi-word) lexical unit is identified as a domain term, its interpretation requires also
domain knowledge and not just the sentence context. (Recallthe “left ideal” example from Sec-
tion 3.2.2.4 of Chapter 3.) Second, separating the two analysis processes enables a better sepa-
ration of parsing resources, and thus better resource management. The parsing lexicon becomes
smaller and focused on sentence-level phenomena, while domain terms can be handled by a
dedicated noun phrase grammar with a terminological lexicon comprising solely noun phrase
forming word classes: articles, adjectives, participles,nouns, and prepositions.
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5.2.2.3 Processing mathematical expressions

Unlike typical genres which are commonly addressed in natural language processing, for in-
stance, news text or general narrative prose, mathematicaldiscourse requires that the symbolic
mathematical expressions, mathematical notation which forms an inherent part of content, be in-
terpreted in the context of the natural language within which they are embedded. To date, large
scale efforts at processing scientific discourse tend to address higher level tasks (for instance,
argumentative structure identification, author attribution, or citation graph analysis) ignoring al-
together the semantic import of the content expressed usingthe symbolic language. In scenarios
involving proof interpretation, in which constructing a semantic representation of content isthe
computational task, bringing the two languages together isa sine qua non. Yet, as we had pre-
viously pointed out, existing systems for processing mathematical discourse do not analyze the
symbolic content at all (MARACHNA; see (Jeschke, Wilke, et al., 2008) and the overview in Sec-
tion 1.3.3) or merely gloss over phenomena related to the interaction of natural language and
mathematical notation (see (Zinn, 2004)).

In this work, we propose a method of achieving a systematic analysis of the mixed language
by viewing the symbolic expressions within utterances at the level of theirsyntactic typesand
treating these types on a par with natural language. To achieve this, processing symbolic math-
ematical expressions embedded within utterances comprises three subtasks:

• Identification , that is, delimiting symbolic expressions within the natural language text,

• Parsing and annotation: analysing their structure and semantics and marking the relevant
information on the expressions’ derivation trees, and

• Interpretation in context , that is, integrating the symbolic expressions into the syntax
and semantics of the utterances in which they appear.

The identification subtask is clear: the purpose of this process is to recognise mathematical
expressions within the surrounding natural language text.As we pointed out when discussing
parameters in Section 5.2.1, how this process is performed depends on the language of the in-
put contributions, on the mathematical subarea of the discourse, and on the encoding format
of the mathematical symbols. Once identified, every mathematical expression is parsed by a
specialised mathematical expression parser. In the approach we propose, the parser performs
four tasks: (1) it constructs the expression’s dependency-style derivation tree,7 (2) it identi-
fies the expression’s high-level syntactic type, (3) it identifies certain salient substructures, and
(4) it annotates the derivation tree with the type and substructure information. We distinguish
eight types of mathematical expressions. The two obvious basic types areTERM andFORMULA.
Their definitions are standard: Term is the type of ontological mathematical objects. Formulas
are sentences, expressions with a truth value. The remaining six types are derived from the basic
two and account for incomplete expressions. We will return to those in Section 6.1.3. Once a
derivation tree of an expression has been constructed, its root node is annotated with information

7See Figure 3.2 (page 74) and the discussion in Section 3.2.1.2.
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about the expression’s type. We also annotate nodes which head visually salient substructures,
namely: the head node of every bracketed subexpression, thehead node of the subexpression to
the left of the root node, and the head node of the subexpression to the right of the root node.8

This information is relevant for reference resolution which we will discuss in Section 6.3.
Once the mathematical notation is parsed and analysed, parsing of utterances with embedded

symbolic expressions operates on utterance representations in which the specific mathematical
expressions has been abstracted over. As with domain terms,the original mathematical expres-
sions are substituted with tokens which represent their types: mathematical expressions which
denote terms are substituted with the tokenTERM and those which denote truth values are substi-
tuted with the tokenFORMULA; likewise, partial expressions are substituted with theirrespective
tokens. For instance, the expressionsA ∪ B andK(A) ∩K(B) would be substituted with the
tokensTERM. These tokens are, in turn, represented in the parser’s lexicon. In the course of
syntactic and semantic parsing, the parser operates on the pseudo-lexemes, and not on the orig-
inal mathematical expressions; more details follow in Sections 5.2.3.1, 6.1.2, and 6.1.3. This
approach is superior to the one proposed by Zinn of encoding every lexeme of the mathemati-
cal vocabulary as part of the utterance parser’s lexicon: inour approach the two parsing tasks,
which can be performed independently, are cleanly separated, thereby improving modularity of
the overall architecture and reducing the complexity of theutterance parsing grammar.

The mathematical expression parser implemented for the purpose of the evaluation in Chap-
ter 7 takes word-tokenised text as input and finds mathematical expression substrings using
regular expressions. Identification of mathematical expressions within natural language text is
based on: single character tokens (including parenthesis), multiple-character tokens consisting
only of known relevant characters, mathematical symbol codes (unicodes and LATEX-commands
in C-I and C-II, respectively), and new-line characters. Multiple-character candidate tokens
are further segmented into operators and identifiers by inserting the missing spaces. A basic
precedence-based parser which builds dependency-style tree representations of the mathemati-
cal expressions found in the corpora has been implemented. The parser uses knowledge resource
with information about all the mathematical symbols used bythe learners in both corpora. We
also implemented a correction procedure for ill-formed expressions, based on typical errors
found in mathematical expressions constructed by students(see Section 3.2.1.5). A prelimi-
nary evaluation will be presented in Section 6.4. As with domain terms, for the purpose of the
analyses and evaluation presented in Chapters 4 and 7 the formula parser’s outputs were ver-
ified and corrected by hand. In principle, an external component could be integrated into the
implemented processing architecture, so long as for every mathematical expression it can pro-
vide its type (FORMULA, TERM or the fragment expression types) as well as access functions
to retrieve meaningful subcomponents of symbolic expressions (left/right-hand side, (nested)
bracketed subexpressions, etc.

8Recall the discussion on the structure of mathematical expressions in Section 3.2.1.2.
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Figure 5.3: An interpretation strategy for informal mathematical language

5.2.3 Core interpretation strategy for proof discourse

The basic processes involved in understanding informal proof language are (i) syntactic and
semantic parsing of proof contributions viewed as linguistic discourses, independently of their
specialised domain, whose goal is to construct representations of the contributions’ linguistic
meaning, and (ii) interpretation of the linguistic meaningrepresentations constructed as a re-
sult of parsing within the domain (on the one hand, within thedomain of proving in general
and, on the other hand, within the specific mathematical domain with which the given proof is
concerned) and in the context of prior discourse. Once a domain interpretation is found, the
interpreted semantic representations can be translated into formal representations which serve
as input to a domain reasoner.

The complete utterance-level interpretation process is represented schematically in Figure 5.3.
In the following sections we present the two core processingsteps and a walk-through analysis of
a typical utterance from the first corpus (C-I). We focus hereon a general strategy for processing
the sublanguage of informal mathematical discourse in which natural language and symbolic
expressions can be interleaved.

5.2.3.1 Parsing

The first stage of interpretation consists of syntactic and semantic analysis of the proof contri-
butions. The task of the syntactic-semantic parser is to construct representations of thelinguis-
tic meaningof utterances and syntactically well-formed language fragments. As the linguistic
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meaning we understand an encoding of the content of an utterance which represents the utter-
ance’s decontextualised semantics, where by “decontextualised” we mean meaning independent
of the domain of discourse, the context in which the utterance appears, of the utterance’s propo-
sitional content, and illocutionary force. In this sense, linguistic meaning can be thought of as
the literal reading of an utterance perceived without reference to any special knowledge of the
situation in which the utterance was observed.

Linguistic meaning representation To represent the linguistic meaning we adopt the notion
of tectogrammatics, the Functional Generative Description’s (FGD) representation of the utter-
ance’s semantic dependency structure. FGD is a linguistic theory and a formal grammar formal-
ism which is being developed by the Prague School of linguistics since the 1960s (Sgall et al.,
1986). At the heart of the framework is the notion ofdependency, originally due to Tesnière
(1959), which describes subordination relations between the words in an utterance. Building on
Tesnière’s work, FDG views the utterance in terms of interlinked layers of description which
correspond to different levels of meaning: morphological,analytical (surface syntax), and tec-
togrammatical (deep syntax/semantics). The tectogrammatical level of linguistic meaning, its
most abstract layer, is conceptually related to logical form, however, differs in coverage: while
it does operate at the level of deep semantic roles and accounts for topic-focus articulation, it
does not address such aspects of meaning as, for instance, the interpretation of plurals and does
not resolve the scope of quantifiers or negation.

In FGD the central unit of utterance description is avalency frame, a structure which consists
of an autosemantic lexical unit (a verb, a noun, or an adjective, for instance) which constitutes
the frame’s head, and a set of its possible obligatory and optional complementations, that is, syn-
tactically dependent autosemantic units in certain relations to the head. The head of a valency
frame explicitly specifies thetectogrammatical relationsof its dependents (or “participants”, in
the Praguian terminology). A distinction is drawn betweeninner participantsand free (adver-
bial) modifications, also called “functors”. Inner participants of a valency frame (arguments;
corresponding to theta roles, deep cases, or Tesnière’s actants), are the lexeme-specific argu-
ments of the head. Five types of inner participants are distinguished (Sgall et al., 1986):9

Actor The “first actant”, the agent performing an action or the bearer of a property
(“a catsleeps”),

Patient/
Objective

The object affected by the action and the primary function ofthe direct com-
plement of a verb, (“to pet a cat”),

Addressee The primary function of the indirect object (“to give a childa cat”),

Origin The source or initial state of an object (“to let a cat out of a bag”),

Effect The effect of an action; a primary function of a predicative complement of
verbs such as “nominate”, “elect”, or a result adverbial (“to choose a cat
as a pet”).

9In the examples, the fragment which contains the dependent node in the given relation to the head is underlined.
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lovePRED[
vmod ind

dmod decl

]

Actor Patient

man[
a-node-aux Every

a-node-num sg

] woman[
a-node-aux a

a-node-num sg

]

Figure 5.4: A simplified tectogrammatical tree of the sentence “Every man loves a woman”.

Free modifications (adjuncts or circumstantials) express additional information about the head.
A large set of free modifications has been proposed for English (Hajičová et al., 2000; Hajičová,
2002). Among the most common are:

• Locative and directional modifications, such asLocation, Where to, Where from
• Modifications expressing manner:Extent, Means, Regard, Norm (“to act in accordance

with the law”, “to build a machine after a model”), Criterion (“according to the weather
report. . . ”)

• Causal modifications:Cause(“. . . because . . .”), Condition (“If . . . , then . . . ”),Aim, Re-
sult, Concession; these relations may be also realised by prepositional phrases, for in-
stance, “for personal reasons” (Cause), “under the circumstances”, “in this case” (Condi-
tion), “for the sake of clarity” (Aim).

• Temporal modifications:When, Since when, Till when, How long, For how long,
• Rhematizers and sentence adverbials:Modality, Attitude,
• Functors marking paratactic constructions:Apposition, Conjuction, Disjunction.

Valency and modification concerns not only verbs, but also nouns, adjectives, and some ad-
verbs. Among free modifiers occurring with nouns there are, for instance,Identity (“the notion
of identity”, “the steamboat Titanic”), Material (“a cup of coffee”), or Appurtenance(“the dog
of my cat’s”). Participants and free modifications can be obligatory oroptional. Inner partici-
pants are prototypically obligatory and only one inner participant of a given type is allowed to
cooccur with one head. Free modifications are prototypically optional.

A tectogrammatical dependency structure is a tree with the semanteme which represents the
head of an utterance at the root, and with dependent arguments’ semantemes at the linked nodes.
Only autosemantic words (content bearing words) are represented as nodes of the tectogrammat-
ical layer. Function words are typically represented as attributes of the relevant content words.
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The nodes (or edges) are labelled with the tectogrammaticalrelations in which they stand to
their directly superordinate nodes.

Figure 5.4 shows an example of a simplified tectogrammaticalanalysis of the notorious lin-
guistic example: “Every man loves a woman.” The lemma “love”is the main predicate (PRED)
and the root of the tectogrammatical layer. The valency frame of the transitive verb “love” spec-
ifies two participants: anActor, here filled by the lexeme “man” and aPatient, here filled by
the lexeme “woman”. The node contains grammateme information on the verb’s mood (vmod:
indicative) and deontic modality (dmod: declarative). Thenodes representing both dependents
contain references to the analytical layer’s auxiliary nodes’ information about the quantifier and
indefinite modification (a-node-aux), as well as to morphological information about the num-
ber (a-node-num).10

The tectogrammatical relations which we use in the semanticrepresentations, unlike surface
grammatical roles, provide a generalised view of the relation between (domain-specific) con-
tent and the linguistic realisation. To derive our set of semantic relations we generalised and
simplified the collection of Praguian tectogrammatical relations in (Sgall et al., 1986; Hajičová
et al., 2000). One reason for simplification is because certain relations have to be understood
metaphorically in the mathematical domain.

The most commonly occurring relations in our domain areCause, Condition, andResult-
Conclusionwhich coincide with rhetorical relations in the argumentative structure of the proof:

(61) Da [A ⊆ K(B) gilt ]
Cause

alle x, die in A sind sind nicht in B
(BecauseA ⊆ K(B) holds all x which are in A are not in B)

(62) Wenn [A ⊆ K(B) ]
Condition

dannA ∩B = ∅
(If A ⊆ K(B) thenA ∩B = ∅)

(63) Somit ist [ . . . ]
Result

(With this it holds that . . .)

The wording which expresses justification of an inference weinterpret as aCriterion:

(64) [ nach deMorgan-Regel-2 ]
Criterion

ist K((A ∪B) ∩ ...)=...)
(according to De Morgan rule 2 it holds that ...)

10For a formal definition of tectogrammatics, see (Sgall et al., 1986, page 150ff.). The tree description presented
here is somewhat simplified. For instance, in treebank annotation, a technical node for the tree’s root is introduced,
which we omitted here. In annotated corpora, references to the analytical layer’s annotations are used instead of the
actual forms. In general, because FGD analysis as such is notour focus, here and in further examples we simplify the
representations and omit a lot of information which constitutes part of FGD analyses. We do not show the analytical
layer and the links to the tectogrammatical layer. At the tectogrammatical layer we omit morphological grammatemes
as well as information on topic-focus articulation. Detailed guidelines on tectogrammatical annotation for English
can be found in (Cinková et al., 2006).
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(65) K((A ∪B)) ist [ laut DeMorgan-1 ]
Criterion

(K(A) ∩K(B))
(. . . equals, according to De Morgan rule1, . . .)

Other relations are grouped into classesHasProperty, GeneralRelation(for adjectival and clausal
modification), for example:

(66) dann muessen alla A und B [ in C ]
HasProperty-Location

enthalten sein

(then all A and B have to be contained in C)

(67) Alle x, [ die in B sind ]
GeneralRelation

. . .
(All x that are in B . . .)

(68) alle elemente [ aus A ]
HasProperty-From

sind inK(B) enthalten

(all elements from A are contained inK(B))

where HASPROPERTY-LOCATION denotes aHasPropertyrelation of typeLocation, GENER-
AL RELATION is a general relation, as in relative clause complementation, and HASPROPERTY-
FROM is aHasPropertyrelation of typeDirection-Fromor From-Source. All relations which do
not need to be translated into a formal representation are grouped in the categoryOther.

Meaning construction with Combinatory Categorial Grammar To construct the linguis-
tic meaning representations we use Combinatory CategorialGrammar; more precisely, Multi-
Modal Combinatory Categorial Grammar. We built a lexically-specified grammar for a fragment
of German and use an existing available CCG parser to directly construct semantic dependency
representations which are analogous to those of the tectogrammatical level described above.

Categorial Grammars (CG) are a family of syntactic theoriesand grammar formalisms which
are closely related to Dependency Grammars in that both stemfrom research on type theory
and category theory. Early work which lead to the development of Categorial Grammar dates
back Lésniewski, Adjukiewicz, Husserl and Russell in the 1920 and 1930, and was extended by
Bar-Hillel and Lambek in the 1950s. CGs explicitly define syntax in the lexicon by associating
lexical units of a language with categories of two types: elementary (atomic) types and complex
(functional) types built up using a category-building operator (denoted with a slash). When
modelling linguistic data the types might encode syntacticinformation on predicate-argument
structure, subcategorisation, word order of the object language, etc. Table 5.1 shows examples
of atomic categories associated with sentences and nouns and functional categories of English
verbs and adjuncts (sentential modifiers).11

In the Type Logical, or deductive, tradition of Categorial Grammar, which builds on the Lam-
bek calculus and van Benthem’s and Moortgat’s categorial systems (Lambek, 1958; Benthem,

11We use the so-called result-first notation for syntactic categories. The signsα\β andα/β denote functional
types fromβ to α, where the location of the argument,β, is indicated by the direction of the slash: left (\) or right
(/) of the functorα, respectively. The signα\β is thus to be interpreted as forming a categoryα if an argument of
categoryβ is found immediately to its left.
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5 Processing informal mathematical discourse

Linguistic category CG category
Sentence S
Noun phrase NP
Intransitive verb S\NP
Transitive verb (S\NP )/NP
Ditransitive verb ((S\NP )/NP )/NP
Adjunct S/S

Table 5.1: Example categories of Categorial Grammar

1987; Moortgat, 1988), parsing is viewed as deduction. On this view, the slash, which builds up
partial categories, is considered as a kind of a logical implication operator. The slash (and other
operators) together with a set of axioms (inference rules) define a proof theory. For instance,
the application rule (slash elimination) corresponds to the Modus Ponens rule of classical logic.
Examples of basic inference rules of type logical grammar are shown in Table 5.2. Parsing, that
is, determining whether a linguistic expression is well-formed, amounts to finding a proof in the
proof system of the given categorial logic.

Combinatory Categorial Grammars (CCG), due to Szabolcsi and Steedman, are based on a
set of explicitly specified combinatory rules, calledcombinators, which govern the deviation of
syntactic structures built up from the categories (Szabolzi, 1992; Steedman, 2000). The basic
set of combinators includes forward and backward directional variants of the rules of functional
application, composition, and type-raising; the forward and backward directions are applicable
to an argument to the right or left of a functor, respectively. Their schemata are presented in Ta-
ble 5.3.12 Multi-Modal Combinatory Categorial Grammar (MMCCG) refines the original frame-
work by introducing a means of controlling the application of combinatory rules (Baldridge,
2002). Control of rule application is achieved by specifying “modes” on category forming oper-
ators, the slashes, and making application of rules dependent on the slash mode. There are four
basic modes, organized in a hierarchy, which govern different levels of associativity and permu-
tativity between signs. The mode∗ is the most restrictive, allowing only functional application
between adjacent signs. The modes⋄ and× allow associative, non-permutative (harmonic) and
permutative, non-associative (crossed) composition, respectively. The mode• is the least restric-
tive and allows application of all combinatory rules.13 Figure 5.5 shows an example derivation
of the sentence “Every man loves a woman” in combinatory categorial grammar. Figure 5.6
illustrates blocking the derivation of an ungrammatical fragment “a good from Bordeaux wine”
(from (Baldridge & Kruijff, 2003)) in MMCCG. The mode∗, more restrictive than⋄, prevents
modifiers in invalid order from being combined. Grammars areimplemented in OpenCCG.14

12There is a strong analogy between the inference rules of the type logical categorial grammar system and the
combinators of combinatory categorial grammars; see (Steedman, 2000) for details.

13In the following examples of syntactic categories we consider the∗ mode as default, that is, unless a slash is
marked with a specific mode, the functional application modeis assumed.

14http://www.opennlp.org

160

http://www.opennlp.org
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Table 5.2: Basic deduction rule schemes of Type Logical Categorial Grammar
Rule Schemes

e
A

LxLexical instantiation

...
A/B B

A
/E

...
B A\B

A
\ESlash elimination

... [A]n

B
B/A

/In

[A]n
...

B
B\A \InSlash introduction

Table 5.3: Basic combinatory rules of Combinatory Categorial Grammar
Rule Schemes
Application (>) X/Y Y ⇒ X (<) Y Y \X ⇒ Y

Composition (>B) X/Y Y/Z ⇒ X/Z (<B) X\Y Z\X ⇒ Z\Y

Type-raising (>T) X ⇒ Y/(Y \X) (<T) X ⇒ Y \(Y/X)

Every

NP/NP
Lx man

NP
Lx

NP
>

loves
(S\NP )/NP

Lx

a
NP/NP

Lx woman
NP

Lx

NP
>

S\NP
>

S
<

Figure 5.5: A Combinatory Categorial Grammar derivation ofthe sentence
“Every man loves a woman”.

a
NP/NP

Lx

good

N/⋄N
Lx

from Bordeaux

N\∗N Lx
⊗ < Bx

wine
N

Lx
∗

Figure 5.6: Blocking ungrammatical derivation using modeson slashes in MMCCG
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5 Processing informal mathematical discourse

We argue that CCG, or CG in general, is an appropriate framework for modelling syntactic
language phenomena in mathematical discourse. The motivation for this approach is two-fold:
First, categorial grammar is a recognised formalism which enables modelling complex linguistic
phenomena. It is known for its account of coordination phenomena (Steedman, 2000), widely
present in mathematical discourse, and word order phenomena; see, for instance, (Hepple, 1990;
Steedman, 2000; Baldridge, 2002). Moreover, CCG accounts of various word order phenomena
in Germanic languages have been proposed; see, for instance, (Carpenter, 1998; Steedman,
2000; Hockenmaier, 2006; McConville, 2007). Second, and most importantly in the case of
mathematical discourse, mathematical expressions, represented as their types, lend themselves
to a perspicuous categorial treatment described below.

An approach to interleaved symbolic and natural language As mentioned earlier, in the
course of parsing, we treat symbolic tokens, which represent types of mathematical expressions
(see Section 5.2.2.3), on a par with natural language lexical units. Within utterances, mathemat-
ical terms typically occur in the syntactic functions of nouns or noun phrase categories, while
mathematical formulas are syntactically sentences or clauses. In the parser’s lexicon we encode
“generic” lexical entries (pseudo-lexemes) for each mathematical expression type together with
information on the plausible syntactic categories which expressions of the given type may take.
The basic mathematical lexemes in our grammar areTERM andFORMULA. For mathematical
expressions denoting terms, represented asTERM lexemes, we encode the noun and noun phrase
categories,N andNP , while for truth-valued expressions,FORMULA lexemes, we encode the
category of a sentence,S, as the following two examples illustrate:

TERM equals TERM
(NP (S\NP )/NP NP )

If FORMULA then FORMULA
((S/S)/S S (S\(S/S))/S S)

A number of further atomic and partial categories are definedin the grammar for mathemat-
ical expression types in order to account for more complex interactions between mathematical
expressions and the linguistic material within which they can be embedded. We will return to
these in Section 6.1. The choice of the syntactic categoriesassociated with mathematical expres-
sion tokens was guided by a study of the syntactic contexts inwhich mathematical expressions
are used in the tutorial dialogue corpora and in mathematical textbooks and publications.

The semantic language Aside from syntactic analysis, the parsing framework we useto ana-
lyze proof language builds semantic representations of theinput utterances. The semantic forms
reflect the tectogrammatical structure of the utterances and are encoded using a formal language
capable of capturing the relational nature of the tectogrammatical dependency representations.

The linguistic meaning, built in parallel with the syntactic derivation, is represented using
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5.2 Language processing architecture

Hybrid Logic Dependency Semantics (HLDS) (Baldridge & Kruijff, 2002, 2003). HLDS is
a fragment of the language of hybrid logic (Blackburn, 2000)developed specifically to repre-
sent natural language semantics in terms of dependency relations. In this work we do not use
HLDS as logics; we use it merely as a representation languagefor the relational structures of
dependency-based semantics. Dependency relations of tectogrammatical structures are encoded
as modal relations, denoted as in modal logic with〈〉. Each dependent is associated with a
nominal,d, which also represents its discourse referent. Predicates, tectogrammaticalPREDs,
correspond to propositions and form the head of HLDS terms. The following term illustrates the
notation (after (Baldridge & Kruijff, 2002)):

@h(proposition ∧ 〈δi〉(di ∧ depi))

δ ranges over the set of tectogrammatical relations, a referent di is created for each autosemantic
lexeme,depi, at the tectogrammatical level. Given this notation, the linguistics meaning of the
sentence “Ed read a red book in London” is represented as:

@h(read∧ 〈Actor〉(w0 ∧ ed)

∧ 〈Patient〉(w4 ∧ book∧ 〈GeneralRelation〉(w3 ∧ red))

∧ 〈Location〉(w6 ∧ london))

As explained earlier, the linguistic meaning of an utterance is context- and domain-neutral: it
represents the literal interpretation of the utterance semantics. That is, the semantic representa-
tions built at the parsing stage do not contain any information as to how the utterance is to be
interpreted in the context of the given domain. In order to place the meaning representations
in the context of the proving task and the domain of mathematics, the elements of the semantic
representations, the terms and relations of the logical forms, are further interpreted using lexical
and domain-specific resources.

