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Abstract

Truth and proof are central parts of mathematics. Provimgdigproving) seemingly simple
statements often turns out to be one of the hardest matheahtdasks. Yet, doing proofs is
rarely taught in school. Studies on cognitive difficultieddarning to do proofs have shown that
students not only often do not understand or cannot appig asnal reasoning techniques and
do not know how to use the formal mathematical language dbatfar more fundamental level,
they also do not understand what it means to prove a statamewén do not see the purpose of
proof at all. Since insight into the importance of proof awihg proofs as such cannot be learnt
other than by practice, learning support through individed tutoring is in demand.

This thesis has been part of an interdisciplinary projeet,as the intersection of pedagogi-
cal science, artificial intelligence, and (computatiotiauistics, which investigated issues in-
volved in provisioningautomatedutoring of mathematical proofs by means of dialogue in nhatu
ral language (see Chapter 1). The ultimate goal in this egraeldressing the above-mentioned
need for learning support, is to build intelligent autondatetoring systems for mathematical
proofs. The focus of this thesis is on the language that stadese while interacting with
such a system: its linguistic properties and computatiomadielling. Contribution is made at
three levels: first, an analysis of language phenomena foustlidents’ input to a (simulated)
proof tutoring system is conducted and the variety of sttelererbalisations is quantitatively
assessed, second, a general computational processitepgtfar informal mathematical lan-
guage and methods of modelling prominent language pheremenproposed, and third, the
prospects for natural language as an input modality forfitdoring systems is evaluated based
on the collected corpora.

Proof tutoring corpora (Chapter 2

In order to learn about the properties of students’ languageaturalistic interactions with a

tutoring system for proofs, two data collection experinrsenave been conducted. Both ex-
periments were carried out in the so-called Wizard-of-O20@) paradigm, that is, subjects
interacted with a system simulated by a human. The interaetith the simulated system was
typewritten. The language of the experiments was Germanpnstraints on the students’ lan-
guage production were imposed. Naive set theory and birdagions were selected as the
mathematical domains. In the set theory experiment, stadeere tutored using one of three
tutoring strategies differing in the granularity of pedgigal feedback. In the binary relations
experiment students were assigned into one of two expetaheanditions: one group was



Contents

shown study material formulated using mainly natural laggu(verbose), while the other group
received mainly formalised content. The hypothesis wastti@astudents’ language would re-
flect the study material presentation format. The key lessamt from the experiments is that
mathematics is a difficult domain for the Wizard-of-Oz setifvhile WOz is an established
research methodology in interactive systems, mathemasi¢the domain is challenging to the
wizards due to the time-pressure on response generatateddb maintaining a believable sys-
tem setup. Certain interface features, in particular, pygaste mechanism and the ease with
which it enables text reuse — in our case, stringing matheeal&xpressions together — produced
extra cognitive load on the wizards. In future experimestgport for the wizard, for instance,
consisting of automated detection of mathematical expmessrors, should be considered. The
collected corpus comprises 59 dialogues with 1259 studens tand constitutes the source data
for all our analyses.

Students’ language in computer-based proof tutoring

Qualitative analysis (Chapter 3 The language of informal proofs in textbook discourse has
been previously modelled based on mainly ad hoc analysibrrinan systematic corpus stud-
ies. The language of informal proofs has been describedeasspr exhibiting no ambiguity and
little linguistic variation, and consisting of stereotggl, formulaic phrasings in which natural
language is used for the most part to express logical compectContrary to these observa-
tions, our analysis of proof tutoring corpora shows thatlimguage of students’ proofs is rich
in linguistic phenomena at all levels: lexical, syntactemantic, and discourse-pragmatic.
The following utterances illustrate proof statements fimum corpora:

re€EB = x¢ A

B enthaelt keinc € A
(B contains nar € A)

A hat keine Elemente mi® gemeinsam.
(A has no elements in common wih)

A enthaelt keinesfalls Elemente, die auclBirsind.
(A contains no elements that are alsof#)

AnBistevonCU (AN B)
(AnBiseof CU(ANB))

Nach der Definition vom folgt dann(a, b) istin S~ o R~1
(By definition of it follows then that(a, b) isin S~ o R71)

wenn A vereinigtC' ein Durchschnitt vorB vereinigtC'ist,
dann missen alld und B in C' sein
(If A unionC' is intersection ofB unionC, then all A and B must be inC')

Students’ input is for the most part highly informal and rasdrom worded entirely in natu-
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ral language, using a variety of syntactic constructiomgugh part-worded—part-formalised to
entirely formalised; the longest mathematical expressamsisted of 145 characters. Mathemat-
ical symbols and natural language are tightly interleavedi@arts of mathematical expressions
have to be interpreted in the context of natural languagpesbearing words (see the second
utterance). Symbols are also used as a kind of shorthandatarat language and wording
can follow spoken language syntax when a formal expressiawritten down in its vocalised
form (the last example). Moreover, natural language waydirimprecise resulting in ambigu-
ity in domain interpretation (e.g. “contain” as subset ommbership). Discourse phenomena
include domain-specific referring expressions (e.g. “#ie dide”) and contextual operators
(“analogously”, “the other way round”). Since the use of eddanguage and the imprecision
phenomena are systematic, the key two requirements on autatigmal interpretation com-
ponent are (i) integrating the semantic import of the synchexkpressions into the meaning of
their cotext and (ii) representation of the imprecise cpteand an appropriate mapping to their
mathematical interpretations. Frequently recurring demplause structures in paratactic and
hypotactic configurations call for a parsing method in wiiomplex multiple-clause utterances
can be modelled with sufficient generality. For German djpadiy, the different word order in
main clauses and subordinate clauses need to be modelleystesnatic way.

Quantitative analysis Chapter 4 In order to assess the diversity in students’ language pro-
duction, a quantitative analysis of students’ languaget®sn carried out. First, a typology
of students’ utterances has been constructed. The typdtmmses on solution-contributing
utterances (utterances which contribute to the proof beowstructed directly or at a meta-
level), with the remaining subcategories grouped into dassc(meta-level communication).
Second, utterances have been preprocessed into verbalipatterns which abstract away the
specific mathematical expressions used and the domainniogy. Quantitative analysis is
performed at three levels: first, the students contribgtiare characterised in terms of their
language “modality” (natural language vs. symbolic not&ti The binary relations corpus is
characterised in terms of differences in the language tamubetween the two study mate-
rial conditions. Finally, the distribution of utterancepgs in both corpora is analysed. Proof-
contributing utterances are further analysed with resgedtheir function in the proof under
construction (proof steps, declarations of proof stratetsy) and the type of content verbalised
in natural language (logical connectives only, domaincBfmevocabulary, etc.) Language di-
versity along these dimensions is quantified in terms of-tgien ratios over the normalised
linguistic patterns, frequency spectra, and patternimoleaty growth curves.

The conducted analyses show that the language of studdstsiudse in proofs is not as
repetitive as one might expect. Students use complex hdamguage utterances not only dur-
ing meta-communication with the tutor, but also when cbuting proof steps. The majority
of utterances contain some natural language. Only 28 utteraerbalisations occurred in both
data sets. The frequency spectra and the pattern growtaahow the degree to which the lan-
guage is diverse. The majority of verbalisations are idiasgtic (single-occurrence patterns).
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Not surprisingly, the majority of the meta-level communica are the students’ requests for
assistance: requests for hints, definitions, explanatietts Interestingly, there is a relatively
large number of discourse markers typical of spoken intenacThis suggests that participants
had an informal approach to dialogue style and treated ithnilie a chat, adapting spoken
language, which they would have otherwise used in a natatihg, to the experiments’ type-
written modality. The key conclusion from the analyses &t th a tutoring setting, even the
seemingly linguistically predictable domain of matheratiproofs is characterised by a large
variety of linguistic patterns of expression, by a large bemof idiosyncratic verbalisations,
and that the meta-communicative part of discourse whicts am directly contribute to the
solution has an conversational character, suggestingudersts’ informal attitude towards the
computer-based dialogues and their high expectationsednglut interpretation resources. This
calls for a combination of shallow and deep semantic pracgssethods for the discourse in
guestion: shallow pattern-based approaches for contritmitvhich do not add to the proof and
semantic grammars for the proof-relevant content, in cr@eptimise coverage.

The analysis of the binary relations data revealed diffegerin the use of natural language
and mathematical expressions between the two study materiditions. The verbose-material
group tended to use more natural language than the form@riaagroup and the dialogue turns
of the subjects in the verbose group contained more, buteshanathematical expressions. The
formal material group tended to use longer formulas, ansl@sural language. Since the anal-
ysis of tutors’ contributions showed no significant difiece between the two conditions in the
dialogue behaviour with respect to natural language andhenaatical expression production,
the differences in dialogue styles were at least partly duke format of the presentation of the
study material having a priming-like effect. The resultstba influence of the study material
presentation have implications for the implementatiorutdrial dialogue systems. On the one
hand, more natural language, be it resulting from a verbosgeptation of the study material
or from the students’ individual preference for a particléaguage style, imposes more chal-
lenges on the input understanding component. In the confextathematics, this involves a
reliable and robust parser and discourse analyser capiibleipreting mixed natural language
and mathematical expressions. On the other hand, promfatingore symbolic language by
presenting students with formalised material imposesiggprequirements on the mathemati-
cal expression parser since longer expressions tend tabe pov errors. The same holds of the
copy-paste functionality: while convenient from the usgint of view, it may lead to mistakes
of sloppiness in revising the copied text. This, in turn]&r flexible formula parsing, error
correction, and specific dialogue strategies to addressuiass with errors.

Computational processing of informal proofs Chapters 5 and )6

Taking into account the range of linguistic phenomena imlestts’ input and the need for a
principled syntax-semantics interface for the proof dbating content, we propose a deep
grammar-based approach to processing informal proof kgeguParsing the mixed language
consisting of natural language words and mathematicalesgns is achieved by abstracting
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over the symbolic notation in the course of parsing. Matharabexpressions are represented
in terms of their syntactic types whose possible interastiwith the natural language context
is explicitly modelled in the grammar. Parsing is performesing a combinatory categorial

grammar which builds a semantic dependency representattitne parsed input. The semantic
representation is based on the Praguian notion of tectogadics, a language analysis level
which considers the linguistic meaning of utterances, ihaheaning independent of their con-
text. Tectogrammatical representations are further pnéted in the contexts of mathematical
domain in a step-wise fashion. First, imprecise lexemesmagped to general concepts through
a semantic lexicon. Then, the general concepts are mappedtteematical domain concepts
through a linguistically-motivated domain-ontology.

Methods of processing language phenomena which systeihatiecur in the data, critical
for automated proof tutoring, are proposed. This includedetiing basic syntactic phenomena
(German word order in recurring constructions in matheesathe mixed language, and the syn-
tactic irregularities characteristic of the mathematwainain) and basic semantic imprecision
phenomena. Moreover, we analyse a subset of interestingoptena, which are not as highly
represented in the corpora, but which are highly complemfaccomputational processing point
of view: the semantic reconstruction of the “the other wayna’ operator, and reference to
symbolic notation and propositions. Moreover, mathemahtxpression correction. Because
the data is sparse, preliminary algorithms are proposecdasdated in proof-of-concept stud-
ies or corpus studies are conducted as a preliminary stegrdoalgorithm development. The
processing methods proposed confirm that deep parsing caiagorial grammars which build
tectogrammatical (domain-independent) linguistic megniepresentations of the analysed in-
put, lends itself well to modelling a number of phenomenantbin students’ informal mathe-
matical language.

Prospects for natural language-based proof tutoring Chapter J The final contribution of
the thesis is a corpus-based performance assessment afsirggcomponent, the key part of the
proposed input interpretation strategy. The collectegpa@r of learner proofs are used as data
for an intrinsic evaluation which focuses on proof-conitibg utterances. Grammars encoding
verbalisation patterns are systematically tested in sitian experiments as follows: Grammars
are built only based on utterances whieburin the development data. (The recurring utterances
stem from 42 dialogues.) Parsers based on grammar resaamstsucted in this way are tested
on an increasing number of dialogues. Performance is eealn two data sets: the data set
constructed from utterances used for grammar developmmehiba a blind set consisting of
verbalisation patterns which occurred only once. Contieed¢-grammars, developed and tested
in the same manner, are used as baseline. Coverage (pgeaftiest set parsed) and parse
ambiguity is reported.

The results show that hand-crafted semantic resourced bassmbinatory categorial gram-
mars outperform context-free grammars on the coverageuresaghile remaining at a manage-
able ambiguity level. Moreover, they confirm our previouadasion that the language used by
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students to talk about proofs is characterised by a largeedagf diversity not only at a shallow
level of specific phrasing, but also at a deeper level of gjiatatructures used. Considering that
only 59 dialogues have been available for analysis, we\mlieat the two corpora are insuf-
ficient, in the sense that they are not representative endagh robust proof-tutoring system
to be implemented at the present stage. First, the set ofriegwerbalisations is small. This
is against the intuition that the language of proofs shoddsimall and repetitive. Grammars
based on the set theory resources do not scale sufficieriyweithin-domain. Resources based
on the binary relations data scale better within-domairileyacross-domains the difference in
performance over within-domain data is negligible. Moréadaould need to be collected in
order to draw definitive conclusions. Interestingly, theutes point at a methodological issue
for WOz-based data collection strategy in the domain of fso@/izard-of-Oz experiments, lo-
gistically complex by themselves and in this case also ¢ivgly demanding on the wizards,
should cover multiple domains of mathematics rather thainglesdomain per experiment, as
ours did, in order to provide more variety of proof verbdimas at one trial.

Nevertheless, considering that the promising coverageitgroesults are based on a small
number ofpartially modelled dialogues, we also conclude that as far as languagessing is
concerned, natural language as the input mode for inteeaptbofs is a plausible alternative to
menu-based input or structured editors, provided that mat& and human resources for gram-
mar development are available. We plan to conduct analoljogisistic analysis of authentic
proofs appearing in mathematical publications in orderewfy prior claims as to the linguis-
tic proprieties of this genre and to apply processing methmydposed in this thesis in order to
assess the prospects for automated knowledge extraatiorsfrholarly mathematical discourse.



Zusammenfassung

Wahrheit und Beweis sind zentrale Teile der Mathematik. Wehrheit selbst scheinbar ein-
facher mathematischer Satze zu beweisen (oder zu widejletglt sich oft als eine der schwierig-
sten mathematischen Aufgaben heraus. Dennoch wird in darl&eelten gelehrt, wie man
Beweise fuhrt. Studien zu kognitiven Schwierigkeiten bdieweisen Lernen, haben gezeigt,
dass Studenten nicht nur formale Beweistechniken haufigt merstehen oder nicht anwen-
den kénnen und nicht wissen, wie die formale mathematisghacBe zu benutzen ist, sondern
sogar auf einer weitaus grundlegenderen Ebene nicht fierstevas es bedeutet, einen Satz zu
beweisen, oder die Notwendigkeit, Beweise zu flihren, #@erhnicht einsehen. Da Einsicht
in die Bedeutung des Beweises und Beweisen selbst nur duseh gelernt werden kann, ist
Lernunterstitzung durch individuelles Tutoring (Nacf@ilgefragt.

Diese Arbeit ist Teil eines interdisziplindren Projektgas an der Schnittstelle zwischen Pad-
agogik, kunstlicher Intelligenz und (Computer-)Lingiksangesiedelt war und das sich mit der
Untersuchung voautomatisiertem Tutoringnathematischer Beweise in natirlichsprachlichem
Dialog beschaftigt hat (siehe Kapitel 1). Das Fernziel #sdim Kontext, in Bezug auf den oben
angesprochenen Bedarf nach Unterstltzung beim Lernee,digEntwicklung von intelligen-
ten automatisierten Tutoring-Systemen flr mathematiBevweeise. Der Schwerpunkt dieser Ar-
beit liegt auf der Sprache, die die Studenten wahrend derdktion mit einem solchen System
verwenden: ihre sprachlichen Eigenschaften und ihre Miedehg mit dem Computer. Unser
Beitrag findet auf drei Ebenen statt: Zuerst wird eine Aralglsr sprachlichen Phanomene in
den StudentenaufRerungen zu einem (simulierten) tutamiedlystem zum Beweisen durchge-
fuhrt und die Vielfalt der Verbalisierungen wird quantitdbewertet. Als ndchstes wird eine all-
gemeine Verarbeitungsstrategie fur informelle mathesnhé Sprache und Methoden zur Mod-
ellierung von prominenten sprachlichen Phdnomenen vondgggen, und drittens werden die
Perspektiven fur natrliche Sprache als Eingabemoddéilitain tutorielles System flir Beweise
auf Grundlage von verfiigbaren Korpora evaluiert.

Korpora zu mathematischem tutoriellen Dialog Kapitel 2)

Um etwas Uber die Eigenschaften von Studentensprachelisiiplan Interaktionen mit einem
tutoriellen System fiir Beweise zu lernen, wurden zwei ®evan Datenerhebunsexperimenten
durchgefuhrt. Beide Versuche wurden im Rahmen des so-g&rarWizard-of-Oz (WOz)-
Paradigmas durchgefihrt, d.h. die Versuchspersoneragiggen mit einem System, das voll-
standig durch einen Menschen simuliert wird. Die Inte@ktmit dem simulierten System
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geschah mittels Tastaturinput; es gab keine Einschramkubgzlglich der Sprachproduktion
der Studenten. Die Experimente fanden auf Deutsch statmathematische Doméanen wurden
naive Mengenlehre und bindre Relationen ausgewabhilt. Ineiitrpnt zur Mengenlehre wurden
Studenten mit je einer von drei tutoriellen Strategien uitiatet. Diese unterscheiden sich in
der Granularitat des padagogischen Feedbacks. Im Expariznebindren Relationen wurden
die Studenten einer von zwei experimentellen Bedingunggeteilt: eine Gruppe bekam Lehr-
material gezeigt, das Uberwiegend in natlrlicher Spracbd¢se) formuliert war. Die andere
Gruppe erhielt hauptsachlich formalisierte Inhalte. Digpbthese war, dass die Studenten-
sprache die Prasentationsform des Lehrmaterials widgysini wirde. Die Haupt-Erkenntnis
aus den Experimenten ist, dass Mathematik fur Wizard-cE®zerimenten eine schwierige
Domane ist. Obwohl WOz eine etablierte ForschungmethodkeirEntwicklung von interak-
tiven Systemen darstellt, ist die Aufgabe fir den Wizard setspruchsvoll. Dies ergibt sich
aus dem Zeitdrucks bei der Generierung von Systemantwattrraus der Notwendigkeit re-
sultiert, ein glaubwiirdiges Setup aufrechtzuerhalterstiBente Funktionalitdten der benutzten
Schnittstelle, insbesondere der copy-paste-Mechanismdsdie Leichtigkeit, mit der es die
Wiederverwendung von Textbausteinen erlaubt - in unserathnkathematische Ausdriicke
zusammenzustellen, - erzeugen eine zusatzliche kogiastung des Wizards. In zukun-
ftigen Experimenten sollte daher Unterstlitzung fur denafdizzum Beispiel in Form von au-
tomatischer Erkennung von Fehlern in mathematischen Aigkdn, beriicksichtigt werden. Die
gesammelten Korpora umfassen 59 Dialoge mit 1259 Studditdagbeitrage.

Die Sprache der Studenten in computer-basierten Beweis-Taring

Qualitative Analyse (Kapitel 3 Die Sprache informeller Beweise wurde bisher nur in Lehinbuc
Diskursen untersucht vor allem auf Grundlage von ad hoc yseal modelliert. Sie wurde

als prazise und stilistisch “formulaisch” beschriebernge&eine Mehrdeutigkeiten und wenig
sprachliche Variation und bestehe aus stereotypischanii@rungen, in denen nattrliche Sprache
hauptsachlich dazu benutzt werde, logische VerknlUpfursgeszudriicken. Im Gegensatz zu
diesen Beobachtungen zeigt unsere Korpusanalyse, daSgiiehe der Studentenbeweise re-
ich an sprachlichen Phdnomenen auf allen Ebenen ist: lescka syntaktisch, semantisch und
diskurs-pragmatisch.