5.2.3.2 Domain interpretation

The interpretation process in our approach gradually enriches (“annotates”) the linguistic mean-
ing representations with information stemming from domainresources. Interpretation is a step-
wise procedure in which predicates and relations of the tectogrammatical dependency represen-
tations are assigned domain- and task-specific semantics. Task-specific interpretation concerns
the meaning in the context of the task of theorem proving, while by domain-specific semantics
we mean semantics in the context of the mathematical domain(s) with which the given proof is
concerned; set theory or binary relations in the case of our two corpora.

First, semantemes and relations of the tectogrammatical frames are mapped to concepts through
a language-specificsemantic lexicon. The mapping serves either to assign the elements of tec-
togrammatical frames predicates and roles which denote domain concepts, or provides procedu-
ral “meaning recipes” for computing lexical meanings. Thisis done by associating dependency
frames output by the parser with linguistically-motivateddomain-relevant conceptual frames
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5 Processing informal mathematical discourse

Table 5.4: Example entries from the semantic lexicon

TR structure Lexical meaning

(equalPRED, Actorx, Patienty) := (EQUALITY , x, y)
(holdPRED, Actorp) := (CLAIM , p)
(FORMULAPRED,p, ) := (CLAIM , p)
(Criterionx) := (EVIDENCE, x)
(p1PRED, Reasonp2) := (REASON, p1, p2)
(p1PRED, Conditionp2) := (CONDITION, p1, p2)

represented in a semantic lexicon. The input structures of the semantic lexicon are described in
terms of tectogrammatical valency frames of lexical items which evoke given concept(s) or in
terms of information on which elements of dependency structures need to be retrieved in order
to recover the lexical meaning. The output structures are either the evoked concepts with roles
indexed by tectogrammatical frame elements or results of executing “interpretation scripts”, op-
erations on dependency structures which enable to recover the lexical meaning. Where relevant,
sortal information for role fillers is also given. Example basic entries from lexicon are shown
in Table 5.4. Consider the fourth and fifth entries: theCriterion tectogrammatical relation in-
troduces the concept of evidence or referring to evidence, with the dependent in theCriterion
relation actually expressing theEVIDENCE according to which the head proposition holds, the
Reasontectogrammatical relation is interpreted as expressing aREASON for an eventuality, with
the daughter dependent actually specifying the reason. An example of a procedural recipe is the
representation of the adjective “gemeinsam” (common) or of the semantically complex adverb
“umgekehrt” (the other way (a)round) which will be shown in Chapter 6.

Next, the concepts are interpreted within the mathematicaldomain using a manually con-
structed intermediate domain model. The model is alinguistically-motivated domain ontology,
a hierarchically organised representation of domain objects and relations along with their proper-
ties, which enables limited reasoning about relations between objects; for instance, type check-
ing. It provides a link between the conceptual frames evokedby lexical items encoded in the se-
mantic lexicon and domain-specific (here: mathematical) concepts. For instance, the concept of
evidence is linked via the relations ontology to the relation JUSTIFICATION in the mathematical
domain of proofs. The purpose of the ontology as an intermediate representation is also to me-
diate between the discrepant views of linguistic analysis and deduction systems’ representation
(see also discussion in (Horacek et al., 2004)) since the domain-specific objects from the ontol-
ogy could be, in principle, further linked to their logical definitions in a mathematical knowledge
base, such as MBase (M. Kohlhase & Franke, 2001).15 The motivation for using an intermediate
representation instead of directly accessing a mathematical knowledge base will become clear
when we discuss imprecision and ambiguity in Section 6.2. More details on the domain model

15This link has not been realised as part of this thesis.
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and examples of the modelled objects and relations will be also presented in Chapter 6.

To summarize, as a result of the interpretation process, semantic dependency structures of in-
put contributions are “annotated” with gradually more specific semantic information first at the
level of domain-independent concepts, and then (possibly ambiguous) domain-specific interpre-
tations. Two points need to be kept in mind: First, if multiple readings are found, the language
interpretation module alone isnot in a position to identify the one that is plausible in the given
proof context. In particular, linguistic meaning ambiguity may lead to both logically correct and
incorrect proof steps. (Consider, for instance, the utterance “formula if and only if formula and
formula”.) All parses are assigned an interpretation by thelanguage understanding component
and passed on to a reasoner. It is also plausible to assume that disambiguation could be per-
formed at the dialogue level, before evaluation, by asking an explicit clarification question. In
the case of a structurally ambiguous pattern such as “FORMULA if and only if FORMULA and
FORMULA”, the system could ask, for instance, “Do you mean ‘formula if and only if formula
and moreoverformula holds’ or ‘formula if and only ifboth formula and formula hold’?” In
the dialogue in which the utterance “FORMULA genau dann wennFORMULA und FORMULA”
appeared the tutor did not clarify the intended reading and accepted the proof step, that is, he
cooperatively assumed that the correct interpretation wasintended. (Or, possibly, did not even
realise that ambiguity was present.) For a tutoring system,one option would be to take the same
strategy: if at least one reading yields a correct step, thisreading could be assumed to be in-
tended. Another option would be to leave the decision whether to accept an ambiguous step to
the pedagogical module which could, in turn, refer to its student model to decide on the appro-
priate action. Modelling this decision is, however, outside of the scope of this thesis. Second,
within the annotated HLDS terms only thelinguistically realisedcontent is represented and the
language processing system is not in a position to reason about the logical validity of the domain
content, the proof steps themselves, which the utterances express. However, the annotated de-
pendency structures can be transformed (rewritten) into representations for further processing,
for instance, by an automated theorem prover. In the tutoring system’s architecture presented in
Section 1.2 this is the task of the Proof representation processing module (see Section 1.2)

5.3 A walk-through example

As an illustration of the interpretation process, we give a step by step analysis of utterance (6)
which is a typical utterance from C-I. The utterance is reproduced below:

(69) K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)
(K(A ∪B) is according to DeMorgan-1K(A) ∩K(B))

As a result of preprocessing, the utterance is transformed into a form that abstracts away from
the mathematical expressions and concrete domain terms:
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TERM ist laut DOMAINTERM TERM

The categories, encoded in the grammar, which correspond tothe words in the utterance are:

TERM := NP
ist := ((S\NP )/NP )/(S/S)
laut := (S/S)/NP
DOMAINTERM := NP

The abstracted form is parsed using a CCG parser as follows:

TERM
NP

Lx

ist
((S\NP )/NP )/(S/S)

Lx

laut
(S/S)/NP

Lx DOMAINTERM
NP

Lx

S/S
>

(S\NP )/NP
> TERM

NP
Lx

S\NP
>

S
<

The linguistic meaning representation constructed by the parser consists of the German cop-
ula, “ist”, with the symbolic meaningequal as the head of the dependency structure, and three
dependents in the tectogrammatical relationsActor, Criterion, andPatient. The HLDS term
corresponding to this dependency structure is shown below:

@i(equal∧ 〈Actor〉(w1 ∧ TERM )

∧ 〈Patient〉(w5 ∧ TERM )

∧ 〈Criterion〉(w4 ∧ DOMAINTERM ))

Step-wise domain meaning assignment proceeds as follows: First, based on the semantic lexi-
con, a conceptEQUALITY is assigned toequal, with theActor andPatientdependents as relata,
and theCriterion dependent is interpreted as an EVIDENCE. Next,EQUALITY , in the context of
set theoryTERMs, is interpreted asSET EQUALITY, and EVIDENCE, in the context of theorem
proving, as a JUSTIFICATION in a proof step. A simplified presentation of the entire interpreta-
tion process is shown schematically in Figure 5.7.
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K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B)

↓ preprocessing

TERM ist laut DOMAINTERM TERM

↓ syntactic and semantic parsing

TERM ist laut DOMAINTERM TERM

NP ((S\NP )/NP )/(S/S) (S/S)/NP NP NP

equalPRED

Actor

Criterion

Patient

TERM DOMAINTERM TERM

↓ semantic lexicon

equalPRED

[
(Equality(Actor, Patient))

]

Actor Criterion[
Evidence

]
Patient

TERM DOMAINTERM TERM

↓ domain interpretation

equalPRED[
(Equality(Actor, Patient))
(Set equality(Actor, Patient))

]

Actor Criterion[
Evidence
Justification

]Patient

TERM DOMAINTERM TERM

Figure 5.7: The interpretation process of the utterance “K(A ∪B) ist laut DeMorgan-1
K(A) ∩K(B)” (notation semantic lexicon and ontology entries simplified)
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5.4 Summary

This chapter outlined an architecture for processing informal mathematical proof discourse such
as that found in tutorial dialogues. The design of the architecture was motivated by the goal of
processing not only students’ input in tutorial dialogues,but also narrative discourse such as that
found in textbooks or mathematical publications. This is achieved by modularisation of the sys-
tem’s components while taking into account the peculiarities of mathematical language: its two
“modes” (natural language interleaving with mathematicalnotation), the presence of technical
vocabulary (single and multi-word domain terms). While mathematical notation itself is anal-
ysed by a dedicated module and not by the natural language parser, the information identified
by the mathematical expression parser is used to encapsulate the specific instances of notation
in terms of psudo-lexemes denoting the expressions’ types which are encoded in the natural lan-
guage parser’s lexicon. Likewise, specialised terminology is recognised by a dedicated module
and domain term instances are encapsulated in pseudo-lexemes. Modularisation of this kind
facilitates efficient management of system resources: depending on the mathematical subarea of
discourse, an appropriate mathematical expression parseror domain lexicon can be integrated
without changes to the overall system. By abstracting over the symbolic notation and domain ter-
minology we moreover ensure that the adaptation of the natural language parser when switching
to a new mathematical domain is limited as much as possible toextending the parser’s coverage
of syntactic constructions, rather than its vocabulary, thus minimising out-of-vocabulary parser
errors. As we will show in Chapter 7 this approach and the choice of categorial grammar over a
simpler formalism results in good scalability of the parsing process.

The basic processing strategy presented in this chapter covers the most prominent language
phenomena found in mathematical utterances: (i) the most common syntactic categories of
mathematical expressions embedded within natural language: utterances: terms as nouns or
noun phrases and formulas as sentences/clauses, (ii) the basic syntax of mathematical language
found in our corpora as well as in typical textbook proofs (for instance, constructions such as
“Wenn FORMULA dannFORMULA” ( If FORMULA, thenFORMULA ) or “DeshalbFORMULA”
(Therefore,FORMULA )), (iii) the basic syntactic categories of the most frequent verbal construc-
tions (such as “gelten” (hold) or “(gleich) sein” (be equal (to)), etc.), and (iv) the semantics of
constructions which can be directly interpreted in the context of proofs and within the domains
of naïve set theory and binary relations (for instance, theCriterion or Reasonrelations to be
interpreted as a justification of a proof step or the meaning of basic verbal constructions, such
as those mentioned above). However, the mixed, natural and formal-symbolic, language and the
informality of the mathematical discourse in our setting require extensions to the basic analysis
strategy in order to account for a wider range of linguistic phenomena and, in particular, to enable
cooperativeinterpretation. By “cooperative” we mean that, for instance, certain non-canonical
syntactic structures or domain-specific readings of commonwords should be interpreted without
resorting to signalling non-understanding, requesting repair, or entering a clarification subdia-
logue. The next chapter presents details on processing a subset of language phenomena found in
our corpora and the resources constructed for cooperative interpretation of imprecise language.
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in informal proofs

In this chapter we show how selected phenomena identified in the students’ contributions can be
modelled. As we have shown in Chapters 3 and 4 students’ language is complex, rich in linguis-
tic phenomena, and diverse. Modelling all the linguistic phenomena found in our data is out of
a scope of one thesis. The selection included in this chapterwas motivated by two factors: First,
we addressed those phenomena which systematically recur and are critical for automated proof
tutoring, the core scenario and motivation for this thesis,to be feasible. This includes modelling
basic syntactic phenomena (German word order in recurring constructions in mathematics, the
mixed language, and the syntactic irregularities characteristic of our domain) and basic semantic
imprecision phenomena. Second, we also selected a number ofinteresting phenomena, which
are not as highly represented in our corpora, but which did occur, suggesting that they might
also reappear in new or other corpora (semantic reconstruction of a certain contextual opera-
tor, reference to symbolic notation and propositions, and mathematical expression correction).
Because our data is sparse, we designed preliminary algorithms and evaluated them in proof-
of-concept evaluations or conducted corpus studies as preliminary step toward algorithm devel-
opment. The chapter shows that the processing methodology we adopted, in particular, deep
parsing using categorial grammars which build domain-independent linguistic meaning repre-
sentations of the analysed input, lends itself well to modelling a number of phenomena found in
students’ informal mathematical language. The material presented in this chapter has been pub-
lished in the following publications: (Wolska, Kruijff-Korbayová, & Horacek, 2004; Wolska &
Kruijff-Korbayová, 2004a; Horacek & Wolska, 2006b; Gerstenberger & Wolska, 2005; Horacek
& Wolska, 2006a, 2006c; Wolska & Kruijff-Korbayová, 2006b;Horacek & Wolska, 2006c).
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6.1 Syntactic phenomena

The scope of the implemented parser resources, the vocabulary and syntactic categories, are
limited to the input language of our corpora. The methods of modelling syntactic phenomena –
basic German word order, incomplete mathematical expressions used as a form of shorthand for
natural language, scope phenomena involving parts of mathematical expressions, and the use of
spoken-language syntax to verbalise mathematical expressions – are outlined below.

6.1.1 Basic German word order in Combinatory Categorial Grammar

German is typically described as a “verb-second” language.The placement of the finite verb
depends on the clause type (main vs. dependent) and the sentence mood (declarative vs. inter-
rogative vs. imperative). Three types of clauses can be distinguished with respect to the finite
verb position: verb-initial, verb-second, and verb-last clauses.

In declarative main clauses, such as (70) below, and wh-questions, (71), the finite verb is in
the “second” position. It need not be literally the second word in the sentence, as (70) illustrates,
but the secondmacro-structural element; more in the section on topological field model below.

(70) Der Mann fuhr den Wagen vor.
(The man drove the car up.)

(71) Wer fuhr den Wagen vor?
(Who drove the car up?)

The matrix clause of yes/no questions, (72), and alternative questions as well as imperatives, (73),
are verb-first, that is, their finite verb is in the sentence-initial position:1

(72) Hat der Mann den Wagen gefahren?
(Did the man drive the car?)

(73) Fahre den Wagen!
(Drive the car!)

Other clause types in which the finite verb occurs in the first position include the verb-initial
conditional, hypothetical, and formal concessive clausesnot introduced by a conjunction (corre-
sponding to the English forms “Should . . . , . . . ”).

Finally, subordinate adverbial clauses, (74), relative clauses, (75), and complementation clauses,
(76), exhibit the verb-last pattern:

(74) Wenn Du willst, kannst Du den Wagen fahren.
(If you want, you can drive the car.)

(75) Maria fährt den Wagen, den der Mann gefahren hat.
(Maria is driving the car that the man drove.)

(76) Ich glaube, daß Maria den Wagen fahren kann.
(I think Mary can drive the car.)

1An exception are intonation questions, as in “Du hast den Wagen gefahren?. . . ” (You drove the car?. . .), which
may be meant ironically.
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Topological Field Model German clauses are traditionally analysed in terms oftopological
fields, syntactic macro-structures delimited by verbal elements(a finite verb or a verb complex)
or clause markers (for instance, a complementizer, a wh- or relative pronoun). The Topologi-
cal Field Model (TFM) proposed by Höhle (1983) is a linguistically-motivated theory-neutral
description of the macro-structure of the clause, which characterises the clause not from the
point of view of phrase structure, but from the point of view of the distributional properties of
constituents in the clause with respect to the finite verb. The basic model divides clauses into
five macro-structural elements: the Vorfeld (pre-field), the Linke Klammer (left bracket), the
Mittelfeld (middle field), the Rechte Klammer (right bracket), and the Nachfeld (post-field). Ta-
ble 6.1 shows the elements of the model and the placement of the different constituent types
within the macro-structure.2

In verb-initial and verb-second clauses, the finite verb occupies the Linke Klammer field. In
the verb-final clauses, the finite verb occupies the Rechte Klammer. Not all the fields have to be
occupied in a sentence and certain elements are optional. For certain fields there are restrictions
on the number and type of constituents which can occur. For instance, German grammar rules
restrict the number of constituents in the Vorfeld to at mostone. In main declarative clauses this
can be an argument of the finite verb, an adjunct, or, in case ofcomplex sentences, a fronted
dependent clause. The latter type are frequent in mathematical discourse (consider, for instance,
“weil”-clauses or conditional clauses without the subordinating conjunction). In case of adjuncts
of the same semantic type, a cluster of adjuncts is also allowed in the Vorfeld.3 In complex
sentences, the model is applied to each clause individually: iteratively in paratactically conjoined
clauses and recursively in hypotactically conjoined clauses. Table 6.2 shows the topological field
analysis of the sentences (72) through (76) above. For the sentences (74) through (76) both the
analysis of the main clause (m) and of the subordinate clause(s) are shown to demonstrate the
recursivity of the model in embedded clauses. Examples (77)and (78) below illustrate the word
order phenomena based on utterances from the corpora:

(77) [ K(A ∪B) ist laut DeMorgan-1K(A) ∩K(B) ]V2

(78) [ [ Wenn alleA in K(B) enthalten sind ]VL und [ dies auch umgekehrt
gilt ]VL , ]VL [ muß es sich um zwei identische Mengen handeln ]VL

Modelling German word order in CCG Work on Combinatory Categorial Grammars for
Germanic languages often focuses on addressing linguisticphenomena peculiar to this language
family, such as cross-serial dependencies in Dutch; see, for instance, (Steedman, 2000). Verb

2Presentation after (Wöllstein-Leisten et al., 1997, page 53)
3In certain cases complements of different semantic types may also be fronted together, as in the following

sentence from (Müller, 2003): “Zum zweiten Mal die Weltmeisterschaft errang Clark 1965 . . . ” (For the second time
Clark became the world champion in 1965 . . .). A temporal adverbial “zum zweiten Mal” (for the second time) and
a Goal dependent of the verb (reach), “die Weltmeisterschaft” (the world championship), both occur in the Vorfeld
here. There are a number of further exceptions to the single Vorfeld constituent rule which account for syntactically
marked topic-focus realisation. See, for instance (Müller, 1999; Müller, 2003) for a detailed discussion.
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Table 6.1: Constituent ordering in the Topological Field Model; Optional elements in italics.

Clause type Vorfeld Linke Klammer Mittelfeld Rechte Klammer Nachfeld

verb-first finite verb constituents non-finite verb constituents

verb-second constituent finite verb constituents non-finite verb constituents

verb-last
subordinating

constituents non-finitefinite verb constituents
conjunction

Table 6.2: Topological analyses of example German sentences. (Example numbers refer to example numbers in text;
“m” denotes a matrix clause, “s” a subordinate clause.)

Example No. Vorfeld Linke Klammer Mittelfeld Rechte Klammer Nachfeld
(72) Kannst den Wagen fahren?
(73) Fahre den Wagen!
(70) Der Mann fuhr den Wagen vor.
(71) Wer fuhr den Wagen vor?
(74s) Wenn du willst, . . .
(74m) Wenn du willst, kannst den Wagen fahren.
(75m) Maria fährt den Wagen, den der Mann gefahren hat.
(75s) . . . den der Mann gefahren hat.
(76m) Ich glaube, daß Maria den Wagen fahren kann.
(76s) . . . daß Maria den Wagen fahren kann.
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6.1 Syntactic phenomena

argument fronting is also commonly discussed, however, forlanguages like German and Dutch,
the phenomenon of fronting concerns not only verb arguments, but also free modifiers (such as
adverbs, adverbial prepositional phrases, etc.) which exhibit the same syntactic behaviour. This
phenomenon has been rarely addressed in CCG accounts. Partial free word order in Germanic
languages has been modelled by employing language specific combinatory rules. Steedman
(2000); Baldridge (2002) show accounts of verb argument fronting and free modifiers in the
sentence-medial position. However, a way of controlling multiple constituents in the sentence-
initial position is not shown for free modifiers. The Bielefeld German CCG for human-robot
dialogue employs a counting mechanism to check the number offronted verb arguments as a
way for testing which clause type has been derived: if no argument has been fronted then a verb-
initial clause has been derived, if there is only one argument fronted then the derived clause
is verb-second, etc. (Hildebrandt et al., 1999; Tilman et al., 2003). Again, optional adjunct and
free modification fronting is not addressed. Carpenter (1998) does account for adverbial fronting
by compiling context-specific syntactic categories into the lexicon with appropriate features to
control derivation. The approach we present is similar, however, while Carpenter populates
verb categories by instantiating them for every licensed fronting configuration. Our approach
attempts to minimise the number of context-specific lexicalentries via generalisation exploiting
topological field information and a rich set of features marking not only verb but also conjunction
and adjunct categories. In recent work, Vancoppenolle et al. (2011) employ language specific
topicalisation rules (type changing rules) which derive verb-second order from verb-first order
by fronting a verb argument or an infinitival clause, which allows them to reduce the number
of lexical entries even further. Our approach is simpler in that introducing topological field
information into the CCG analysis constrains derivations directly in the lexicon. Taking into
account clause bracketing formed by the verbal elements (illustrated in Table 6.2), we model
the CCG lexicon in such way that, where it is relevant, the syntactic categories incorporate
information about the topological fields of adjacent categories. The following sections outline
the basic principles of our lexical category description.

Verb categories In main declarative clauses, the Vorfeld must be non-empty and the number
of constituents occupying it is restricted to one. (Recall Footnote 3 on exceptions). In order
to account for these constraints, we mark verb categories, among others, with attributes which
indicate the clause type (cl-type): main vs. subordinate, and the status of the Vorfeld (VF). The
attributeVF takes values from the set {+, −}, where “−” indicates that there is no material in
theVF and “+” indicates that a verb taking the given category expects material in its left context.
Different word order configurations are compiled into the lexicon of the grammar. For example,
the syntactic signs of a transitive verb, such as “fahren” (drive) are the following:4

4A number of attributes, such as, person, number, tense, caseof the arguments, etc. are omitted to simplify the
presentation.
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6 Modelling selected language phenomena in informal proofs

s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+} :
@w2(fahren ^ <Actor>(w1 ^ Mann) ^ <Patient>(w4 ^ Wagen))
------------------------------
(lex) np/^np : @X_0(<det>def)
(lex) np : (@X_6(Mann) ^ @X_6(<num>sg))
(>) np : (@X_0(Mann) ^ @X_0(<det>def) ^ @X_0(<num>sg))
(lex) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}

\np{case=nom, num=sg, pers=3rd}/^np{case=acc}
: (@E_12(fahren) ^ @E_12(<Actor>X_12) ^ @E_12(<Patient>Y_12))

(lex) np/^np : @X_18(<det>def)
(lex) np : (@X_24(Wagen) ^ @X_24(<num>sg))
(>) np : (@X_18(Wagen) ^ @X_18(<det>def) ^ @X_18(<num>sg))
(>) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}

\np{case=nom, num=sg, pers=3rd}
: (@E_12(fahren) ^ @E_12(<Actor>X_12) ^ @E_12(<Patient>X_18) ^ @X_18(Wagen))

(<) s{cl-type=main, tense=past, num=sg, pers=3rd, vform=fin, VF=+}
: (@E_12(fahren) ^ @E_12(<Actor>X_0) ^ @E_12(<Patient>X_18)

^ @X_0(Mann) ^ @X_18(Wagen))

Figure 6.1: Logical form and derivation of the sentence “DerMann fuhr den Wagen”
(OpenCCG output; some parts of derivation omitted for the sake of readability;

see page 163 for the explanation of the semantic notation)

fuhr := S
[

VF : +, cl-type : main
]
\NPActor/NPPatient (for SVO word order)

S
[

VF : +, cl-type : main
]
\NPPatient/NPActor (OVS)

S
[

VF : -, cl-type : main
]
/NPActor/NPPatient (VSO)

S
[

VF : -, cl-type : main
]
/NPPatient/NPActor (VOS)

S
[

cl-type : subord
]
\NPPatient\NPActor (SOV)

S
[

cl-type : subord
]
\NPActor\NPPatient (OSV)

The first two entries account for fronting verb arguments, the next two allow constituents other
than arguments (such as adjuncts, subjunctions, etc.) to occupy the Vorfeld. The last two entries
model subordinate clauses. Since subordinate clauses are always verb-last there is no need to
control the status of the Vorfeld which in this case is alwayseither empty – see (74s) and (76s)
in Table 6.2 – or occupied solely by the relative pronoun – see(75s) in the same table. The
derivation of a simple SVO sentence “Der Mann fuhr den Wagen”(The man drove the car),
shown in Figure 6.1, reflects the attribute marking introduced by the verb entry: the status of the
Vorfeld is occupied (V F : +) and the clause type is main (cl-type : main). The grammar will also
be able to parse the string “der Mann den Wagen fuhr”, howeverthecl-type value of the resulting
structure will besubord, indicating a subordinate clause structure.

Conjunction categories The same mechanism is used to model complex sentences with re-
cursive embedding. Given the marking on the verb categories, we model subordinate clauses
introduced by subjunctions such as “wenn” (if ), “weil” ( because), see (74s) in Figure 6.2, by
setting syntactic category for subjunctions as follows:
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6.1 Syntactic phenomena

wenn := S
[

VF : +
]
\S

[
VF : +, cl-type : main

]
/S

[
cl-type : subord

]

S
[

VF : +, cl-type : main
]
/S

[
VF : -, cl-type : main

]
/S

[
cl-type : subord

]

S
[

cl-Type : subord
]
/S

[
cl-type : subord

]
/S

[
cl-type : subord

]

S
[

cl-type : subord
]
\S

[
cl-type : subord

]
\S

[
cl-type : subord

]

A subordinating conjunction may occur in a sentence medial position (subordinate clause fol-
lows the main clause as in “Du kannst den Wagen fahren, wenn duwillst”) or in a sentence
initial position (the subordinate clause precedes the mainclause as in “Wenn du willst, kannst
du den Wagen fahren”). These configurations are modelled by the first two entries. The last two
entries account for recursive embedding of subordinate clauses, as in “Wenn . . . , . . . , weil . . . ”;
see Section 3.2.2.3 (page 92) for further examples.

Adverb categories In main declarative clauses the Vorfeld must be non-empty. Consider the
sentence “Der Mann schenkt seiner Frau jetzt einen Wagen” (The man is giving his wife a car
for a present now). A subset of all word order variants of the sentence, including the unmarked
syntax with the subject in the Vorfeld, are shown below:5

Der Mann schenkt seiner Frau jetzt einen Wagen
Seiner Frau schenkt der Mann jetzt einen Wagen

Einen Wagen schenkt der Mann jetzt seinder Frau
Jetzt schenkt der Mann seiner Frau einen Wagen

*Jetzt seiner Frau/einen Wagen schenkt der Mann einen Wagen/seiner Frau
*Seiner Frau/Einen Wagen jetzt schenkt der Mann einen Wagen/seiner Frau

*Jetzt der Mann schenkt seiner Frau einen Wagen
*Der Mann jetzt schenkt seiner Frau einen Wagen

...

The first four variants of the sentence are grammatically valid. Each of the three arguments of the
ditransitive verb “schenken” (give as a present) as well as any optional adjunct can occupy the
Vorfeld. More than one constituent in the Vorfeld (one or more verb arguments and a temporal
adverb), as in the remaining variants, are not grammatically valid. The Rechte Klammer and the
Nachfeld of the sentence remain empty.

In order to account for fronting elements other than verb arguments, the marking on the verb
categories is complemented by a corresponding feature on the categories of word classes which
can be fronted. The syntactic category of adverbials, for instance, is set as follows:

ADV := S
[

VF : +
]
\S

[
VF : +

]

S
[

VF : +
]
/S

[
VF : -

]

The first entry accounts for sentence medial and final adverb placement. The second entry ac-
counts for adverbial fronting while ensuring that the finiteverb immediately follows the fronted

5Ungrammatical sentences are marked as usual with an asterisk.
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6 Modelling selected language phenomena in informal proofs

adverb. The unification mechanism guarantees that only those verb categories which are marked
as [VF : - ] can combine with an adverb with the same marking, disallowing further fronted el-
ements; see the third and fourth entries of the example category for the transitive “fuhr” (drive)
on page 174.

6.1.2 Mathematical expressions in the context of scope-bearing words

In order to account for interactions between symbolic mathematical expressions and natural
language scope-bearing words, such as determiners, quantifiers, negation, etc., in their cotext,
as illustrated by the example (20) (page 94), we identify salient structural parts of mathematical
expressions which may be modified by natural language words which precede them. Each math-
ematical expression is reinterpreted in terms of these substructures by assigning them types of
partial expressions. These categories are then combined with the surrounding linguistic context
in the course of parsing.

Consider the example (20) reproduced below as (79):

(79) B enthaelt keinx ∈ A

The expressionx ∈ A, while in isolation has a surface form of a formula (truth-valued type),
in the context of the sentence has the reading of a post-modified noun phrase “x which is inA”
(object-denoting type). This is a systematic phenomenon involving scope-bearing modifiers in
the left context of expressions of typeFORMULA. Based on this observation, we obtain the in-
tended reading by considering two systematically relevantsalient substructures of mathematical
expressions: the subexpressions directly below the top node in the expression’s tree. (Recall
the discussion in Chapter 3 Section 3.2.1.2 and Section 3.2.2.3.) For each expression of type
FORMULA we produce two additional readings:

TERM _FORMULA whereTERM denotes the expression left of the top-node operator
and _FORMULA denotes the expression consisting of the top-node
operator and the expressions to its right

FORMULA_ TERM whereFORMULA_ denotes the expression consisting of the top-
node operator and the expressions to its left andTERM denotes
the expression right of the top-node operator

The underscore notation indicates an incomplete expression which requires material in the left
(_FORMULA) or right context (FORMULA_). In the case of the expressionx ∈ A, the two
readings areTERM:=“x”, _FORMULA:=“∈ A” and FORMULA_:=“x ∈”, TERM:=“A”. The cor-
responding syntactic categories for lexicon entries of mathematical expression types are thus:

TERM := NP

N

FORMULA := S

_FORMULA := NP\NP
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6.1 Syntactic phenomena

The categoryNP\NP is analogous to the resulting category of a restrictive (defining) relative
clause and its semantics is “which is _FORMULA” (an alternative reading could be with a “such
that”-clause (“such thatTERM is _FORMULA”). The corresponding category forFORMULA_
would beNP/NP , however, we did not find contexts in which partial expressions of this type
would be relevant.

Each of the above readings is embedded within the original cotext in the course of prepro-
cessing. (Recall the general architecture of the system presented in Sections 5.2):

TERM enthaelt keinFORMULA

TERM enthaelt keinTERM _FORMULA

Following this preprocessing multiple readings of the sentence are interpreted (parsed). The
first reading fails because the category of “kein” (NP/NP ) cannot combine with the category of
FORMULA (S) leaving the intended reading of (79) obtained through syntactic reinterpretation
of the original formula.

6.1.3 Mathematical expression fragments

In order to account for mathematical expressions used as shorthand for natural language, as
in (22), reproduced below,

(80) A ∩B ist ∈ von C ∪ (A ∩B)

both the mathematical expression parser and the natural language parser are adapted to sup-
port incomplete mathematical expressions and their interactions with the surrounding natural
language text. To this end, the mathematical expression analysis process identifies incomplete
expressions using knowledge of syntax and semantics of formal expressions in the given math-
ematical domain and assigns them symbolic tokens representing incomplete expression types.

In the case of (80), the mathematical expression parser identifies the symbol,∈, and, based
on its knowledge of symbols in set theory, it finds that it is a formula-forming operator requiring
two arguments: one of type INHABITANT and the other of type SET. The symbol is assigned a
symbolic token _FORMULA_ and the utterance is preprocessed as:

TERM ist _FORMULA_ vonTERM

In line with the lexicalised grammar approach, incomplete mathematical expressions as cate-
gories are modelled in the lexicon by compiling non-canonical constructions into the grammar;
that is, symbolic tokens for incomplete expressions are included in the CG lexicon as pseudo-
lexemes with appropriate syntatic categories. The entry for _FORMULA_ in the parser’s lexicon
for the occurrence above corresponds to the relational nounreading, “element (of)”:

_FORMULA_ := NP/PP
[

lex : von
]
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6 Modelling selected language phenomena in informal proofs

Other kinds of incomplete mathematical expressions and their types are treated in a similar
way: by identifying their incomplete type (which is used as token during parsing) and introduc-
ing a corresponding entry in the parser’s lexicon.

6.1.4 Irregular syntax

With utterance (81), reproduced below, we illustrated the use of domain-specific syntax while
verbalising a formal expression in natural language:

(81) wennA vereinigtC ein Durchschnitt vonB vereinigtC ist, dann müssen
alleA undB in C sein
(If A unionC is equal to intersection ofB unionC, then allA andB
must be inC)

The past participle “vereinigt” (unified) is normally used in a verbal prepositional construc-
tion: “vereinigen mit” + Dat. (unify with). The construction “A vereinigt B” is, however,
commonly used in spoken verbalisation of the termA ∪B. (Recall the discussion on verbalisa-
tion of symbolic notation in Section 3.2.1.2) In order to account for this kind of domain-specific
constructions, appropriate syntactic categories for domain-specific lexemes are introduced into
the parser’s lexicon. In this case, the lexical entry for “vereinigt” includes a reading analogous
to that of a mathematical operator, _TERM_, an incomplete term requiring terms to its left and
right. The parser’s lexicon includes the following syntactic category for the lexeme “vereinigt”:

vereinigt := NP\NP/NP

Note that this category also enables parsing constructionssuch as “die MengeA vereiningB”
(the setA unionB) with two readings: [[the setA] [union] [B]] and [[the set [A unionB]]]. Of
course, the lexicon includes canonical categories for “vereinigt” as past participle.

6.2 Semantic phenomena

Of the semantic phenomena illustrated in Section 3.2.2.4 wefocus on ambiguity introduced
by imprecise language and on computational reconstructionof the semantics of “the other
way round”. Imprecision of the kind we address here is frequently found not only in students’
language, but also in mathematical textbooks, thus prioritising its modelling is well justified;
see also Section 3.2.2.4. The contextual operator is interesting because of its complexity and
because a non-standard and non-trivial semantic procedureis needed to reconstruct its meaning.
Moreover, to date, the literature on semantic and pragmaticfactors in the use of “the other way
round”-like operators is scarce and there is little work on its computational modelling.
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Table 6.3: Example entries from the semantic lexicon

TR structure Lexical meaning

Containment
(a) (containPRED, Actorx, Patienty) := (CONTAINMENT, CONTAINERx, CONTENTSy)
(b) (containPRED, Actorx,type:COMPLEX ME, Patienty,type:ME) := (STRUCT. COMPOSITION, STRUCT. OBJECTx, SUBSTRUCTUREy)

(c) (bePRED, Actorx, Locationy,lex:in) := (CONTAINMENT, CONTAINERy , CONTENTSx)
(d) (bePRED, Actorx, Locationy,lex:ausserhalb) := not (CONTAINMENT, CONTAINERy, CONTENTSx)

Difference
(e) (bePRED, ActorCOORD(x1,type:SET;x2,type:SET),

HasPropertylex:verschieden)
:= (DIFFERENCE, OBJECTx1, OBJECTx2)

(f) (bePRED, ActorCOORD(x1,type:SET;x2,type:SET),
HasPropertylex:disjunkt)

:= (e1 ELEMENT x1 ande2 ELEMENT x2⇒ e1 6= e2)

Common property
(g) (PPRED,sem:have, ActorCOORD(x1,x2,...,xn),

(Patienty,sem:Pred,rel, GenRellex:gemeinsam))
:= (Pred(x1, y) andPred(x2, y) and . . .andPred(xn, y))

(h) (PredPRED,sem:have, ActorCOORD(x1,x2,...,xn),
(Patienty,non-rel, GenRellex:gemeinsam))

:= (Pred(x1, y) andPred(x2, y) and . . .∧ Pred(xn, y))

(i) (Pred1PRED,rel, ActorCOORD(x1,x2,...,xn),
(Patienty,sem:Pred2,rel, GenRellex:gemeinsam))

:= (Pred1(x1, y) and . . .andPred1(xn, y) and
Pred2(x1, y) and . . .andPred2(xn, y))
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6 Modelling selected language phenomena in informal proofs

6.2.1 Imprecision and ambiguity

In Section 3.2.2.4 (page 97ff) we illustrated imprecise language which students use to refer to
domain concepts precisely defined in mathematics; for instance, the subset relation is phrased
using the verb “enthalten” (contain) (see example (20) on page 94) and the property of sets
being disjoint is phrased using the word “verschieden” (different) (example 31 on page 99). In-
terpretation of imprecise and ambiguous language requiresassociating the linguistic meaning
representations with plausible interpretations within mathematical domain. We model imprecise
language in two stages: First, we extend the semantic lexicon with predicates which repre-
sent the semantics of imprecise, ambiguous, and informal expressions. Second, we represent
the concepts in a domain ontology as generalisations of specific mathematical concepts. The
linguistically-motivated domain ontology mediates between the lexical representations and do-
main interpretations. The two knowledge sources, outlinedbelow, allow us to obtain the intended
(possibly non-unique) domain-specific interpretation.

Semantic lexicon To mediate between the ambiguous linguistic realisations of domain con-
cepts we use a semantic lexicon which maps the dependency frames output by the parser to
conceptual frames in a domain ontology (see below) or to interpretation scripts. The mapping is
represented by means of rules. The input part of the rules is specified in terms of tuples defin-
ing tectogrammatical valency frames, that is, predicates and relations evoked by lexical items.
The output structures are either the evoked concepts with roles indexed by tectogrammatical
frame elements or interpretation scripts, that is, “recipes” for constructing symbolic meaning in
the form of unquantified first order representations. Where relevant restrictions on role fillers –
surface-lexical (marked withlex), lexico-semantic (sem), sortal (type), etc. – are specified.

Basic, most frequently used entries from the semantic lexicon were shown in Table 5.4 (Sec-
tion 5.2.3.1; page 164). Table 6.3 schematically shows further, more complex entries encoded
in the lexicon for the most frequently recurring concepts relevant while talking about sets:
Containment(set inclusion or membership),Difference(disjoint sets), andCommon property
(empty/non-empty intersection); see examples in Section 3.2.2.4 (page 97). The symbols in
bold are predicates with specific semantics, italics denotetectogrammatical roles, and capitals
domain concepts from the domain ontology. (Some technical information needed solely for
implementation is omitted for readability.) The illustrated example entries are explained below.

ContainmentThe CONTAINMENT relation – (a) through (d) – is evoked by the predicate
“enthalten” (contain) or by theLocationTR. The tectogrammatical frame of
“enthalten” involvesActor andPatientdependents, (a). Two entities are in-
volved in theCONTAINMENT relation:CONTAINER andCONTENTS. The for-
mer role is filled by theActor dependent of the tectogrammatical frame and
the latter by thePatient dependent.CONTAINMENT is also evoked by the
Locationrelation realised linguistically by a prepositional phrase with “in”,
(c) and involving the predicate “sein” (be) and the tectogrammatical relations
Actor (asCONTENTS) andLocation(CONTAINER). Another realisation, (d),
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6.2 Semantic phenomena

dual to the above, occurs with the adverbial phrase “außerhalb von
(liegen/sein)” (lie/be outside of) and is defined as negation ofCONTAIN-
MENT. In the domain ontology (see below)CONTAINMENT specialises into
the relations of (strict)SUBSET, ELEMENT. A different kind of containment,
(b), may be meant if the entities involved are interpreted merely in syntactic
terms as mathematical expressionsME, as in “The termA∪B containsA” (a
constructed example). In this case aSTRUCTURAL COMPOSITIONis meant
and the roles of the entities involved are those of aSTRUCTURED OBJECT(a
complex mathematical expression as theActor relation), and aSUBSTRUC-
TURE (a mathematical expression, complex or atomic, asPatient).

Difference The DIFFERENCE relation – (e) and (f) –, realised linguistically by the
HasPropertyTR with the predicative adjective “verschieden (sein)” (be dif-
ferent), involves a pluralActor (here: coordinated dependents (COORD)). A
generalisation of this rule would involve an arbitrary number of coordinated
entities and a matching number ofOBJECTarguments ofDIFFERENCE. This
would also enable interpretation of “pairwise different” (a constructed ex-
ample), for instance, by making an attributepairwiseon the relation. The
other kind of domain-specific difference, evoked by the domain term “dis-
junkt (sein)” ((be) disjoint) is analysed by means of an interpretation script
which directly constructs the domain-specific interpretation.

Common
prop-
erty

The concept of having a “common property” – (g) through (i) – can be inter-
preted using three interpretation scripts.P andPred are meta-objects which
can be instantiated with any predicate. The attributesnon-rel and rel re-
strict instantiation to non-relational and relational predicates, respectively.
The first entry, (g), models the case in which thePatientdependent is a re-
lational noun and the predicate is a verb with the semantics of have, as in
one of the utterances in the corpus: “[A undB ]Actor haben [ gemeinsame
Elemente ]Patient” (A andB have common elements). The second entry, (h),
covers the case of a non-relational noun, as in “[ Peter and Paul ]Actor,COORD

[ have ]PRED,sem:have [ a common car ]Patient,non-rel”. The third entry, (i), is the
case for utterances with both a relational noun and a relational predicate, as in
“[ Peter and Paul ]Actor,COORD [ see ]Pred1,rel [ a common friend ]Patient,Pred2,rel”.

Linguistically-motivated domain ontology Domain-specific interpretations of concepts in
the semantic lexicon are retrieved from a domain-ontology.Unlike the model in (Gruber &
Olsen, 1994) our ontology islinguistically-motivated. It is a hierarchically-organised repre-
sentation of objects along with their properties and types of objects for property fillers, which
serves as an intermediate representation mediating between imprecisely expressed concepts and
a formal representation of knowledge for reasoning purposes. Horacek (2001b) and Horacek
et al. (2004) motivate why this kind of intermediate representation is required as an interface
when mathematical knowledge is to be presented in natural language. Our representation is
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6 Modelling selected language phenomena in informal proofs

motivated by analogous phenomena on the language understanding side – see the discussion in
Section 3.2.2.4 – and, like the model in (Horacek et al., 2004), closely reflects the knowledge
representation the intended domain reasoner,ΩMEGA.

In the objects ontologywe model, among others, typographical properties of mathematical
objects, including substructure delimiters (such as brackets), linear orderings (for instance, ar-
gument positions with respect to the head operator), and groupings or delimited substructures
(for instance, bracketed subformulas). In therelations ontologywe model imprecise relational
concepts which have a meaning independent of the mathematical domain, but need to be in-
terpreted in terms of their domain-specific meaning. Imprecisely expressed relations are mod-
elled as general relations which subsume mathematical relations. The former provides access
to substructures of mathematical expressions as potentialantecedents of referring expressions
(see Section 6.3.2). The purpose of the latter is to allow us to interpret ambiguous relations.
For instance, in order to interpret an imprecise verb “enthalten” (contain), we model a relation
of CONTAINMENT as asemantic relationin the ontology of relations.CONTAINMENT holds
between entities if one includes the other as a whole or if it includes components (elements)
individually. This is a generalisation of the (STRICT) SUBSET and ELEMENT relations in set
theory. An ambiguous lexical item “enthalten” is linked to the ambiguous concept which it
evokes through the semantic lexicon and the concept is in turn given alternative domain-specific
interpretations through the domain ontology; a basic example was shown in Section 5.3.

Excerpts from the ontologies of object and relations are shown in Figures 6.2 and 6.3. Names
of objects and relations are capitalised. Names of properties are in lower-case italics. (To sim-
plify the presentation, certain constraints on fillers and links between properties are not shown.)
Properties are inherited monotonically. Object specialisation in some cases introduces further
properties (marked with a ’+’) and in other cases, object properties become specialised(’spec’).
For instance, the propertycontainerof theCONTAINMENT relation is a more specific instance of
theargumentproperty ofRELATION propagated throughSEMANTIC RELATION. Value restric-
tions on properties are marked with ’restr’. Restrictions on number are marked with a number
on a property. For instance, the filler of theright argument(specialising theargumentproperty)
of SET PROPERTYis restricted to be an object of typeSET (in the objects ontology) andleft
argumentof a BINARY RELATION must be unique, as indicated by ’1’.

The objects ontology includes moreover information onmereological relationsbetween ob-
jects (not depicted in the figure for the sake of readability;we list examples below). Mereolog-
ical relations concern both physical, surface properties of objects and ontological properties of
objects. The part-of relations specific to our domain concern mathematical expression substruc-
tures (notations is part-of(part, whole); not all objects were shown in Figure 6.2):

part-of(STRUCTURED OBJECTSUBTERM, STRUCTURED OBJECTTERM)
part-of(STRUCTURED OBJECTBRACKETED TERM, STRUCTURED OBJECTTERM)
part-of(STRUCTURED OBJECTTERM COMPONENT, STRUCTURED OBJECTTERM)
part-of(STRUCTURED OBJECTSUBFORMULA , STRUCTURED OBJECTFORMULA )
part-of(STRUCTURED OBJECTBRACKETED FORMULA, STRUCTURED OBJECTFORMULA )
part-of(STRUCTURED OBJECTFORMULA COMPONENT, STRUCTURED OBJECTFORMULA )
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Figure 6.2: An excerpt of the representation of objects
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Figure 6.3: An excerpt of the representation of relations
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These relations are especially relevant for resolution of references to parts of notation (discussed
in Section 3.2.2.5; see also further in this chapter). Consider the commonly recurring fragment
“Dann gilt für die linke Seite, . . . ” (Then for the left side it holds that . . .). From the objects
ontology we know that terms and formulas have sides:

property(STRUCTURED OBJECTTERM , componentterm side)
property(STRUCTURED OBJECTFORMULA , componentformula side)

The predicate “gilt” (hold) in the context of a prepositional phrase with “für” (for) normally
takes two arguments: one of typeSTRUCTURED OBJECTFORMULA (the formula that holds) and a
PP argument of typeSTRUCTURED OBJECTTERM or STRUCTURED OBJECTFORMULA, rather than
an argument which is a property (side). Using the objects ontology and the reinterpretation rule
OBJECT FOR PROPERTY(Section 6.3.2) we can obtain the intended interpretation.

6.2.2 “The other way round” semantics

“The other way round” or the German “umgekehrt” is a complex operator of higher-order, that
is, it takes a predicate or predicates as arguments. In the resulting proposition certain elements of
the original proposition are “swapped”, that is, the implicit proposition is a transformed version
of the verbalised proposition. Recall example (33) from C-Ireproduced as (82) below:

(82) Wenn alleA in K(B) enthalten sind und dies auch umgekehrt gilt, muß es sich
um zwei identische Mengen handeln
(If all A are contained inK(B) and this also holds the other way round, these
must be identical sets)

In the utterance above,the other way roundis ambiguous in that it may operate on immediate
dependents of the verb “contain”, resulting in the reading “all K(B) are contained inA”, or
on its embedded dependents, yielding the reading “allB are contained inK(A)”. The fact
that theContainmentrelation is asymmetric and the overall task context – proving that “If A ⊆
K(B), thenB ⊆ K(A)” holds – suggest that the second interpretation is meant. (Similar other
operators were discussed in Section 3.2.2.4; see page 99)

Human-human interaction frequently exploits the efficiency of implicitness in communica-
tion. By contrast, computational understanding of implicit semantics is non-trivial. Formal
reconstruction of implicit meaning requires inference andresolving ambiguities, which, in turn,
requires context understanding and domain knowledge in interpretation. Linguistic devices
requiring insertion of omitted content, such as gapping and ellipsis, have been addressed by
computational approaches, however, there is virtually no work addressing structures whose re-
construction requires transformation, such as “the other way round”. Chaves (2010) proposed
an HPSG-based approach to modellingvice versa, however, evaluation was not performed. We
studied systematically the sentential contexts in which “the other way round”-like lexemes occur
and devised an algorithm for resolving the implicit semantics. The reconstruction algorithm uses
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6 Modelling selected language phenomena in informal proofs

the deep semantic representations produced by the parser, transforms the semantic representa-
tions using patterns, and applies pragmatically- and empirically-motivated preferences to restrict
the number of candidates. The reconstruction method is outlined in the following sections.

“The other way round” data In order to learn about cross-linguistic regularities in the be-
haviour of “the other way round” constructions, we collected a corpus of German and English
sentences in which the predicate occurred. Aside from our tutorial dialogue data, the sentences
stemmed from the Negra6 and Frankfurter Rundschau corpora, and the Europarl corpus(Koehn,
2005). The latter we used in a pilot evaluation. A subset of sentences stemmed also from inter-
net searches. The corpora were searched for the German phrases “andersrum” and “umgekehrt”,
and their English equivalents “the other way (a)round” and “vice versa”. Uses of “umgekehrt” as
a discourse marker were excluded as were the cases in which the transformation needed was of
lexical nature (such as finding an antonym) and instances of “andersrum” expressing a physical
change (such as changing the orientation of an object; see, for instance, the use of “umgekehrt”
in the Bielefeld corpus7). Example sentences are shown below:

(83) Technological developments influence the regulatory framework and vice
versa.

(84) It discusses all modes of transport from the European Union to these third coun-
tries and vice versa.