Die folgenden AuRerungen zeigen beispielhaft AussageBawgisen in unseren Korpora:
Die AuRerungen der Studenten sind iberwiegend informellreithen von rein in natirlicher
Sprache mit einer Vielzahl von syntaktischen Konstruldgimmniber teils-in-Worten-teils- formal-
formuliert bis hin zu vollstandig formalisiert; der langstathematischen Ausdruck bestand
aus 145 Zeichen. Mathematische Symbole und natirlichecBg@rsind eng miteinander ver-
flochten und Teile von mathematischen Ausdriicke missen imeixbskopustragender natir-
lichsprachlicher Worter interpretiert werden (die zwéitaRerung). Symbole werden auch als
eine Art Kurzschrift fur nattrliche Sprache verwendet ued Wortlaut folgt mitunter der Syn-
tax gesprochener Sprache, wenn ein formaler Ausdruck ifFdien geschrieben wird, wie er
auch gesprochen wird (das letzte Beispiel). Dartber hirdaker Wortlaut natiirlicher Sprache
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ungenau, was zu Unklarheiten bei der Interpretation iradbrder Doméane fuhrt (* enthalten”
als Teilmenge oder Element einer Menge). Diskursphanombengalten doméanenspezifis-
che referrierende Ausdriicke (z.B. “die rechte Seite”) uontéxtuelle Operatoren (“analog”, “
umgekehrt”). Da die Verwendung von gemischter Sprache imtUdgenauigkeitsphdnomene

systematisch sind, sind die zwei wichtigsten Anforderunge eine Komponente zur automa-
tischen Interpretation (i) die Integration des semanéasdBehalts der symbolischen Ausdriicke
in die Bedeutung ihres Kontextes und (ii) die Reprasemadier ungenauen Konzepte und eine
entsprechende Zuordnung zu ihrer mathematischen Intatipreen. H&ufig wiederkehrende

komplexe Satzstrukturen in paratakischer und hypotdidistKonfigurationen erfordern eine

Analysemethode, bei der komplexe AuRerungen aus mehreits@tzen in ausreichend allge-

meiner Form modelliert werden kdnnen. Fir das Deutsche ieziSien missen die verschiede-
nen Wortstellungen in Haupt- und Nebensatzen in systeohatisNeise modelliert werden.

Quantitative Analyse (Kapitel 4 Um die Vielfalt bei der Sprachproduktion der Studenten
zu beurteilen, wurde sie quantitativ analysiert. Zunaetstde eine Typologie der Studen-
tenaulRerungen konstruiert. Die Typologie konzentriarh siuf die zur Losung beitragenden
AuRerungen (AuRerungen, die zu dem aktuellen Beweis diaktauf einer Meta-Ebene beitra-
gen), wahrend die restlichen Unterkategorien alle zu éiegse (Meta-Ebene-Kommunikation)
zusammengefasst werden. Als nachstes wurden AuRerungénlalisierungsmustern vorver-
arbeitet, die von den spezifischen mathematische Ausdniahke der spezifischen Terminolo-
gie der Doméane abstrahieren. Eine quantitative Analysd airf drei Ebenen durchgefiihrt:
Zunachst wird die Studentensprache in Bezug auf die spcheriModalitat” (nattrliche Sprache
vs. symbolische Notation) charakterisiert. Das Korpus Zilmlema bindre Relationen wird
in Bezug auf Unterschiede in der Sprachproduktion zwisatem beiden Lehrmaterialstypen
charakterisiert. SchlieRlich wird die Verteilung der Auegsarten in beiden Corpora analysiert.
Zum Beweis beitragende AuRerungen werden dariiber hinauBeamniig auf inre Funktion im
aktuellen Beweis (Beweisschritte, Erklarungen der Besteitegie, usw.) und die Art der In-
halte, die in natlrlicher Sprache verbalisiert sind (ngidohe Verknipfungen, doménenspezi-
fisches Vokabular, usw.), analysiert. Die Sprachvielfattamg dieser Dimensionen wird durch
das Type-Token-Verhaltnis Giber den normalisierten spicen Muster, Frequenzspektren und
Wachstumkurven von Mustervokabular quantifiziert.

Die Ergebnisse zeigen, dass die Sprache im Studentensliskar Beweisen nicht so repetitiv
ist, wie man erwarten konnte. Studenten verwenden komplatielichsprachliche AuRerungen
nicht nur wahrend der Meta-Kommunikation mit dem Tutor,dm auch, wenn sie Beweiss-
chritte beitragen. Die Mehrzahl der AuRerungen enthéltimdast teilweise natiirliche Sprache.
Nur 28 Verbalisierungen von AuRerungen traten in beidersittzen auf. Die Frequenzspek-
tren und die Muster-Wachstumskurven zeigen das Ausmal ié#alt/in der Sprache. Die
Mehrheit der Verbalisierungen sind individuell und tretaem ein einziges Mal auf. Es ist nicht
Uberraschend, dass die Mehrheit der StudentenduRerunfigiet@-Ebene Bitten um Hilfe sind:
um Hinweise, um Definitionen, um Erlauterungen usw. Intsaaterweise gibt es eine relativ
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grofRe Anzahl von Diskursmarkern, die typisch fur gesproeHateraktion sind. Dies deutet da-
rauf hin, dass die Teilnehmer eine informelle Einstelluegeniber dem Dialogstil hatten und
ihn ahnlich wie einen Chat behandelt haben, indem sie gelspne Sprache fir den geschriebe-
nen Dialog adaptiert hatten, die sie sonst in einer Sitoatit einem menschlichen Tutor ver-
wendet hatten. Die wichtigste Schlussfolgerung aus dery&ea ist, dass in einem tutoriellen
Kontext auch die scheinbar sprachlich vorhersehbare Dem#athematischer Beweise durch
eine grofR3e Vielfalt sprachlicher Ausdrucksmuster und gne€e Anzahl von idiosynkratischen
Verbalisierungen gepragt ist, und dass der meta-kommtivékanteil des Diskurses, der nicht
direkt zur Losung beitragt, Konversationscharakter has die informelle Haltung der Studen-
ten gegenuber dem computer-basierten Dialog und ihre hBhgartungen an den Ressourcen
zur Eingabeinterpretation nahelegt. Dies erfordert eiomKination von flachen und tiefen se-
mantischen Verarbeitungsmethoden fir den Diskurs: flaatarbasierte Ansatze fir diejeni-
gen Beitrdge, die nicht zum Beweis fuhren, und semantischen@atiken flr die beweisrele-
vanten Inhalte, um die Abdeckung zu optimieren.

Die Analyse der Daten zu bindren Relationen ergab Unte¥dehin der Nutzung von natir-
licher Sprache und mathematischen Ausdricken zwischebeiden Lehrmaterialstypen. Die
Gruppe, die wortreiches Lehrmaterial bekam, verwendeigeteziell mehr natirlichsprachliche
Ausdricke als die Gruppe, die formelreiches Lehrmategbim. Auch enthélt der sprachliche
Material der Probanden der Gruppe mit wortreichem Lehrriztmehr, aber kirzere mathe-
matische Formeln. Die Gruppe mit formelreichem Lehrmatatagegen benutze tendenziell
langere Formeln, dafiir aber weniger natirliche Sprachedi®atatistische Analyse der Tu-
torenbeteiligung keinen signifikanten Unterschied im Bigkerhalten des Tutors in Bezug auf
die Produktion natérlichsprachlicher versus mathematischer Ausdriicke heisaen beiden
Versuchsgruppen zeigte, sind diese Unterschiede im BGilagmindest teilweise auf die Form
der Lehrmaterialsprasentation zurtftirbar; der Lehrredtgp scheint eine Priming-Wirkung
auf die Sprachproduktion der Probanden gehabt zu habeeBtergebnisse tber den Einfluss
der Lehrmaterialsprasentation haben Auswirkungen aufifidementierung von tutoriellen Di-
alogssystemen. Auf der einen Seite stellt der intensiva@ieh von naturlicher Sprache, sei es
aufgrund einer wortreichen Prasentation des Lehrmadeoidér individueller Praferenzen des
Studenten fur einen bestimmten Sprachstil, eine Heradisfong fur das Eingabeanalysemodul
eines Dialogssystems dar.

Firs Verstehen der Fachsprache der Mathematik wird eirrt&asegger, robuster Parser sowie
ein Diskursanalysermodul benétigt, das in der Lage iste é&ftischung aus naturlichsprach-
lichen und mathematischen Ausdriicken zu interpretiereanivhan, auf der anderen Seite, die
Studenten dazu anregt, eine formelreiche Sprache zu lemutmlem man ihnen entsprechen-
des Lehrmaterial zeigt, wachsen dadurch die Anforderurageden Parser fir mathematische
Ausdriicke, weil langere Ausdriicke tendenziell fehlerigi sind. Das gleiche gilt fur die
Copy-Paste-Funktionalitdt: Auch wenn diese Eingabelsilie der Sicht des Benutzers prak-
tisch ist, kann sie zu Fliichtigkeitsfehlern bei der Ubegitting von kopiertem Text fiihren. Dies
wiederum erfordert eine flexible Syntaxanalyse mathectadisFormeln, soweir Fehlerkorrek-
tur und spezifische Dialogstrategien flr den Umgang mieidtghafteten Formeln.
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Computerbasierte Verarbeitung informeller Beweise Kapiteln 5 and %

Unter Beriicksichtigung der Bandbreite linguistischerritimdene in der Eingabe seitens der Stu-
denten und der Notwendigkeit einer prinzipiellen Syntaxn@ntik-Schnittstelle fur Inhalte, die
zum Beweis beitragen, schlagen wir einen Ansatz zur Vettarigp informeller Beweissprache
vor, der auf dem Formalismus der Tiefengrammatik beruht.

Die Analyse der natlrlichen Sprache gemischt mit mathesecfagin Ausdricken wird durch
Abstraktion von Formeln im Verlauf des Parsings erreichtatiématische Ausdriicke wer-
den durch ihre mdglichen syntaktischen Typen repraséntieren Wechselwirkungen mit dem
nattrlichsprachlichen Kontext explizit in der Grammatilodaelliert werden. Der Parsingvor-
gang wird unter Verwendung einer kombinatorischen Katatgrammatik ausgefuhrt, die eine
semantische Dependenzrepréasentation des analysierigatigi erstellt. Die auf dieser Weise
erhaltene semantische Struktur griindet auf Tektograrkpgitie von der Prager Schule pos-
tulierte multistratale Sprachanalyse, die sprachlichdeBung von AuRerungen unabhanging
von ihren Kontext betrachtet. Tektogrammatische Darsigikn werden dann schrittweise in
Bezlg auf ihre mathematische Domane interpretiert. Zwstaebrden ungenaue Lexeme mit
Hilfe eines semantischen Lexikons auf allgemeine Konzaptgebildet. Dann werden allge-
meine Konzepte durch eine sprachlich motivierte OntolegiEKonzepte der mathematischen
Domaéne abgebildet.

Es werden Sprachverarbeitungsmethoden vorgeschlagétéiimomene, die systematisch in
den Daten wiederholt auftreten und somit entscheidend iftimetomatisiertes Unterrichten
von mathematischen Beweisen sind. Dazu gehort die Modetigegrundlegender syntaktis-
cher Phdnomene (deutsche Wortstellung in wiederkehreldestruktionen in der Mathematik,
gemischte Sprache, und syntaktische UnregelmaRigkdgdneaikmal der betrachteten Doméane)
und grundlegende Phdnomene von semantischer Ungendui&eiber hinaus wird eine Teil-
menge von interessanten Phanomenen analysiert, die ashézahlreich in Corpora aufzufinden,
jedoch aus Sicht der Computerverarbeitung sehr komplek die semantische Rekonstruktion
des “umgekehrt’-Operators, das Verweisen auf symbolidabtation und Propositionen, sowie
das Korrigieren mathematischer Ausdriicke). Da die Datérlisp sind, werden vorlaufige Al-
gorithmen vorgeschlagen und in Proof-of-Concept-Stueiaduiert. In einigen Fallen werden
Korpusstudien als erster Schritt zur Entwicklung von Aitfanen durchgefiihrt. Die Verar-
beitungsmethoden bestatigen, dass tiefensyntaktischéygenmit Kategorialgrammatiken, die
doménen-unabhangige Reprasentationen sprachlicheuBededer analysierten Eingabe auf-
bauen, sich gut zur Modellierung einer Reihe von Phanomandar informellen mathematis-
chen Sprache der Studenten eignen.

Perspektiven natirlichsprachlicher Beweis-Tutor-Systene (Kapitel 7) Der letzte Beitrag

der vorliegenden Arbeit ist eine korpusbasierte Leistbegertung der Parser-Komponente,
also des wesentlichen Bestandteil der vorgeschlagenete@e zur Eingabe-Analyse. Die
gesammelten Korpora von Lernerbeweisen werden als Datenlsang flr eine intrinsische
Auswertung herangezogen, die auf solche AuRerungen iro@éadzielt, die zum Beweis wesentlich
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beitragen. Grammatiken, die Versprachlichungsmustereked, werden systematisch in Simu-
lationsexperimenten wie folgt getestet: Grammatiken eertlr auf Grundlage von AuRRerungsmustern
erstellt, die in den ausgewahlten Arbeitsdaten wiedenmikommen. (Die wiederkehrenden
AuRerungen stammten aus 42 Dialogen.) Parser, die auf sugebGrammatikressourcen
basieren, wurden auf einer zunehmenden Zahl von Dialogestge Die Leistung wurde auf

zwei Datenséatzen ausgewertet: ein Datensatz, der aus uager gebaut wurde, die fur die
Grammatik-Entwicklung genutzt wurde, und ein Blind-Satgtehend aus Verbalisierungsmustern,

die nur einmal aufgetreten sind. Kontextfreie Grammatikia in der gleichen Weise entwick-

elt und getestet wurden, wurden als Baseline verwendetegthg (Anteil des Test-Sets, das
geparst werden kann) und Parser-Mehrdeutigkeit werdeegatgn.

Die Ergebnisse zeigen, dass manuell erstellte semanfiessmourcen auf der Basis kombina-
torischer Kategorialgrammatiken kontextfreien Gramkeatitberlegen sind, was die Abdeck-
ung angeht, aber dennoch ein noch handhabbares Mal} an Atabmufweisen. AufRerdem
bestatigen sie unsere bisherige Schlussfolgerung, dasSpdache, die Studenten verwenden,
um Uber Beweise zu sprechen, von einem grof3en Maf3 an Vigdfiedtnnzeichnet ist, nicht nur
auf einer flachen Ebene von spezifischen Formulierungeiesorauch auf der tieferen Ebene
der benutzten syntaktischen Strukturen.

Da nur 59 Dialoge fir die vorliegende Untersuchung zur \@ufig standen, glauben wir,
dass die beiden Corpora unzureichend sind, in dem Sinne,siiazum aktuellen Zeitpunkt
nicht reprasentativ genug sind fur die robuste Implemeamtig eines Dialogsystems flirs Lehren
mathematischer Beweise. Erstens ist die Menge von Sprastbmuklein. Dies widerspricht
der Intuition, dass die Sprache der Beweise klein und ripstin sollte. Grammatiken, die
auf Ressourcen zur Mengenlehre basieren, lassen sicht seibghalb der gleichen Doméane
nicht gut tUbertragen. Ressourcen auf Grundlage der Dateminéren Relationen sind besser
innerhalb der Doméane ubertragbar, doch der UnterschiedPetformanz in fremden Doméa-
nen ist vernachlassigbar. Mehr Daten missten gesammaleweam endgtiltige Schlisse zu
ziehen. Interessanterweise deuten die Ergebnisse aufneitimdische Frage fur WOz-basierte
Datenerfassungsstrategien im Bereich von Beweisen hinaidiof-Oz Experimente, die per se
logistisch komplex und in diesem Fall auch kognitiv anspawoll fir den Wizard sind, soll-
ten mehrere Domanen innerhalb der Mathematik abdeckem, mic eine einzige Doméane pro
Experiment, wie im der vorliegende Studie. Dadurch wirde eiae groRere Vielfalt von Be-
weisverbalisierungen erzielen. Wenn man aber bedenlg,dlavielversprechenden Ergebnisse
zur Abdeckung einer immer wachsenden Anzahl von linguisda Phanomenen auf einer rel-
ativ kleinen Anzahl vorteilweisemodellierten Dialoge ful3en, stellen wir dennoch fest, dass
was die Sprachverarbeitung angeht, die natirliche SpralshEingabe-Modus fir interaktive
Beweise eine plausible Alternative zu Meni-basierter &lirgoder Struktur-Editoren ist, vo-
rausgesetzt, dass sowohl mehr Daten als auch mehr Facfid@eammatikentwicklung zur
Verfiigung stehen. Wir planen, unter anderem, analogeiitigche Analysen von authentischen
Beweisen durchzufihren, die in mathematischen Publikatieerschienen sind, um Behauptun-
gen bezuglich linguistischer Eigenschaften dieses Gemrpsifen und um die Perspektiven fir
einen automatisierten mathematischen Wissenserwerhieses drt von Diskurs zu beurteilen.
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Introduction

Why can't Johnny prove?

Dreyfus suggests that there are possibly two main reasaonsing is unlike any calculation-
oriented task that students are confronted with before gle¢yo the point where proofs become
the central mathematical activity. The transition to theckof knowledge needed for proving is
complex and difficult; especially since criteria for judgiacceptability of proofs are not clear
cut (Dreyfus, 1999%. Multiple other educational studies which attempt to unders the cogni-
tive mechanisms involved in learning to do proofs and theomatpstacles that learners encounter
in the process, show that fundamental difficulties arisesfadents already in recognising the
very nature of proof, that is, what a proof is and its role irtmeanatics (Bell, 1976; Michener,
1978; Chazan, 1993; R. C. Moore, 1994; Siaghia, 1994; J. Anderson, 1996; Almeida, 2000;
Hanna, 2000, among others). This is not surprising, simoe &a pedagogical point of view,
there is little agreement on the notion of proof even amonthematicians and mathematics
teachers (Davis & Hersh, 1981; Hersh, 1997; E. Knuth, 200@) the role of proof and the
criteria of proof’s validity vary between mathematics fdations (Hanna, 1995). There is also
little agreement as to the pedagogical methods suitabtedghing to do proofs. Almeida (2000)
points out that while for mathematicians a proof is a culringapoint in theory development
which involvesintuition, trial, error, speculation conjecture and finally proof, in university
courses students encounter a rather different matddinition theorem proof. As a result, stu-
dents tend to think of proofs merely as exercises in dematigtr and explanation rather than
as a way of gaining insight into a problem. They exhibit “akla€ concern for meaning, a lack
of appreciation of proof as a functional tool” (Alibert & Thas, 1991), sometimes even do not
recognise the need for proof at all (Dreyfus, 1999; AlmeRi2Q0; Selden & Selden, 2003), or
merely recognise that they are supposed to give “some” gidafeida, 2000). Students often
find themselves in a situation summarised by Hersh as follows

When you're a student, professors and books claim to pramgghBut they don’t know what’s meant
by ‘prove’. You have to catch on. Watch what the professoisdtieen do the same thing. Then you
become professor, and pass on the same ‘know-how’ withaatvkwhat’ that your professor taught
you. (quoted in (Kerkhove, 2006))

The symbolic notation is only a low-level factor which, hoxgg often also constitutes a serious
cognitive barrier in understanding mathematical concéRtsC. Moore, 1994; Dorier et al.,
2000; Booker, 2002; Downs & Mamona-Downs, 2005).

Do check out the reference for the source of the opening line.
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Whatever a student’s fundamental problem in grasping the pbproof, it is uncontroversial
to claim that all mathematics teachers would agree thatrkagquiring proving skills is practice.
Practice, practice, practice! One just has to do a lot offgtdéell, what if Johnny could practice
doing proofs with his computer?. ..

The project of which this thesis was part aimed at realishig very idea. It investigated
theissues involved in provisioning intelligent computatibsypgstems which would help students
learn to do proofs the way that a good teacher would do it: byaging a student in an argu-
mentative dialogue, trying to guide him toward discoverngasoning path leading to a praof
Tutoring interactions of this kind, involving flexible d@jue and encouraging self-explanation,
have been shown to improve learning (J. Moore, 1993); naamguage would moreover miti-
gate problems with mathematical notation identified by RMGore (1994) by letting students
to “capitalize and compensate” on their skills: studentskilled in notation could still get credit
for valid proofs. This thesis is concerned with one aspethefproject:the language of infor-
mal mathematical discourse, its linguistic properties aodnputational processingNVe situate
the problem in the context of three scenarios in which undeding the language of proofs is
relevant: tutoring, interaction with automated mathenzatissistance systems, and document
processing. We focus, however, on students’ language ioahixt of tutoring.

Generally speaking, the term “mathematical discourse” tmayroadly understood to re-
fer to any kind of discourse which concerns mathematicsmfeeientific discussions among
mathematicians or classroom discussions between stugedteachers, through mathematical
textbooks and scientific publications, to popular scienrosg. The discourse may be concerned
with analysis of historical developments in mathematios gvolution of understanding of math-
ematical concepts and of the language used to name thenassiisus of examples, explications
of mental representations (ways of thinking about a congcepsimplystatements of mathemat-
ical facts Steenrod and colleagues (1981) and Bagchi and Wells (18283)to the latter kind
of mathematical discourse as thathematical register

Bagchi and Wells loosely define mathematical register ad ftea natural language, possi-
bly containing embedded symbolic expressions, [that] camipates mathematical reasoning
and facts directly.” Since mathematical register focusesnathematical facts and the formal
structure, it is presumed that “statements in mathematigaster [can] be translated into a se-
guence of statements in a formal logical system such as fulstr dogic” (ibid.) Examples of
mathematical register include mathematical definitiotetements of theorems, and proofs of
theorems. The core contributions of this thesis concermematical discourse in the sense of
mathematical register as characterised atove.

The most prominent surface characteristic of mathemadiisaburse is that it is the familiar
mixture of symbols and natural language. While, in pringigtroofs can be presented using

2Whenever we use the term “mathematical discourse” or “rmagitieal language”, we have in mind mathemat-
ical register as defined here and its language, respecti@lyer types of mathematical discourse are outside the
scope of this work.
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the symbolic mathematical language alone — as in format]dgr instance — this presentation
style is not common in communicating mathematics. It has ls@gued that symbolic notation
does not have to dominate in a proof for it to make a “bettedbpfHalmos, 1970).

Support for open-ended natural language in proof tutoryrsgesns requires that the language
understanding component be capable of building such symtegresentation of the learners’
input that it can be subsequently translated into an in inppitesentation of a deduction sys-
tem responsible for the reasoning tasks. With the view t@ipi@ning such input processing
capabilities we collected a corpus of learner proofs congtd in natural language interactions
(in German) with an anticipated dialogue-based tutorirgjesy simulated by a human. Using
gualitative and quantitative analysis methods, in thisigeve attempt to answer the following
guestions based on this data:

e What language phenomena emerge in naturalistic dialogitesyroof tutoring system?

¢ Does the range of linguistic verbalisations tend to be Buhior is the language diverse?
Is the students’ language affected by the way their studgn@is presented?

e Given the range of language phenomena found in informal enagiical discourse, what
is an appropriate approach to processing this kind of lagg®aVhat semantic represen-
tation provides the appropriate meaning abstraction fidhéw semantic processing of the
identified language phenomena?

e Can a systematic procedure be defined which would take imfopmoof-steps as input
and return as output a representation suitable for traosl&a a domain reasoner’s lan-
guage? What parameters are involved? What processingapboents and resources
are needed?

e What is the prospect for automated tutoring of proofs in ratianguage?

We show that students’ language in computer-assistedrigtof mathematical proofs is rich
in complex linguistic phenomena (Chapter 3) and charasdrby a large variety of verbalisa-
tions, and that students tend to use the kind of languagdhbgatsee employed in the learning
materials that they use for study (Chapter 4). Based on #iglits from the linguistic analysis,
we propose an architecture for computational processimyaaff language based on a deep se-
mantic grammar and a strategy for processing the mixedaland symbolic language typical
of mathematics (Chapter 5). We show how to model selectaatniag phenomena systemat-
ically in a semantic framework and propose initial algarithfor those complex phenomena
which would require further data collection for a more thagb analysis and evaluation (Chap-
ter 6). Finally, we show that the grammar formalism on which language processing archi-
tecture crucially relies, provides good generalistionmadelling linguistic phenomena (Chap-
ter 7), which let us conclude that the language modellingtetyy we propose in this thesis is a
viable contribution toward computational processing éimal mathematical discourse.
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Parts of the work presented in this thesis had been publistmallaborative articles. Material
from the following previously published articles is inckdl

Chapter 2: (Benzmdiller et al., 2003; Wolska, Vo, et al., 2@&nzmduller et al., 2006)

Chapter 3: (Benzmidiller et al., 2003)

Chapter 4: (Wolska & Kruijff-Korbayova, 2006a; Wolska, Z)1

Chapter 5: (Wolska & Kruijff-Korbayova, 2004a, 2004b; Was 2008; Wolska et al., 2010)

Chapter 6: (Wolska, Kruijff-Korbayova, & Horacek, 2004; \8ka & Kruijff-Korbayova, 2004a;
Horacek & Wolska, 2006b; Gerstenberger & Wolska, 2005; Eekad Wolska,
2005d, 2005c; Wolska & Kruijff-Korbayova, 2006b; Horacek/olska, 2006c¢)
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Background and related work

This chapter introduces the project within which this thdsis been set and summarises the
state of the art in modelling mathematical discourse. We $ia presenting the target sce-
narios envisaged for our approach to computational inééaion of mathematical language.
After introducing the basic notions relevant to talking aboomputational processing of dis-
course in our domain, a high-level architecture of systemaslving processing mathematical
language in the target scenarios is outlined. The tasksaf efthe architecture components
are briefly summarised. The reminder of the chapter is destida a discussion of related work.
We briefly report on work on modelling mathematical languisigie context of processing user
input in proof tutoring systems, formal models of mathegstianguage, implemented systems
for processing mathematics, controlled natural langudgemathematics, and annotations of
mathematical discourse. The chapter closes with a disoussimplications for our approach.

1.1 Target scenarios

The research reported in this thesis stems from a largeeqirdIALOG, whose objective was
an empirical investigation into the issues involved in nilinig natural language interaction
with a mathematics assistance system (Pinkal et al., 20004)2 While the core focus of
the DIALOG project was interactive natural language-baseoking, the linguistic analysis of
mathematical language, the language interpretation rdstive propose in this thesis, and the
evaluation results we report are relevant in the contexrofgssing mathematical discourse in

IDIALOG was a subproject of the “Resource-adaptive cogeitivocesses” Collaborative Research Centre
funded by the Deutsche Forschungsgemeinschaft as Sorsténimgsbereich 378.
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general, be it tutorial dialogue or mathematical prose. Wasage three application scenarios
and larger architectures in which they can be applied.

The first scenario and the main motivation of this work, folaed in the introduction, is
computer-based interactive tutoring of mathematical fs@nd is related to the project from
which the work stems. The ultimate goal in this context isplavision of systems for tutoring
mathematical proofs by means of flexible dialogue in natlaajuage. Target users of such
systems are learners of mathematics and mathematics teacimtributing proof exercises. The
linguistic material which needs to be interpreted in thisteat are the utterances which learners
enter while communicating with the system, be it proof st@pseta-level speech acts, such as
requests for explanation of domain concepts. The secotatedescenario isteractive proof
construction with the help of human-oriented automatedudtdn systemsThe goal in this
case is the provision of natural language user interfagahémrem provers, possibly embedded
within larger mathematical document authoring environtae®otential users of such applica-
tions are mathematicians or teachers preparing courseiatsi@r textbooks. Different variants
of this scenario might involve not only different degreedimduistic richness, but also different
degrees of interaction flexibility: the proof language ntipke unconstrained or it might be a
controlled natural language, proofs might be construciibgtieincrementally step by step, each
added step being verified at a time (much like in interactiapassistance systems) or com-
plete proofs could be checked at once as self-containeduises. The linguistic material to
be interpreted in this context are proof steps of differemhplexity constructed by a user of
an automated deduction system, be it a mathematician odargtuThe third scenario involves
computational processing of mathematical documenrigbooks or scientific publications, such
as those found in arXig,an online preprints archive. The goal in this case is to enabérch,
information retrieval, and knowledge extraction in schiglanathematical documents. Compu-
tational interpretation of proof discourse in this contextuld be a step toward transforming
these documents into machine-understandable repreésestand, in a further perspective, to-
ward automated verification of published proofs. While nteliactive proof construction is
involved here, this scenario involves authentic mathesabtliscourse as it is routinely writ-
ten and published by mathematicians. In terms of authéntidithe linguistic material it is
therefore closer to the first scenario and rather more ciwgitig than the second.

Common to the three scenarios is that, ultimately, the nnagttieal content expressed in nat-
ural mathematical language — mathematical proofs — neduls poocessed by a reasoning com-
ponent, an automated theorem prover or a proof checkerder ¢o verify its validity. Previous
work in the latter scenario relied on a dedicated reasonystes whose proof representation
language directly reflected the representation of the diseostructure modelling the proof at
the linguistic level (Zinn, 2006). By contrast to this worke do not assume that the reasoner
is a dedicated system, directly linked to the language wwtaleding component by means of an
internal representation. Instead, we construct a symbeficesentation of the linguistic con-
tent of a proof discourse fragment and rely on a dedicatedegiure to interface between this

2ht t p: // www. ar xi v. or g; Last accessed in May 2012
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1.2 High-level system architecture

representation and a formal proof representation requiyeche of theexistingpowerful auto-
mated deduction systems. Below we outline a general acthite of a system for interactive
processing of natural language proofs in the scenariosiomeat above.

1.2 High-level system architecture

Before presenting the overall architecture, we introdinmeeasic terminology which we will
use while talking about the systems’ components and thepitiation strategy.

The macro-structural domain-relevant discourse unit @fr@st in our scenarios is a proof. In
the context of a mathematical document, it could be of coarsgher mathematical discourse
entity, such as a definition of a concept, a statement of a¢heo An elementary discourse
unit in a proof is a proof step which can consist of a numberlefents (an assertion, infer-
ence rule(s) used to derive the assertion, etc.) The rdlgemreral notions in the context of
discourse/dialogue processing are a communicative uogntibution, and a discourse model:

Communicative By a communicative unit (CU) we mean a scenario-specificafribmmu-

unit nication from the point of view of the macro-structure of thecourse under
analysis. In the dialogue-based tutoring scenario a conuative unit is a
dialogue turn (more below) which a learner composes whitratting with
the tutoring system. In the interactive proof construcsoenario, depend-
ing on the mode of user interaction, a communicative unit imaa single
sentence which constitutes a proof statement or a multesea discourse
segment which constitutes an entire proof. In the documerdgssing sce-
nario, it is a discourse segment which comprises an entoefjn a docu-
ment. As arelementary communicative ume consider a linguistic clause.
A communicative unit may consist of one or more utterances fglow) in
dialogic discourse or sentences in narrative discourse.

Contribution, In dialogue and conversation analysisntribution is a basic unit of dia-

Proof logue, a segment “contributed” by one dialogue particip#ris often used

contribution synonymously with the term “turn”. A turn may consist of orrerreutter-
ancesthat is, intentional, meaningful communicative acts irirdaraction.
In the tutoring scenario, utterances which add informatiiathe solution be-
ing constructed we will calsolution-contributing utterancesA proof con-
tribution is a solution-contributing utterance which expressesfprelevant
content, that is, one or more proof steps or parts thereof.oferdetailed
typology of utterances in the tutoring scenario will be prasd in Chap-
ter 4. More generally, contributions which express domalevant content
we will call domain contributions Examples of domain contributions in-
clude solution-contributing utterances or students’ estmifor explanation
of a concept, for instance: “What is a powerset?”.
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interpretation processes

discourse/dialogue-level

interpretation ¢
communicative di proo
iscourse model S .
unit - contribution _ domain
text sentence/utterance-level reasoner's reasoning
interpretation input language

Discourse

model

Independently of the scenario, we assume that mathemédiogliage interpretation is part
of a larger modular mathematical discourse processingtaothre whose components perform
specialised tasks specific to the scenarios outlined abBigure 1.1 depicts the place of the
language interpretation process within a system for piegsnathematical discourse, be it di-
alogic or narrative. The language interpretation processaies on communicative units. In this
thesis, we focus on the semantic processing of a subgwbof contributing utterancesThe
process comprises a number of subprocesses whose purpodaiiki a symbolic representa-
tion of proof contributions’ semantics both at the domaiddpendent and the domain-specific
levels. In the approach we propose in this thesis, theseseptations mediate between the tex-
tual natural language presentation of the proof contrmstiand a formal proof representation

symbolic representation of domain
and non-domain contributions

Figure 1.1: The place of the interpretation process in treallarchitecture

and a model of the dialogue progression.

language constructed at the interface to a domain reasoner.
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A discourse model is a symbolic representation of the siraaif discourse.
It is built up (incrementally) out of (parts of) discoursegseents as dis-
course analysis progresses and constitutes a represarghthe semantics
of the discourse segments and discourse-level relationin@tance, rhetor-
ical relations) between the segments or parts thereof. Byastcs of a
discourse segment we mean its linguistic (that is, domailependentand

domain-specific interpretation. In particular, it is pddsithat the former is
known (has been constructed), while the latter is not (a dwosecific in-

terpretation of linguistic content could not be assignéddreover, depend-
ing on the linguistic content of the discourse segmentgodise relations
between segments or elementary units may be unknown (yediied) as
well. In case of dialogic discourse, a discourse model it gfaat dialogue

model, which is in turn a symbolic representation of theadjak structure
and includes a model of the state of the dialogue at any pbinteraction
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Figure 1.2: A high-level architecture of a system for preteg mathematical discourse

Figure 1.2 schematically presents a generalised view ofremtecture of a computational
system for processing mathematical discourse in the cbofdke scenarios we described ear-
lier. It comprises the core modules of such a system, ineudiomponents specific to the
different scenarios. Modules which are common to the thoeaarios are marked with solid
lines. The module marked with dashed-lines is an additior@lule specific to the tutoring sce-
nario. The language interpretation processes are pareangut interpretation module; “input”
is a communicative unit relevant in the given scenario. Seivally processed contibutions are
incorporated into a discourse model and, subsequentlyelegant domain-level units (proof
steps, parts thereof, or entire proofs) are translatedaifitomal language of a reasoner. Below
we elaborate on the tasks of each of the architecture comfne

Text extraction The purpose of the text extraction module is to identify asalate the lin-
guistic material relevant for analysis. Text extractiomi@tes at the interface between the input
acquisition module (a GUI, for instance) and the input iptetation module. Its task is to deliver
the text of communicative units in a format which the languagerpretation module expects.
This may involve stripping unnecessary markup from theioaignput or extracting the relevant
units from a larger mathematical discourse (for instanggaeting proofs from a mathematical
document)’

3We include this process for the sake of completeness, haweeedo not address it any further in this thesis.
Likewise, we do not address user interface issues. We asthanhthe input to the language processing component
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Input interpretation  In general, the task of the input analysis module is two-féluist, it is

to construct a representation of the linguistic meaningthadlomain interpretation of the input
contributions. Second, given the linguistic meaning anukdeing on whether the contribution
has an interpretation in the mathematical domain (is a do@itribution), it is to identify and
separate within the contribution’s symbolic represeatathe parts which convey proof steps
(proof contributions), and thus should be passed on to @aneasand the parts which a reasoner
does not process, but which, in case of the tutoring scergrauld be processed directly by the
dialogue processing component. The core focus of thisghesin interpretation strategy for
proof contributions and will be discussed in more detail ma@ters 5, 6 and 7.

Discourse/dialogue processing Discourse processing addresses pragmatic (in the tethnica
sense of the word) phenomena, that is, semantic phenomegwoadthe level of composi-
tional semantics of an utterance and the lexical meaningasfisvfrom which the utterance
is composed. This includes processing discourse cohesienomena (for instance, resolv-
ing anaphora and referring expressions in general), ricatgghenomena (identifying rhetorical
relations between elementary discourse units), discairgeture phenomena (structuring dis-
course units into larger segments expressing a certaimgpe)pand recognising the illocutionary
force of utterances (the functional role of utterances irsaalirse).

In a dialogue processing architecture a discourse modglastaf adialogue modela struc-
tured representation of the state of dialogue at any poiirtefaction, the so-called “informa-
tion state”, and of the flow of interaction in the given domaifhe latter is a representation
of dialogue structure which controls the dialogue progogsand specifies ways in which the
information state is to be updated following each contitiut Dialogues may be represented,
for instance, as frame structures (see, for instance, (Bobt al., 1977)), state transition graphs
(see, for instance, (Metzing, 1980; McTear, 1998)), infation state descriptions with update
rules (D. Traum et al., 1999), a combination of those (statesition graph with information
state update rules (Lemon & Liu, 2006; Horacek & Wolska, 20@uckley & Wolska, 2007,
2008b), or as a probabilistic model (see, for instance, figp@000)). The purpose of the model
of the dialogue structure is to drive the interaction fomvay selecting a dialogue move to be
contributed following a contribution of a dialogue systerasert

contains only proof contributions, that is, one or morenattees which convey proof steps or parts thereof.

4A dialogue move is a dialogue contribution which expressesramunicative intention, for instance, that of
requesting information or requesting that some action bfopeed (a command). Examples of taxonomies of dia-
logue moves developed for dialogue and dialogue systeraanasinclude DAMSL (Allen & Core, 1997), DATE (M.
Walker & Passonneau, 2001), or DIT++ (Bunt, 2009). The motiba dialogue move stems from the notion of a
speech act (Austin, 1962; Searle, 1999). In speech act témfisrmation request” or “command” describe the
utterance’sllocutionary force that is, the speaker’s intention expressed in utterintatewords.

Some dialogue contributions have an implicit or explicittaakevel communicative function of facilitating the
maintenance of the state of knowledge shared between dilpgrticipants, the “common ground”. These con-
tributions are called “grounding moves” and include, fostance, requests for clarification or acknowledgments.
Groundingis a meta-communicative process in conversational intieragvhich interlocutors employ to establish
whether the other party has understood what has been santeasléd (Isaacs & Clark, 1987; Clark & Schaefer,
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Proof representation processing Proofs are structured discourses whose core elements are
mathematical statements along with references to othwmsémts which justify the validity of
the inferences; these may be theorems or lemmata, or peyimferred statements. Proofs
may be expressed in an informal language admitting of ayitnatural language verbalisation,
as in textbooks or mathematical publications, or in a folyndéfined language, as in formal
logic or automated deduction systems. Linguistic propsrof informal proof language will
be discussed in Chapter 3. Proof discourse understandimgjst® in, firstly, understanding the
language of the discourse and, secondly, recognising,rstaaeling, and verifying the validity
of (i) the individual statements, (ii) the relations betwdkem, and (iii) the macro-structure of
the proof. The latter involves, for instance, identifyihg justifications of proof steps (be it those
explicitly stated or those left implicit) and the larger seaing structure into which statements
are organised; this structure may result from the choicb@proof method, as in, for instance,
proofs by induction or proofs by cases. Proof represemtaiiocessing is concerned with both
of these aspects: the proof language and the proof structure

The first proof representation related task is to mediatedx the symbolic representation of
the proof contributions constructed by the language utaeding module and that of a domain
reasoner. Introducing a dedicated interface between teggesentations ensures modularity
of the overall architecture and a clear separation of listiziprocessing and domain reasoning
(see Section 5.1 for further motivation of the interpretat@rchitecture design). From a practical
point of view, this task consists in defining a translatiotwsen the symbolic representations
of proof contributions produced by the language underatgngarocess and the language of an
automated prover or proof checker which serves as the damasoner.

The second proof representation processing task is to baoddmaintain a representation of
the proof which is being constructed in the course of theodiad: of the statements themselves,
the relations between them, and of the overall structureepptoof. This may, moreover, involve
storing thecorrectnessevaluations of proof contributions, obtained from a donraimsoner, or
other evaluations relevant in deciding on further actimi#tained from specialised modules;
for instance granularity or relevanceevaluations. In the tutoring scenario, proof contribusion
evaluated as invalid or inappropriate in the given conteay miso need to be stored in order to
provide the tutoring module with information which may befus in deciding on the immediate
response and an overall pedagogical strategy to adopt.

Domain reasoning By domain reasoning in the context of the scenarios intredugarlier
we mean theorem proving. Generally speaking then, a doneaisoner needed for this task
is an automated deduction system, however, the detailedspeification is dependent on the

1989; Clark & Brennan, 1991; Clark, 1996). See, for instafPeR. Traum, 1994; Matheson et al., 2000; Li et al.,
2006; Bunt et al., 2007) for research on computational nsoadegjrounding.

5In the DIALOG project publications we referred to the module performirapprepresentation processing tasks
in the software systems’ jargon as the “Proof Manager”. Migtails on the proof structure processing tasks can
be found in (Benzmuller & Vo, 2005; Benzmilller et al., 2008y a@n the issues related to automated evaluation of
granularity in (Schiller et al., 2008).

23



1 Background and related work

scenario and its requirements.