(85) Ok – so the affix on the verb is the trigger and the NP is the target. . . . No; the
other way round

(86) Da traf Völler mit seinem Unterarm auf die Hüfte des für Glasgow Rangers
spielenden Ukrainers, oder umgekehrt
(Then Völler hit the hip of the Ukrainian playing for Glasgow Rangers with his
lower arm, or the other way round)

(87) Nowadays, a surgeon in Rome can operate on an ill patient– usually an elderly
patient – in Finland or Belgium and vice versa.

(88) Der Ton der Klarinette ist wirklich ganz komplementär zu den Seiteninstru-
menten und umgekehrt
(The clarinet’s tone is really very complimentary to stringsand vice versa)

(89) Wenn alleA in K(B) enthalten sind und dies auch umgekehrt gilt, muß es sich
um zwei identische Mengen handeln
(If all A are contained inK(B) and this also holdsvice-versa, these must be
identical sets)

6http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/; Last accessed in
April 2013

7http://www.sfb360.uni-bielefeld.de/; Last accessed in May 2012
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6.2 Semantic phenomena

Table 6.4: Types of “the other way round” transformations.
Transformation type Description
Argument Case role fillers (arguments) of a head need to be swapped (imme-

diate daughters of a head)
Modifier Argument modifiers need to be swapped (lower dependents of a

head)
Mixed Combination of the two cases above (a modifier is swapped for

an argument which, in turn, takes the role of the modifier in the
reconstructed form)

Proposition The proposition’s “dual” needs to be applied (in some casesArgu-
mentswap can be applied there as well)

(90) Dann ist das Komplement von MengeA in Bezug aufB die DifferenzA/B =
K(A) und umgekehrt
(Then the complement of setA in relation toB is the differenceA/B = K(A)
and vice versa)

(91) Ein Dreieck mit zwei gleichlangen Seiten hat zwei gleichgroße Winkel und
umgekehrt
(A triangle with two sites of equal length has two angles of equal size, and vice
versa)

(92) . . . Klarinette für Saxophonist und umgekehrt
(. . . a clarinet for a saxophonist and the other way round . . .)

(93) Man muß hier das Gesetz der Distributivität von Durchschnitt über Vereinigung
umgekehrt anwenden
(One has to apply the law of distributivity of intersection over union in reverse
direction here)

(94) Es gilt:P (C ∪ (A ∩B)) ⊆ P (C) ∪ P (A ∩B). . . . . Nein, andersrum.
(It holds: P (C∪(A∩B)) ⊆ P (C)∪P (A∩B). . . . . No, the other way round.)

(95) Wir wissen, daß sich Sprachen in Folge von geographischer Separierung au-
seinanderentwickeln, und nicht umgekehrt
(We know that languages branch out as a result of geographicalseparation, not
the other way round)

Analysis of the examples reveals that “the other way round” appears in contexts which can
be classified in terms of the type of elements which must be interchanged (“swapped”) in order
to recover the implicit proposition. The four types of transformations needed to reconstruct the
implicit semantics are summarised in Table 6.4.
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Sentences (83) through (86) illustrate theArgumentswap. The transformation may be ap-
plied to different dependent roles, for instance,Actor and Patient dependents, as in (83), or
Direction-From/Toroles, as in (84). Transformation should also work across clauses, as in (85).
Example (86) shows that role fillers themselves may be complex structures and that their parts
may participate in the transformation; in (86) world knowledge is needed in the reconstruction
(involved here are persons including their mentioned body parts and these together need to be
swapped, not just the body parts or just the persons).

Modifier swap is illustrated with examples (87)–(88). Utterance (87) is ambiguous. From
a structural point of view, it could be categorised as anArgumentswap, however, given world
knowledge, this interpretation is rather infelicitous. A contextually-motivated metonymic re-
construction, prior to applying the transformation, is required in (88); “the strings” needs to be
interpreted as “the tone of the strings”.

Mixed transformations are illustrated with utterances (89) to (92). The first example, (89),
has been already discussed earlier in this section. In (90) multiple occurrences of the items
need to be swapped and the transformation must be propagatedto the formula. In (91) the
properties of a triangle need to be swapped. This can be done based on the surface structure of
the sentence. The resulting implication states that a triangle with two sides of equal length is a
triangle with two equal angles. In this case, the reconstruction could also fall into the last type,
Propositiontransformation; here, this would involve reversing the implication. In (92), a lexical
reinterpretation is needed prior to the reconstruction: “asaxophonist” needs to be expanded into
“a saxophone player”, so that the intended reading “saxophone for a clarinet player (clarinetist)”.

The fourth type of transformation, illustrated with examples (93) to (95), involves swapping
entirePropositions; in the domain of mathematics, these may be formulas. In (93), the distribu-
tivity law needs to be applied “right to left” (rather than “left to right”) and in (94), the superset
relation needs to be swapped for subset. The last example, (95), requires structural recasting.
Once the utterance’s semantics is represented as headed by theResultrelation, swapping the two
propositions – “branching out of languages” and “becoming geographically separated” – yields
the desired result.

Processing The examples show that “the other way round” transformationtypically operates
at the level of semantic roles of the elements in a sentence. Our last category,Proposition
transformation, can be in some cases also realised as anArgumenttransformation; for instance,
instead of swapping⊇ for ⊆ in (94), the two sides of the formula could be swapped. Clearly,
however, the information relevant in meaning reconstruction is the sentence’s semantic depen-
dency structure. In our approach we employ the tectogrammatical structure and show it to be an
appropriate level of semantic description.

The linguistic analysis consists of semantic parsing, identification of candidate pairs whose
elements are to be interchanged, followed by contextually-motivated reconstruction and optional
recasting. In a fully automated setting, sentences would beanalysed with the parser which is
part of our discourse processing architecture and which constructs deep dependency-based rep-
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Table 6.5: Examples of interchangeable relata in “the otherway round” transformation.
Interchangeable(Actor, Patient)
Interchangeable(Direction-Where-From, Direction-Where-To)
Interchangeable(Time-From-When, Time-Till-When)
Interchangeable(Cause, PRED)
Interchangeable(Condition, PRED)

resentations of utterances’ linguistic meaning; as described in Section 5.2.3.1. Here we perform
manual analysis.

Reconstruction heuristics Based on analysis of the corpora, we have identified combinations
of dependency relations which commonly participate in “theother way round” transformation.
Examples of pairs of such relations are shown schematicallyin Table 6.5.8 Similarly to Cause
andCondition, arguments of other discourse relations are also candidates for the transformation,
for instance,Result/Effector enumerative relations, such asSequenceor List of the Rhetorical
Structure Theory. During processing, we use the table of interchangeable relata as a preference
criterion for selecting candidate relations for transformation. If one of the elements of a can-
didate pair is anoptional argumentwhich is not realised in the given sentence, we look at the
preceding context to find the first instance of the missing element.

Reconstruction is performed based on formally defined rulesfor each of the identified trans-
formation types shown in Table 6.4. The rules consist of a pattern part and an action part.
Patterns are matched against the output of the semantic parser by identifying the relevant tec-
togrammatical roles and accessing their fillers. Actions apply transformations (below) on the
items identified by the pattern parts to build the implicit structure.

The reconstruction rules are shown in Table 6.6 There are twopatterns for anArgumenttype
transformation: If the scope of the swap is a single clause, two arguments (semantic roles) of
compatible types are identified as interchangeable. For thecase of a two-clause scope, the rela-
tion must be a conjunction and swapped are arguments in the same relations. In aModifier swap,
type compatible modifiers of distinct arguments are selected. For aMixed swap, a dependent
is selected, as in the first case ofArgumentswap, and a type-compatible modifier of another
argument, as in aModifier swap.Propositionswap inverts the order of two propositions.

Rules are applied to the parser output (see Section 5.2.3.1,page 155). For each nodep,
all patterns are tested on its dependency substructure and,if successful, the result is bound to
pt (transformed).PRED(p) is a function which checks ifp has aPRED feature, that is, it is a
proposition. Similarly, Coord(p) and Subord(p) perform tests for complex propositions: co-
ordination or subordination, respectively, based on a listof tectogrammatical relations which

8As in the presentation in Section 5.2.3.1,PRED is the immediate predicate head of a relation.
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Table 6.6: Reconstruction rules
Transformation

Reconstruction pattern
type
Argument PRED(p)∧TR1(p, x) ∧ TR2(p, y) ∧ Type-compatible(x, y) ∧ Interchangeable(TR1,TR2)

→ Swap(p, x, y, pt)
Coord(p) ∧ TR1(p, x) ∧ TR(x, u) ∧ TR2(p, y) ∧ TR(y, v) → Swap(p, u, v, pt)

Modifier PRED(p) ∧ TR1(p, x) ∧ TR+

11(x, u) ∧ TR2(p, y) ∧ TR+

21(y, v) ∧ (TR1 6= TR2)
∧ Type-compatible(u, v) → Swap(p, u, v, pt)

Mixed PRED(p) ∧ TR1(p, x) ∧ TR11(x, u) ∧ TR2(p, y) ∧ (TR1 6= TR2)
∧ Type-compatible(u, y) → Swap(p, u, y, pt)

Proposition Subord(p) ∧ TR1(p, x) ∧ TR2(p, y) ∧ (TR1 6= TR2) → Swap(p, x, y, pt)

represent complex syntactic structures. Within a structure, dependents (participants and modi-
fiers) in specific tectogrammatical roles are accessed by thefunctionTR(p, x), wherex specifies
theTR-dependent ofp; subscripts onx are used to define constraints on the relations.TR+ is a
generalisation ofTRwhich covers iterative embeddings (multiple occurrences of TRare found;
the roles in the chain are not required to be identical). Aside from access functions, two test
functions expressing constraints on the identified items are defined: Interchangeable(TR1 , TR2)
tests whether a pair of relations is defined as a good candidate for a transformation, given the
table shown previously (Table 6.5). Type-compatible(x, y) tests whether the types ofx andy
are compatible according to an underlying domain ontology.In the case of proofs, this is an on-
tology of mathematical objects.9 The action part of the patterns is realised by Swap(p, x, y, pt)
which replaces all occurrences ofx in p by y and vice versa, binding the result topt. Differ-
ent applications of this operation result in different instantiations ofx andy with respect to the
dependency substructurep.

In addition to the the pattern matching tests, theArgumentand thePropositiontransforma-
tions undergo a feasibility test to check whether the predicate (PRED) whose roles are subject
to the swapping operation is known to be symmetric or asymmetric. If the predicate is known
as asymmetric, the result is considered implausible for semantic reasons, if it is symmetric,
for pragmatic reasons (the converse proposition conveys nonew information). In both cases a
swapping operation is not performed.

Finally, a set ofrecasting rules– shown in Table 6.7 – is invoked to reorganise the semantic
representation prior to testing the applicability of a reconstruction rule. The recasting opera-
tions adapt the dependency representations for the purposeof semantic reconstruction. Three
recasting rules are defined:Lexical recastingperforms lexical expansions of lexemes in order to
accommodate the fact that the semantics of some lexemes conflates the meaning of two related
items. Lexical representations are expanded if there is a sister role with a filler whose type is

9We did not construct a large-scale ontology of mathematicalobjects. In an automated system such a knowledge
source would be of course necessary. For the purpose of the evaluation we assume that such knowledge base exists.
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Table 6.7: Recasting rules for “the other way round” reconstruction
Rule Formalisation
Lexical recasting
(lexical expansion)

PRED(p) ∧ TR1(p, x) ∧ Lex-Expand(x, u, TR, v) ∧ TR2(p, y)
∧ (TR1 6= TR2) ∧ Type-compatible(v, y)
→ Swap(p, x, TR(u, v),pt) ∧ Swap(pt, y, v, pt)

Role recasting
(optional role as head of
an obligatory role)

PRED(p) ∧ TR1(p, u) ∧ TR2(p, v) ∧ Type(u, tu) ∧ Type(v, tv)
∧ Recastable(TR2, tv, TR3, tu) ∧ TR3(p, w) ∧ Type-compatible(v, w)
∧ (TR1 6= TR2) ∧ (TR1 6= TR3) ∧ (TR2 6= TR3)
→ Swap(p, u, v, pt) ∧ Add(pt, TR3(v, u) ) ∧ Remove(pt, TR2)

Proposition recasting
(optional role as a dis-
course relation)

PRED(p) ∧ TR(p, x) ∧Member(TR, Subords)
→ Build(TR(p, TR2(p, x) ∧ TR1(p, Remove(p, x))

compatible with the type of the expanded item.Role recastingis performed if a dependent item
appears as a sister role in an overarchingTR frame, that is, if the dependency among items is
not reflected by the dependencies in the linguistic structure. The case recasting rule builds a
uniform representation by removing the dependent role filler and inserting it as a modifier of the
item on which it is dependent.Proposition recastingis performed if a proposition in a subor-
dinate (discourse) relation (Subords) is expressed as a role (argument). Uniform (dependency)
representation is obtained by lifting the argument (role filler) and by expressing the discourse
relation as multiple relation structure.

Recasting operations use additional test functions. The function Lex-Expand(x, y, TR, u) ex-
presses the semantics ofx by y with u in a TR relation. Type(x, y) associates the typey with
x. Type information is used to access the table of recastable roles; Recastable(TR1,t1,TR2,t2)
verifies whetherTR1 with filler of type t1 can also be expressed asTR2 with filler of type t2.
Add(p, a) expandsp by an argumenta, Remove(s, x) deletes occurrences ofx in s, and Build(s)
creates a new dependency structures.

Reconstruction algorithm The structure building algorithm consists of two steps. First, the
scope for applying the heuristics defined in Table 6.6 is determined, and, second, results of
rule matching are collected. For practical reasons, presently we make a simplifying assumption
concerning the scope of the operator: While the effect of “the other way round” may range over
entire paragraphs, we only consider single sentences with at most two coordinated clauses or
one subordinated clause. This restriction is plausible forapplication-oriented systems; only a
few examples from the corpora we have examined cannot be handled due to this simplification.

The procedure takes an input sentencex, parses it and analyses its dependency structure to
find predicate nodes (PRED), and binds potential scopes to the variableScopes. For complex
sentences, the entire sentence (x) as well as its last clause (TR2(x, z))) is a potential scope for re-
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Structures← ǫ
if PRED(x) then Scopes← {x}
else

if Subord(x)∨ Conj(x)∧ TR2(x, z) then Scopes← { z, x}
endif

endif

forall Scopei in Scopesdo
Structures← Structures∪ X-Swap(Scopei) ∪ X-Swap(Y-Recast(Scopei))

end forall
return Sort(Apply-ranking-criteria(Structures))

Figure 6.4: “The other way round” reconstruction algorithm

construction. In the next step, each transformation rule (Table 6.6) is tested against the candidate
scopes and the results are collected inStructures. The function X-Swap(Scopei) builds a set of
all instantiations of a given rule applied toScopei. X in X-Swap isArgument, Modifier, Mixed,
or Propositionswap rule. Some rules are also invoked with alternative parameters stemming
from the recasting operations (Table 6.7). The call is in this case X-Swap(Y-Recast(Scopei)),
whereY is Lexical, Role, Proposition recastprovided that they fit the given pattern. If multiple
readings are generated, they are ranked according to the following ordered set of criteria: (1)
the nearest scope is preferred, (2) operations which swap “duals”, such as left-right, are ranked
higher, and (3) constructed candidate phrases are matched against a corpus; pairs with higher bi-
gram frequencies are preferred (the complete corpora from which our data stemmed were used).
The algorithm is summarised in Figure 6.4.

The linguistic analysis, the structure reconstruction patterns, the recasting rules, and the al-
gorithms operating on top of these structures are formulated in a domain-independent way, also
ensuring that the tasks involved are clearly separated. It is thus up to a concrete application to
elaborate the required lexical semantic definitions (for instance, the lexical expansion for “sax-
ophonist” in (92) to capture the example), to define the tables Interchangeable and Recastable,
and to adjust the preference criteria.

Preliminary evaluation A preliminary evaluation of the reconstruction algorithm has been
performed on a sample of English and German sentences from Europarl (Koehn, 2005). Since
we do not have access to a wide-coverage semantic dependencyparser for English and German,
manual evaluation has been conducted. The evaluation set was created by extracting sentences
from Europarl using the following regular expression patterns: (i) for English: phrases “the
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Table 6.8: Distribution of transformation patterns in the test data
Transformation type No. of instances
Argument 64
Modifier 5
Argument/Modifier 3
Mixed 6
Argument/Mixed 2
Proposition 1
Argument/Proposition 1
Lexical 18
Other 10
Total 110

other way a?round” or “vice-?versa”10 (ii) for German: (ii-a) the word “umgekehrt” preceded
by a sequence of “und” (and), “oder” (or), “sondern” (but (instead)), “aber” (but) or comma,
optional one or two tokens and optional “nicht” (not), (ii-b) the word “umgekehrt” preceded by
a sequence “gilt” (holds) and one or two optional tokens, (ii-c): the word “anders(he)*rum”. 137
sentences have been retrieved using these criteria. Given the present limitation of the algorithm,
we manually excluded those sentences whose interpretationinvolved the preceding sentence or
paragraph,11 as well as those in which the interpretation was explicitly spelled out. There were
27 such instances. The final evaluation set consisted of 110 sentences: 82 sentences in English–
German pairs and 28 German-only. The reason for this difference is that the English equivalents
of the German sentences containing the word “umgekehrt” maycontain phrases other than “the
other way round” or “vice versa”. Depending on context, phrases such as “conversely”, “in
reverse” or “the reverse”, “the opposite”, “on the contrary” may be used. Here, we targeted
only “the other way round” and “vice versa” phrases. If the German translation contained the
word “umgekehrt”, and the English source one of the alternatives to our target, only the German
sentence was included in the evaluation. Because the distribution of sentences between the two
languages is to a large degree unbalanced, cumulative results for both languages are reported.

Distribution of categories The structures in the evaluation set have been manually categorised
into one of the transformation types from Table 6.4 and the elements of the dependency struc-
tures participating in the transformation have been marked.12 Table 6.8 shows the distribution
of transformation types in the data set. Counts for alternative interpretations are included. For
instance,Argument/Modifiermeans that either theArgumentor Modifier transformation can be

10The question mark denotes an optional element.
11For example, sentences such as: “Mr President , concerning Amendment No 25 , I think the text needs to be

looked at because in the original it is the other way round to how it appears in the English text .”
12The author of this thesis annotated half of the data set. The other half has been annotated by the collaborator in

this work (see (Horacek & Wolska, 2007)), Dr. Helmut Horacek.
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Table 6.9: Evaluation results of “the other way round” transformation

Transformation type
Evaluation category

Correct Ambiguous Wrong Failed
Argument 46 17 0 1
Modifier 3 2 0 0
Argument/Modifier 3 – 0 0
Mixed 4 2 0 0
Argument/Mixed 2 – 0 0
Proposition 1 0 0 0
Argument/Proposition 0 – 0 1
Lexical 16 0 2 0
Other 8 0 2 0

applied with the same effect, as in the sentence “External policy has become internal policy, and
vice versa”: either the words “external” and “internal” maybe swapped (Modifier) or the whole
NPs “external policy” and “internal policy” (Argument). Lexicaltransformation means that none
of the rules was applicable; a lexical paraphrase (such as use of an antonym) needed to be per-
formed in order to reconstruct the underlying semantics (that is, no structural transformation was
involved). Othermeans that a transformation-based reconstruction was involved, however, none
of our rules covered the structure.

Evaluation results Transformation results have been classified into four categories. Cor-
rect means that the algorithm returned the intended reading as a unique interpretation (this in-
cludes correct identification of lexical paraphrases (the categoryLexical in Table 6.8),Ambigu-
ousmeans that multiple results were returned with the intendedreading among them,Wrong
means that the algorithm returned a wrong result or, if multiple results were found, the intended
reading was not included;Failed means that the algorithm failed to find a structure to transform
because none of the rules matched.

The evaluation results are presented in Table 6.9. In case ofpossible alternative assignments
(as in Argument/Modifier) Correct was assigned whenever the algorithm selected one of the
possible assignments, independently of which one it was. The Correct results forOther are
“trivial”: the algorithm correctly identified the 8 cases towhich no rule applied. The two Wrong
results forOthermean that a pattern was identified, however, it was not the intended one. In two
cases, the algorithm failed to identify a pattern even though a structure exhibited a pattern in one
of the known categories (ArgumentandProposition) (false negatives).

Discussion The most frequently occurring pattern in our sample isArgument. This is often a
plausible reading. However, in 3 of the 4 false positives (Wrong results), the resolved incorrect
structure wasArgument. A baseline consisting of always assigning the most frequent category,
Argument, would miss the other categories (altogether 12 instances)and yield the final result of
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63 Correct (as opposed to 96; after collapsing the Correct and Ambiguous categories) and 15 (as
opposed to 4) Wrong assignments.

The two missed known categories (Failed) involved multiplearguments of the main head: a
modal modifier of the predicate (modal verb) and an additive particle (“also”) in one case, and
rephrasing after transformation in the other case. To improve performance on cases such as the
former, a list of dependents which the transformation should exclude as candidates could be
incorporated into the algorithm. Among the patterns currently unknown to the algorithm, we
found four types (one instance of each in the sample) which can potentially frequently recur:
aim and recipient constructions involving a predicate and its Aim andBeneficiarydependent re-
spectively, a temporal-sequence in which the order of the sequence elements is reversed, and a
comparative structure with swapped relata. The remaining 6structures require a more involved
procedure: either the target dependent is deeply embedded or paraphrasing as well as morpho-
logical transformation of the lexemes is required. However, the presented algorithm is a good
first step toward automated reconstruction of the operator’s semantics.

6.3 Reference phenomena

Computational approaches to anaphor resolution (or (co-)reference resolution more generally)
typically address narrative text genres and use manually hand-crafted rules, machine learning
or a combination of both to find antecedents. Syntactic, semantic, and lexical features of the
anaphor carrier sentences and of the sentences containing candidate antecedents as well as prob-
abilistic distributional properties of the anaphor in context are used as indicators of coreference;
see, for instance, (Botley et al., 1996; Mitkov, 2000; Poesio et al., n.d.) for an overview on refer-
ence resolutions algorithms. Anaphor resolution in dialogue have been gaining attention, how-
ever, reference resolution in dialogue proves more difficult and the performance of algorithms
on dialogue corpora tends to be lower than on narrative discourse corpora (Poesio et al., n.d.).
Recently also studies specific to tutorial dialogue have been conducted; see, for instance, (Poesio
et al., 2006; Pappuswamy et al., 2005).

A peculiarity of mathematical discourse is that referring expressions in this domain may be
used to refer to the elements of formal notation. Examples ofsuch references were shown in
Section 3.2.2.5. References may address entire formal expressions or their parts. Most frequent
are references to propositions, specifically, proof steps,verbalised in natural or in the symbolic
language. Table 6.10 shows the distribution of references to object-denoting terms expressed
symbolically (parts of mathematical notation) and to proofsteps (expressed using mathematical
notation or natural language) in the student turns in our corpora. (The types of referential forms
included in this summary will be elaborated in the next section.) Overall, the number of occur-
rences of referring expressions is small (155 instances). Assuming one referring expression per
turn, only around 12% of all student turns contain referringexpressions to terms or proof steps
(there are 1259 turns in total; see Table 4.1 on page 130). There are more referring expressions
in C-II (94) than in C-I (61), however, considering that C-IIcontains almost three times as
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Table 6.10: References to object-denoting terms and proof steps in the students’ turns

Antecedent type
Data set

C-I C-II C-I & C-II
Object-denoting term 26 13 39
Proof step 35 81 116
Column totals 61 94 155

many student turns as C-I (see Table 4.1), there are proportionally more referring expressions
in C-I (on average, around 18% student turns with a referringexpression in C-I and 10% in
C-II). In the case of the tutorial dialogue scenario, antecedents of referring expressions may be
found in either speaker’s turns: student’s or tutor’s. In spite of a seemingly high potential for
ambiguity (many candidate symbolic terms as antecedents),in our experiments only in one case
did the tutor initiate an explicit subdialogue to clarify a student’s ambiguous use of reference.

In the following sections we look more closely into two aspects of modelling reference phe-
nomena in proof tutoring dialogues. First, we conduct a corpus study on the types of referring
expressions. Anaphor resolution algorithms are typicallytailored to resolving expressions of a
specific form, for instance, pronominal anaphora or references to expressions of specific type,
for instance, discourse deictic anaphors (as in (Pappuswamy et al., 2005)). It is therefore useful
to know what types of anaphora occur most frequently in our genre and to what entity types
they refer. Second, we analyse the referring expressions interms of their discourse scope. Con-
sidering the low overall number of instances of referring expressions found in our corpora and
especially the low number of object-denoting references, we do not propose a complete com-
putational reference resolution algorithm. More data would need to be collected in order for a
plausible computational algorithm to be developed. Instead, we again analyse the corpus data
with respect to the location of the different antecedent types. The analysis of referential scope
is relevant in determining the discourse scope for antecedent search, thus the two corpus-based
analyses form a good basis for a computational algorithm to be developed and evaluated once
more data is available. Finally, we show how the interpretation resources need to be extended in
order to address indirect references specific to proof tutoring dialogues.

6.3.1 Forms of referring expressions and the scope of reference

Linguistic referring devices identified in the students’ utterances include pronouns, pronominal
and locative adverbs, noun phrases, demonstratives (discourse deixis), and definite articles. As
will be shown further, all these types of expressions have been used to refer to parts of symbolic
notation as well as to propositions or partial proofs (sequences of propositions) constructed in
the course of dialogue. Examples of the different referringexpression types are shown below.
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Pronouns The use of pronominal anaphora is illustrated with examples(96) and (97):

(96) . . . Da, wennA ⊆ K(B) sein soll,A Element vonK(B) sein muss. Und wenn
Bi ⊆ K(A) sein soll, muss esi auch Element vonK(A) sein.
(. . . Because ifA ⊆ K(B) should hold,A must be an element ofK(B). And if
B ⊆ K(A) should hold,B must be also an element ofK(A).)

(97) T19: Erinnern Sie sich daran, [ dass es ein z gibt mit(x, z) ∈ S−1 und
(z, y) ∈ R−1. ]i
(Do you remember that there is a z such that(x, z) ∈ S−1 and
(z, y) ∈ R−1)

S14: Ja, ich habe esi vorausgesetzt
(Yes, it was an assumption I made)

In (96) a personal pronoun, “es” (it), is used to refer to a term. The term is part of a formula,
a set variableB, whose syntactic/semantic function in the formula can be viewed as that of a
subject/agent, parallel to the semantic function of the anaphor in the utterance. The reference is
local; the antecedent is in the same turn. Notice that it is hard to produce an comparable structure
in English. The reference in German works because the formula is again used as shorthand for
natural language; the subordinate clause reads “wennB Teilmenge vonK(A) sein soll” and the
pronoun refers to its subject. (In the given task context, this is the more plausible interpretation.
An alternative antecedent candidate could beA and considering the student’s confusion about
the set membership and subset relations, it is not impossible that he actually meant to refer to
A.) The pronoun in (97) is referring to the proposition in the preceding tutor’s turn T19, that is,
the antecedent is found in the other speaker’s turn.

Pronominal and locative adverbs Pronominal adverbs (or “präpositional pronomen”; adver-
bial pronouns) are lexical constructions in Germanic languages formed by joining a preposition
with a pronoun. Their anaphoric character is due to the pronoun obtaining thereby a locative
adverb function. English examples include “thereby” (by this) or “therefor(e)” (for that) and
German “damit” (with that) or “dafür” (for that). Locative adverbs in mathematical discourse
also have anaphoric character; consider, for instance, thefrequent scope bearing locative “hence”
in English. The dialogue fragments below illustrate the useof anaphoric adverbs in our corpora:

(98) S2: [ R ◦ S ]i := {(x, y) | ∃ z(z ∈M ∧ (x, z) ∈ R ∧ (z, y) ∈ S)}
. . .

S3: Nun will ich das Inverse davoni

(Now I want the inverse of it)
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(99) S7: Also[ [ ist (z, x) ∈ S und(y, z) ∈ R ]i und damiti auch[ (y, x) ∈ R ◦ S]j ]k
(Therefore it holds that(z, x) ∈ S and(y, z) ∈ R and by that also
(y, x) ∈ R ◦ S)
. . .

S8: Somitj?k? ist (x, y) ∈ (R ◦ S)−1

(With this it holds that(x, y) ∈ (R ◦ S)−1)

In (98), a pronominal adverb “davon” (of it) is used to refer to a complex term,R◦S, on the left-
hand side of the definition. In principle, the reference is ambiguous: a competing antecedent for
“davon” is the definiens part of the definition. In (99) the adverbial pronoun “damit” (with this)
in S7, refers to the proposition stated in the first clause of the utterance. The pronominal adverb
“somit” (with that) in S8 in the same excerpt may refer to the conjunction or implication of the
assertions in S7 (marked withk) or only to the last assertion (marked withj in the example).

Noun phrases Within this category we consider referential uses of noun phrases including de-
ictic NPs, such as “(in) dieser Menge” ((in) this set) referring to a set expression in the dialogue
fragment (56), reproduced below as (100):

(100) S33: Nach Aufgabe W ist(S ◦ (S ∪R)−1)−1 = [ ((S ∪R)−1)−1 ◦ S−1 ]i
(By Exercise W: . . . holds)
. . .

S34: Diesi ist nach Theorem 1 gleich [(S ∪R) ◦ S−1 ]j
(This is by Theorem 1 equal to(S ∪R) ◦ S−1)
. . .

S35: Ein Element(a, b) ist genau dann in dieser Mengej , wenn es einz ∈ M gibt
mit (a, z) ∈ S ∪R und(z, b) ∈ S−1

Definite noun phrases used to refer to elements of mathematical notation often involve meto-
nymic reinterpretation. In Section 3.2.2.5 we already showed examples such as “die innere
Klammer” (the inner parenthesis), “die linke Seite” (the left side) or “beide Komplemente” (both
complements) (see page 103ff.). These are indirect references to structural parts of mathematical
expressions, terms in formulas; “the left side” refers to the term to the left of the top-node
operator in a formula, “the inner parenthesis” to a bracketed subterm of a bracketed term in a
formula (rather than to a bracket itself), and the quantifiednoun phrase, “both complements”
in “de morgan regel 2 auf beide komplemente angewendet” (de morgan rule 2 applied to both
complements) to two terms headed by the complement operator.

Both definite and bare noun phrases can be also used generically to refer to concepts in the
domain, for instance, to the concept of the set union as in: “The union of sets R and S contains all
elements from R and all elements from S” (example (43) on page104) or “Potenzmenge enthaelt
alle Teilmengen, also auch(A ∩B)” (Powerset contains all subsets therefore also(A ∩B)). In
the latter case, “powerset” is a generic reference, whereas“(A ∩ B)” is a specific reference to
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a subset of a specific instance of a power set introduced earlier. Moreover, named theorems and
lemmata may be referred to by their proper names, for example, “de Morgan’s rule 2”. These
non-anaphoric uses are not included in further analyses.

Demonstratives The last type of referring expressions we analysed were deictic references by
means of demonstrative pronouns, as in:

(101) Wenn[ alleA in K(B) enthalten sind]i und diesi auch umgekehrt gilt, muß es
sich um zwei identische Mengen handeln
(If all A are contained inK(B) and this also holds the other way round, these
must be identical sets)

where the demonstrative pronoun “dies” (this) refers to a preceding proposition, or as in (100)
above, where “dies” in S34 refers to the term on the right-hand side of the formula in S33.

As a preliminary stage for developing an anaphor resolutionalgorithm we conducted two
studies on reference phenomena: First, we looked at the frequency of use of the above-mentioned
reference types to refer to the entities particular to mathematical discourse: domain objects
evoked using symbolic notation and proof steps expressed either in natural language or using
symbolic expressions. Next, we looked at the discourse-referential scope of the referring ex-
pressions, that is, the scope of discourse, with respect to the referring expressions, within which
an antecedent is found.

Instances of anaphoric references as well as their antecedents have been annotated in the two
corpora by the author of this thesis. Discourse was interpreted cooperatively, that is, the most
plausible candidate was considered as the antecedent, evenif students’ statements were invalid
or incomplete. Multiple annotations have not been performed for the same reason as explained
in Section 4.1: antecedent annotation decisions do not require linguistic knowledge, but rather
knowledge of the mathematical domains and the understanding of the solution constructed in the
course of dialogue. Considering the fact that the set theoryand binary relations proofs are of low
complexity, the most plausible antecedent types can be identified by cooperatively interpreting
the students’ intentions and by taking into account information about the student gained based
his dialogue. Referential scope may be ambiguous in the caseof references in the context of
invalid steps or incomplete proofs (omitted steps). In caseof uncertainty, we annotated the turn
in which the first plausible candidate was found.

Table 6.11 shows the distribution of referring expressionstypes to two types of entities:
object-denoting terms and proof steps. Further distinction is made between atomic and com-
plex terms (as inA andA∪B, respectively) and proof steps expressed in the symbolic notation
(ME category; see Section 4.3.1) or using some natural language (ME & NL and NL cate-
gories). The largest class of referential forms are pronominal and locative adverbs, the majority
of which refer to proof steps (or larger parts of proofs). There are approximately the same num-
ber of nominal references as deictic references using demonstratives, however, there are clear
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Table 6.11: Distribution of referring expression types by antecedent type

Antecedent type
Form of referring expression

Pronominal or
Noun phrase Demonstrative Pronoun

Locative adverb
Object-denoting term 2 30 2 5

Atomic 0 2 0 2
Complex 2 28 2 3

Proof step 59 15 40 2
ME 28 10 27 0
ME & NL or NL 31 5 13 2

Column totals 61 45 42 7

Table 6.12: Distribution of reference types by the locationof the antecedent

Antec.
type

Form of referring expression
Location of the antecedent

Same
S−1 T−1 S≥−2 T≥−2

Task
turn descr.

Pronominal or locative adverb 1 1 0 0 0 0
Noun phrase 4 5 4 9 8 10
Demonstrative 0 2 0 0 0 0
Pronoun 3 0 0 2 0 0

O
b

je
ct

-d
en

o
-

tin
g

te
rm

Subtotals 8 8 4 11 8 10
Pronominal or locative adverb 21 38 0 0 0 0
Noun phrase 4 6 0 2 3 3
Demonstrative 22 16 2 0 0 0
Pronoun 0 1 1 0 0 0P

ro
o

fs
te

p

Subtotals 47 61 3 2 3 3
Column totals 55 69 7 13 11 13

(% all references) (35) (45) (5) (8) (7) (8)
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differences in the use of the two forms: the former are mainlyused to refer to parts of notation
(object-denoting terms), while the latter are mainly used to refer to proof steps. Further analysis
of the dialogues revealed that the majority of the latter types occur in chaining equation contexts
in which a formula is contributed and the next rewriting stepis introduced by phrasing “This
is then (equal to) . . . ” or analogous. The majority of the nominal references to terms are indi-
rect references of the kind discussed in Section 3.2.2.5. The number of pronominal anaphora is
surprisingly small; only 7 occurrences overall. In all cases of “es”-references (neuter personal
pronouns) to object-denoting terms, the anaphor was the entity on the left side of a mathematical
expression of type formula. The low number of pronominal references to terms can be perhaps
explained by the fact that nominal reference is more specificand thus reduces the chance of
unintended interpretation; compare referring to a left-hand side of an equation with “die linke
Seite” vs. “es”, as in (96), while there may be multiple “leftsides” competing as antecedent
candidates, the structure of the expressions which embed them is a good cue in resolution; recall
the discussion in Section 3.2.1.2.

Table 6.12 shows the distribution reference types by the location of the antecedent. The
interpretation of columns is the following: “Same turn” means that the antecedent is found
in the same turn as the referring expression (as in (96) above), “S−1” and “T−1” mean that
the antecedent is found in the preceding student or tutor turn, respectively (as in (97) and (98)),
“S≥−2” and “T≥−2” mean that the antecedent is in a student or tutor turn, two ormore turns prior
to the anaphor, “Task descr.” (task description) means thatthe antecedent is in the first tutor turn
which specifies the proof task. (Note that the task may have been specified in the immediately
preceding turn if the analysed turn is the first student’s contribution.) What can be seen from
the annotation results is that the majority of the references to proof steps are local, whereas
references to terms may have a large scope. Out of the 39 references to object-denoting terms,
20 refer to entities in a close distance to the anaphor: same turn, last tutor turn, or preceding
student turn. The majority of long-distance references areby means of nominal anaphora whose
antecedents can be found two or more turns back in the dialogue with respect to the anaphor.
Around 25% of the references to terms have antecedents in thetask description. The majority
of references to proof steps (around 93%) were within the scope of the same or previous student
turn. Only nominal references were used to refer to proof steps further in the preceding dialogue.
Interesting to note is that the tutors did not request explicit clarifications of the scope of reference
to proof steps, even if the scope encompassed a number of steps; much as the English “hence”
or “thus”, the German “somit” or “damit” can in principle refer to a larger part of a constructed
proof. This suggests that tutors cooperatively interpreted students’ contributions and tended to
focus on the task progress, rather than on formal rigour or onclosely monitoring the students’
mental representation of the solution.

As mentioned previously, the low overall number of referring expressions available for analy-
sis does not allow us to draw definitive conclusions nor to develop a scalable reference resolution
algorithm. However, preliminary observations based on theavailable data can be summarised as

201



6 Modelling selected language phenomena in informal proofs

follows: Anaphoric references have for the most part a localscope. In most cases, the referent
occurred in the same or preceding student or tutor turn with respect to the anaphor. The structure
of mathematical expressions is a strong indicator in identifying the search space for antecedents;
see also Section 3.2.1.2. This holds both in the case of noun phrase references to topographical
substructures of mathematical expressions (“inner parenthesis” or “left side”) as well as in the
case of quantified phrases (as in the “both complements” example).

The correctness status of the last student’s proof step is relevant in antecedent search. As
the student develops the proof, salience of the propositions which form the proof (proof steps)
changes. At the beginning of the dialogue, the most salient proposition is the goal formula in
the task description. As the proof progresses, the most salient proposition globally is the last
correct proof step and students tend to make references to this step. If the student makes several
incorrect steps, no correct steps, and the tutor has not given away any steps, the goal formula
in the exercise definition remains the most salient proposition even after several turns. The
semantic content of the last tutor move also plays a role in reference resolution. If the last tutor’s
turn contains a hint which gives away a correct step, the student is likely to continue from this
step and so also refer to it.

6.3.2 Modelling concepts relevant in reference resolution

The corpus analysis summarised in the previous section shows that two issues must be taken
into account in designing a computational reference resolution algorithm for the proof tutoring
domain: First, a comprehensive analysis of mathematical expressions is needed. Second, pro-
cessing indirect referring expressions whose antecedentsare elements of the symbolic language
(terms or formulas or parts thereof) and which use typographical properties of mathematical ex-
pressions (“left side”), objects and relations building upthe expressions (“both complements”),
and the expressions’ structure signalled by grouping symbols (“inner bracket”), requires “ exten-
sions to the domain interpretation process: entities identified through mathematical expression
analysis need to be included in the domain model. The extensions to the processing architecture
are briefly outlined below.

Extensions to mathematical expression parsing In order to support resolution of references
to (parts of) mathematical expressions, the mathematical expression parser is implemented in
such way that it is capable of identifying all the relevant substructures of mathematical expres-
sions. It parses the linear notation of mathematical expressions in the input into an expression
tree of the form shown in Figure 3.2b. The parser has access toknowledge on the type of ar-
guments and results of operations in the relevant areas of mathematics. In our case, this is,
for instance, the information that the subset relation (denoted by a specific symbol) takes two
sets as arguments and the type of the result is of a proposition type or that the union operation
takes sets as arguments and its result is an object-denotingtype. Each node of the expression
tree is marked (“annotated”) as to whether it denotes an operator or a variable; operators nodes
are further marked with the type of their result. The root node of the tree is marked with the
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Table 6.13: Examples of reinterpretation rules for indirect reference
Concept Reinterpretation
SIDE TERM AT SIDE

BRACKET BRACKETED TERM

OPERATOR TERM HEADED BY OPERATOR

OBJECT TERM HEADED BY OPERATOR OF TYPE OBJECT

PROPERTY OBJECT WITH PROPERTY

information on the type of the entire expression (TERM, FORMULA, etc.). The expression tree
enriched in this way is an input structure to subroutines relevant for reference resolution.

At the time of parsing we create a discourse referent for the entire expression, but not for
every substructure entity relevant for anaphor resolution. Instead, the mathematical expression
parser includes subroutines whichon demandrecover substructures of mathematical expressions
in specificPART-OF relations with respect to the original expression as well astheir types. Recall
that these are also represented in our domain model; see page182 and the section below. The
choice of substructures was motivated by systematic reference in natural language to mathemat-
ical expression parts (see Sections 3.2.1.2 and 3.2.2.5) and includes: (i) topographical features
(such as “sides” of terms and formula), (ii) linear orders (“first”, “second” argument), (iii) struc-
tural groupings (bracketed subexpressions) with information on the level of their embedding.
Execution of these subroutines is triggered by rules in the course of lexical semantic interpreta-
tion of the utterances; for instance, the meaning of “side” together with its modifier “left” in the
semantic representation of the noun phrase “the left side”.

Domain modelling As illustrated in Section 3.2.2.5 (page 107ff) and earlier in this section,
informal mathematical language admits of referring to elements of mathematical notation using
expressions of a metonymic flavour. By saying “the left side”of a formula, we do not mean liter-
ally the side, but rather the term on the given side of the mainoperator in the expression. The use
of such metonymic expressions is so systematic in mathematics when referring to mathematical
notation and they are such an integral part of the mathematical terminology that it is justified to
consider them as quasi-synonyms of the concepts evoked by the entities to which they refer.

Motivated by the systematism in metonymic references to mathematical expression subparts,
we encodemetonymy rulesas part of the domain model. The rules enable interpretationof
utterances with certain sortal restriction violations by encoding domain-specific reinterpretions
of concepts evoked by certain lexemes. This approach is analogous to the rule-based approach
to metonymy proposed by Fass (1988), except that here the rules are strongly domain-specific.

Table 6.13 shows examples of the reinterpretation rules encoded based on phenomena found
in our two corpora. The first rule means that the conceptSIDE (left or right) may be alternatively
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interpreted as referring to a left or right term, respectively, of an expression in the previous
discourse (as in “the left side is equal to . . . ”). The topographical properties of mathematical
expressions are encoded as features of nodes of the parsed mathematical expressions (see above);
thus an expression with the given property can be found by analysing mathematical expression
parse trees. The second rule means thatBRACKET can be interpreted to refer to a term enclosed
in brackets (as in “the inner parenthesis is equal to . . . ”); again presence or absence of bracketing
is marked as a feature of mathematical expression tree nodes. The next two rules mean that an
OPERATORcan be interpreted as a term headed by the given operator (as in “for the complement
we have . . . ”) and that anOBJECT TYPEcan be interpreted as a term headed by an operator which
builds an object of the given type. The last rule means that a property can be interpreted as the
object which has a given property (as in “for the left side it holds that . . . ”). Multiple rules can be
applied in the course of reinterpretation until a concept ofa matching type is found. For example,
the nominal reference “diese(r) Menge” (this set) referring to the expression(S ∪ R) ◦ S−1 in
the example (100) earlier in this section (page 198), can be resolved by applying ruleTERM

HEADED BY OPERATOR OF TYPE OBJECTfor OBJECT.

6.4 Cooperative correction of mathematical expressions

In Section 3.2.1.5 we showed examples of flawed mathematicalexpressions constructed by the
students (Table 3.3). We categorised the errors (Table 3.2)and identified their possible sources
(Table 3.4). In principle, in a dialogue environment, clarification subdialogues could be initi-
ated to point out imprecise wording or errors, and to elicit clarification or correction, respec-
tively. Clarification subdialogues may, however, turn unwieldy making the dialogue tedious
which would be particularly undesirable when the problem solving skills of the student are oth-
erwise satisfactory. A better solution would be to attempt to cooperatively correct what appears
to be an error, or to resolve ambiguity, while allowing the student to concentrate on the higher
problem solving goal itself.

Using domain knowledge and reasoning, proof contributionsmay be evaluated for correct-
ness. However, finding the intended reading of erroneous or ambiguous statements and the
decision as to whether the flawed statement should be corrected by the student is pragmatically
influenced by factors such as the student’s knowledge of the domain concepts and their prior
correct use, correct use of the domain terminology or contextual preference for one reading over
the others. On the one hand, in a tutoring context, it is important to recognise the student’s inten-
tion and knowledge correctly. On the other hand, however, itis also important not to distract the
student by focusing at all low-level errors. In the most “accommodating” approach, erroneous
and ambiguous expressions evaluated as correct in one of thereadings could be accepted without
requiring clarification on the part of the student, thus making the dialogue progression smooth
and maintaining focus on problem solving. As we already pointed out earlier, the tutors did not
tend to focus on low-level errors and accepted proof contributions even with flawed notation.

In order to facilitate the kind of cooperativity, we developed a strategy for flexible mathemat-
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ical expression analysis and correction. When a malformed mathematical expression is encoun-
tered, we attempt to identify and correct type errors and logical correctness errors. The goal
in this approach is to delay clarification, while making surethat the student’s intentions remain
tractable. The ultimate decision whether to accept an erroneous or ambiguous utterance (a strat-
egy suitable for competent students) or whether to issue a clarification request for the student to
disambiguate the utterance explicitly is left to the tutoring component (recall the overview of the
overall system presented in Section 1.2).

The correction strategy we tested is based on introducing informed modifications to erroneous
expressions with the goal of finding the plausibly intended correct form. The highest-ranked
well-formed hypothesis generated by the algorithm is assumed to be the intended expression
and it is interpreted in the problem-solving context, so that its correctness and relevance can
be addressed, while the fact that the expression was malformed can be merely signalled to the
student by pointing at the error. Finding meaningful modifications of a malformed expression
is guided by the expression’s error category. With each error category shown in Table 3.2 we
associate a set of replacement rules and apply these rules toa malformed expression with the goal
of improving its status as a result of the modification. That is, from a syntactically ill-formed
expression we try to obtain a syntactically well-formed expression and from an expression with
a type mismatch we try to obtain a well-typed expression. Theselection of replacement rules
is motivated by an analysis of possible sources of errors in the erroneous expressions in our
two corpora; see Table 3.4. The correction algorithm and a pilot evaluation are outlined in the
following sections.

Correction algorithm The correction algorithm assumes that mathematical expressions are
parsed by a tree-building algorithm; for experiments we used the same parser as the one we
use throughout this thesis; see Section 5.2.2.3 and the extensions outlined in Section 6.3.2.
For unbracketed operators of the same precedence, all possible bracketings are considered (for
instance,A∪C ∩B is ambiguous between(A∪C)∩B andA∪ (C ∩B)). For every tree node,
the parser stores information on whether the subtree headedby the given node was bracketed in
the original string, and whether the types of arguments are consistent with the expected types.
The output of the parser is the formula tree with nodes markedas to type compatibility and
bracketing where applicable.

Erroneous expressions are systematically modified by applying operators considered suitable
for removing the reported error. The resulting new expressions are categorised by consulting the
formula analyser and, if needed, a reasoner for checking thenew expression’s correctness. Since
the latter may be an expensive step, the generated hypotheses (candidate corrected expressions)
are ranked and tested in the ranking order. The process can beterminated at an intermediate
stage if calls to the reasoner are becoming too costly. The overall process can also continue
iteratively if needed, resources permitting.

The hypotheses are ranked using the three ordered criteria:(1) the error-related category of the
modified formula, (2) the number of operators applied so far to obtain the current hypothesis,
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/* 1. Collect operators */
case<Category ofExpression>
3 : Hypotheses←<List of alternative analyses collected inExpression>

gotoEvaluate-and-check-validity
2 : Operators← OperatorsCategory2

1 : Operators← OperatorsCategory1

end case
Hypotheses←<Result forExpression>

/* 2. Iteratively apply operators to the original expression */
Iterate:

forall <Hypothesesnot yet modified>, Operatorsdo
New-expressions←<Apply Operatorto Hypothesis>
forall <New-expressions> do

if not Trivial(<New-expression>) then
Parse(<New-expression>)
Hypotheses←<Results of parsingNew-expression>

end if
end forall

end forall

/* 3. Decide if continuation needed/affordable */
Evaluate-and-check-validity:

<Compare new expressions inHypotheseswith expressions inContext>
<SortHypothesesby score>
forall <Hypothesesnot yet modified> do

while not <Limit> do
if <Category ofHypothesis>= 1 then

if <Hypothesisevaluated as correct by reasoner> then
<Category ofHypothesis>← 0

end if
end if

end while
end forall
<SortHypothesesby score>
if not <Category of topHypothesisimproved>

and not <Limit> and <New modified expressions built>
and not <Category of originalExpression> = 3 then
goto Iterate

end if
return Hypotheses

Figure 6.5: Pseudo-code of the correction algorithm
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and (3) the structural similarity of the hypothesis to the expressions in the previous context.
Similarity of two expressions is approximated by counting the instances of common operators
and variables. The context consists of the goal expression,the previous proof step, and possible
follow-up steps generated by the reasoner.