Automated deduction has been an active research aredfigiarintelligence for over 30 years.
There exist any automated theorem provers, however, nof #iem can be immediately used
in the scenarios in question. Theorem provers differ inrtheof automation capabilities (the
extent to which they can make inferences or produce entirefpautomatically), in the require-
ments as to the level of detail in the proofs they can verlaf(ts, whether they can reason at the
level of abstraction at which humans do, in particular, \Wwhethey can infer omitted proof steps
and parts of proof steps; this is related to the previoustpdlie automation capabilities), and
in the type of information they can provide about the autdcally inferred steps (for instance,
whether they can be queried about inference rules applies iautomated derivation). They
also differ in the formal languages in which proofs must bec#fjed in order for them to be
processed. In fact, there is no “standard” proof languagewdll deduction systems use. This
is due, among others, to the fact that the systems are basdifeyent underlying mathemati-
cal foundations, for instance, set theory or type theoryclvtspeak” different languages. The
high-level representations proposed by Autexier et al042@nd Autexier and Fiedler (2006)
are “assertion-level” representations which admit of wsgecification typical in proofs pro-
duced by humans. The differences in the input language®treim provers is the main reason
why dedicated translations into specific proof languagesnaeded; in our architecture, this
translation is the responsibility of the proof represdataprocessing module discussed above.

Without making claims as to which existing theorem provewulgobe best suited for the
scenarios discussed, the requirements on the reasonercsumtmarised as follows: In the
document processing scenario, a proof checker would besdefed a proof verification task.
Such a proof checker would have to handle human-orientedrapdcified proofs. The interac-
tive theorem proving scenario would require a proof checidghough a fully-fledged theorem
prover would certainly be of help to a proof autfoFutoring is perhaps the most demanding of
the three scenarios because of the properties of the promdsiged by learners. First, similarly
to the other scenarios, learner proofs tend to omit progfsste parts of proof steps, therefore
mechanisms of reconstructing missing proof parts are sacgsSecond, learners are prone to
producing false proof steps, therefore, fast falsificat®orequired. Third, special functionality
may be needed in order to support tutoring, for instancegtiding on whether a contributed
correct step is relevant in the given proof context, whethisrof an appropriate granularity, or
in generating tutoring hints. In theIBLOG projectQ2MEGA (Siekmann et al., 2003) was used
as the reasoning system. More details on this system andweit a@as adapted to support the
kinds of proofs which students produced in our experiments tatoring itself can be found
in the following publications: (Vo et al., 2003; Autexier &t, 2004; Benzmdiller & Vo, 2005;
Autexier et al., 2009; Benzmiuiller et al., 2009; Autexier let2012). Proofs from the corpora

SWe are not aware of large scale evaluations of existing #raoprovers as to their capabilities of han-
dling formalisations of authentic proofs published in neatfatical conference and journal articles. Nor are
we aware of large scale evaluations of theorem provers stipgonatural language; however, see (Wagner
et al., 2007) for an attempt in this direction and (VershiginPaskevich, 2000; Verchinine et al., 2008) and
Naprochel(t t p: / / ww. napr oche. net; Accessed in May 2012) for controlled natural language @aghes.
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collected in the project were also used in a case study witin&c(C. Brown, 2006a, 2006b).

Tutoring In the tutoring scenario the tutoring module is responsibiethe pedagogical as-
pects of the interaction. Automated tutoring relies on alsyim or probabilistic model of

a pedagogical strategy to be adopted in the course of iti@nacEffectively, in the tutoring
scenario this is what drives the dialogue: it is up to thertagpmodule to decide which di-
alogue move is to be performed at the given dialogue statee arlearner’s contribution has
been grounded at the communicative lev@ind how the given move is to be realised by the
generation process (discussed below).

In order to decide on a dialogue action, a pedagogical giyatedel typically refers to the
history of the given learner’s performance in prior and entrinteractions or assessments, the
so-calledlearner modebr student modelVanLehen, 1987; Elsom-Cook, 1993). The teaching
strategy itself may comprise a static model of pedagoginalitedge on tutoring in the given
domain (see, for instance, (Rosé et al., 2001; Zinn et aD32Fiedler & Tsovaltzi, 2003;
Tsovaltzi et al., 2004)) or a complex adaptive symbolic ockastic model which adjusts its
behaviour based on, among others, interaction variablgésadearner model (Dzikovska et al.,
2007; Forbes-Riley & Litman, 2009; Tsovaltzi, 2010). Recewnrk on pedagogical strategy
models for intelligent tutoring systems takes into accaurth aspects of interaction as learner’s
uncertainty as well as affect and emotions in tutoring (fmeinstance, (D. Litman & Forbes-
Riley, 2004; D’Mello et al., 2007; Porayska-Pomsta et 008).

Response generation/Realisation The complexity of the response generation task, that is, the
categories of responses and their form, is dependent orcémaugo. In the case of the tutoring
domain it is dependent on the adopted pedagogical strademe the complexity of the tutor-
ing strategy directly influences the range of dialogue maoesxed to realise the pedagogical
dialogue actions; which may, in turn, also influence the eanfgdialogue moves contributed by
learners during interaction. Response types may range $nmmple acknowledgments, through
evaluative or corrective feedback, to hints of various claxipy; for instance, hints on omitted
proof elements in the document processing scenario or pgazd hints realised as part of a
teaching strategy in the tutoring scenario. Dialogue maxeriomies motivated by the tutoring
scenario have been proposed, for instance, in (Marineal, &080; Porayska-Pomsta et al.,
2000; Tsovaltzi & Karagjosova, 2004; Wolska & Buckley, 20@&mpbell et al., 2009).

The standard language generation process comprises thasegpeach of which involves a
number of substeps (Reiter & Dale, 2000): ddntent and structure determinatiothat is, se-
lection of information, communicative goal(s), to be conmicated and selection of the larger
structure in which it should be communicated, (ii) sentémterance planning or so-callexi-
croplanning that is, lexical selection, syntactic structure selextietc., and (iii)surface real-
isation that is, producing the surface form of the utterance(s)ea@dammunicated from the
representation constructed in the previous two stepsifguthe abstract representations of
communicative goals into words). In the tutoring contekt first two phases are of course
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influenced by the tutoring process and the pedagogicaksgirat realises. In particular, a ped-
agogical strategy might not only determine the pedagogioatent and the dialogue moves to
be communicated at a given dialogue state, but also influgneckeigh-level decisions as to how
a pedagogically motivated communicative goal is to be brad@wn into atomic communica-

tive goals, how these atomic goals should be related to oothemnin rhetorical terms, down to

specifying the lexemes to be used as well as the mood and nidloie aiterance(s) to be gener-
ated. We do not elaborate any further here on the generatamess itself nor on the methods
employed in building language generation components oritltdialogue systems because in
the overall architecture the generation process does tavait directly with the semantic inter-

pretation process which is the main focus of our work. Howewether discussion of response
generation issues in the context of mathematics tutoringpedfound, for instance, in (Callaway
et al., 2006), while issues involved in natural languagéaksation of proofs, for instance,

in (Huang & Fiedler, 1997; Holland-Minkley et al., 1999; Hwoek, 2001a; Fiedler, 2005).

The processes outlined above constitute the core of antectinie for mathematical dis-
course processing for the scenarios we introduced in thiatieg of this chapter. A complete
computational system would of course include a number ofgeses and components which
we will not discuss here at all. Their purpose and functityalould depend on the larger
application scenario. For instance, in the tutoring sderthae proof tutoring system might be
embedded in a larger environment for learning mathematiosh as EACTIVEMATH (Melis
et al., 2001, 2006) which is itself a complex system incasing dedicated components for
curriculum development, exercise sequencing, learnereitiog, and others. In the interac-
tive proof construction scenario, proofs might be consedién a mathematical document au-
thoring environment with sophisticated mathematical egpion editing capabilities, requiring
a complex graphical interface; as in, for instance, (Wagteal., 2007; Wagner & Lesourd,
2008). Finally, mathematical document processing for Kedge extraction, information re-
trieval, and semantic search, would necessitate a rangenopa@nents providing support for
content-oriented services, such as management of digitaties of mathematical documents
and storage of mathematical knowledge in structured repaes, both of which are active areas
of research in the Mathematical Knowledge Management agddDiMathematical Libraries
communities. The arXMLiv project, aiming at migrating avlocuments into an XML-based
representation, is an example of an effort in this direction

While the described scenarios are diverse in terms of thepgses, the functionalities they
are intended to offer, the users they target, and, possh#ylanguage style of their proof dis-
courses (more verbose or less verbose), they all requitehthanathematical language is com-
putationally processed in order to enable automated piudlking. In the following section we
give a brief overview of related work on modelling and pr@teg mathematical language.

XML, eXtensible Markup Language, is a generic document eimgp scheme for machine-readable
documents Kt tp://ww. w3. or g/ TR/ REX- xm ).  Further information on arXMLiv can be found at
http://kwarc.info/projects/arXMiv.
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1.3 Related work

The early history of attempts of building systems for ndtlaaguage mathematics — Abrams’
Proofchecker (1963), Bobrow's STUDENT (1964), and Simadtkchecker (1990) — has been
summarised in (Zinn, 2004). We do not repeat the summariesdrel refer to Zinn's disserta-
tion’s Section 2.1 for an overview. In this section, we byiafutline related work on modelling
mathematical discourse by pointing out five directions @ thsearch: (i) interactive natural lan-
guage tutoring of proofs, exemplified by the EXCHECK systéinformal (theoretical) models
of mathematical discourse, (iii) implemented systems faicessing mathematical discourse,
(iv) controlled natural languages for proofs, and (v) praphotation languages.

1.3.1 Natural language tutoring of proofs: the EXCHECK sysem

Partick Suppes’ group at the Stanford University InstifoteMathematical Studies in the Social
Sciences (IMSSS) were among the pioneetrsiige-scalecomputer-assisted instruction (CAl).
The IMSSS research on computer-based teaching of mattesnataties back to the 1960snd
has encompassed a multitude of domains, including, asihe ¥arious areas of mathematics,
Slavonic languages, music, and computer programming. dt tle IMSSS systems from the
1970s and their successors have continued being used iersityvlevel tutoring; for instance,
the VALID system for symbolic logic (Suppes, 1981) and itscssors at the Carnegie Mellon
University (Scheines & Sieg, 1994) or the EPGY proof envinent at Stanford (McMath et al.,
2001).

EXCHECK is one of the IMSSS systems developed in the mid-1970s. Simse different
versions of the system have taught Stanford students irersiiy-level courses on elementary
logic, axiomatic set theory, and proof theSr}uch like in our experiments, a student working
with ExCHECK would be presented with lesson material in the domain oféstgset theory for
instance) and asked to solve exercises which involved pgabieorems from this domain.

EXCHECK was designed with specific goals in mind (see (R. L. Smith &B|al976)) two
of which are most relevant here. First, it was intended teesas a base and a practical labo-
ratory for research on natural language processing. Matiesrwas chosen as the domain of
foremost interest because on the one hand, its semantiadlismderstood, while on the other
hand, informal mathematics and its language offer intergsesearch problems from the point
of view of both automated problem solving as well as natusalage processing. Second,
proof tutoring was intended to be realised at a level aptgfor human problem solving,
rather than driven by the requirements of an underlying focbecking system. Already at the

8The early history of this research is related in (Suppes2)197

®Numerous articles related to IMSSS research on CAl, in @aer theEXCHECK system, are available on
Patrick Suppes’ corpus websitet(t p: / / suppes- cor pus. st anf or d. edu). It would be impractical to
cite all the relevant published work here because the ieguist of references would probably be almost as long as
this chapter itself. Therefore, we only cite those paperihvhpecifically address or mention those aspects of the
systems which are of particular interest here; that is,Uagg and dialogue processing. An overview of the systems
and of empirical studies during the first decade of the systese can be found in (Suppes, 1981)
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Table 1.1: A fragment of thexCHECK input language; examples of formal expressions (left)
and their corresponding natural language verbalisatingbt)

Formal Informal

(A X)(E y)(x suby) For every x there is a y such that x is a subset of y
Function(F) & FA -> B F is a function and F maps A into B

{x : xneqx} =0 The set of all x such that x is not equal x is empty
(AA{DnNnfinite(A |IFF For all A, A is Dedekind-infinite just in case there is

(EQ(Cpsub A& C:=A} a C such that
C is a proper subset of A and C is equipollentto A

(W) (x € A — x € B) For all x, if x isin Athen x isin B

(Wx) (x € B) For all x, xisin B

time of EXCHECK did the IMSSS researchers observe that informal proofsaitiqular, stu-
dents’ proofs, substantially differ from formal proofs whican be verified by proof checkers or
constructed by automated deduction systemxxHECK was intended to bridge this gap and as
such was among the first, tifie first automated system addressing human-level theorem prov
ing.1° The DIALOG project was in fact driven by the same motivations and gaath@se behind
the EXCHECK research (Benzmiller et al., 2009).

There is a number of interesting aspects to gx&€HECK system and similarities with the
tutoring system for mathematical proofs envisioned in thel®G project!! First, EXCHECK
allows students to construct proofs in an interactive mannkat is, the system and a student
engage in a dialogue in which the student constructs a prabfthe help of the system, step
by step. Second;xCHECK proofs can be formulated in a “natural style” which is closdtte
standard mathematical practice. In particular, the proafs be informal in the sense that not
all the steps of reasoning must be specified. More@egHECK admits of certain flexibility
in the language style of the input: proofs can be written gigither symbolic mathematical
expressions or in “mathematical English”. Table 1.1 shoxesveles of inputs whicEXCHECK
can interpret: both symbolic expressions (in the left-heoldimn of the table) as well as their
corresponding natural language verbalisations (the-tightd column) are show#s.

As the examples illustrate, the range of complexitgREHECK input statements can be quite

10For a recent discussion of various aspects of human-leeelfpand human-oriented automated deduction in
the context of the IALOG project see (Autexier et al., 2004; Benzmiller & Vo, 2005eéier & Fiedler, 2006).

n the following sections we will, as a convention, use pnesense when talking about tlecHECK from the
70s; even if the moderexCHECK-based systems differ from the original version in funcaility.

12Reproduced from (R. L. Smith & Blane, 1976) and (McDonald1)@ punctuation and capitalisation preserved.
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broad and encompasses from simple to compound formulasleasngterances formulated en-
tirely in natural language. This coverage is achieved byigkauthoring of input utterances,
that is, specifying the language fragment by means of a gemEXCHECK has been concep-
tualised as an environment both for authoring proof exescend for tutoring itself. As part of
the exercise authoring process a content developer musedefanguage fragment to talk about
the mathematical theory in question, that is, formulater@ianguage sentences, such as those
exemplified above, which a student can use. This is done blcikpwriting a context free
grammar for the anticipated language fragment as well asfon@mplates” which transform
the parse outputs directly into the internal represematibthe proof checker. The language
processing component aKCHECK, CONSTRUCT, is presented in detail in (N. W. Smith, 1974)
and (R. Smith & Rawson, 1976). While there are limitationstiom complexity of the natural
language which can be interpreted by the system (for instathe utterance “Everything is in
B”, which is a possible paraphrase of the licensed inputaiges {vx)(z € B)” and “For all

x, x is in B”, cannot be parsed), we consider the EXCHECK/CONSTRUCTesyghe most
impressive of the implemented systems, considering itere@e and the fact that the system
has beeractually usedn teaching proofs; see (Suppes & Sheehan, 1981) and therettats

at the Suppes’ corpus website on the university-level caergssisted instruction at Stanford.

1.3.2 Formal analysis of mathematical language

Fox (1999) focuses on certain “non-schematic” occurrerndegriable letters in mathematics
which cannot be modelled in the standard way as referringesgpns and proposes to extend
theories of discourse interpretation, such as Discourped2entation Theory, with Fine’s theory
of Arbitrary Objects (Fine, 1983).

Ganesalingam (2009) gives a formal analysis of a wide rahghenomena in mathematical
language, focusing in detail on ambiguity in the symbolidmeanatics. His syntactic analysis is
based on context-free grammar and semantics modelled neaaf Discourse Representation
Theory modified for the language of mathematics. A formagtgpstem is developed to account
for ambiguity in the mixed, symbolic and natural languagan&salingam’s ultimate goal is to
“build programs that do mathematics in the same way as huah@hOur goals in this thesis
are, by comparison, much more modest and, of course, pagtdriven. Two comments are
made in relation to our work (Ganesalingam, 2009, page Z3)e‘material produced by [users
with ‘little to fair mathematical knowledge’] is not relatdo the formal dialect of mathematics”
— as we will show, students’ mathematical language exhfditnomena found in textbooks as
well as a range of other language phenomena — and “[(WolskawjfkKorbayova, 2004a)]
treats material in German, whereas we focus exclusively rayli€h”, which seems to suggest
that the language phenomena found in German might be stib#i{adifferent from those found
in English. We translate our German examples preservingythtax and semantics as closely
as possible, in order to illustrate the cross-linguistitureof the language phenomena found in
our data. Neither Fox’ nor Ganesalingam’s analyses appdae &ctually implemented.
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1.3.3 Processing natural language proofs

Ranta (1994b, 1995, 1996) analyses mathematical langnagens of Martin-Lof’s type the-
ory and in subsequent work builds a proof editor with natlaafjuage input based on a for-
malisation in the Grammatical Framework (Ranta, 1994a)e flimal analysis in (Hallgren &
Ranta, 2000) appears to be oriented toward building apiatteptype representations based on
the input to the proof editor, rather than toward principdegount of linguistic phenomena. A
type-theoretical approach motivated by similar goals tgten’s and Ranta’s is also presented
in (Callaghan & Luo, 1997).

Baur (1999) shows an approach based on the LKB system (Gigeest999). Parsing is
performed with an HPSG grammar (Pollard & Sag, 1994) adafmtechathematical language,
with \-DRT (Bos et al., 1994) as a semantic construction formalBasic phenomena found in
example proof sentences from Chapter 2 of (Bartle & Sherti882) are addressed.

Likewise, Zinn (2004, 2006) uses only exemplary textboadofs, from (Hardy & Wright,
1971), to illustrate his approach. Zinn claims that “[tjhetactic constructions of informal
mathematical discourse are relatively easy, stylisedrondiéaic and more or less in line with En-
glish grammar rules” and refers to Trzeciak's collectioristéndard phrases” for mathematical
texts (Trzeciak, 1995) noting that “most mathematical argnts could be expressed by instan-
tiating and combining these textual components” (Zinn,£2@&ge 56). His linguistic analysis
is also partly guided by rules of good writing style in matlatics, such as those in (D. E. Knuth
et al., 1989). Most of the analysis of language phenomenadgdted to anaphora and condi-
tionals (Zinn, 2004, page 69ff). Computational processiigased on van Eijck’s and Kamp’s
A-DRT (Eijck & Kamp, 1997). As Ganesalingam notes it ofterklageneralisation (it assumes,
for instance, that all mathematical constants ('1’, '2’, &c.) are explicitly modelled in the lex-
icon), however, it appears that Ganesalingam is not righibéhg that an embedded symbolic
expression should not be accessible for reference, asszaeabunt predicts; consider 2’ being
accessible in2 + 15 is prime” (Ganesalingam, 2009, page 20). We will return te then we
discuss indirect anaphora in Section 3.2.2.5.

Natho (2005) and the TU Berlin Zentrum fiir Multimedia in Lehund Forschung (MuLF)
group have developestARACHNA, a language processing system for extracting knowledge
from mathematical texts written in natural languddeThe language addressed is German,
therefore we review the approach in somewhat more detail.

Like Zinn, Natho claims that the range of linguistic constions in mathematical language
is limited (Natho, 2005, page 108), sentences with logipairators and quantifiers are in most
cases simple, short, clear, and easily comprehensibléacti;mand semantic ambiguities are
avoided through the use of phrasings with fixed meaning;eTaldl shows typical constructions.

13Between February 2005 (the time of publication of Natho'ssth) and 2008 around 20 ar-
ticles related to MARACHNA have been published by researchers affiliated with MuLF; see
http://eprints. mul f.tu-berlin.de;Lastaccessed in May 2012. A system based on phrase stuctur
grammar was presented in the articles from 2005 and 2006e \&hsystem based on HPSG was presented in the
articles from 2007 and 2008. Because the conceptual desiyjtha actual text within the two sets@fARACHNA’S
publications largely overlap. We will give a reference tdyamne publication from which a given citation stems.