The pseudo-code of the algorithm is shown in Figure 6.5. The algorithm has two parameters:
the originalExpression(parsed by a mathematical expression parser) and a set of expressions
representingContext. An expression can be of one of four categories: Category 1 isa logical
error (an expression is well-formed and well-typed, however, a weaker or stronger statement is
expected), Category 2 is a semantic error (an ill-typed expression), Category 3 is an ill-formed
expression, and Category 0 is a valid correct expression. The procedure consists of three parts.
In the first step, for ill-typed expressions operators associated with the error category are se-
lected. In the second step, replacement operators – see Table 3.4 (page 85) – are applied to the
original formula, possibly at multiple places. The application of operators addressing ill-typed
expressions is limited to those places where the parser reported a type error. New expressions re-
sulting from each replacement are collected inHypotheses, excluding results consideredTrivial
(for instance, an equation with identical left and right sides or applications of idempotent opera-
tors to identical arguments), and their error category is returned by the mathematical expression
parser (Parse). In the third step, the hypotheses are assessed in a two-pass evaluation. First, sim-
ilarity to the expressions inContextis computed. For expressions which were originally false
statements, a call to the reasoner is made. Since the latter can be expensive, the expressions ob-
tained by applying operators are ordered according to contextual similarity, prior to invoking the
reasoner. The evaluation of the ordered list of expressionscan be stopped anytime if resources
are exhausted; this criterion is encapsulated in the condition <Limit>. The procedure termi-
nates when the problem is solved, that is, the category of some modified expression is improved,
when no more operators can be applied, or when resources are exceeded. If one of these cases
holds, the ordered list ofHypothesesis returned; otherwise, applying the selected operators is
repeated interactively to the newly created expressions. Several limits on resources involved
can be considered, including: (i) maximum number of modifiedformulas created, (ii) a time
limit (checking correctness of an expression can be time consuming), (iii) number of calls to the
reasoner, (iv) a limit on the number of errors addressed (or operators to be applied).

Evaluation A preliminary evaluation of the proposed correction algorithm has been con-
ducted. Only ill-typed expressions and false expressions were considered in the evaluation.
The algorithm was tested on a sample of erroneous expressions from the corpora and on a larger
set of expressions into which errors of the above-mentionedcategories were introduced in a
controlled fashion.

Evaluation data The evaluation data stemmed from two sources: a set of recurring erroneous
expressions from the corpora (Corpus) and a set of expressions obtained by systematically intro-
ducing errors to valid expressions, according to our categories (Constructed errors). TheCorpus
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6 Modelling selected language phenomena in informal proofs

Table 6.14: Results of formula correction

Evaluation data set Unique result Ambiguous Target in top 10
Corpus 2 6 6
Constructed errors 0 100 64

data set contained 8 most representative cases of the kinds of errors which occurred in the data.
Multiple occurrences of similar expressions were not included; by “similar” we mean expres-
sions of the same structure which differ only by the identifiers. Constructed errorswere created
in the following way: First, from the corpus we extracted valid formulas which occurred in proof
contributions evaluated by the tutor as correct; there were71 unique expressions. Then, for each
of these we generated a set of erroneous expressions by systematically changing the operators
and identifiers according to error categories. For practical reasons, we introduced at most two
errors into one expression in order to make the correction task manageable. For example, for
the valid expressionA ∩ B ⊆ P (A ∩ B) we generate, among others, the following erroneous
expressions:

Dual operator errors A∪B ⊆ P (A∩B)
A ∩B ⊆ P (A∪B)

Confused operator errorsA∩B ∈ P (A∩B)
A∩B ⊆ K(A∩B)
A∩B ⊆ P (A∩P ) (two errors)

Confused identifiers A∩P ⊆ B(A∩B)
A∪P ⊆ P (A∩B) (two errors)
X∩B ⊆ P (A∩B) (where X stands for an arbitrary identifier

not in context to simulate a typographical
error)

From the generated set of erroneous expressions, we built the Constructed errorsdata set for
evaluation by randomly selecting 100 in which the number of operators was between 3 and 10.

The choice of the two data sets was motivated by complementary factors: TheCorpussample
is intended to give an insight into the algorithm’s effectiveness when applied to authentic errors.
This sample is however very small, 8 instances. TheConstructed errorssample is intended to
assess the prospect for the algorithm based on a larger set oferrors of the same type.

Limits applied In order to carry out formula modifications within feasible resources, we ap-
plied two limits: (i) to keep the set of generated hypothesesmanageable, the number of consid-

208



6.4 Cooperative correction of mathematical expressions

Table 6.15: Results of hypothesis generation forConstructed errorsdata set

Evaluation measure Min Max Mode
Number of hypotheses generated 5 38 18
Position of target expression in hypothesis list 1 18 14

ered errors was restricted to two at most in one formula (thislevel of complexity accounts for
most of the errors that occur in the corpus), (ii) the calls tothe reasoner were limited to five since
this is the most expensive part of the algorithm; we prefer this qualitative criterion over a time
limit criterion because the results are not influenced by theimplementation of the reasoner.

Results The results are summarised in two tables. Table 6.14 shows the overall performance
in terms of the number of corrected expressions for which a single correct hypothesis was found
(Unique), those for which multiple hypotheses were found (Ambiguous), and the number of
cases where the target expression was among the top 10 rankedcandidates. Table 6.15 shows
two results for the larger evaluation set: a measure of effort required for generating corrections
in terms of the number of generated hypotheses and the position of the intended formula in
hypotheses list. Mode is the modal number. Note that the top position in the list does not imply
that a unique solution is found since multiple candidates may obtain the same final rank.

Discussion The results show that automating formula correction is a non-trivial task. For an
objective sample of complex expressions with errors (threeto ten operators, up to two errors per
expressions) the algorithm was able to place the intended expression in the top ten hypotheses
in 64% of the cases. However, there is no guarantee that further evaluation of the top candi-
dates by a reasoner yields a unique candidate. The two unambiguously corrected expressions
from theCorpussample (see Table 6.14) were very simple and only one change of an incorrect
operator was applicable. The results on theConstructed errorsdata set show that both the hy-
pothesis generation needs an improvement (large range of generated hypotheses) and the ranking
(most targets below top-10 ranked hypotheses). Error analysis suggests that three factors could
contribute to results improvement: exploiting the reasoner further (for instance, by querying for
further formulas entailed by the formulas in context; this would of course require a reasoner with
proof automation), adding more contextual information (for instance, analysing the kinds of er-
rors which a learner previously made), and improving the similarity calculation (incorporating
information on structural similarity, rather than just identifier overlap).
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6 Modelling selected language phenomena in informal proofs

6.5 Summary

As we have shown in Chapters 3 and 4 and contrary to expectation, students’ mathematical lan-
guage is rich in interesting phenomena and diverse in terms of patterns of verbalisation. Only a
subset of all the linguistic phenomena can be addressed within a scope of one thesis. In order
to show the general feasibility of provisioning language processing capabilities for a tutorial
dialogue system for proofs, in this chapter we opted for the breadth of coverage, addressing a
wide range of phenomena, rather than focusing on a narrowly defined linguistic problem and
modelling it in depth. For the same reason, we chose to address subsets of phenomena at dif-
ferent levels of computational input analysis: syntactic,semantic, and discourse, guided by two
criteria: frequency of occurrence in the corpora and complexity of computational modelling.

Among the basic phenomena which need to be modelled and whichfrequently recur in our
corpora are those related to the syntactic properties of theinput language and its peculiarities due
to the mathematical domain. We have shown how we model basic German syntax in combina-
tory categorial grammar and gave a categorial account of informal mathematical language with
embedded formal notation, including its idiosyncratic domain-specific language constructions.
At the semantic level we focused on linguistic imprecision and ambiguities in interpretation
which it entails. We have shown how a lexical resource, a semantic lexicon, can be exploited
to link imprecise concepts with domain concepts via a linguistically-motivated domain ontol-
ogy. The step-wise interpretation process is well-motivated in that it reflects the observations
on how mathematical objects are conceptualised in the course of learning (see Section 3.2.2.4).
Among complex discourse phenomena, we model a contextual operator, “the other way round”,
which frequently occurs in spontaneous speech and which hasbeen also found in our corpus
data. Both the semantic lexicon and the transformations employed in “the other way round”
reconstruction exploit the dependency structures which weuse to represent natural language se-
mantics. This supports our choice of tectogrammatical representation of meaning, proposed in
Chapter 5, as an appropriate level of abstraction for modelling a range of semantic phenomena.
Also at the discourse level, we analyse reference phenomenaand show how to extend our do-
main model to account for indirect reference specific to mathematical discourse. Finally, we test
our observations on common errors in mathematical expressions (outlined in Section 3.2.1.5) in
a preliminary error correction method whose purpose is to support cooperative interpretation.

Our approach in this chapter has been mainly qualitatively oriented and served the objective
of showing feasibility of computational interpretation bythe range of phenomena addressed. We
showed implemented proof of concept models or performed corpus-based studies as preliminary
step towards computational implementation. Evaluations have been of small-scale, pilot charac-
ter. As is clear from this chapter, the semantic interpretation methods we propose depend mainly
on hand-crafted resources (grammars, lexica, ontologies,rules) and the methods employed are
deterministic in nature. Crucial is, however, that input can be parsed. In order to gain insight
into the prospects for larger-scale computational interpretation, in the next chapter we perform a
quantitative evaluation of the parser component, the element of the architecture on whose output
semantic interpretation relies.
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7
Prospects for automated proof tutoring

in natural language

This chapter reports on evaluation experiments designed with the goal of assessing the potential
of deep processing resources for computational understanding of students’ mathematical lan-
guage and drawing conclusions about the prospects for natural language interaction for German
dialogue-based proof tutoring systems. We focus on the coverage of the parsing component
which is the key part of the proposed input interpretation architecture (Chapter 5). Existing
corpora of learner proofs (Chapter 2) are used as data for an intrinsic evaluation of the parser’s
performance. Before presenting the results, we motivate the choice of the evaluation methodol-
ogy, the scope of the evaluation, and the design of the experiments.

7.1 Methodology and scope of the evaluation

Holistic approaches to evaluating tutoring systems use empirical methods – laboratory or field
experiments – to show a relationship between an intervention involving computer-based instruc-
tion and the students’ outcomes (Mark & Greer, 1993; Self, 1993; Baker & O’Neil, 1994). The
Stanford tutoring systems, including the proof tutoring environments, have been evaluated in
this way since the 60s; see, for instance, (Suppes & Morningstar, 1972; Suppes, 1981). Such
“end-to-end” evaluations presuppose, of course, that a complete implemented system exists and,
what is important, that it is robust enough to handle new datain a live study. If a complete sys-
tem is not available, partial Wizard-of-Oz experiments (see Section 2.2) may serve as a setting to
evaluating parts of a larger system while simulating the components which cannot be integrated.
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7 Prospects for automated proof tutoring in natural language

The project of which this thesis has been part focused onbasicresearch questions in modern
technology for dialogue-based tutoring of mathematical proofs rather than aiming at a deploy-
able system. Severalproof-of-conceptstudies have been conducted within the project in order
to assess the validity of the proposed methods on a component-by-component basis. These in-
cluded: tutoring strategies (Tsovaltzi, 2010), fragmentsof the dialogue model (Buckley, 2010),
granularity judgment models (Schiller et al., 2008), and recently also proof representation and
reasoning (Autexier et al., 2012). Integrating the proof-of-concept modules into a working ex-
perimental system would be an interesting task in itself, but it is outside of the scope of this
thesis. At the present state, even in a partial Wizard-of-Ozsimulation most of the anticipated
system’s functionality would have to be taken over by a humanfacilitator, making the experiment
logistically complex and costly. Therefore, instead, in this work we follow the same method of
component-based evaluation and useintrinsic criteria to evaluate deep-parsing German CCG
fragments based on the corpora we have collected.

Intrinsic evaluation (Galliers & Jones, 1993) focuses a component’s objective, rather than its
role in a larger setup (extrinsic).1 Precision and recall are often used as measures in intrinsic
parser evaluation; see, for instance, (Grishman et al., 1992; Mollá & Hutchinson, 2003; Carroll
et al., 2003). An evaluation which is closest to ours in termsof the application domain has been
performed by Dzikovska et al. (2005). The authors report 62%coverage and 68% precision
results for syntactic and semantic parsing of the LEACTIVEMATH corpus of English tutorial
dialogues on differentiation (Callaway et al., 2006).2 The results were obtained by manually ex-
tending the lexical base of the TRIPS grammar (Allen, 1995),a wide-coverage parsing resource
for dialogue, to support the LEACTIVEMATH data.

Similarly to the above-mentioned work, we use the Wizard-of-Oz corpora (Chapter 2) to in-
vestigate the growth of parsing coverage with an increasingsize of grammar resources as well
as the amount of parse ambiguity generated by the grammars. Note that in a step-wise deep pro-
cessing approach based on manually constructed lexicalised resources and without robustness
features, parsing is the critical part of the input interpretation component: If the parser fails,
domain-specific interpretation, the next step of the processing pipeline (Chapter 5), cannot pro-
ceed. Once a parse is found, assigning a domain-specific reading is a deterministic (rule-based)
process. Grammar coverage is thus critical to the usabilityof a system based on deep semantic
processing. Therefore, in order to assess the outlook for deep processing-based interpretation,
we focus on the performance of the manually constructed parsing grammars.

The experiments we conduct are restricted to two types ofProof contributioncategories. The
reason for this is two-fold: First, it is the proof-contributing utterances that need a domain
interpretation readable by a reasoning component; the interpretation strategy and the language

1For an overview of parser evaluation methodologies see also, for instance, (Carroll et al., 1998)
2Based on the reported results it is not clear whether utterances or turns (possibly multi-utterance) were parsed

and what proportion of the parsed units were unique verbalisations.
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7.1 Methodology and scope of the evaluation

Table 7.1: Summary of the utterance types distribution.

Utterance type C-I & C-II
Unique / Total

Solution-contributing 465 / 735
Proof contribution 450 / 719

Proof step 407 / 640
Logic and proof-step components 175 / 366
Domain & context 126 / 256
Meta-level description 16 / 186

Proof strategy 29 / 34
Proof status 7 / 29
Proof structure 7 / 16

Meta-level 15 / 16
Self-evaluation 7 / 7
Restart 4 / 5
Give up 4 / 4

Other 231 / 331
Request help 149 / 170
Yes/No 1 / 42
Cognitive state 30 / 31
Politeness/Emotion/Attitude 14 / 24
Discourse marker 1 / 22
Answer 19 / 20
OK 1 / 7
Address 6 / 6
Session 4 / 4
Agree 3 / 3
Self talk 2 / 2

processing methods proposed in Chapters 5 and 6 concentrateon this type of utterances. Second,
the data in the remaining classes is sparse. Recall that in Chapter 4 we classified the learner
utterances into two broad types:Solution-contributingandOther (non-solution-contributing).
The utterance types frequency distribution is summarised in Table 7.1.3 If we exclude sub-
categories ofOther which can be identified by a lexical lookup (Yes/No, OK, andDiscourse
marker) we are left with 8 sub-types of which only four have a frequency above 5% within their
superclass (Answer, Politeness/Emotion/Attitude, Cognitive state, andRequest help). The set of
help requests could be considered for experiments, although, admittedly, 170 instances might
not be a representative sample. While help requests could bealso parsed using deep grammars,
it is evident that this category is linguistically diverse,with mainly idiosyncratic verbalisations
(type-token ratio of 0.88). Thus, grammar-based parsing might not scale. Moreover, since
help requests are not passed to a reasoning engine for evaluation, but can be processed by the
dialogue model directly, an alternative strategy worth exploring would be machine-learning-

3For the full classification see Table 4.6 on page 133.
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7 Prospects for automated proof tutoring in natural language

based classification.4 TheSolution-contributingclass is likewise skewed. Only theProof step
category constitutes more than 5% of the class. Verbalisations of the remaining categories can
be hardly considered representative (theMeta-levelclasses have between 4 and 7 instances and
the remainingProof contributionsbetween 16 and 34 instances). Therefore, the evaluation we
conduct encompasses only proof-contributing utterances,more specifically,Proof contributions
of typeLogic & proof step componentsandDomain & contextas defined in Section 4.3.4.5

7.2 Design

We attempt to answer the following questions: First, beyondthe obvious advantage of principled
compositional semantic construction, is there an advantage to deep processing students’ input
over parsing using resources which are easier to author?6 Second, do the resources scale, that is,
what can we tell about the prospects for natural language as input to proof tutoring systems based
on processing the available data? To this end, we set up an experiment to analyse two aspects
of parser performance:parsing coverage(proportion of parsed utterances from a test set) and
parse ambiguity(number of parses found for a parsed utterance). The experiment consists of
two parts: First, we analyse the growth of coverage in a pseudo cross-validation experiment on
“seen” data (data used for grammar development). Second, weevaluate the performance of the
same grammar resources on “unseen” data (not used for grammar development, a blind set).

It is clear that verbalisations of proof steps are linguistically diverse (type-token ratio of 0.49;
see Table 7.1) and a lot of verbalisations occur only once (48% in theLogic & proof step com-
ponentsclass 84% in theDomain & contextclass; see Figure 4.4 on page 138). Of course,
considering that we build grammars by hand, we could model all the proof step utterances one
by one or focus on specific linguistic phenomena of the Germanlanguage.7 Instead, for this
evaluation, we select utterances to model based on shallow quantitative corpus analysis: we do
not model proof step verbalisations which are entirely idiosyncratic, but use only those verbali-
sations which, upon preprocessing, occurat least twicein the data so far. We will refer to these
subsets of the data as “modelled utterances” or a “development set”.

At each cross-validation step, grammars are built based on modelled utterances stemming
from an increasing number of dialogues (1 dialogue, 2, 3, andso on). The motivation behind
this setup is to simulate a partial Wizard-of-Oz experimentin which the parsing component is
replaced by a human if it fails. In the envisaged scenario, wewould systematically augment
the grammar resources after each experiment session based on the data from the subject who
just completed the experiment, a plausible approach. Sincegrammar development is a time-
consuming task, for efficiency reasons a plausible pragmatic decision in such a setting would be

4If the taxonomy proposed by Wolska and Buckley (2008) were used, this would be a 7-way classification task.
5Meta-level descriptionsare not included for the same reason: at 18 instances the sample is too small. When we

refer to “proof steps” further in this chapter we mean theLogic & proof step componentsandDomain & contexttypes.
6Arguably, writing regular or context-free grammars is lessinvolved than writing resources in richer, more

expressive grammar formalisms, such as HPSG, LFG, or CCG.
7We have shown how we model selected relevant phenomena of German in CCG in Section 6.1.
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to prioritise modelling those verbalisations which are observed to reappear – suggesting thereby
to berelatively more representative of the language– with the view to gradually reducing the
degree of the wizard’s intervention. For instance, one could decide to model utterances which
appeared at least, say, five times in the data collected so far. Given the heavily skewed distribu-
tion of the proof step types (see Figure 4.4 on page 138), in the simulated experiment we set the
frequency threshold at two occurrences for otherwise the development sets would be too small.

In the pseudo cross-validation setup, we parseall the utterances from the modelled set (seen
data) using grammars constructed based on the modelled utterances.8 Notice that unlike in
proper cross-validation, in which data is partitioned intodisjoint development and validation
sets, here the evaluation sets constructed from the modelled utterances contain both utterances
unseen at the given iteration (modelled, but not used to built the grammar at the given step) as
well as seen items (items based on which the evaluated grammars have been built). The purpose
of the evaluation on the modelled sets is to observe therate of convergenceto ceiling results (total
number of modelled utterances) based on data that has been exhaustively encoded in a principled
way (all the utterances from the seen evaluation sets parse into the expected representations).
Next, we use the remaining proof step utterances, the single-occurrence verbalisations (unseen
data), to observe thegeneralisation potentialof the grammar. Analogous incremental evaluation
is performed. The second part of the experiment is thus a proper blind evaluation. In the next
section, the development data, the grammars, and the test sets are presented in more detail.

7.3 Data

Out of the 57 dialogues 42 contain proof steps which overall occurred more than once. The dia-
logues comprise 622 proof step instances, among which, after preprocessing, there are 391
unique verbalisation patterns. 319 of these occurred once,leaving 72 utterance patterns for de-
veloping the evaluation grammar. 10 clearly ungrammaticalutterances were excluded.9 The pat-
tern consisting of a single noun phrase denoting a domain term was also excluded.10 The remain-
ing 61 utterances from 42 dialogues were used as the grammar development set.

7.3.1 Preprocessing

Utterances in the development set were preprocessed as described in Chapter 5. Domain terms
and mathematical expressions have been identified and substituted with symbolic tokens. In
the case of mathematical expressions, the tokens representthe expression’s type (TERM, FOR-
MULA , _FORMULA, etc.), in the case of domain terms, they include grammatical informa-

8Descriptive information on the development and evaluationsets follows in Section 7.3.
9Examples of ungrammatical forms include: “dann gilt fuer die linke seite wenn formula” (main clause of the

embedded sentence missing) or “term gilt demnach wenn formula und formula” (semantic type conflict between the
subject “term” and the predicate“hold”). The grammar can parse the latter utterance once “demnach” is added as a
lexeme to the prepositional adverbs category and if “term” is replaced with “formula”.

10These utterances are preprocessed to a single token,DOMAINTERM, encoded as theNP category, a trivial case.
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7 Prospects for automated proof tutoring in natural language

Table 7.2: Descriptive information on the grammar development set

C-I C-II C-I &C-II
Number of dialogues in the development set 15 27 42
Number of unique utterances 21 56 61
Number of words 80 266 284

Number of unique types 24 54 57
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Figure 7.1: Histogram of the modelled utterance lengths (intokens).

tion about case, number, gender, and the type of article (definite/indefinite/none), for instance,
DOMAINTERM :DEF-SG-F-DAT for a definite, singular, feminine, Dative noun phrase. Two multi-
word units, “genau dann wenn” (if and only if) and “so dass” (such that) have been represented
as single tokens. Table 7.2 summarises the descriptive information about the development set.11

Figure 7.1 shows the distribution of utterance lengths (pattern lengths) in the modelled set.
The majority of utterances from both development sets are between three and five tokens. The bi-
nary relations corpus contains a larger number of longer utterances than the naïve set theory cor-
pus. Considering that this suggests a wider variety of linguistic phenomena in C-II, we expect
that resources stemming from C-II data will provide better generalisation, thus better coverage,
on unseen data than the resources stemming from C-I.

11Note that here and furthertype countsrather than instance counts will be reported. Note also thatwhenever
we use the word “utterance” further in this chapter, we really meanutterance pattern, an utterance preprocessed as
described here. Both terms will be used interchangeably.
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7.3.2 Evaluated grammars

Dialogue utterances from the modelled set have been exhaustively encoded in OpenCCG as
follows: The set of atomic categories in the evaluated grammars comprises the standard four
types: S for sentence/clause types,NP for noun phrases,N for common nouns, andPP for
prepositional phrases. A set of basic categories for mathematical expressions, noun phrases,
common nouns, and articles has been encored as a coreshared lexicon. Dialogue-specific lexica
of syntactic categories covering the phenomena found in themodelled utterances have been
created for each dialogue in the development set. The sharedlexicon, dialogue-specific lexica,
and performance optimisation, are outlined below.

7.3.2.1 Shared lexicon

The following four lexical groups constitute the core set ofcategories available ateachstep of
the iterative evaluation:

Mathematical expressions The grammar encodes three categories for truth-valued mathe-
matical expressions: a sentence/clause type,S, and twoNP\NP types for expressions of type
_FORMULA: one with the “such that” reading, adding the formula’s predication to the logical
form via GeneralRelation, and the other adding a predicate, rather than a dependency relation,
serving as the head of a dependency structure.

Mathematical object-denoting expressions, terms, obtaintwo categories: noun phrases and
common nouns. The former models constructions such as “. . . weil S eine leere Menge ist”
(. . . becauseS is an empty set), while the latter, constructions such as “Es gibt einx . . . ” (There
is anx . . .) or “Es gibt einx ∈ B” (There is anx ∈ B) in which a symbolic expression of type
FORMULA is a part of a phrasal constituent with the preceding naturallanguage material (here,
part of a noun phrase).

Mathematical function and relation symbols embedded within natural language text obtain
both clausal and nominal reading, the latter to account for constructions such as “wegen Dis-
tributivitaet von◦” (because of distributivity of◦). Partial expressions (such as “∈ A”) obtain
appropriate functional categories (“∈ A”, preprocessed to _FORMULA, is of typeNP\NP ).

Noun phrases The noun phrase group comprises three categories: two atomic, NP , denoting
object types (contribute LHDS predicates) and expletive uses of singular third person neuter
pronoun “es” (not represented in the logical form). The third noun phrase category,NP/NP ,
encodes appositive constructions and adds anApps(appositive) relation to the logical form.

Common nouns A single atomic common noun category,N , models bare nouns and mathe-
matical terms.

Articles Articles are modelled with the standard categoryNP/N .
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Figure 7.2: Distribution of modelled and non-modelled utterance patterns; sorted by corpus
and number of modelled patterns. The horizontal lines denote the range
of the number of parses found for the modelled utterances in the given dialogue.

Table 7.3: Verbalisations with multiple CCG parses in the grammar development set

Utterance pattern No. of parses
also giltFORMULA undFORMULA 2
dies aber heisstFORMULA undFORMULA 2
FORMULA genaudannwennFORMULA undFORMULA 2
also giltFORMULA undFORMULA 2
laut DOMAINTERM gilt dann auchFORMULA 2
daFORMULA gilt nachDOMAINTERM formula 3
also ist term in term oder term in term 3
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7.3.2.2 Dialogue-specific lexica

Aside from the shared categories included in all grammars, dialogue-specific grammars encode
only the categories required to cover the modelled utterances found in the given dialogue. An
overview of our approach to modelling basic linguistic phenomena in the corpora has been
presented in Section 6.1. The same syntactic categories have beenconsistently reusedacross
dialogue-specific lexica when the syntactic contexts allowed that, in order to ensure thatthe same
phenomena are modelled the same way across dialogues, thus minimising spurious ambiguity
due to alternative encoding in the grammar.

7.3.2.3 Baseline

The performance of the CCGs is compared with the performanceof context-free grammars (CFG)
developed in an analogous setup. The CFGs were created usingthe NLTK toolkit (Loper &
Bird, 2002) and parsed with the NLTK’s Earley chart parser. The expectation is that the CCGs’
lexicalised model provides better generalisations than the CFGs’ and, as a consequence, better
coverage. However, this generalisation power is likely to come at a cost of parsing ambiguity:
we expect more ambiguous analyses with the CCG parser than with CFG.

7.3.2.4 Performance optimisation

Figure 7.2 shows the distribution of the modelled and non-modelled utterance patterns and the
range of the number of parses per dialogue in the developmentset. Note that the x-axis shows the
number ofdistinctutterances (pattern types) andnot of utterance instances (of which there were
more than one instance in the case of all the patterns in the development set; see Section 7.2).

The performance of both CCG and CFG grammars was optimised onper dialoguebasis: All
the utterances were encoded in such way that, per dialogue,the expected (semantic) representa-
tions are correctly produced by the parserand thatthe number of parses for the reading intended
in the given dialogue is maintained at minimum.

While most of the utterance patterns have been encoded in such way that they produce a single
parse (see Figure 7.2) the grammars do produce valid alternative derivations of a few utterances
in the development set. In the case of CCG (and MMCCG) multiple derivations of an input string
are produced if a lexeme can be instantiated with multiple syntactic categories or if alternative
applications of combinatory rules are possible.12 There is a larger number of ambiguous parses
in the binary relations corpus than in the naïve set theory corpus (the second corpus contains
longer and more complex utterances; see Figure 7.1).

Utterances which yield more than one parse are listed in Table 7.3. Multiple parses are gener-
ated by ambiguous coordination which can be interpreted as taking wide or narrow scope, by a
combination of coordination scope and preposition attachment or adverbial modification (“auch”
(also), “nun” (now), etc.), or by structurally ambiguous clausal scope. The three readings of the

12Alternative compositionally ambiguous parses may, however, produce equivalent logical forms.
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utterance “daFORMULA gilt nach DOMAINTERM FORMULA” are: ((daFORMULA) (gilt nach
DOMAINTERM FORMULA)), ((da FORMULA gilt) ((nach DOMAINTERM) (FORMULA))), and
(((da FORMULA gilt) (nachDOMAINTERM)) (FORMULA)). The latter two are artefacts of con-
structions of type “FORMULA gilt nach DOMAINTERM” ( FORMULA holds byDOMAINTERM)
and “nachDOMAINTERM FORMULA” (by DOMAINTERM FORMULA) for which different prepo-
sition categories are needed.

Plausible alternative parses in the development set, illustrated above, were preserved. Other-
wise, derivations were controlled in a standard way throughfeatures and modes on slashes of
the multi-modal CCG. The full grammar covering the modelledutterances from both corpora
consists of 65 distinct complex syntactic categories grouped into 19 lexical families (sets of
categories of syntactically related lexemes).

7.3.2.5 Grammar development sets used in evaluation

Dialogue-specific CCGs built for the modelled utterances from each of the 42 dialogues have
been grouped into four evaluation resources:

1. C-I resources: model C-I dialogues,

2. C-II resources: model C-II dialogues,

3. C-I &C-II in the data collection order (dco): C-I dialogues added first, followed by C-II
dialogues,

4. C-I &C-II in a random order (ro): C-I and C-II dialogues combined in randomised order.

Case (1) simulates the situation in which only C-I data were available, case (2) the situation
in which only C-II data were available, and cases (3) and (4) represent the setting with both
corpora available, with case (3) corresponding to the chronological order of our Wizard-of-
Oz data collections, on the one hand, and, more importantly,the distinction between the two
mathematical domains of the data collection experiments, on the other.

At each cross-validating iteration, grammars are augmented by adding resources needed for
parsing all the modelled utterances from the dialogue included at the given iteration step (see Fig-
ure 7.2). The added resources comprise entirelexical families, that is, all the seen syntactic cat-
egories for the lexemes occurring in a given modelled utterance. A more conservative approach
would be to include only the one category which models the specific syntactic context appearing
in the given utterance. This, however, would result in evaluation grammars over-tuned for the
specific utterances added to the evaluation at a given step and would not give an insight into the
generalisation potential of the CCG grammars.

Considering the conclusions from the quantitative analysis presented in Chapter 4, which
showed, at a shallow level, that the language in C-I and C-II differs strongly, we expect the
grammar based on C-I and C-II data combined in random order, that is mixing the resources
from the two corpora (C-I &C-II-ro) to yield the best performance.
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7.3.3 Test sets

Performance of the four evaluation resources is tested on modelled utterances and non-modelled
within-vocabularyutterances grouped into “seen” and “unseen” test sets:

1. C-I-seen, C-II-seen, and C-I &C-II-seen: comprise modelled utterances from C-I, C-II,
and C-I and C-II combined, respectively,

2. C-I-unseen, C-II-unseen, and C-I &C-II-unseen: comprise non-modelled utterances
from C-I, C-II, and C-I and C-II combined.

While the seen test sets do contain utterances based on whichthe grammar has been built, in
the incremental setup, at each iteration only the lexical categories needed forthe given number
of dialoguesare used. Thus, at each iteration of the “seen” evaluation, the grammar is tested
on data from which the lexical categories stemmedand on the remaining data from the seen
set which at the given iteration step is effectively unseen.Only at the final iteration step is the
evaluation performed on seen data alone.

The unseen test sets consist of proof steps which occurred only once in all the 50 dialogues
which do contain proof steps. 7 clearly ungrammatical utterances have been excluded. Only
within-vocabulary utterances, relative to the complete development sets, have been included in
the unseen test sets since parsing utterances with out-of-vocabulary (oov) words fails trivially.13

The resulting unseen data set contains 114 utterances in total.
Figure 7.3 shows the distribution of utterance lengths in the blind sets. Not surprisingly,

by comparison with the modelled utterances (cf. Figure 7.1), single-occurrence utterances are
longer, that is, more complex. We thus expect a significant drop in coverage by comparison
with the seen data. Table 7.4 summarises descriptive information on both test sets. 10 cross-
validation rounds on different random permutations of the development dialogues are performed
at each iteration step.

7.4 Results

The results are summarised in four parts: First, we look at the coverage. Growth of coverage with
an increasing number of dialogues is plotted per grammar resource. Variance of measurements
obtained in the 10 cross-validation rounds is presented as box plots.14 Subsets of numerical re-
sults – at 25%, 50%, 75%, and 100% of the data set – are statistically compared. The asymptotic
Mann-Whitney-Wilcoxon U test, adjusted for ties, (α=0.05) was used due to a relatively small

13In a basic deep-grammar parsing setup with no robustness measures, as performed here, oov words are not
supported, that is, the parser fails. Note that in the incremental setup, evaluation on the incomplete seen sets will also
cause parser failures due to oov words; parser failure ratesdue to oov words will be reported.

14The same type of box plots are used throughout: hinges at Q1 and Q3, Tuckey whiskers (outliers outside
1.5*IQR), sample means marked with circles.
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Table 7.4: Descriptive information on the test sets

Seen data Unseen data
C-I C-II C-I &C-II C-I C-II C-I &C-II

Number of utterance patterns 21 56 61 22 92 114
Number of words 80 266 284 98 605 703

Number of types 24 54 57 26 48 49
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Figure 7.3: Histogram of the unseen utterance lengths (in tokens).

number of observations and because parametric assumptionswere violated for most of the com-
pared distributions. Parse failures due to vocabulary outside the lexicon (out-of-vocabulary error
rates) are summarised. The analysis is performed for the seen data (Section 7.4.1) and the unseen
data (Section 7.4.2). Next, parse ambiguity based onfull grammars is plotted (Section 7.4.3).
Finally, the overall performance of the CCG parser is summarised as percentage of test sets
parsed and percentage of proof-contributing utterances parsed per dialogue (Section 7.4.4).

7.4.1 Coverage on seen data

Growth of coverage on seen data is shown in Figure 7.4. The rows show the evaluated resources
and the columns the results for the three test sets. Ceiling values are marked with dashed hori-
zontal lines: 21 for C-I-seen, 56 for C-II-seen, and 61 for C-I &C-II-seen data.
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Figure 7.4: Growth of coverage on seen data.
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Table 7.5: Mean coverage on the seen data in percentage of test set parsed.

Grammar
development
set

C-I-seen C-II-seen C-I &C-II-seen
(N=21) (N=56) (N=61)

CCG CFG CCG CFG CCG CFG

C-I
(nd=15)

25% 46.19(13.31) 35.71 (9.82)16.43 (6.07) 10.18(4.30)19.34 (6.42) 13.11(4.15)
50% 70.48(10.61) 55.24 (8.83)29.64 (5.88) 16.96(4.32)33.28 (6.09) 20.66(3.89)
75% 90.48 (7.68) 80.00 (7.00)41.61 (5.36) 26.25(2.77)45.57 (5.72) 30.98(2.88)

100%100.00 (0.00) 100.00 (0.00)48.21 (0.00) 33.93(0.00)52.46 (0.00) 39.34(0.00)

C-II
(nd=27)

25% 71.90(10.74) 37.62(11.75)61.43(12.17) 39.46(9.66)59.51(12.25) 36.23(8.87)
50% 87.14 (3.05) 57.62 (8.64)83.39 (3.39) 63.57(7.91)80.98 (3.30) 58.36(7.27)
75% 90.00 (1.43) 72.38 (3.56)94.46 (3.87) 86.25(5.93)91.48 (3.58) 79.18(5.44)

100% 90.48 (0.00) 76.19 (0.00) 100.00 (0.00) 100.00(0.00)96.72 (0.00) 91.80(0.00)

C-I &C-II
dco

(nd=42)

25% 80.95 (9.78) 73.81 (9.10)35.32 (5.04) 25.54(3.10)38.62 (5.94) 29.02(3.81)
50%100.00 (0.00) 100.00 (0.00)69.25 (5.76) 52.32(3.49)71.77 (5.29) 56.23(3.20)
75%100.00 (0.00) 100.00 (0.00)87.30 (5.29) 78.21(7.04)88.34 (4.85) 80.00(6.47)

100%100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00(0.00) 100.00 (0.00) 100.00(0.00)

C-I &C-II
ro

(nd=42)

25% 82.86 (9.33) 64.76 (9.33)63.93 (7.35) 43.39(6.87)63.61 (7.32) 43.44(5.92)
50% 93.33 (3.81) 83.81 (6.80)81.96 (5.78) 65.00(8.83)81.31 (5.35) 64.75(8.43)
75% 96.19 (2.86) 94.76 (2.56)88.57 (3.68) 81.79(7.18)88.20 (3.72) 81.80(6.58)

100%100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00(0.00) 100.00 (0.00) 100.00(0.00)

Two general trends can be observed from these visualisations: First, on average, in all the
cases the CCG grammars converge to ceiling values faster, that is, as expected, generalise better.
Second, at around 50% of all the data sets, the performance ofboth grammars is characterised by
substantial variance, that is, performance is strongly dependent on which dialogues are included
in the data set. (Recall that thedialogues, not utterances, in the development sets have been
sequenced randomly into 10 permutations.) This confirms theprevious observation, formulated
based on shallow analysis in Chapter 4, that the proof language is indeed diverse and differs
from subject to subject; consequently, the individual subjects’ data require different lexica or
phrase-structure rules. As a result, the rate of convergence is also strongly dependent on the
content of the development set. Moreover, the variance of the CCG results appears greater than
that of the CFGs’, which means that the convergence rate of the CCG parser is more unstable
and more sensitive to changes in the data based on which the grammar is built.

Not surprisingly, grammars based on C-I alone yield the poorest performance. C-I CCGs
tested on seen C-II data do not reach the coverage of even 50% (the final C-I grammar parses
27 utterances on average out of 56). This is not surprising since the C-I resources are built based
on only 21 utterance patterns (see Table 7.2) which are moreover shorter than the utterances
found in C-II (as shown in Figure 7.1). Grammars based on C-IIyield better performance. The
complete C-II CCG misses only two utterances from C-I. Around 50% into the development
set, C-II CCGs cover at least around 80% of all of the test sets. The combined resources reach
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Table 7.6: Mean proportion of parse failures due to oov wordson seen data

Grammar
development
set

C-I-seen C-II-seen C-I &C-II
-seen

(N=21) (N=56) (N=61)

C-I
(nd=15)

25% 0.53 (0.12) 0.82 (0.07) 0.79 (0.07)
50% 0.35 (0.10) 0.68 (0.06) 0.65 (0.06)
75% 0.14 (0.05) 0.58 (0.04) 0.54 (0.04)

100% 0.00 (0.00) 0.50 (0.00) 0.46 (0.00)

C-II
(nd=27)

25% 0.34 (0.11) 0.39 (0.11) 0.40 (0.11)
50% 0.18 (0.04) 0.16 (0.04) 0.19 (0.04)
75% 0.12 (0.03) 0.05 (0.03) 0.09 (0.03)

100% 0.10 (0.00) 0.00 (0.00) 0.03 (0.00)

C-I &C-II
dco

(nd=42)

25% 0.19 (0.07) 0.61 (0.04) 0.58 (0.04)
50% 0.00 (0.00) 0.28 (0.05) 0.25 (0.05)
75% 0.00 (0.00) 0.10 (0.05) 0.09 (0.04)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I &C-II
ro

(nd=42)

25% 0.17 (0.09) 0.33 (0.09) 0.33 (0.08)
50% 0.07 (0.03) 0.15 (0.06) 0.16 (0.05)
75% 0.04 (0.03) 0.09 (0.03) 0.10 (0.03)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

at least around 70% coverage at 50% of the development sets. As expected, the results based on
resources combined in random order,ro, converge faster than those based on resources built
incrementally in the data collection order,dco. While the dco results exhibit a slow linear
convergence trend for both CCG and CFG, the convergence of the CCG results based onro
resources is clearly superlinear.

Numerical comparisons of parsing performance of the CCG andCFG grammars on seen data
is shown in Table 7.5. Mean numbers of parsed utterances per test set are shown for subsets of
the resources and for the complete development sets (standard deviations in parentheses). The
values ofnd in the first column indicate the actual number ofdialoguesin the complete set. “N ”
are the ceiling values: the number ofutterancesin the given test set. Statistically significant
differences are marked in bold.

In almost all cases the CCG parser statistically outperforms the CFG baseline. In fact, all
the marked differences were significant at a more conservative significance level,α=0.01, than
the one used for comparisons. No statistical difference in the case of C-I &C-II-dco resources
tested on C-I-seen test set is clear: 25% of the C-I &C-II-dcodata set contains already 10 out
of the 15 dialogues in C-I and the ceiling value is reached already 50% into the data set.

Table 7.6 shows the proportion of parse failures due to out-of-vocabulary words. Again, we
see that the full C-I lexicon covers only around half of the C-II and the combined test sets, that
is, around 50% of C-II utterances contain vocabulary which is not in C-I. By contrast, with C-II
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and the resources combined in random order,ro, oov rates drop to at most 19% already when
50% of the data is available and to around 10% at 75% of the development data. The higher oov
error rates, 25-28%, obtained on C-I &C-II-dcoresources are consistent with the corresponding
C-I results: at 50% of the data only 7 C-II dialogues are included in the C-I &C-II-dcodata set.
The oov rates drop to around 10% at 75% of thedcoset, the same level as with the C-I &C-II-ro
set. The majority of parse failures on seen data are thus not due to differences in vocabulary, but
due to different syntactic constructions in the development sets and test sets.

7.4.2 Coverage on unseen data

Growth of coverage on unseen data is shown in Figure 7.5. Ceiling values for the test sets marked
with dashed horizontal lines are at 22 for C-I-unseen, 92 forC-II-unseen, and 114 for C-I &C-
II-unseen. Performance of both the CCG and the CFG grammar isfar from the ceiling values,
however, the trends observed for the seen data are even more pronounced on unseen data.

In all the cases the CCG grammar’s coverage grows faster. TheCCG parser markedly out-
performs the CFG parser on the C-II-unseen and C-I &C-II-unseen test sets. There is more
variance in the performance of the CCG parser than that of theCFG parser on the unseen C-II
data and on the combined set, that is, again, the performance, and thus the rate of convergence
of the CCG results, is strongly influenced by the content of the data set, again pointing at the
diversity of linguistic phenomena. As with the seen data, grammars based on C-I data alone
yield the poorest performance. There is little difference in performance between C-II and C-I
&C-II grammars, which means that the C-I resources do not contribute much to the perfor-
mance on unseen data. This again shows that the language in C-I is substantially different from
the language in C-II.

Numerical comparisons of parsing performance on unseen data is shown in Table 7.7. The
CCG parser consistently statistically outperforms the CFGparser, this time also on the test set
based on C-I data. Both the CCG and the CFG parser performanceis more stable on unseen
data, however, the tendency toward more variance (less stability) in the performance of the CCG
parser than in the performance of the CFG parser can be observed on unseen data as well.

Table 7.8 shows out-of-vocabulary parse failure rates on unseen data. With the complete C-I
lexicon almost half of the parse failures on the unseen data from the same corpus and the majority
of failures on the C-II unseen data and the combined set are due to out-of-vocabulary words.
However, much like in the case of the seen data, C-II grammarsand the grammars combined
in a random order yield only from 10 to 30% oov failures given at least 50% of the resources.
The majority of failures are thus due to syntactic constructions found in the test sets which are
not accounted for by the development data. With the completeC-II resources, all parse failures
are due to this. The high oov rates based on C-I data are reflected in the performance of the
C-I &C-II- dco resources; at 75% of all the test sets around 20% of parse failures based on C-I
&C-II- dco are due to unknown out-of-vocabulary words. The results based on C-I &C-II-ro
data are comparable.
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Figure 7.5: Growth of coverage on unseen data.
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Table 7.7: Mean coverage on the unseen data in percentage of test set parsed.

Grammar
development
set

C-I-unseen C-II-unseen C-I &C-II-unseen
(N=22) (N=92) (N=114)

CCG CFG CCG CFG CCG CFG

C-I
(nd=15)

25% 7.73(6.12) 0.91(1.82) 5.65(3.85) 0.33(0.70) 6.05(4.10) 0.44(0.71)
50%12.73(3.96) 2.73(2.23)10.11(3.44) 0.54(0.88)10.61(3.15) 0.96(1.00)
75%17.27(1.82) 5.00(2.45)14.89(1.46) 1.52(1.00)15.35(1.48) 2.19(0.98)

100%18.18(0.00) 9.09(0.00)16.30(0.00) 3.26(0.00)16.67(0.00) 4.39(0.00)

C-II
(nd=27)

25%17.73(4.29) 3.64(3.96)22.93(8.34) 2.39(2.05)21.93(7.24) 2.63(2.00)
50%21.36(2.08) 7.27(3.02)36.09(5.95) 6.41(2.81)33.25(5.17) 6.58(2.67)
75%22.27(1.36)12.27(2.08)39.78(4.46) 10.22(2.24)36.40(3.83) 10.61(2.13)

100%22.73(0.00)13.64(0.00)43.48(0.00) 11.96(0.00)39.47(0.00) 12.28(0.00)

C-I &C-II
dco

(nd=42)

25%15.45(2.23) 6.36(3.02)13.37(1.62) 2.17(0.84)13.77(1.67) 2.98(1.19)
50%18.64(1.36) 9.09(0.00)26.63(3.71) 4.57(1.52)25.09(3.24) 5.44(1.23)
75%21.36(2.08)11.36(2.27)35.54(5.01) 8.59(2.68)32.81(4.39) 9.12(2.49)

100%22.73(0.00)13.64(0.00)43.48(0.00) 11.96(0.00)39.47(0.00) 12.28(0.00)

C-I &C-II
ro

(nd=42)

25%18.18(2.03) 5.91(3.55)25.87(4.53) 2.93(1.38)24.39(3.82) 3.51(1.71)
50%20.00(2.23) 9.09(2.87)34.67(6.21) 5.76(2.62)31.84(5.44) 6.40(2.48)
75%20.91(2.23)10.91(2.23)37.93(6.20) 9.02(2.01)34.65(5.43) 9.39(2.00)

100%22.73(0.00)13.64(0.00)43.48(0.00) 11.96(0.00)39.47(0.00) 12.28(0.00)

Table 7.8: Mean proportion of parse failures due to oov wordson unseen data

Grammar
development
set

C-I-unseen C-II-unseen C-I &C-II
-unseen

(N=22) (N=92) (N=114)

C-I
(nd=15)

25% 0.71 (0.10) 0.92 (0.04) 0.88 (0.05)
50% 0.59 (0.08) 0.84 (0.05) 0.79 (0.05)
75% 0.49 (0.04) 0.78 (0.02) 0.72 (0.02)

100% 0.41 (0.00) 0.73 (0.00) 0.67 (0.00)

C-II
(nd=27)

25% 0.43 (0.13) 0.61 (0.16) 0.58 (0.15)
50% 0.23 (0.11) 0.29 (0.13) 0.28 (0.12)
75% 0.11 (0.09) 0.14 (0.12) 0.13 (0.11)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I &C-II
dco

(nd=42)

25% 0.49 (0.05) 0.80 (0.03) 0.74 (0.03)
50% 0.32 (0.07) 0.52 (0.08) 0.49 (0.08)
75% 0.12 (0.11) 0.22 (0.11) 0.20 (0.11)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

C-I &C-II
ro

(nd=42)

25% 0.37 (0.12) 0.53 (0.09) 0.50 (0.10)
50% 0.22 (0.10) 0.28 (0.15) 0.27 (0.13)
75% 0.16 (0.07) 0.17 (0.09) 0.17 (0.09)

100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Figure 7.6: Parse ambiguity on seen (top) and unseen (bottom) data

7.4.3 Parse ambiguity

As mentioned in Section 7.3.2.4, the performance of the developed grammars was optimised
for the modelled utterances on per-dialogue basis. The number of parses in the development
set ranged from 1 to 3, with most utterances yielding a singleparse (see Figure 7.2). Now, the
higher generalisation power of the CCGs may come at a price ofparse ambiguity. While in this
work we do not address the problem of parse ranking or parse selection – identifying the most
likely parse – we analyse the distributions of the number of parses on seen and unseen data in
order to assess the complexity of the parse selection problem.

Parse ambiguity box plots are shown in Figure 7.6. On the seendata, the mean number of
CCG parses is around one with a few outliers. The mean number of CFG parses is higher than
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Table 7.9: Summary of percentage coverage and oov rates on seen and unseen data
with complete lexica (coverage/oov-failure-rate).

Grammar
development
set

C-I-seen C-II-seenC-I &C-II C-I-unseen C-II-unseenC-I &C-II
-seen -unseen

(N=21) (N=56) (N=61) (N=22) (N=92) (N=114)

C-I
(nd =15) . 48%/0.50 52%/0.46 18%/0.41 16%/0.73 17%/0.67

C-II
(nd =27) 90%/0.10 . 97%/0.03 23%/0.00 43%/0.00 39%/0.00

C-I &C-II dco/ ro
(nd =42) . . . 23%/0.00 43%/0.00 39%/0.00

the corresponding CCG results for C-II and C-I &C-II grammars when tested on C-I data. The
performance of all grammars on C-II and C-I &C-II test sets isthe same, one parse on average
with a few outliers. The highest number of CCG parses is 6 and is found for a C-II utterance
when parsed with C-II resources. The results show that even though ambiguity was tuned on
per-dialogue basis, there is no dramatic increase in ambiguity when the complete lexicon is used.

The increase in parse ambiguity on unseen data is low; the number of CCG parses ranges
from 1 to 7 (a single outlier), by comparison with the 1 to 2 range of the CFG parser. The
mean number of CCG parses remains between 1 and 2, negligiblyhigher than the CFG result.
The 1 to 6 (seen data) or 7 (unseen data) range of the number of parses is manageable.