30


http://eprints.mulf.tu-berlin.de

1.3 Related work

Table 1.2: Natho's language structures in mathematicas.tex

Structures  Template Meaning
type

[VERB1] A, (so/dann) [VERB2]B

wenn A [SEIN/GELTEN], dann [SEIN/GELTENB

wenn A [GELTEN], dann [GELTEN]B A= B
falls A [VERB], dann [VERB]B

B [VERB] (nur/hdhstens) dann, wens

Implication A ist hinreichend fir/ A= B
dies ist hinreichend fur/
dies ist eine hinreichende Bedingung fr
A ist notwendig fiirB / eine notwendige Bedingung dafiir i8t B = A
ausA folgt B
A dies hat zu Folge, dass/ man kann folggern, dass
A folglich [VERB] B A= B
A, dies impliziertB
A, daraus ergibt sich / daraus erhalten wir / das beddgitet
A ist &quivalent zu/gleichbedeutend nhit
. A [gelten] genau dann, wenf [gelten]
Equivalence A [gelten] dann und nur dann, wer [gelten] A< B
A [sein] hinreichend und notwendig fii?
Fir alle/jedes/ein beliebiges. ..
Jedes/zu jedem ...
V...
Alle z ...
Quantifier Seiz beliebig . ..
Es gibt einx ...
Fir ein geeignetes gilt . .. Jz...
[SEIN/HABEN] einz ...
Set ...istElementvon ... L€
theoretic ...kommtin ...vor L2
Assuption (es)sei...list.../fur...gegeben (ist/sei) es gelte ... assumption: ...

The number of verbs used in mathematical texts “appears ®rad.” The most frequently
occurring verbs in German are: “seiid), “heil3en” pe called/terme) “existieren” exis),
“geben” (e given corresponding to the English existential constructivere is/ar¢, and “fol-
gen” (follow). Natho claims that mathematical expressions exhibitifipesyntax that is in
principle simple yet ihcompatible with the syntactic structures of natural langée (empha-
sis added}* Some of the proposed analyses appear not linguisticaltyriméd; for example,
on page 129, phrases “absolut konvergent” and “linear uinadif” are given as examples of
phrases with two adjectives one after the other (“zwei Atiljekhintereinander angeordnet”.)

M«Mathematische Symbolfolgen wie z.B. Formeln weisen eimeeh eigene Syntax auf, die zwar prinzipiell
einfach ist und auch durch die Pradikatenlogik strukturiérd, jedoch nicht kompatibel zur syntaktischen Struktur
der naturlichsprachlichen Texten ist.” (Natho, 2005, jgab@8—109).
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Linguistic analysis imARACHNA is based on a four-level “linguistic classification scheme”
The Sentence Levelnd theWord and Symbol Levelf the scheme describe “the characteristic
sentence structures, which are commonly found in mathesldéxts” and “[schematizes] sin-
gle symbols, words, and their relations between each offdttke et al., 2006). Assumptions,
propositions, and properties are identified based on ‘@tygpecal syntactic constructs and com-
mon phrases within their sentence structure” (Grottkeghles Natho, & Seiler, 2005). This
approach is similar to Zinn's, however, the authorsm@RACHNA seem to be unaware of this
work. Mathematical expressions are “generally” separfimh the surrounding text and rep-
resented in MathME® format. The authors do not specify in which cases other phaes are
applied. Simple mathematical expressions within text aeplaced by placeholders” (Jeschke,
Wilke, et al., 2008) while “some simple symbols and equatioan be replaced by natural text
elements” (Jeschke, Natho, et al., 2008). UnfortunatbBte are no examples to illustrate this
substitution. MARACHNA does not seem to account for syntactic and semantic inkemact
between the two modes of mathematical presentation, matitahexpressions and natural
language, however, the authors plan to extended it to psdtesre complex formulae” using
“syntactical analysis similar to those used in computeelatg systems in combination with
contextual grammars (e.g., Montague grammars) to cogredatinformation given in a formula
with information already provided in the surrounding natuanguage text” (Jeschke, Natho,
& Wilke, 2007; Jeschke, Natho, Rittau, & Wilke, 2007). Theraurs suggest that “[u]sing this
approach should enablARACHNA to integrate formulae and their informational content in
the network created by the analysis of the natural languagé(tbid.) Unfortunately, there is
no specific information as to the use of Montague grammarsaoggs mixed language and the
provided description is too vague to draw conclusions analtae to compare the method with
our proposal.

Chomskian analysis of an example sentence is shown in (N&0@5)® Unfortunately,
details of processing are not elaborated. A later approaeb TRALE (Muller, 1999), a Head-
Driven Phrase Structure Grammar (HPSG) parser for Germha. TRALE parser “has been
extended by expanding the dictionary and grammar to incthdespecifics of mathematical
language” (Jeschke, Natho, et al., 2008). The output pesvad“comprehensive syntactic and
even some partial semantic information about each sentedoéortunately, neither details on
the HPSG resources nor examples of lexical entries aregedviTRALE’s output “is trans-
formed into an abstract syntax tree, symbolizing the afineadf the analyzed sentence”. Because
TRALE cannot process mathematical expressions, formuldseams must be processed sep-
arately from natural language, however, neither procgssiimmplex mathematical expressions
nor interpretation of mathematical expressions withinghrounding natural language context
has been implemented (Jeschke, Natho, et al., 2008). dgsdfikke, et al. (2008) mention
that the symbols and equations (at this point unanalysedjtagged with an identity number,

Bht t p: / / www. w3. or g/ Mat hML (see also the section on annotation languages below)

18«Durch Transformationen wird der Satz in seine Eizelbediite zerlegt, Phrasen ersetzt, und Verben um-
sortiert. Dadurch entstehen strukturierte Satzbaustdiasyntaktisch nach dem Chomsky-Modell analysiert werde
kénnen.” (Natho, 2005, page 126)
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and treated like a noun in the NLP analysis”, that is, the sameas in the approach based on
phrase-structure grammar (Grottke, Jeschke, Natho uR&t&eiler, 2005).

The semantic analysis in the HPSG-based system “is impletien the form of embed-
ded JavaScript interpreter” which categorises the symest“according to typical structures
characteristic for specific mathematical entities and sgimaonstructs” (Jeschke, Natho, et al.,
2008). The categorised trees are subsequently transfdmuettiple structures using “external
JavaScript rules [which] map typical mathematical languagnstructs onto the correspond-
ing basic mathematical concepts (e.g., proposition, aggam definition of a term etc.)” The
triples are further annotated with the information abobe“tontext within the original docu-
ment” and the information about the triples’ “classificatiwithin the context of the final OWL
documents ...[that is] [flor each element of the triplesdsho be decided if they represent
OWL classes or individuals — complicating the semanticysis!’ (ibid.) Due to the general
vagueness of the descriptions it is hard to relate the apprtmother approaches and to our
proposal.

1.3.4 Controlled (natural) languages for proofs

SAD (Verchinine et al., 2007), NaprocHeand MathNat (Humayoun & Raffalli, 2010) are ex-
amples of interactive proof construction systems basedaoiraled natural languages (CNL)
which allow users to enter proof steps using a language st@bse to natural language. CNL-
based approaches assume that the vocabulary and the raggetaftic structures is a prede-
fined subset of a natural language. Semantic interpretatiarthus be restricted to processing
the specific constructions allowed by the CNL grammar. Thevebnentioned CNLs, how-
ever, do not offer a lot of flexibility of linguistic expressi, for instance, as far as embedding
symbolic mathematical expressions within natural languaigusing referring expressions are
concerned. Humayoun and Raffalli claim to resolve certgmes of referring expressions within
their MathNat system, however, the reference phenomenassist appear to be based on an
exemplary constructed discourses rather than on real datéhay are of course restricted to
the scope of the predefined CNL. Therefore, it is not clear iwaN the reference resolution
methods would perform on a larger sc&eThe Isar of the Isabelle/Isar framework, while not a
CNL, is a formal proof language designed for human readgtifiWenzel, 2007). The MIZAR
language (Trybulec, 1978; Rudnicki, 1992) and the SAD’sTRet. language (Vershinin &
Paskevich, 2000) were designed with the same motivatiorilevilaxible in the sense that they
enable defining new language constructs which can be imteddizssed within the constructed
discourse, the price is that the discourses need to be @et&ioed, in that all the vocabulary —
the lexicon along with the lexemes’ semantic interpretetio needs to be formally specified in a
document. Since in this thesis we are interested in natamgliage proofs we will not elaborate
on controlled natural languages any further.

Yht t p: / / www. napr oche. net ; Last accessed in May 2012
BInterestingly, MathNat is a successor of the DemoNat ptéfect p: / / wi ki . | ori a.fr/w ki / Denpnat ;
Last accessed in May 2012) which was intended to developueatdnguage-based proof tutor for French.
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1.3.5 Proof annotation languages

In parallel to computational processing, manual annatatibproofs has been proposed as a
methodology for studying mathematical discourse or asqfa®mi-automated processing. Be-
cause manual annotation is not an approach that we can eoisia practical scenario of tutor-
ing we discuss markup languages for mathematics only bifieflthe sake of completeness.

General languages for annotating mathematics Several markup languages for mathematical
documents have been developed for the purpose of displayailgematics in web browsers or
in the context of the semantic web. Math#Land OpenMatf are markup languages for rep-
resenting the structure and semantics of mathematicatiootadMDoc! (M. Kohlhase, 2006)

is a general semantics-oriented markup for mathematicabledge which extends OpenMath
to entire mathematical discourses. TIRX/TATEX-based sTe¥ markup, developed by the OM-
Doc’s author, enables semantic annotation of mathemaitiestly within IATeX documents.

Proof Markup Language ProofML (Schrider & Koepke, 2003) is a linguistically matted
markup for proofs which focuses on sentence and discoarst4emantic phenomena in proofs,
such as their logical structure (for instance, the scopdefpremises, consequents markup),
linguistic quantification devices (quantificational det@rer, restrictor, and scope markup), dis-
tributive and collective readings of plurals, and ellipsi¢hile mathematical documents seman-
tically annotated at this level of detail would be extremedjuable for studying the relations be-
tween the linguistic and logical structure of proofs, werstaware of any ProofML-annotated
corpora (other than the three-sentence proof providedeip#iper's appendix).

MathLang The purpose of MathLang (Kamareddine & Wells, 2001, 2008) snable semi-
automatic computerisation of mathematics written in “camnmathematical language” — the
language and style in which mathematicians routinely wiiato any language ofany proof
checker. The assumption is that a scientist, while workingaanathematical paper, would
annotate his/her own document by explicitly identifyingddabelling segments of text using
the MathLang markup. Unlike ProofML, MathLang distinguéshdifferent levels — “aspects”
in the MathLang terminology — of annotation granularity:e t8@ore Grammar aspect (CGa)
of a document, the Text and Symbol aspect (TSa), and the DarttuRhetorical aspect (DRa)
which, from a computational linguistics point of view, tdlger correspond to the following steps
of processing: grammatical analysis, analysis of symboathematical expressions, lexical and
type semantic analysis, and discourse analysis. Here webdefly outline certain peculiarities
of the CGa and the TSa aspects.

ht t p: / / www. w3. or g/ Mat h; Last accessed in May 2012

ht t p: / / www. openmat h. or g; Last accessed in May 2012

Zht t p: / / ww. ondoc. or g; Last accessed in May 2012
Zhttps://trac. kwarc. i nf o/ sTeX; Lastaccessed in May 2012
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Table 1.3: MathLang’s Core Grammar categories

Description Example
a mathematical object “a+b”, “an additive identity 0,
“ \/511
a collection of objects N”
a family of objects which share common characterisring”, “number”
tics
adjective a modifier which constructs nemouns for instance, “Abelian”, “even”

by refining old ones

a unit which has a truth value, describe mathematicat = o”, “ P lies betweer) and
properties R

declaration| a unit which gives a signature to a ndarm, set “Addition is denoted: + b”
noun, adjective, or statement

definition a unit which definies new symbols “Aringis...”, "A numbers
prime whenever...”

a unit which sets preliminaries prior tostep; for in-  “Given aringR, ...”
stance, atatement adeclaration or adefinition re-

stricted to a specific part of a document

ste a statement adeclaration or adefinition, a succes- “We have...”
sion/sequence thereof (i.ephrase/block), or acon-

text

l 5
Q

@

o «Q
o

=

<

The CGais a kind of type system inspired by Weak Type Theosdé¥pelt & Kamareddine,
2001; Kamareddine & Nederpelt, 2004) and de Bruijn’s mat#al vernacular. Its markup,
shown in Table 1.3, is partly linguistically and partly damanotivated and corresponds to the
annotation of grammatical categories and certain typedsobdrse segments in text. A CGa
analysis of an example sentence “There is an eleémtR such thata + 0 = o” is shown

below?3
There i N ~ B uch tha-

Each colour-codednnotation boxis further annotated with semantics. The semantics of a
coloured box at the CGa level is indicated in the form of “iptetation attributes” which sym-
bolically represent the domain interpretation of the boted fragment. For example, the blue
term boxes, || Eilciement) and [l are tagged with an interpretation attribue the boxes

ZExamples from (Kamareddine, Lamar, et al., 2007; Kamaregdlaarek, et al., 2007; Kamareddine et al.,
n.d.).
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and[JABROE are tagged! us andeq, respectively. A complete annotation of the
example looks as follows:

A text segment colour-coded in this manner can be subsdguentritten in MathLang’s ab-
stract syntax (Kamareddine et al., 2006) by reading off tiveotations:

{0: R eq(plus(a 0), a);};

The link between the “common mathematical language” antbit®al interpretation is es-
tablished by the TSa level and is facilitated, among oth®rspuringannotations which, unlike
the CGa categories, are somewhat less linguistically iméol. Kamareddine, Lamar, et al.
(2007) observed that in mathematics the surface languagerda always directly “match” the
intended domain interpretation. As an illustration of a @enphenomenon which motivated
souring consider the well known convention of chaining equations:

04+ a0 =a0=a(0+0)=a0+ald

The obvious interpretation of such a construct is a conjandh which some terms are dupli-
cated (or shared):

0+a0=a0Aa0=a(0+0)Aa(0+0)=a0+ ald

The purpose o$ouringis to recover the intended meaning, while preserving theécipe sur-
face realisation in expressions such as at6vin line with MathLang philosophysouringis

a tagging task. “Sour bits” are added to the text by means efiaptype of boxed annota-
tions with a thick frame and a distinct colour. The authoismlthatsouring annotations of
re-ordering sharing/chaining andlist manipulationare required in order to handle phenomena
which, in linguistic terminology, can be identified as linsation, aggregation, and certain types
of ellipsis in natural language and in the language of symlipressions.

The souring annotations with examples are illustrated bi€ra.4. A reordering transforma-
tion is performed in cases when the linear order of words ort}s in a text does not agree
with the order pre-defined in the formal language. As an exarmpthis phenomenon Lemar
points out that the formal set membership notation and thealisation of the prepositional
phrase with “in”, on the one hand, and, on the other hand, teraf arguments of the verb
“contain”, whose intended interpretation is that of set rhemship do not “match”; We write
and sayt € Rand ‘e in R”, but “R containsa”. Thus, he notes, in the latter case the arguments

24The termsouringwas invented by analogy with the notion s§ntax sugaringn programming languages.
“Syntactic sugar” is added to programming languages inrotolanake their syntax easier to read and write for
humans. Here, the opposite is needed: For the purpose ofuterigation and formalisation, the content which is not
realised on the surface must be restored. Therefore, orhicéeof the common mathematical language as “sweet”
and of the formalisation language as “sour” (Kamareddiramar, et al., 2007).

36



1.3 Related work

Table 1.4: MathLangouringtransformations

MathLang
. Boxed
Phenomenon souring . Examples
) annotation
terminology

Linearisation Re-ordering position:

Aggregation Sharing/chaininghar ed

hook- | oop
Ellipsis List manipu- map,
lation fold-right,
fold-left,
base, i st

T

: dErighl_
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must be reordered so that the intended formal represemtati{ a, R) , can be obtained. To
this end, the clauseR containsa” is annotated wittpositioninformation and this annotation is
used to transform it into a formal representation uniforraltdhe expressions with the intended
meaning of set membershigharedandloop-hooktags are used when a segment has to be du-
plicated. A typical example involves the previously menéd chaining equation$olding and
mappingannotations are used in list contexts to repeat a segmeeafbrelement of a list when
the intended repetition was suppressed or elided. A tygixaimple which requires this trans-
formation is quantification over multiple variables, thaitélauses such as “for all, y, z, ..."

In the formal language the quantifier is recovered (“unfdifiéor each bound variable. This is
achieved by a transformation which repeats the appropiatetated segment. While, addmit-
tedly, aggregation and ellipsis resolution do require ¢hdiscourse-level interpretation process
recovers the underlying semantics, for instance, by meagaindexing mechanism, in a way
analogous to the effect of treouring transformation, clearly, a linguistically informed gram-
mar and a principled syntax-semantics interface would lenaalysis without the reordering
transformations.

1.4 Discussion

As the second part of this chapter shows, processing ndaumgliage proofs has been an “on-
going research project” for decades. In fact, processindesits’ natural language proofs had
been previously done on a large scale (at Stanford). Pringasgthematical prose is not a new
direction in natural language processing either. So is thblem solved? Far from it. Although
several approaches to computational processing of mattoaindiscourse have been proposed,
it appears that most of the recent work on the natural langegnathematics has focused on
theoretical models (Fox, Ganesalingam) whereas the cgearbthe implemented approaches
have been anecdotal. Baur and Zinn process only a small ssstndéénces. Baur models 3
proofs; around 30 sentences in total, of which some haveah® syntactic structure. Zinn
“lis] only aware of [his system] being able to completely qges the two example construc-
tions in ch. 7.” (Zinn, 2004, page 199); 9 sentencRFARACHNA appears to exist as a proof
of concept implementation that demonstrates the fedgilafithe approach “[flor selected text
elements” (Jeschke, Natho, & Wilke, 2007; Jeschke, Natittalr & Wilke, 2007); the running
example of a definition of a group consists of 5 sentences.d€keriptions ofMARACHNA are
too vague, therefore we are not convinced of the scalalifithe approach.

Unlike Zinn’s approach which relies on a tight correspormdehetween the representations
produced by linguistic analysis and the representationd ereasoning, we argue that an ar-
chitecture for processing mathematical discourse and terpiretation strategy for processing
mathematical language should be designed in a modulaofgstather than be coupled with a
prover, in order to be flexible enough to support the diffemgplication scenarios outlined in
the beginning of this chapter. In particular, the semargresentation should be independent
of the reasoner system’s input representation, so thatutiaibnality is not bound to a specific
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deduction system. The interpreted linguistic meaningesgmtation which we propose as the
semantic output representation does possess this property

In practice, with the exception of Ranta’s GF, no reusabéargnar resources for mathemati-
cal language appear to exist. We do not use GF for two rea$orss; we choose combinatory
categorial grammar because it is an expressive grammaafismmwith a perspicuous syntax-
semantics interface, which enables modelling complexuistgc phenomena in a transparent
way (Steedman, 2000; Baldridge, 2002); for instance, cempbordination phenomena, no-
toriously difficult for grammar formalisms, or word ordergfomena. Moreover, the parser
implementation which we use produces logical forms whiah eacode domain-independent
linguistic meaning, such as those we would like to obtairntenms of dependency semantics.
Our approach is related to Ranta’s in the sense that casdgwammar (CG) is also a kind of
type system. However, CG is a lexicalised grammar and, asilvehew in Chapter 7, it pro-
vides good linguistic generalisations. Second, the coa@emmars in GF appear to exist for
a set of constructed examples. In this work, we wanted to freaxteally recurring phenomena
based on authentic linguistic data. To this end, we colteateorpus of students’ interactions
with a simulated system, in order to investigate languagmpimena naturally occurring in this
discourse genre. The following chapter motivates the ehofcdata acquisition methodology
and outlines the setup of the data collection experiments.
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This chapter summarises two corpus collection experimemtsiucted in order to acquire au-
thentic data on pedagogical, mathematical, and linguastjects of proofs constructed by stu-
dents in naturalistic computer-mediated tutorial dia@uteractions. The first experiment was
the first, to our knowledge, medium-scale effort to colletip@ical data on human-computer
tutorial dialogues on mathematical proofs, on the use afrahtanguage in proof tutoring, and
on dialogue phenomena specific to such interactions. Thaf poeercises used in the first ex-
periment concerned naive set theory. Building on the itsiffom the first experiment we
conducted another experiment on proofs in binary relatiomthe second experiment, we were
interested in two issues: first, in the language productidam particular, factors that influence
the character of the language used by the subjects — anddsécdhe issue of proofs’ granular-
ity, or argumentative complexity, specifically, in the diftnces between granularity appropriate
from a pedagogical point of view and the kind of granulariguired by automated deduction
systems. Before summarising the experiments and pregehtincorpora, we discuss the moti-
vation for collecting new data, rather than using existiatad- such as textbook proofs or proofs
extracted from scientific publications. After summarisaiggrnative dialogue research methods,
we motivate our choice of methodology, a system simulation.