7.4.4 Overall performance of the deep parser

Finally, we look at the overall performance of the CCG parserbased oncomplete lexica. Two
summary measures are reported: First, the percentage of test set parsed and the oov rates (sum-
mary of the results presented in Tables 7.5, 7.6, 7.7, and 7.8) and second, the percentage of proof
utterances (in the two analysed categories:Logic and proof step componentsandDomain and
context) parsed per dialogue based on the combined C-I &C-II lexicon.

Table 7.9 summarises overall coverage of the final CCGs by test set. Combinations of develop-
ment-test sets with obvious complete coverage results are marked with a dot.15 On seen data,
the C-II grammar parses almost the entire C-I development set (10% failures due to oov-words)
and thus also almost the entire combined set (3% oov failures). By contrast, the C-I grammar
accounts for merely 50% of C-II and the combined test set. Around half of the parse failures
are due to oov-words. This shows that a lot of phenomena foundin the binary relations corpus
are not present in the set theory proofs, specifically also, C-II has a greater vocabulary size and
the vocabulary is more diverse.

15Thedcoandro grammars are equivalent when the full lexicon is used.
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Performance drops dramatically on unseen data. The coverage of the C-I grammars remains
below 20% for all test sets. 73% of the parse failures on unseen C-II data and 67% failures on
unseen C-I &C-II data are due to oov errors; even on data stemming from the same corpus, the
oov rate is high (41%). C-II grammars and the combined resources, C-I &C-II, account for
barely above 20% of the unseen C-I utterances and 40% of the unseen C-II utterances. Inter-
estingly, C-I resources do not contribute to the coverage onthe combined test set at all; results
for C-II and C-I &C-II are the same. None of the unparsed utterances based on the combined
grammars fail due to oov-words since the unseen data set was built based on vocabulary found
in the combined C-I &C-II development set. Interestingly, the 41% oov rate for C-I resources
on C-I unseen set and the fact that C-II resources yield no failures due oov words suggest that
the C-I corpus is lexically more heterogeneous than the C-IIcorpus; some of the utterances in
C-I-unseen must contain vocabulary not found in the modelled C-I utterances. This is not the
case with the C-II data.

Figure 7.7 shows the histogram of percentage of proof utterances parsed per dialogue based
on the full combined C-I &C-II grammar.All proof step utterances, both seen and unseen, are
included. The data has been binned in 20% intervals. Overall, per dialogue coverage is lower for
C-I than for C-II. The majority of the C-I dialogues are parsed at 40-60% coverage. By contrast,
most of the C-II dialogues are parsed at at least 60% coverage(the majority at 60-80%). More
of the C-I dialogues than the C-II dialogues are completely parsed.
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Figure 7.7: Histogram of percentages of proof utterances parsed per dialogue.
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7 Prospects for automated proof tutoring in natural language

7.5 Conclusions

The results let us draw conclusions along two dimensions: the potential of semantic grammars
and the properties of the data. First, we have shown that hand-crafted semantic resources based
on combinatory categorial grammars outperform baseline context-free grammars on the cover-
age measure while remaining at a manageable ambiguity level. Second, we have shown that the
language used by students to talk about proofs is characterised by a large degree of diversity not
only at a shallow level of specific phrasing, but also at a deeper level of syntactic structures used.

The key conclusion we can draw is that the time overhead on thedevelopment of semantic
grammars for students’ proofs is beneficial and provided that more time is invested in data col-
lection and grammar development, CCG as a grammar formalismhas a potential of scaling well
in this domain in spite of the unexpected diversity of the language. As previously mentioned, the
coverage results point at the high linguistic diversity between the two corpora – thus between
proofs in the two mathematical domains – manifested both at the lexical and syntactic level.
Recall that for the purpose of the experiments, vocabulary has been normalised with respect to
domain-specific concept names. Thus, the lexical diversitywithin and between the corpora is
not due to domain terminology. Part of the reason for that might be that the binary relations
problems were often solved using proof by cases whereas in set theory simple forward reason-
ing was most common. However, the most frequent statement type typical of proof by cases,
assumption introduction, occurred in only 12 wording variants, of which only three appeared
more than once “Sei . . . ”, “Sei nun . . . ”, and “Sei also . . . ” (Let . . . , Now, let . . . , Let then . . .).

Finally, we believe that the data we have is insufficient, in the sense that it is not representative
enough, for aserious– robust– proof-tutoring system to be implementedat the present stage.
The set of recurring verbalisations is small. This is against the intuition that the language of
proofs should be small and repetitive. The set theory resources do notyetscale sufficiently even
within-domain (C-I grammars tested on unseen data from the same corpus). The binary relations
data scale better within-domain, however, across-domains(C-II resources tested on unseen C-I
data) the difference in performance over within-domain data is negligible (23% vs. 18%, two
utterances). More data would need to be collected. Interestingly, as a side-effect, our results
give a little insight into the data collection methodology in the domain of proofs: Wizard-of-Oz
experiments, logistically complex by themselves and in this case also cognitively demanding
on the wizards, should cover multiple domains of mathematics rather than a single domain per
experiment, as ours did, in order to provide more variety of proof verbalisations at one trial.
Nevertheless, considering that the promising coveragegrowth results are based on42 partially
modelled dialogues, we also conclude that as far as languageprocessing is concerned, natural
language as the input mode for interactive proofs could be a matter of near future, provided
that more data and human resources for grammar development were available. The question
is, though, whethertypewrittendialogue modality, in the times when spoken interaction with
machines is becoming more and more widespread, mobile hand-held devices ubiquitous, and
convenient graphical proof editors exist, the question is whethertypewrittendialogue with a
proof tutoring system is what students would like to have.

232



Summary and outlook

This thesis contributes symbolic semantic processing methods for informal mathematical lan-
guage, such as the language produced by students in interactions with a computer-based tutoring
system for proofs. Unlike previous work on computational processing of textbook discourse, our
work is grounded in systematic qualitative and quantitative corpus studies.

Students’ language in computer-assisted proof tutoring The semantic processing approach
we propose is motivated by a linguistic analysis of two corpora collected in experiments with
a simulated system. Students’ language is rich in complex linguistic phenomena at the lexi-
cal, syntactic, semantic, and discourse-pragmatic level,and diverse in its verbalisation forms.
Language production is influenced by the presentation format of the study material. Material
presented in natural language prompts verbosity in language production, whereas formalised
presentation prompts dialogue contributions consisting mainly of formulas. This has practical
implications for the implementation of tutorial dialogue systems for proofs and possibly also
tutorial systems for mathematics in general. More natural language imposes more challenges
on the input understanding component. In the context of mathematics, this necessitates reliable
and robust parsing and discourse analysis strategies, including interpreting informal natural lan-
guage interspersed with mathematical expressions. More symbolic language imposes stronger
requirements on the mathematical expression parser since longer mathematical expressions tend
to be prone to errors. Interestingly, our data suggest that students tend to have an informal at-
titude toward dialogue style while interacting with a tutoring system. This is manifested in the
use of discourse markers typical of spoken language in a typewritten interaction and suggests
that students treat tutorial dialogue like a chat and adapt spoken language, which they would
otherwise use when interacting with a human tutor, to the typewritten modality. Naturally, this
makes the interaction even more informal and poses further challenges for input interpretation.

Semantic processing of informal mathematical language Mixed mathematical language
consisting of natural language and symbolic notation is shown to lend itself well to syntactic
analysis based on categorial grammars. Notation elements can be perspicuously modelled in
terms of their syntactic categories and their semantic import can be thereby incorporated into
the semantics of their natural language context. Previous computational approaches to textbook
language either did not address the interactions between the two language “modes” at all or
addressed it in a way which did not ensure generalisation.
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7 Prospects for automated proof tutoring in natural language

A general language processing architecture for mathematical discourse which we propose is
parameterised for variables relevant to processing mathematical discourse in three scenarios (tu-
torial dialogue, mathematics assistance systems, and document processing) and modularised to
facilitate portability. We propose methods of modelling prominent syntactic and semantic lan-
guage phenomena characteristic of informal mathematical proofs and of the German language of
interaction specific to our data. The symbolic meaning representations generated by the parser
are shown to provide an appropriate level of semantic generalisation: semantic imprecision can
be modelled by proving a link between context-independent meaning and its context-specific
interpretation through intermediate linguistically-motivated lexica and ontologies. This way we
can interpret ambiguous wording and complex contextual operators. The intermediate knowl-
edge representations are shown to be relevant in modelling reference phenomena.

Prospects for natural language-based proof tutoring systems The performance of gram-
mar resources developed based on corpus data is evaluated ina simulation study. Manual de-
velopment of linguistic resources for deep semantic processing is knowledge-intensive, time-
consuming, and, consequently, costly; it requires familiarity with a linguistic formalism, both
grammatical and semantic, and its computational implementation. Hand-crafted resources de-
veloped with a dedicated application in mind (often within atime-constrained project) tend to
exhibit a serious lack of coverage beyond their specific domain. By contrast, wide-coverage
hand-crafted resources, such as TRIPS (Allen, 1995) or evenmore so the ERG (Baldwin et al.,
2004), are developed over many years and in collaboration with linguists. And, as shown by
the LEACTIVEMATH experiment, they do scale in a satisfactory way just by vocabulary adapta-
tion (Callaway et al., 2006). We cannot expect a comparable coverage since our resources have
been developed from scratch and based on minimally representative verbalisations in terms of
frequency of occurrence. Nevertheless, the results show that categorial grammar as a basis of
a parsing component, the critical step in a deep processing architecture, is a language model
which provides better scalability in our domain than a simpler grammar formalism. This is an
encouraging result and it implies that the language processing approach we propose is a viable
contribution toward computational processing of informalmathematical language.

Outlook A fundamental question concerning the tutoring scenario within which this thesis
has been set is the following: Istypewrittentutorial dialoguetheproof tutoring method of the
future? Although typewritten modality has been the state-of-the art for most systems to date, it
is somewhat hard to imagine a student typing to a proof tutoring system on his smart-phone or
tablet; unless we consider a twitter-like dialogue, an ideapossibly worth entertaining. This the-
sis offers processing methods suitable for contemporary systems and likely transferable to more
advanced interfaces in which both typing and other modalities would be available. However, the
way I see it plausible that interactive proof tutoring couldevolve is towardmulti-modal input. In
multi-modal systems, formal proofs could be constructed via structured editors. Consider inter-
faces such as those of EPGY (McMath et al., 2001), ProofWeb (Hendricks et al., 2010), or the
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OpenProof project (Barker-Plummer et al., 2008). Rigour and use of formal notation are the as-
pects of modern mathematics that sooner or later students needs to learn. The formality of proof
presentation in systems of this kind has another benefit: it makes the structure of the proofs and
the relations between statements explicit. Experience of afew semesters teaching mathematical
logic let me think that this is what students actually prefer: say, Fitch-style deduction over proofs
in prose. Natural language could be reserved for meta-leveltalk: students’ questions, clarifica-
tions, requests for help and tutor’s answers, explanations, and hints.Spoken, rather than written,
input modalityappears plausible, now that Nuance announced it’s time for theCUI.16 A WOz
experiment would reveal the range of spoken verbalisationsand help determine which language
understanding methods would work. Now, the formal setup is unaccommodating with respect to
students for whom formulas are an obstacle. Formalisation can be taught independently though
and systems that teach translation to formal logic exist (Barwise et al., 1999). These reflections
lead me to concluding research on typewritten proof tutorial dialogue here.

This does not mean this thesis has no “further work”. However, research building on this the-
sis shifts focus to mathematical prose. The trend toward open publishing has produced online
repositories – so-called “digital mathematical libraries” –, many of which offer unlimited access
to mathematical articles, and which open up possibilities for research on scholarly mathematical
discourse. First, claims to the effect that mathematical language in narrative discourse should
be repetitive, formulaic, and “small” should be verified by asystematic corpus analysis. My
hypothesis is that these claims will not hold. Second, language processing methods proposed
in this thesis will be evaluated on mathematical register language not only of proofs, but also
other discourse types: definitions and theorems. Here, the ultimate goal is extraction of knowl-
edge from mathematical documents. If proofs, definitions, and theorems are to be processed
by deep grammars, as proposed here, a question arises of how to streamline the grammar de-
velopment process. Our initial experiment based on a subsetof dialogue data suggests that, in
restricted domains, grammar engineering can be supported by an interactive process in which
shallow similarity measures are used to cluster data, so that subsets of similar sentences are
encoded in one step, thus making grammar engineering less prone to over-specialisation of lex-
ical categories. We are presently setting up an experiment based on our entire dialogue corpus
yo evaluate the approach. Further, a known task in mathematics, akin to word-sense disam-
biguation, is the problem of determining the semantics of mathematical symbols in text. We
have already made preliminary contributions in this domain(Grigore et al., 2009; Wolska &
Grigore, 2010; Wolska et al., 2011) and we are planning to pursue this task further. In general
though, what is obviously lacking in the state-of-the-art in processing mathematical discourse
are basic language processing resources – annotated corpora – and components: sentence- and
word-tokenisers, POS taggers, shallow parsers, named entity and domain term recognisers, the
usual tools which in natural language processing are taken for granted. While this thesis ends
my work on dialogue, there is a new niche to be filled that mightcome to be known asMathNLP.

16Beyond the GUI: It’s Time for a Conversational User Interface Ron Kaplan inWired, 21. March 2013
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Cinková, S., Hajǐc, J., Miluková, M., Mladovaá, L., Nedolužko, A., Pajas, P.,et al. (2006).Annotation of English on the Tectogram-

matical Level(Tech. Rep. No. 35). Charles University.
Clark, H. H. (1975). Bridging. InTheoretical Issues in Natural Language Processing.Association for Computing Machinery.
Clark, H. H. (1996).Using language. Cambridge, U.K.: Cambridge University Press.
Clark, H. H., and Brennan, S. E. (1991). Perspectives on socially shared cognition. InGrounding in communication(pp. 127–149).
Clark, H. H., and Schaefer, E. F. (1989). Contributing to discourse.Cognitive Science, 13(2), 259–294.
Copestake, A. (1999).The (new) LKB system(Tech. Rep.). CSLI Stanford University.
Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., and Sag, I. (1995).Minimal Recursion Semantics.(CSLI Stanford

University)
Copestake, A., Flickinger, D., Sag, I., and Pollard, C. (2005). Minimal recursion semantics: An introduction.Journal of Research

on Language and Computation, 3(3), 281–332.
Crystal, D. (2001).Language and the Internet. Port Chester, NY: Cambridge University Press.
Dahl, D. (Ed.). (2004).Practical Spoken Dialog Systems(Vol. 26). Kluwer Academic Publishers.
Dahlbäck, N., and Jönsson, A. (1989). Empirical studies of discourse representation for natural languge interfaces. In Proceedings

of the 4th Conference of the European Chapter of the Association for Computational Linguistics(pp. 291–298).
Dahlbäck, N., Jönsson, A., and Ahrenberg, L. (1993). Wizardof Oz studies: why and how. InProceedings of the 1st International

Conference on Intelligent User Interfaces(pp. 193–200).
Davis, P. J., and Hersh, R. (1981).The mathematical experience. Boston, MA: Birkhäuser.
D’Mello, S., Picard, R. W., and Graesser, A. (2007). Toward and Affect-Sensiteve AutoTutor.IEEE Intelligent Systems, 22(4),

53–61.
Dorier, J.-L., Robert, A., Robinet, J., and Rogalski, M. (2000). On the teaching of linear algebra. InThe obstacle of formalism in

linear algebra(pp. 85–94). Kluwer Academic Publishers.
Downs, M., and Mamona-Downs, J. (2005). The proof language as a regulator of rigor in proof, and its effect on student behaviour.

In M. Bosch (Ed.),Proceedings of the 4th congress of the european society for research in mathematics education CERME
4 group–14(pp. 1748–1757).

238



References

Dreyfus, T. (1999). Why Johnny Can’t Prove.Educational Studies in Mathematics, 38, 85–109.
Dubinsky, E., and Yiparaki, O. (2000). On students’ understanding of AE and EA quantification. InResearch in Collegiate

Mathematics Education IV, CBMS Issues in Mathematics Education (Vol. 8, pp. 239–289).
Dzikovska, M., Callaway, C., Farrow, E., Marques-Pita, M.,Matheson, C., and Moore, J. D. (2007). Adaptive Tutorial Dialogue

Systems Using Deep NLP Techniques. InProceedings of the Annual Conference of the North Americal Chapter of the
Association for Computational Linguistics(Demo session)(pp. 5–6).

Dzikovska, M., Reitter, D., Moore, J., and Zinn, C. (2006). Data-driven Modelling of Human Tutoring in Calculus. InProceedings
of the Combined Workshop on Language-Enhanced EducationalTechnology and Development and Evaluation of Robust
Spoken Dialogue Systems(pp. 22–28).

Dzikovska, M., Swift, M., Allen, J., and de Beaumont, W. (2005). Generic parsing for multi-domain semantic interpretation. In
Proceedings of the 9th International Workshop on Parsing Technologies(pp. 196–197).

Eijck, J. van, and Kamp, H. (1997). Handbook of logic & language. In (pp. 179–237). Elsevier.
Elsom-Cook, M. (1993). Student modelling in intelligent tutoring systems.Artificial Intelligence Review, 7, 227–240.
Epp, S. (1999). The Language of Quantification in Mathematics Instruction. InDeveloping Mathematical Reasoning in Grages

K-12 (pp. 188–197).
Ervynck, G. (1992). Mathematics as a foreign language. InProceedings of the 16th Conference of the International Group for the

Psychology of Mathematics Education(pp. 217–233).
Evert, S., and Baroni, M. (2007).zipfR: Word Frequency Distributions in R. InProceedings of the 45th Annual Meeting of the

Association for Computational Linguistics(pp. 29–32).
Fass, D. (1988). Metonymy and metaphor: what’s the difference? InProceedings of the 12th International Conference on

Computational Linguistics(pp. 177–181).
Fateman, R. (2004).Handwriting + Speech for Computer Entry of Mathematics. Work in progress[Unpublished manuscript].
Fateman, R. (2006).How can we speak math?[Unpublished manuscript].
Ferreira, H., and Freitas, D. (2004). Enhancing the Accessibility of Mathematics for Blind People: the AudioMath Project. In

Proceedings of the 9th International Conference on Computers Helping People with Special Needs(pp. 494–501).
Ferreira, H., and Freitas, D. (2005). AudioMath – Towards Automatic Readings of Mathematical Expressions. InPresentation at

the 11th International Conference on Human-Computer Interaction.
Fiedler, A. (2005). Natural Language Proof Presenation. InMechanizing Mathematical Reasoning: Essays in Honor of Jörg

Siekmann on the Occasion of His 60th Birthday(Vol. 2605, pp. 342–363).
Fiedler, A., Franke, A., Horacek, H., Moschner, M., Pollet,M., and Sorge, V. (2002). Ontological Issues in the Representa-

tion and Presentation of Mathematical Concepts. InProceedings of the ECAI-02 Workshop on Ontologies and Semantic
Interoperability(pp. 62–66).

Fiedler, A., and Tsovaltzi, D. (2003). Automating Hinting in Mathematical Tutorial Dialogue. InProceedings of the EACL-03
Workshop on Dialogue Systems: interaction, adaptation andstyles of management(p. 45-52).

Fine, K. (1983). A Defence of Arbitrary Objects. InProceedings of the Aristotelian Society, Supplementary Volumes(Vol. 57, pp.
55–77).

Firdler, A., Gabsdil, M., and Horacek, H. (2004). A Tool for Supporting Progressive Refinement of Wizard-of-Oz Experiments in
Natural Language. InProceedings of the 7th International Conference on Intelligent Tutoring Systems(pp. 325–335).

Fitzpatrick, D. (n.d.). Mathematics: How and What to Speak.In Proceedings of the 11th international conference on computers
helping people with special needs.

Fitzpatrick, D. (2002). Speaking technical documents: Using prosody to convey textual and mathematical material. InProceedings
of the 8th International Conference on Computers Helping People with Special Needs(pp. 494–501).

Forbes-Riley, K., and Litman, D. (2009). Adapting to student uncertainty improves tutoring dialogues. InProceedings of the 14th
conference on artificial intelligence in education(pp. 33–40).

Fox, C. (1999).Vernacular Mathematics, Discourse Representation, and Arbitrary Objects[Unpublished manuscript].
Francony, J.-M., Kuijpers, E., and Polity, Y. (1992). Towards a methodology for wizard of oz experiments. InProceedings of the

3rd Conference on Applied Natural Language Proceeding.
Frantzi, K., Ananiadou, S., and Mima, H. (2000). Automatic recognition of multi-word terms: the C-value/NC-value method.

International Journal on Digital Libraries, 3(4), 115–130.
Fraser, B. (1970). A note onvice versa. Linguistic Inquiry, 1(2), 277–278.
Fraser, N., and Gilbert, G. (1991). Simulating speech systems. Computer Speech and Language, 5, 81–99.
Fujimoto, M., Kanahori, T., and Suzuki, M. (2003). Infty Editor – A Mathematics Typesetting Tool With a Handwriting Interface

and a Graphical Front-End to OpenXM Servers.Computer Algebra: Algorithms, Implementations and Applications, 217–
226.

Fujimoto, M., and Watt, S. (2010). An Interface for Math e-Learning on Pen-Based Mobile Devices. InProceedings of the 9th
mathematical user interfaces workshop.(Online proceedings)

Galliers, J. R., and Jones, K. S. (1993).Evaluating natural language processing systems(Tech. Rep. No. TR-291). Computer
Laboratory, University of Cambridge.

239



7 Prospects for automated proof tutoring in natural language

Ganesalingam, M. (2009).The language of mathematics. PhD thesis, Cambridge University.
Gergle, D., Millen, D., Kraut, R., and Fussell, S. (2004). Persistence matters: Making the most of chat in tightly coupled work. In

Proceedings of the sigchi conference on human factors in computing systems(pp. 431–438). New York: ACM Press.
Gerstenberger, C., and Wolska, M. (2005). Introducing Topological Field Information into CCG. InProceedings of the 17th ESSLLI

Student Session(pp. 62–74).
Gillan, D., Barraza, P., Karshmer, A., and Pazuchanics, S. (2004). Cognitive analysis of equation readings: application to the

development of MathGenie. InProceedings of the 48th Human Factors and Ergonomics Society Annual Meeting(pp.
630–637).

Gillman, L. (1987).Writing mathematics well: A manual for authors. Mathematical Association of America.
Ginsburg. (1981). The Clinical Interview in PsychologicalResearch on Mathematical Thinking: Aims, Rationales, Techniques.

For the Learning of Mathematics, 1, 57–64.
Goldson, D., Reeves, S., and Bornet, R. (1993). A review of several programs for the teaching of logic.The Computer Journal, 36,

373–386.
Gould, J., Conti, J., and Hovanyecz, T. (1983). Composing letters with a simulated listening typewriter.Communications of the

Association of Computing Machinery, 26, 295–308.
Grefenstette, G., and Tapanainen, P. (1994). What is a word,what is a sentence? Problems of Tokenization. InProceedings of the

3rd International Conference on Computational Lexicography and Text Research(pp. 79–87).
Grice, H. (1975). Logic and conversation. InSyntax and semantics(Vol. 3: Speech Acts, pp. 41–58).
Grigore, M., Wolska, M., and Kohlhase, M. (2009). Towards Context-Based Disambiguation of Mathematical Expressions.In

Proceedings of the Joint Conference of ASCM and MACIS(pp. 262–271).
Grishman, R., and Kittredge, R. (Eds.). (1986).Analyzing language in restricted domains: Sublanguge description and processing.
Grishman, R., Macleod, C., and Sterling, J. (1992). Evaluating parsing strategies using standardized parse files. InProceedings of

the 3rd Conference on Applied Natural Language Processing(pp. 156–161).
Grosz, B. J. (1978). Discourse analysis. InUnderstanding spoken language(pp. 235–268).
Grottke, S., Jeschke, S., Natho, N., Rittau, S., and Seiler,R. (2005).MARACHNA: Entwicklung von wissensrepräsentationsmecha-

nismen für die mathematik. InProceedings of the 13th Leipziger Informatik-Tage(pp. 219–226).
Grottke, S., Jeschke, S., Natho, N., Rittau, S., and Seiler,R. (2006).MARACHNA: Automated creation of knowledge representations

for mathematics. InProceedings of the 1st WebALT Conference and Exhibition.
Grottke, S., Jeschke, S., Natho, N., and Seiler, R. (2005).MARACHNA: A classification scheme for semantic retrieval in elearning

environments in mathematics. InProceedings of the 3rd International Conference on Multimedia and Information &
Communication Technologies in Education(pp. 957–962).

Gruber, T., and Olsen, R. (1994). An Ontology for Engineering Mathematics. InProceedings of the 4th International Conference
on Principles of Knowledge Representation and Reasoning.

Guy, C., Jurka, M., Stanek, S., and Fateman, R. (2004).Math speak & write, a computer program to read and hear mathematical
input [Unpublished manuscript].
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