2.1 Motivation

Proofs are central to doing and knowing mathematics and pnesent in mathematical dis-
course. The language of informal proofs can be studied baisélde enormous body of printed
and electronic mathematical publications. In the intradyc chapter, we already mentioned
Baur’s (1999) and Zinn’s (2004) work on computational pssieg of textbook proofs based on
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isolated examples from specific textbooks. Since we arevateti by the same ultimate goal —
automating the linguistic interpretation of proofs — a disgsarises whether our language pro-
cessing method could be based on the study of the same kiratafAllthough this idea seems
rather attractive, mainly because of the ease of acces®te#earch material, there are rea-
sons why textbook proofs alone should not guide the comipuatatanalysis when the aim is to
process (i) students’ proofs, (ii) constructed in a diak@eraction, and (iii) with a computer.

Mathematical textbooks are written by expert mathematgid he “writing styles” of experts
differ from the styles of novices in maths. They even differceag mathematicians themselves;
proofs of the same theorem presented by different authoysbeantirely different even if the
underlying proof “idea” and proof structure are the sameerEthe same mathematician might
produce different proofs depending on the audience to wingnptoof is addressed:

[...] the style of writing need not be the same when you addyesrself to an expert or to a beginner.
[...] For research monographs [...] allowing some loosgfeshe general organisation, the skipping
of a lot of proofs or comments which are trivial for experts;.eOn the contrary, when it comes
to textbooks aimed at beginners, | am entirely in agreemétiit Malmos regarding the necessity
of a very tight organisation, and | would even go beyond hirthwegard to the “dotting of the
i’'s”; this may well be annoying to the cognoscenti, but sdmes it will prevent the student from
entertaining completely false ideas, simply because inlbaeen pointed out that they were absurd.
(Dieudonné in (Steenrod et al., 1981))

A common property that expert mathematicians’ proofs shahlare — aside from validity,
of course, which in the case of textbook proofs we take fontge — is that a proof should be
convincingfrom an argumentative point of view: it should be presenteduch way and with
such level of detail that a reader to whom it is addressed ceepd it as a proof of the given
proposition. Again, educational material, such as textbprequires special attention to detail:

[...] in research monograph a great many things may remasaidnsince one expects the expert
reader to be able to fill in the gaps; one should, however, evéirat case, remember Littlewood’s ad-
vice: you may very often skip a single line of a proof, but rreveo consecutive ones. For textbooks,
on the contrary, [...] all the details must be filled with ottt exception of the completely trivial ones.
(Dieudonné, ibid.)

By contrast, proofs produced by novices in a learning spttiftien differ from those pub-
lished in textbooks in that they are invalid (use invalideirginces or state false propositions),
incomplete, or otherwise inappropriate from a pedagogicitt of view, for instance, use in-
appropriate representations, omit necessary parts ofremgiation, or contain formal inaccura-
cies (Selden & Selden, 2003). Proofs constructed in a d@atatpring interaction may moreover
contain discarded unsuccessful starts, false conjectumggonclusions corrected in the course
of tutoring either by the student or the tutor, restarts, lmnges of strategy. These kinds of
discourse disfluencies are typical of dialogue in a pedagbgietting and are not often found
in written narrative texts. Doing proofs in an interaction with a tutor has a charactearof
argumentative dialogue in which the learner has to providaraents to show that, on the one
hand, a proposition in question holds or does not hold, amth@ other hand, that he has a deep

!Lakatos’Proofs and refutations of course a notable dialogic text.
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understanding of the mathematical objects involved, theioms among them, of the method
employed to find the proof, and of the theorem’s mathematioalications, rather than that
he can merely state a theorem or a definition. Thus, analysExperts’ proofs, such as those
found in textbooks, would omit proof aspects typical of fearpresentations and of dialogic
interaction. Textbook proofs can give a general idea of ¥peetations of the given textbook’s
author as to how rigorous students’ proofs should be. Howeirce our goal is to understand
and model students’ proofs,carpusof such proofs is needed.

Interpretive studies into proving and problem solving ussearch designs that involve col-
lecting corpora on students’ proofs, problem solving, ameraction with tutors in the classroom
or in out-of-school controlled laboratory settings. Conmmutesigns in qualitative research in-
clude clinical methods, teaching experiments, and classresearch (Kelly & Lesh, 2000).
Data collection techniques include open-ended surveys;tated task-based interviews, stim-
ulated recall interviews, think-aloud problem solving teepls, field notes and video/audio-
taping of classroom activities (ibid.). Most studies inmlinteractions between students and
human tutors or between peer students. While some studiesptot on educational uses of
dedicated computer programs such as Computer AlgebrarSyg®chneider, 2000; Heid &
Edwards, 2001), proof tutor systems (Suppes & Morning4tar2; Suppes, 1981; Goldson et
al., 1993; Scheines & Sieg, 1994; Abel et al., 2001; Borak 8ei®aka, 2007) or web-based
environments for learning mathematics, also for proof @rgia, Alper, et al., 1999; Ravaglia,
Sommer, etal., 1999; Melis et al., 2001, 2006; Hendricks. €2@10), at the time this project be-
gan there was no available data on dialogic, natural largjirdgractions with tutoring systems
for proofs. Therefore, in order to learn about the charasttes of tutorial dialogues on proofs,
in particular, about the students’ use of natural languageperformed a series of controlled
experiments to collect data on proofs constructed in ogetascenario.

In the reminder of this chapter, after discussing methaglodd considerations, we present
an overview of the data collection experiments. The expemtiad design and an overview of
the data collected in the first experiment were summarisedigarsly in (Benzmiuiller et al.,
2003, 2003; Wolska, Vo, et al., 2004) and in the second exyri in (Benzmdller et al., 2006;
Benzmiuiller et al., 2006; Wolska & Kruijff-Korbayova, 2006a

2.2 Methodological considerations

The choice of research methodology adopted to investiti@ettucture and properties of dis-
course, depends, among others, on the availability of gate in the area of interest and on the
ultimate research setting: theoretical (foundations)ajgplied (practical). Early foundational
studies in pragmatics and conversation analysis, suchose thf Austin, Searle, and Grice,
whose goal was to construct theoretical models of human aoriwation, were predominantly
based on introspection or on studies of human—human diesodo applied research on dialogue
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systems, the adopted methodology should facilitate coatipmial modelling and identification
of requirements on the functionality of the systems’ sulbjgonents. Functional and technical
requirements can be determined using several methods|ogiduding studying similar sys-
tems through literature research, analysis of existing,danducting user interviews to elicit
knowledge on the domain and task, by field-study obsenstibhumans performing the task in
guestion, by rapid prototyping, or partial and full-scaladations (McTear, 2004). In dialogue
systems design, two of the most commonly employed methadaralysis of large collections
of (transcribed) human-human dialogues and system siioogat

The motivation for choosing the research methodology i phdject was two-fold: First, the
goal was to obtain a corpus of students’ dialogues on pr&#sond, it was to identify function-
ality requirements for subcomponents of a prototype systersed on the analysis the collected
data. Especially relevant for the work presented in thisitheere the requirements on the input
interpretation module. Below we briefly discuss frequenttplied research methodologies, and
then present the general design of a Wizard-of-Oz studgxtperimental paradigm we adopted.

Related corpora As the fields of speech and dialogue research mature andjdakystems,

in particular, spoken dialogue systems, slowly become ceroia reality rather than purely
academic research (Dahl, 2004; McTear, 2004) corporaatetlein large academic projects
become available to the dialogue research community thrawrganised initiatives, such as
the LDC or SIGdiaf Similarly, as deployed Intelligent Tutoring Systems altjuanter class-
rooms (J. Anderson et al., 1995; Koedinger et al., 1997; &feanh et al., 2005), samples of
interactions become available. However, most existingriaitdialogue corpora, do not concern
formal domains such as ours. Notable exceptions are theelatad to Ms. Lindquist (Heffer-
nan et al., 2004), PACT (Popescu & Koedinger, 2000), and Agdtguda & Vanlehen, 2005),
but the interfaces of those systems support prescriptediibased user input or short sentence
natural language responses, thus the interactions witle tiggstems do not represent the kind of
flexibility in the use of natural language and dialogue thataim at>

Analysis of human—human interaction Study of human—human interaction is an established
methodology in dialogue research which has been employédfdom theoretical modelling
and computational implementation of discourse and di@quocesses; see (Grosz, 1978; Re-
ichman, 1985; Clark, 1996) to mention just a few. Non-inggionist research, such as obser-
vation of student-teacher interactions in a naturalidissroom setting or field studies of human

2Seeht t p: // www. | dc. org, htt p: // www. si gdi al . or g; Last accessed in May 2012

3A corpus of learner interactions with an ITS for teachingcohils has been collected within theACTIVE-
MATH project it t p: / / www. | eact i vernat h. or g; Last accessed in May 2012). However, theACTIVE-
MATH corpus is not publicly available. DemoNatt(t p: // wi ki . | ori a. fr/w ki / Denonat ; Last accessed
in May 2012) is another project on automated natural languatpring of proofs. A sample of French dialogues
obtained in simulated interactions has become availableeter, the corpus is too small to make generalisations as
to the properties of the discourse and, especially, as td lahguage phenomena occurring in French would also
occur in other languages.

44


http://www.ldc.org
http://www.sigdial.org
http://www.leactivemath.org
http://wiki.loria.fr/wiki/Demonat

2.2 Methodological considerations

tutoring, is also commonly employed in the mathematics atioic community (Kelly & Lesh,
2000). When specific research questions are asked, cedtetperiments, for instance, one-to-
one semi-structured clinical interviews (Ginsburg, 19&t& conducted. Data analysis in those
settings is based on transcripts of audio- and/or videotaperdings of student talk (with or
without a teacher), debriefing questionnaires, and/or-@gseriment personal interviews with
the subjects conducted by the experimenter. Observatibhsiroan tutoring have also been
used in Intelligent Tutoring Systems research to identifyst characteristics of human tutor-
ing that make tutor-assisted instruction produce a larifégrence in the learning gains than
classroom instruction (Bloom, 1984) and to investigateweaknesses and limitations of the
state-of-the-art automated tutoring; see, for instarideri(ll et al., 1992; Aleven & Koedinger,
2000; Heffernan & Koedinger, 2000; Person & Graesser, 2003)

While studying human tutoring in complex problem-solvirgsks, such as mathematical
proofs, is interesting in itself, empirical evidence iraties that humans behave differently when
they interact with other humans then when they interact miéichines (Richards & Underwood,
1984; Morel, 1989; N. Fraser & Gilbert, 1991; Dahlback et 8293; Yankelovich et al., 1995;
Bernsen et al., 1998; Pirker et al., 1999; Shechtman & Hdmwi003). Most of the studies
cited here concern spoken dialogue. Richards and Unden{d@#g#) and Morel (1989), for
instance, found that, aside from speaking more slowly aedrly, in man-machine interaction
humans use a more restricted language, both in terms ofsgnthvocabulary, ask fewer ques-
tions, and avoid complex or potentially ambiguous anagh@fierences. In a study on tutoring,
Rosé and Torrey (2005) found that students contribute malfegplanation if they believe that
they are interacting with a human than when they believettiet are interacting with a com-
puter. Users also “align” with the system in terms of lindigistyle; this phenomenon has been
exploited in attempts to shape (or to a certain extent chnisers’ input (Leiser, 1989; Ringle
& Halstead-Nussloch, 1989; Zoltan-Ford, 1991; Brennan &é&h 1994; Tomko & Rosenfeld,
2004). Thus, when performing experiments which involveesiricted human-human interac-
tions one has to bare in mind that the complexity of the obthitata might be greater, possibly
even beyond the scope of a realistic computer-based soetian in an experiment in the target
scenario involving a machine. This may in turn lead to speatifbon of misconceived unrealistic
functionality requirements and it may be difficult to forraté conclusions on how a correspond-
ing man—machine interaction might look.

Rapid prototyping Rapid prototyping (McTear, 2004; Dahl, 2004) is a methodyplypically
employed in commercial systems if the task complexity (draddialogue) allow the designers
to build system’s subcomponents quickly by anticipatinggilale target interactions or by in-
terviewing the prospective users about their expectatidnmmototype system is an autonomous
application which includes the core of the domain-releyantessing, which, however, may not
have the full functionality of the final system; for examplee range of accepted user utterances
or the linguistic variation in the generated output may b&téd. Such a limited-functionality
system may then be used in pilot usability tests to infornthierr development. Because of
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the complexity of our target task and the fact that littleadatists on dialogue-based computer
tutoring of proofs, early prototyping was not considered asethodology to be adopted.

Partial and full-scale simulations When the complexity of the task scenario is considerable
and there is no existing system with the anticipated funetity, a simulation may be conducted
in order to collect data on how humans interact in the scenargjuestion. Aside from giving
insight into the language phenomena and interaction patt@nalysis of the obtained data can
serve to lay out functionality requirements for the systemubcomponents. Simulation meth-
ods, presently often referred to ®#zard-of-Oz experiment®ave been long employed in the
human factors research, experimental psychology, usabitigineering, and also dialogue sys-
tems (Gould et al., 1983; Kelley, 198%).

The idea of a Wizard-of-Oz (WOz) experiment is that a humae (tizard) simulates the
role of a hypothetical intelligent application in a labangt setting by providing the system’s
responses to the experiment participants (the subjeetsjudn the case of spoken interaction,
the wizard, for instance, types responses on the keyboatd/@ne output is synthesised by
a text-to-speech system. The subjects and the wizard agcally separated during the ex-
periment to exclude communication outside the mediatiderfiace. The experiment may be
conducted with the subjects’ prior knowledge of the simatgthowever, in order to elicit natu-
ral behaviour, participants are often made to believe tiey are interacting with a computer.
The decisive factors in adopting the WOz methodology forstudies were the following:

Authenticity of data The collected data is a believable sample of interactiorthen
target scenario in that the “human factor” causing diffeenbetween human interactions
with humans and machines is removed.

Affordability  Building a simulation environment is typically easier ardd costly than
building a fully-fledged application or even a prototypem8iation environments created
in previous projects might be reused provided that the nétmges sufficiently similar to
the one for which the original tool was developed and thatdbéfulfils the requirements
of the user interface in the new settifig.

Iterative design Kelley (1984) and later N. Fraser and Gilbert (1991) prodas&V/Oz-
based multi-stage methodology of principled, empiricaltgunded iterative development
of complex applications which comprises six steps of sysiemelopment:

4\Wizard-of-Oz” is an obvious reference to a character in 1860 children’s storyThe Wonderful Wizard of
Oz by Baum, in which Oz, the terrible ruler of the Emerald Citysrts out to be a marionette operated by a little
old man behind a screen who pulls at strings to make the pspggts and mouth open. The term was coined
by Kelley. Another term he used w&Z Paradigmand OZ stood for “Offline Zero”, a reference to the fact that
the wizard interprets the input and responds in real time If¢e p: / / musi cnan. net ; Last accessed in May
2012). pNAMBIC (Pay No Attention to the Man Behind the Curtain) is anothetyeaame of the technique (N.
Fraser & Gilbert, 1991).

SFor ethical reasons, the deceit should be disclosed to tijecta during debriefing after the experiment.

8For each of our experiments, new dedicated simulation tenébling alternative methods for mathematical
formula entry have been built; for the motivation, see ([eirét al., 2004; Benzmiuiller et al., 2006).
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. Task analysis The structure of the task is investigated,;

. Deep structure developmenbata access functions for the wizard are developed;

. First run of WOz (simulation) The system is fully simulated by the wizard;

. First-approximation processor The corpus from the simulation phase is analysed

and the first approximation of the input understanding soipmment is developed;

5. Second run of WOz (intervention) he system is partly simulated. The component
developed in step 4. is integrated into the simulation emvirent and the wizard
simulates the remaining parts of the system or intervenBsnwecessary, to keep
the dialogue flowinggartial simulation);

6. Cross-validationFinal application testing.

A WN P

Steps 4., 5 and 6. can be repeated in a cycle an arbitrary mwohtimes! In the process
of successive iterations, the initial prototype is grajuadfined and the application takes
over the functions simulated by the wizard. Thus, partialudations provide a way of
empirically validating various aspects of the interactiondel before its final validation
in experimental usability trials of an implemented autoooisystem.

User-centred empirical approach The main purpose of a WOz experiment is for re-
searchers to observe the users’ behaviour during interaetith the anticipated system
and to evaluate the use and effectiveness of its interfatieerthan the overall quality of
the entire system. In this sense, the method is by desigrcesdred.

Support of exploratory research The WOz paradigm lends itself to purely exploratory
research: general studies of human—computer interactionbe carried out using this
methodology without a commitment to application developte

Since Gould et al. and Kelley, the WOz technique has beeriegppl a variety of settings
and tasks and to address diverse research questions, éistwiral) dialogue systems research.
Given the complexity of the tutoring domain and the benefisnocempirical design, we consid-
ered the WOz paradigm an appropriate methodology to acbiaviaitial goal of data collection.
Two points about the WOz methodology have to be kept in mindigh. A major problem in
a real-time simulation involving a human substituting fanachine is the significant cognitive
load on the experimenter and the wizard. The wizard musbperthe following tasks in the
shortest possible time while preserving consistency giameses and avoiding erroneous trans-
missions to the user: (1) intercept the input (this may wmequst listening to the transmitted
audio or reading text on a screen, but also, in the case of-malial input, pointing gestures
and graphical events), (2) interpret it, (3) perform thebpem-solving task (this may involve
accessing information from a database or performing réagaoglated to the current task state),
and (4) generate a response. It is clear that the wizardsisademanding and that flawless
behaviour borders on impossible. Not surprisingly, a néagrobservation reported in studies
involving the WOz scenario is that the users found the sitedlaystem slow. This is because

N. Fraser and Gilbert's cycle is in essence the samesdbend or subsequent experimental phasdapses this
loop into one step; thpre-experimental phaseorresponds to steps 1. and 2., finst experimental phas® step 3.
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wizards tend to pay attention to task-level precision amedjihality of the output at the sacrifice
of response-time. Some of the cognitive load can be relibyaging a setup with an interface in
which the wizard’s GUI contains menus of precompiled respsr{Dahlback & Jénsson, 1989)
or by using a multi-wizard setup (Francony et al., 1992; Awedi & Valot, 1993)8

The second issue that should be kept in mind is that unresdrigimulation, that is, one in
which the subjects’ and the wizards’ behaviound intentionally constrained, be it by limiting
the design of the interface (to make it reflecealistic system’smplementation) or by imposing
interaction protocols (to shape the interaction to cowadpo arealistic system'sapabilities;
in our case, computationally plausible semantic analysisrial dialogue modelling, language
generation, and reasoning), produces data which corrdgpamidealised systenpone with all
the processing capacities of a human. To remedy this, theriexgntal setup can be designed
in such way that it limits the interaction in certain aspeststhat it corresponds more closely to
the anticipated realistic system. The design decisions agemare summarised below.

2.3 Experimental setup

The basic philosophy underlying iterative incremental hodblogies is to start simple and to
increase complexity in sequential iterations. Our experital design decisions reflect this phi-
losophy in that in the technical aspects of the design weuliatiee simpler over the more com-
plex. The aspect of the interaction which we left unrestidcivas the use of language. Below
we briefly discuss ways of shaping human-computer intemacgpecifically, in the domain of
mathematics (the interaction modality, constraints orctiramunication language, and the user
interface for mathematical notation) and motivate the obaif the manipulated variables.

Mode of interaction In most real-life situations tutors communicate with stutdausing spo-
ken language. This is certainly true of one-on-one tutorfigschools and universities, written
communication is used in exams, homeworks, and nowadagsiralstudent-tutor email ex-
changes. (An exception is remote schooling, where writnraunication may be used more
often than in the typical scenario.) Mathematics is a speaci@nce in that in principle it can
be communicated using its language of symbols, matherhaiitation, alone. The informal
language of mathematics consists of a mixture of naturaidage and symbolic notatiénTyp-
ically, in one-on-one tutoring, knowledge and explanaiame conveyed with speech, while
writing serves those situations where visualisation omfaity are needed. Thus, we need
bothlanguages to explain maths: justify the inferences in wardsexpress mathematical facts
(proof steps) either with words or formulas. The questionhgther we should speak or type.

8Due to the difficulty that our tutors experienced in mentplycessing long formulas under stress, in the second
experiment, we modified the experimental setup in order tkenitapossible for the tutors to start processing the
subjects’ input before it was submitted. We will return tstiwhen we discuss the second experiment in Section 2.6.
®Mathematical language will be discussed in more detail inp@ér 3.
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Speech is the most natural form of human communication. dtsg the preferred modality
in computer-mediated task-oriented dialogues (Rudnit®@4; Allen et al., 1996). However,
textual interaction has the advantage of easy access toith@iscourse history (Herring, 1999;
Gergle et al., 2004), which is relevant in tutorial dialogwes it helps the student keep track of
what he has learnt and which tasks he has solved. While thegefaw spoken tutoring systems
(Mostow & Aist, 2001; Schultz et al., 2003; D. J. Litman & 8itlan, 2004), to date the majority
of dialogue-based tutors operate in typewritten mode (Rofeeedman, 2000; Heffernan &
Koedinger, 2002; Zinn et al., 2002; Michael et al., 2003).

Speech may be a preference from the point of view of the useause it is faster to produce,
but speech is certainly harder for a machine and, espedidity mathematics as the domain,
adds complexity to the interface implementation. Whereasiderable progress has been made
in Optical Character Recognition toward recognising hanittem mathematical expressidfis
and programs capable of speaking mathematical notatiorxida'é interfaces which enable
speech input for math or combining speech and writing areowtmon. Interestingly, the main
question is not whether the state-of-the-art automatiedpeecognition (ASR) systems are in
general powerful enough to support recognittdnThe more fundamental question is: How
should we speak math. .. to a computer? Although seeminglglt~ since we “speak math”
whenever we talk about math — there is more to the questianitlagpears. The math we speak
is typically accompanied by symbolic notation; the relévgmoupings are indicated by pauses
in speech and changes of speech tempo. However, there is@ssdo these features of speech
in off-the-shelf ASR systems Moreover, if both spoken and written input is to be used, be it
typed on the keyboard or handwritten with a stylus, syndsadion becomes an isste.

But is learning influenced in any way by the modality in thetfilace? There is no evidence
so far. In a study which compared human-human and humanwemppoken and typed tu-
torial dialogues D. J. Litman et al. (2004) found that whifmken dialogue is more effective
in that tasks are faster accomplished, the augmented, spaiezface brings no significant dif-
ference in the learning gain by comparison with typed inpuaterestingly, speech recognition
errors do not negatively affect learning either (Pon-Batrgl., 2004; D. J. Litman et al., 2004).
Thus, the above-discussed issues, the lack of corpora giutembased proof tutoring, and the
exploratory nature of our study make the simpler typewritreodality an obvious choice.

1%Blostein and Grbavec (1997) give an overview; see also tigRrpject, its publications and references therein
(http://ww. i nftyproject. org;Lastaccessed in May 2012).

1Raman’s AsTeR system (1998) is probably best known; Desiggnge MathPlayer plug-in is another example.

12There is a caveat here: typically, interpretation gramriracommercial ASR are finite-state. A mathematical
expression parser needs more expressive power becauseidive subexpression embedding (Fateman, 2006)

3Consider speaking a simple set expression(B U C). In English, you probably produce something along the
lines of “A intersection<pause- B union C”, with a marked pause after “intersection” and wBhunion C” spoken
faster as one chunk of information. For an ASR system, onddyaobably have to produce something along the
lines of “A intersection open parenthesis B union C closeptiesis.”

YFor further issues in combining speech and writing in irtees for mathematics, for an answer to the question
of how we can anghouldspeak math, and a description of a system prototype, seenffat 2006)Math Speak &
Write (Guy et al., 2004) and TalkMaths (Wigmore et al., 2010) aheoexamples experimental systems.
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Use of natural language Since our central research objective was to collect datdemse
of language irauthenticcomputer-mediated tutoring, that is, as it should be if a pater sys-
tem could have all the reasoning capacities of a human, theerto the question whether to
introduce constraints on the input language is clear: aeithe subjects nor the wizards should
be restricted in their use of language. In one experimemtadiition of the first experiment the
wizard followed a specific tutoring protocol which restedthis interaction and his use of lan-
guage. The language production of the subjects and the dgizeais otherwise not constrained
in the other conditions and in the second experiment. Ourngasa to find out how the partici-
pants cope with the need for natural language and mathaheaxipressions in proofs (given the
limitations of the typewritten setup and the lack of spokemmunication) and what language
phenomena emerge as a consequence; for instance, whetHangimage turns out to be sim-
ple with little ambiguity, like in the experiments of Riclisrand Underwood (1984) or Morel
(1989), and if not, whether the resulting language wouldetschcomplexityanddiversitythat
the coverage of a parsing grammar in a prototype system wmjfgbor:>

User interface for mathematical notation User interface design is one of the crucial elements
in achieving natural, efficient communication with a conguutPlausible options for the entry
of mathematical notation which do not involve speech, idelutyping on a keyboard (math-
ematical expressions will typically have annotation or kogr as in ATpX), GUI buttons for
mathematical symbols, structured editors (as in EPGY TPE®fEd (McMath et al., 2001) or
MathsTiles (Billingsley & Robinson, 2007)), or — the mostmuiex alternative — handwritirt§.

The advantage of structured editors is that they providelkaties for mathematical notational
constructs and can internally encode the information oin adid types making immediate val-
idation and diagnosis of semantic or syntactic errors péessA structured editor area in a GUI,
however, explicitly separates the natural language frommntiathematical symbolic language
while not guaranteeing that no mathematical notation vpiiesar in the text entry area.EAC-
TIVEMATH studies on tutoring calculus report on this issue (Callaatagl., 2006; Dzikovska
et al., 2006). Structure-rich markup languages, such abMlat’ or OpenMath®, which are
typically the internal representation in structured matbtation editors, are too complex to be
typed in by dialogue participantsATEX, however, combines structured in-line markup and is
conceptually simple enough to be suitable for the tutorigttjrey, especially if the mathematical
domain does not involve excessively complex notationaktrosts. Therefore, while the user
interface implemented for the first experiment offered dmljtons for entering mathematical
symbols, in the second study our interface enabled &lgXilike entry of math.

e attempt to answer these questions in Chapter 3 and in @hgpespectively. In Chapter 7 we evaluate the
coverage of implemented parsing grammars in cross-vaitakperiments based on the collected corpora.

®FFES (Smithies et al., 2001), Infty (Fujimoto et al., 2003MathNotes (Tapia & Rojas, 2004), Web-
Math (Vuong et al., 2010), and Mathellan (Fujimoto & Watt,12) are examples of such interfaces; see (Zhang
& Fateman, 2003; Fateman, 2004) for a survey on user inesfir mathematics.

Yht t p: / / www. w3. or g/ Mat h (Last accessed in May 2012)

Bht t p: / / www. opennat h. or g (Last accessed in May 2012)
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2.4 Overview of the experiments

Experimental conditions The main goal of the experiments was to collect data on atithen
human-computer tutorial dialogues about mathematicadfproThus, with respect to the lan-
guage behaviour in dialogues in our setting, the experisn@ate of exploratory nature with the
general design facilitating collection of linguistic datdowever, both experiments also manip-
ulated one variable related to different aspects of ourai@n

In the first experiment, the exploratory part of was focusethe natural language aspects of
the interaction. The experimental part concerned the pryleal aspects: three tutoring styles —
minimal-feedback, didactic, and Socratic — were comparni respect to their effect on learn-
ing. In a completely randomised design, subjects wereigplitthree groups and tutored by the
same tutor according three predesigned algorithms. Thmoparof the manipulation was two-
fold: First, it was to test the effectiveness and complederoé hinting categories which had been
formalised for Socratic tutoring before the experimentcddel, it was to identify limitations of
the predesigned hinting algorithm and to propose improvisigased on data analysis.

In the second experiment, we were interested in the fachaisniight influence language
styles in dialogues on proofs. Specifically, we wanted to intlwhether students’ language
production would differ depending on the study materiatisgentation form. The subjects were
thus randomly split into two groups and, before tutoringyvited with reading material pre-
sented in a formal or a verbose style. More details on thieaspf the second experiment
follow in Section 2.4.3 of this chapter. The analysis of laage production the two conditions
will be presented in Section 4.3.2 of Chapter 4.

2.4 Overview of the experiments

The reminder of this chapter summarises the setup of theiexgets and presents an overview
of the collected data. We start by summarising common aspddhe two experiments. Next,
we elaborate on the first and the second experiment and fimadlgescribe the corpora.

2.4.1 Common aspects

In both experiments the subjects were Saarland Univergityesits. With the exception of one
subject in the second experiment, they were native Germeakeps. The one non-native speaker
had been living in Germany for about 20 years and her Germaragsessed as of near-native
fluency; the dialogue data of this subject were included sahalyses. The subjects’ prior
knowledge in mathematics declared in pre-experimentvigess ranged from little to fair. All
the wizards (tutors) were native speakers of German witlemspce in teaching mathematics.

The subjects were solving proofs with a tutoring system &bed in a Wizard-of-Oz setup
described in Section 2.2. During the experiment the subjantl the wizard(s) were seated
in separate rooms connected through a voice channel, ahdawohe-way window between
the rooms. In case of technical problems unrelated to spleixercises, the subjects could
communicate with an experimenter via a microphone and spsak
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An experiment session started with an introduction to theegrent by the experimenter who
informed the subject about the recording and logging setyplained the procedures, handed
out the study material, and demonstrated the interface. sty material was presented on
paper and included the domain background knowledge ratjtirsolve the exercises. It was
available to the subjects throughout the duration of thelgvsession. After the introduction,
the subjects filled out a background questionnaire and wienged a study time.

The proof problems concerned fundamental mathematicssiibjects were not taught a par-
ticular proof, but were allowed to propose their own solatid®he expectation was that the tutor
(wizard) would recognise the subject’s line of reasonind @nide the tutorial dialogue accord-
ingly. The subjects were instructed to enter proof-stefigerahan complete proofs at once in
order to prompt dialogue. They were also asked to think alghite solving the exercises. In
both experiments the subjects were audio- and video-redord

The subjects were interacting with the simulated systeoutjin a GUI which included a des-
ignated input entry area for composing messages to thensy3tee GUI included a button bar
with mathematical symbols and a read-only dialogue histmea which displayed the previous
student and tutor turns. The subjects could enter theirartes using a keyboard (typing) or a
mouse (clicking on the mathematical symbol buttons). Be$tarting a session they were shown
the GUI’s functionality and allowed a short time to familss themselves with the interface.

The subjects were told that they were participating in atuageon of an intelligent tutoring
system with conversational capabilities which could ustéerd German and respond in German.
They were told that they could thus use both natural langaagemathematical notation while
solving the exercises. No restrictions on the form or stylhe language were specified during
the introduction to the interface. Only in th@nimal feedbaclkcondition of the first experiment
(see “Tutoring” in the Section 2.4.2 below), the wizard ugedcompiled text as responses.
In the other tutoring conditions and in the second expertitée wizard was unconstrained in
formulating his turns. After the experiment session, thgexts filled out a survey questionnaire
and were informed about the simulation. Participation adRperiment was remunerated.

2.4.2 The first experiment

The setup of the first experiment was the following:

Persons A mathematics graduate with experience in teaching wasl horglay the role of
the wizard. Before the experiment he was trained on the usleeointerface and on the pre-
defined tutoring algorithms. In order to distribute the dtige load involved in tutoring in the
WOz setup, twdelpers the authors of the tutoring algorithms, assisted the wlizahe third
person involved was thexperimentewho introduced the procedure, answered non-task-related
technical questions during the experiment, and debrid¢fecdstbjects after the experiment.

Subjects Twenty two subjects participated in the experiment. Theickgrounds were in
humanities or sciences. No prerequisites on completedseaark in mathematics were set as
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criteria for participation. Maths knowledge required faiiversity admission was assumed.

Procedure An experiment session consisted of three phases. Firssutbjects were given
a pretest. Second, they interacted with the simulatedibgi@ystem. Tutoring was performed
in one of the three tutoring conditions described below. rdhihe subjects solved a posttest
exercise and were debriefed. A three-phase experimenbsdasted about two hours.

User interface  The graphical user interface developed for the first expaminconsisted of
three areas: the button bar, the dialogue history, and & ime. The button bar contained
buttons with mathematical symbols relevant in the domaitne Tialogue history displayed
the prior dialogue turns in a non-editable mode. The wizandferface, aside from the same
components, contained a larger main area in which the wigaletted the answer evaluation
categories (see “Tutoring” below) and hint categories teded in dialogue log files.

Domain and proof exercises The proofs in the first experiment concerneaive set theory
The main reasons for choosing this domain were that, firterset theory is not too complex
and so fundamental that not a lot of background knowledgegsired and, second, it has been
previously formalised for proof automation (Suppes & Skeei981; Benzmiiller & Kohlhase,
1998; Ravaglia, Alper, et al., 1999; Benzmiuiller et al., 208d for simple problems within its
decidable fragment, wrong proof steps can be identified bydeaingenerator by searching for
counterexamples (Benzmuiller et al., 2001). In this respaiite set theory is a good domain of
choice for a prototype system. The following exercises vuseg1®

Pre-test K(A) e P(K(ANB))

Dry-run K(AUB)N(CUD))=(K(A)NK(B))U(K(C)NnK(D)))
Powerset ANBe P(AUC)N(BUCQ))

Complement If A C K(B),thenB C K(A)

Post-test K(AUB) e P(K(A))

The Dry-run, Powerset andComplement proofs were used during the tutoring session. The
easyDry-run proof was presented first and served as a warm-up exercigereitining two
proofs were presented in random order. A time limit of 30 rtessyper exercise was imposed.

Study material  The subjects were given a study material which included ema#tical knowl-
edge needed for solving the proof tasks: an introductionaigenset theory, the definitions of
concepts, theorems and lemmata. The was no limit on the stdy

Tutoring  The tutoring strategy was the manipulated variable in tret fitudy. The sub-
jects were split into three groups and randomly assigneaéood the three tutoring conditions:
minimal feedbackdidactic andSocratic In the minimal feedbaclcondition (control group),
the tutor used standardised phrasing to inform the studelytaf the correctness and com-

18K stands for set complement aftfor powerset.
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pleteness of his proof step. The prescripted phrasing was ‘iBt richtig/nicht richig” This

is correct/incorrect and “Das ist unvollstéandig oder nicht ganz korreKth{s is incomplete or
inaccurat§. The tutor did not answer students’ questions; the resptmall questions was
phrased “Das kann ich nicht beantworteh”c@nnot answer thjs In the didactic condition,
the tutor disclosed the next correct step to the student @feerthe student would stop mak-
ing progress or explicitly request help. The tutor answetedents’ questions. In thgocratic
condition, the tutor executed a predesigned hinting dligarito help the student discover the
solution by guiding him toward it. The tutor was supportedthg helpers, the authors of the
Socratic algorithm, in deciding which hint should be rezdis The surface realisation of the
given hint was left to the tutor. The null hypothesis was that students’ performance in the
three conditions would not differ statistically. Performea was measured based on scoring the
pretest and posttest performance and, unexpectedly, wanfithe hypothesr&.

The tutor’s responsibilities included the following taski} evaluating the student’s proof-step
in one of the following answer categorieSORRECT, INCOMPLETE ACCURATE COMPLETE
PARTIALLY ACCURATE, INCOMPLETE PARTIALLY ACCURATE, andWRONG, the assigned cat-
egory was saved in the session log file together with the gliEldranscript, (ii) decide what
dialogue move to make next (for instance, inform about cbness status, give hints, etc.), and
(i) verbalise it. At the end of each exercise, the tutor suemised the entire proof or, if the
student did not complete the proof, presented a valid ptid student.

2.4.3 The second experiment

Persons Four tutors were invited to play the role of wizards in the eximent; the wizards
were effectively also subjects in the experiment: by oksgrmultiple tutors we wanted to find
out whether acceptability of different proof-step sizes(wilarity) varies between teachers. The
tutors’ background with respect to teaching mathematiaadfs was the following:

Tutor 1 Senior lecturer from the Saarland University with seversrg of experience
in lecturing a cours€&oundations of Mathematics

Tutor 2 Professional mathematics teacher, with a few years of tegexperience who
participated in our first experiment

Tutor 3 Recent Saarland University graduate with a degree in tagehathematics

Tutor 4 Doctoral student from the Saarland University Instituté b&oretical Mathe-
matics with several years of experience as a TA in variousiemaatics courses

Onehelperwas operating the audio and the video equipment, startiogpsg, and saving
recordings, and overseeing the technical side of the axgeatiin general. Twexperimenters
took turns in taking the responsibility of communicatinglwihe subjects. The experimenter
also decided on which exercises the subject should soleg'Bseof exercises” below).

20The pedagogical aspects of the experiment have been pedsennore detail in: (Tsovaltzi et al., 2004; Tso-
valtzi, 2010).
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2.4 Overview of the experiments

Setting The subjects and the experiment team were seated in sepavats. The wizards and
the experimenter could see the subject on television disglansmitting signal from a dome-
camera in the subject’s room. The subject’s computer wasimgnscreen capture software.
In the original setting the wizard could not see the scregiuca feed. We thought this was
important as we did not want the wizard to be influenced byesibj false starts which were
not submitted to the system. In a realistic setting, an aatechsystem would not have access
to this information either. However, already on the first dathe experiment, it turned out that
the mathematical expressions produced by subjects werensplex that the response times of
the wizards became unacceptably long. Since the wizards kmet short response time was
important, under this stress condition there was more ehéorcthe wizards to make mistakes
in evaluating subjects’ contributions. We therefore deditb transmit the screen capture feed
to an additional display for the wizards, so that they cotddt®valuating the expressions as the
subject typed. In come cases of extremely long formulaspittised critical!

Subjects Thirty seven students with different educational backgdsuparticipated. A pre-
requisite for participation was to have taken at least oneeusity level mathematics course.

Procedure Before tutoring, the subjects were shown how to operate yhtes’s interface,
presented with the study material, and allowed twenty fiveutgis study time. Next, they in-
teracted with the simulated system. Finally, the subjed@sevdebriefed and filled out a survey
guestionnaire. A session lasted about two hours. Pretedtp@sttests were not administered
due to time constraints on the overall experiment durati@mducting further experiments was
unfortunately impossible for logistic reasons. Lack oft tégta did not allow us to perform
more detailed analysis of the relation between the lingujstoperties of students’ discourse
and learning; see, for instance, (Ward & Litman, 2006) foiraaresting study on cohesion.

User interface  The interaction between the subject and the wizard was iteediy a chat en-
vironment built on top of a customised version gKmacs, aATpX editor operating in thevhat
you see is what you getode?? The advantage of usingsXmacs is the availability of multi-
ple options for inserting mathematical expressioffgEX.commands (cup for set union, etc.),
their German counterpart§\(er ei ni gung for set union, etc.) as well as traditional GUI but-
tons. The editor also suppottspy-pastdunctionality which enabled copying portions of text
from the prior dialogue. Dialogue history was displayedsiad-onlymode. The available math-
ematical expression commands were printed on a handoubrdBitfe session, the experimenter
instructed the subjects on using the GUI and showed theeliftenput modes for formulas. The
subjects had a few minutes time to familiarise themselveb thie GUI. The session log files
contain information on the mode in which mathematical esgigns were inserted.

Zlwe will return to the formula length problem in Chapter 4 (Swt4.3.2).
Zhtt p: // www. t exmmacs. or g; Last accessed in May 2012
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Domain and proof exercises The proof exercises were in the domain of binary relations.

Theorems and definitions in binary relations build on naatetseory and the conceptual com-

plexity of the domain is comparable to naive set theory. Hason for choosing a new domain

was, among others, to facilitate testing of the scalabilftihe input interpretation componefit.
The subjects were asked to prove the following four theorems

Let R, S, andT be binary relations on a séf.

Exercise W (RoS)!=8"1oR™!

Exercise A (RUS)oT =(RoT)U(SoT)

Exercise B (RUS)oT = (T toS H) lu(TtoRr 1!

Exercise C (RUS)oS = (So(SuUS)~1)~!

Exercise E  AssumeR is asymmetric. IfR is not empty (i.e.R # (), thenR # R~}

ExercisesW, A, B, and C were selected in such way that once solved they may be used as
justifications in the subsequent proofs.is a theorem ifS is symmetric, but not in the general
case. The subjects were expected to provide an argumeritiSoMy was a warm-up exercise
andE was presented only to those subjects who had difficultiespteting the initial exercise.

The subjects started with exercigé and would normally follow withA, B, andC, in this
order. The experimenter was monitoring the subjects’ @megon a screen capture display. If
he noticed that a subject was struggling with the warm-upaése, he could at any time ask the
subject to stop and move on b OnceW was completed or the subject was asked to proceed
to E, he could spend as much time on the exercise(s) as he needee: Was no time-limit on
the completion of individual exercises, however, sessioas kept to about two hours.

Study material The content of the study material was adapted from (Bram&eSemendja-
jew, 1991) and reviewed definitions and basic theorems iarpirelations. Inspired by findings
on alignment effects observed in human-computer dialo@ses discussion in Section 2.2 on
page 45), we wanted to find out whether a similar effect woeldnioluced by the presentation
style of the study material in computer-based tutoring. Hi® ¢nd, in one version material was
presented in éormal way, using mainly formulas. The other version included #iae content,
but presented inerboseway which avoided formal notation and used natural languagtead.
Figure 2.1 illustrates the difference in the presentatibtie definition of the subset relation.

The subjects were randomly assigned to the formal studyrirabfEM group) or the verbose
material (VM group) and given the corresponding handoubj&us were also provided with an
example proof, shown in Figure 2.2, formulated in a mixtureatural language and formulas,
and allowed 25 minutes to revise. Our hypothesis was thdatiguage the subjects would use
to solve the exercises would reflect the study material'sgmtation style, that is, the subjects
would “align” to the presentation format. This hypothesissiconfirmed?

ZResults will be shown in Chapter 7.
%*The analysis of the language production in the two conditisrdiscussed in Chapter 4.
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Sind A, B Mengen und giltvz(x € A = Sind A, B Mengen und gilt daf? jedes EI-

x € B), so heil3tA eineTeilmengevon B.  ement von A auch Element von B ist,

Man schreibt dafid C B. so heil3tA eine Teilmengevon B. Man
schreibt dafird C B.

(Aand B are sets and/z(x € A = x € (If A and B are sets and every element of
B) holds, thenA is called a subset oB. A is also an element @B, then A is called
We writeA C B.) a subset oB. We writeA C B.)

Figure 2.1: The definition of the subset relation in the fdr(fedt) and verbose (right)
presentation in the second experiment.

Theorem
Sei R eine Relation in einer Mengk/. Es gilt: R = (R~1)~!

Beweis

Eine Relation ist definiert als eine Menge von Paaren. Digel@dleichheit ist demnach
eine Gleichung zwischen zwei Mengen. Mengengleichungem kaan nach dem Prinzip
der Extensionalitaet dadurch beweisen, dass man zeigjedies Element der ersten Menge
auch Element der zweiten Menge ist. Sei dlsm) ein Paar inM/ x M, dann ist zu zeigen
(a,b) € R genau dann wenfu,b) € (R~1)~1 (a,b) € (R~1)~! gilt nach Definition der
Umkehrrelation genau dann weribya) € R~! und dies gilt nach erneuter Definition der
Umkehrrelation genau dann wefw b) € R, was zu zeigen war.

(Let R be a relation on a seb/. It holds thatR = (R~1)~! A relation is defined as a set
of pairs. The equation above expresses an equality betvedenSet equality can be proven
by The Principle of Extensionality. We show that every etgrofone set is also an element
of the other set. Leta,b) be a pair inM x M. We have to show thdt,b) € R if and
only if (a,b) € (R71)~L. (a,b) € (R~1)~! holds by definition of the inverse relation if and
only if (b,a) € R~1. This in turn holds by the definition of the inverse relatibarid only if
(a,b) € R, which was to be proven.)

Figure 2.2: Example proof from the second experiment
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Table 2.1: Number of subjects per tutor and study materiadiition in the second experiment

No. of subjects

Tutor FM-group  VM-group Row totals
Tutor 1 2 4 6
Tutor 2 8 2 10
Tutor 3 6 6 12
Tutor 4 4 5 9
Column totals 20 17 37

Tutoring  The second experiment had two objectives: the first was taimlotore linguistic
data on proofs and to verify our hypothesis concerning laggwproduction. The second objec-
tive was to obtain data opedagogically acceptable granularitf proofs in a tutoring setting.
By granularity we mean argumentative complexity, the lefadetail in proofs (the number of
gaps which have to be filled in). To this end, we asked thedutondicate explicitly their judg-
ments on granularity of every proof-step the students @egoBYy analysing tutors’ granularity
judgments, we wanted to find out what characterises pedegjygacceptable and unacceptable
proof-steps, whether acceptability differs between g8jtand how the accepted granularity com-
pares with the level of detail required by automated dedactiystems, specifically, tieMEGA
system (Siekmann et al., 2003). These results can be useddploof-step granularity models
to support deduction systems in reasoning at a human3evel.

The tutors were presented with general guidelinesSouoratic tutoring, but unlike in the
previous experiment, they were not provided with any tagralgorithm. The tutors could
formulate their responses using natural language or fasaur both. Like in the first exper-
iment, they were asked to annotate the students’ proof ibatibns with answer categories
along three dimensions: correctneS® RRECTPARTIALLY CORRECT/INCORRECT), relevance
(RELEVANT/LIMITED RELEVANCE/NOT RELEVANT), and granularity APPROPRIATETOO DE-
TAILED/TOO COARSEGRAINED). The annotation was inserted during the tutoring sesbiown;
ever, it was not visible on the subject’s end of the interfaldee tutors were also provided with
a headset microphone and asked to record a spoken commenttrgir responses. This gave
us a record of justifications of tutors’ decisions and themments on the tutoring process.

Table 2.1 shows the number of subjects per tutor and studgriabpresentation. The assign-
ment of study material format to subjects and of tutors tgesitb was quasi-random; the tutors
did not know to which experimental condition a given subjeas assigneé®

ZResults of modelling proof step granularity based on oua tave been presented in (Schiller et al., 2008).
ZDue to subject dropout, distribution of subjects betweenstiudy material and tutors is not uniform. Data of a
couple of Tutor 2 VM subjects have been lost due to an errdre’WWOz software at the beginning of the experiment.
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Table 2.2: Basic descriptive information on the two corpora

C-l C-ll
(Set theory) (Binary relations)
Subjects/Sessions 22 37
No. Turns 775 1906
Mean No. turns per sessiosdj 35(12) 51(19)
No. students’ turns (% No. turns) 332 (43%) 927 (49%)
Mean No. students’ turns per sessigd)( 15 (6) 25 (10)
Mode No. of attempted proofs per subject 3 2

2.5 Overview of the corpora

The main output of the experiments are two corpora of huntempater tutorial dialogues on
mathematical proofs. The first corpus, C-I, comprises 2bdige session log files. Aside from
the students’ and tutor’s turns the log files include timaaygis for each turn, answer category
annotations for student turns, and hint category annotstior tutor turns. There are 775 turns
in total, of which 332 are student turns (43%) with 443 uttess?’ The second corpus, C-II,
comprises 37 log files with time-stamp information, anriotet of the answer category assigned
by the wizards during tutoring, and the information on thedmim which mathematical symbols
were inserted recorded by the GUI. C-Il consists of 1906odja¢ turns of which are 927 are
student turns (49%) with 1118 utterances. Table 2.2 sunsembasic descriptive information
on the two corpora. Figures 2.3 and 2.4 at the end of this ehapbw example dialogues from
C-l and C-II, respectively. In the figures and throughous thiesis, where relevant, student and
tutor turns are labelled 18 and “Tm”; m andn denote turn numbers. If it is clear from the
context that students’ language is meant, “S” labels ardtedi

2.6 Summary and conclusions

We presented two experiments conducted with the objectiveollecting data on authentic
human-computer tutoring of mathematical proofs. In ordenttivate the experiments, we first
discussed experts’ and learners’ proofs and pointed ofgrdifces between them. We briefly
outlined alternative sources of data in dialogue reseandhnaotivated the decision to conduct
data collection experiments, rather than refer to exissiogrces of data, such as textbooks, or
to available tutoring corpora. We also discussed the diffees between human-human and
human-computer interactions which justified the decismmtlie human-computer, rather than
the human-human setup of the experiment. We presented safjemerview of the simulation
methodology pursued and motivated the key design decitades as to the mode of interaction,
the communication language, and the features of the icrfa

The key lesson learnt from the experiments is that mathematia difficult domain for the
Wizard-of-Oz setup. First, mathematical proofs are derimandn the wizard. Given that the

2"The criteria for utterance-boundary annotation will bespreged in Chapter 4 (Section 4.2.1)
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response time is of major importance in a simulation, thevdneeds support in reconstructing
the students’ reasoning. In the first experiment, the wigdrdipers were assisting in making
sure that the students’ utterances are correctly checkdtielsecond experiment, we found out
early on that the tutors had difficulties visually parsingdonathematical expressions produced
by the learners and consequently response times becameSsdove of the wizards voiced this
issue themselves. Therefore, we changed our original $etilyg course of the experiment to
allow the wizards to see the subjects’ input as they typedrdaysmitting the screen capture
output in real-time to an additional computer monitor in Wigards’' room. It is interesting that
this mental overload in processing formulas was observeady in a relatively simple domain.
Certainly, one of the main problems was that the mathenaiqaressions which the students
produced were indeed of considerable length. Even simplaula prepreprocessing, such as
syntactic validation, would be helpful here. Perhaps inemmmplex domains, it would even
make sense to let the wizard listen on the subjects’ sédfthmbugh an audio channel.

The second observation concerns the user interface. pXmacs interface, while certainly
more flexible and more convenient for the users than the si@hll from the first experiment,
may have been the “culprit” that introduced the problem utised in the previous paragraph.
The copy-pastanechanism turned out to be a mixed blessing: on the one hanmdsicertainly
convenient for the users, but on the other hand, copyinghdgtminin from the dialogue history
made the input not only more prone to errors of sloppinessalso unnecessarily complex. It
is not clear how to cope with this problem: sinoepy-pastds currently standard in computer
programs, suppressing it in a tutoring system appears wrahatAn interim solution could be,
for instance, to highlight in some way the copy-pasted p&rtke input for the wizard.

Our decision as to the mode of interaction, typewritten ygken, was probably right. The
technical problems which we experienced during the expartmwere easier to solve in this
simpler setup. Also, we have two corpora acquired in sinttarditions (comparable), so the
language processing strategy we propose can be evaluabexitosets of data. As we will show
in Chapter 4 the subjects’ language production stronglfiedifbetween the two corpora. We
believe that even the combined set of dialogues is not reptasve enough yet for building an
input understanding component of a deployable system apthint (see Chapter 4). While it
would be certainly interesting to see how speech and wriowgdd be built into a WOz experi-
ment on tutoring proofs, this would be a project in itselftside of the scope of this work.

Finally, we reported on the setup of the experiments and gaweef overview of the col-
lected corpora. A linguistic analysis of the dialogues ad®é a variety of semantic phenomena
both in C-I and C-II. It is interesting that even though them® interface was better suited
for combining natural language and mathematical exprassia the sense that formulas could
be composed by typing without switching between the keybead the mouse, C-1 also con-
tains utterances in which natural language and formulatigily interleaved. The next chap-
ter, Chapter 3, presents the language of mathematics armbmatical proofs, and reviews the
language phenomena which we identified in the dialogues atbiafive level. The following
chapter, Chapter 4, presents a quantitative analysis alithesity of the students’ verbalisations
and the differences in the language production in the twalitions of the second experiment.
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T1:

S1:
T2:

S2:

T3:

S3:

T4:

S4:
T5:

S5:

T6:

Bitte zeigen SieAN B € P(AUC)N(BUC(C))!
(Please showAN B € P((AUC)N(BUC)) )

(AuC)n(BuUC))=C

Das ist falsch. Nach der Distributivitat gitA U C) N (BUC) = (AN B) U C. Somit gilt auch:
P((AUC)N(BUC)) = P((An B)UC(C). Wie geht es nun weiter?

(This is wrong. By distributivity we havé AU C) N (BUC) = (AN B) U C. Therefore, we also
haveP((AUC)N(BUC(C)) = P((An B)UC). How to continuep

(AN B)mussinP((AUC)N(BUC))sein,ddAnNB) e (ANnB)UC
((AnB)mustbeinP((AUC)N(BUC))since(ANB)e (ANB)UC)

Was meinen Sie mitA N B) mussinP((AuC) N (BUC)) sein?
(What do you mean by:A N B) mustbe inP((AU C) N (BUC(C))?)

daP((A U C) N (B UC)) nach Distributivgesetz gleicR((A N B) U C) ist muss(4 N B) in
P((AUC)n(BUCQ)) enthalten sein.

(sinceP((AuC)N (B UC)) equals by distibutivity?((A N B) UC') (AN B) must be contained
inP((AuC)N(BUC)))

Was meinen Sie mit: mugsi N B) in P((AUC) N (B UC)) enthalten sein. Meinen Sie Element
oder Teilmenge?

(What do you mean by:A N B) must be inP((AU C) N (B U C)). Do you mean as element or
subset?

(ANB) e P(ANB)UC)

Meinten Sie vorhin wirklich{AN B) € (AN B)U C?

(Do you really meafAN B) € (AN B)UC?)

ja

(ves

Das ist falsch, dentAN B) C (AN B)UC. (AN B)und(AN B) U C sind Mengen und keine
Elemente voneinander. Was folgt als nachstes?

(This is wrong becauseA N B) C (AN B)UC. (AN B) and(A N B) U C are sets and not
elements of each other. What follows ngxt?

Figure 2.3: Example dialogue from the set theory corpus)(C-I

61



2 Corpus acquisition

S9: (RUS)oT ={(a,b)|laRbAaSb}oT

T9: Das ist nicht richtig!
(That is not correct

S10: = (RUS)oT = {(a,b)|laRbV aSb} o T

T10: Die Gleichheit zum vorigen Schritt ist nicht gegeben!
(The equality with the previous step does not hold

S12: ={(a,b)Icce M A ((a,c)e {(@ab))aRb}A (c,b)e T)} U{(a,b)] Ic(ce M A ((a,c) e
{(@,b)asSb}A(cb)eT)}

T12: Ja, das ist richtig!
(Yes, that's corregt

S13: Wollen zeigen (8T)=(T "1oS~1) !
(Want to show . .).

T13: Ja. Sie koennen jedoch Ergebnisse von vorhergehendgalden benutzen.
(Yes. You can however use the results of the previous ex@rcise

S17: Damitgilt: (T7toS=1) 1 UT toR1)1=(SoT)URoT)=
(With that it holds . .)

T17: Korrekt!
(Correct))

S18: =(RoT)U(SoT)

T18: Auch korrekt!
(Also correct)

S19: Nach Aufgabe A ist dies (RS)oT
(By exercise Athisiis .).

T19: Genau richtig!
(Exactly correct)

S20: Damit folgt die Behauptung
(With that the statement folloyvs

T20: Gut! Vielen Dank! Druecken Sie nun den Knopf fuer diectete Aufgabe!
(Good! Thank you! Press button for the next exergise!

Figure 2.4: Example dialogue from the binary relations asrC-II).
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Language phenomena in proofs

In this chapter we discuss language phenomena in studentssp The discussion is based on
the analysis of the corpora presented in Chapter 2, howeNete relevant, we point out that
certain phenomena occur systematically both in mathenigiiose and tutorial dialogue. We
show that the range of linguistic phenomena in dialogudsidtes those found in textbooks, but
also a range of phenomena specific to the dialogue settingguzme phenomena are classified
with respect to their lexical, syntactic, semantic, andtestrdependent nature, and exemplified
with utterances from the corpora.

The presentation of language phenomena is preceded byraduantion in which mathe-
matical language is presented from two perspectives: sgeaial languageand as a language
acquired in parallel with mathematical understanding. Waracterise the properties of special
languages, so-called sublanguages, to show that the lgagfianathematics can be considered
one and that certain phenomena we identify in our data afedtares as a member of the class
and, as such, are likely to be found in other corpora of matttieal discourse as well.

Next, we refer to observations from cognitive science oftmaatatics in order to point at a
relation between the language used to communicate matiwsraad the stage of mathematical
understanding. The model proposed by Tall, which we suns®asiiggests that certain phenom-
ena in the students’ mathematical language — specifidaligrecision of linguistic expression
leading toambiguity— may recubecausehey are linked to the level of understanding. Again,
this lets us conclude that certain linguistic phenomendudents’ language have a systematic
nature and prioritise modelling those phenomena in a diseoprocessing architectute.

The language of mathematics has been subject of analystisjated by goals similar to ours in the doctoral
dissertations of Zinn (2004), Natho (2005), and Ganesalm@009). We will sometimes refer to those works in
order to avoid repetition, however, certain overlap is widable. The discussion of language phenomena presented
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3.1 Introduction

In the following two sections, we briefly present mathenstianguage from two perspectives:
as a sublanguage and as a language acquired in parallel afttematical understanding. These
two views helpexplainsome of the phenomena observed in the corpora.

3.1.1 Mathematical language as a special language

Language is a type of code. Natural language is a code whighl@mcommunication of mean-
ings by means of words. From the perspective of its purposenasans of communication, lan-
guage is a system consisting of a vocabulary and grammay thé makes linguistic behaviour
possible. Asublanguaggor aspecial languageas opposed to thgeneral languageis a lan-
guage used by a particular community (social or professidmainstance) or used to talk about
specialised topics, a limited subject matter, for examyighin a particular discipline (Harris,
1968; Sager, 1972; Hirschman & Sager, 1982; Grishman &édtie, 1986).

Sublanguages tend to diverge from the general languageainttby are characterised by a
systematic recurrence of non-standard or even ungramethaticictures, stylistic patterns, high
frequency of certain constructions, conventionalisedapings, by the use of specially created
terminological systems and special written notation whasbalisation may require adhering to
commonly agreed special rules (Kittredge & Lehrberger,2]@8nebarger et al., 1984; Grish-
man & Kittredge, 1986). Typical examples of special langsagre the language of law, with its
characteristic style and choice of wording, hardly compretible to the layman, the language of
medicine and pharmacology, with their Latin terminologyl éirequent use of abbreviations, or
the language of chemistry. The latter is particularly iegting in that it has developed different
code systems to refer to chemical elements and compourdirdiiclass entities in the world of
chemistry; for example, referring to the substance comygrkmbwn asvaterwe can say or write
hydrogen monoxidesing a technical term (linguistic code), 50 (symbolic code), or draw
a graphical representation of the compound’s structusu@ticode). The formal language of
mathematics can be considered a special language whiclh likedhe language of chemistry,
combines a subset of a natural language with a special kimditién code whose vocabulary,
unlike that of natural language, does not consist of wonalsh@ sense of words of English or
German), but solely of special symbols typically limitechiambers, letters, multi-character ab-
breviations, and graphical signs, which can be combinedrdow to prescribed rules to form
expressions of arbitrary complexity. This written symbaibde is a kind of conventionalised
notational system that makégorous andformal mathematics possible.

The mathematical language we know from school classesersity lectures, and textbooks
— theinformal mathematical language — certainly does not consist of thebelic language
alone. Especially while teaching and learning we do not ush a linguistically limited form of

in this chapter benefited from monographs and articles omenadtical discourse by Halmos (1970), Steenrod et
al. (1981), D. E. Knuth et al. (1989), and Bagchi and Wellsg@a & Wells, 1998; C. Wells, 2003, n.d.).
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expression to communicate mathematics. In fact, the syimbotation often constitutes a seri-
ous cognitive barrier in understanding mathematical cptscgR. C. Moore, 1994; Dorier et al.,
2000; Booker, 2002; Downs & Mamona-Downs, 2005). The lagguae do use, ever since we
first encounter mathematics in preschool, is our mothegten We start by informally talking
about mathematical objects in natural language in ordentierstand the concepts intuitively.
Gradually, we learn the mathematical terminology — the g terms that name the concepts
— observe that certain common words from everyday vocapulame mathematical notions,
acquiring “mathematical meaning”, and we adopt the new eiség the same time, much like
learning a foreign language, we learn the new language dienatical notation and combine
it with natural language. This process of learning the “reathtical language” is not a trivial
one, but the success in understanding mathematics has tb@&n 0 crucially depend, among
others, on the learner’s ability to master the ways of mattg@ communication; Sfard (2000,
2001) views the process of learning mathematics as devgj@special type of discourse.

Efficient communication of mathematics relies heavily om thteraction of the two lan-
guages: the natural language (linguistic code) and theukegey of mathematical notation (sym-
bolic code). The two languages can be thought of asnwdesof expression which can be not
only flexibly exchanged, but also interleaved. In this seimermal mathematical language can
be considered “multi-modal”; the symbolic and natural laage modes are integrated into the
syntax of the special language of mathematical discourse.

It is useful to realise in the context of mathematics tutgiinat mathematical style and lan-
guage, in particular, the level of formality in expressingthematical statementsyolvesas
learners develop deeper mathematical understanding(2Ddl#ia) refers to the different stages
of mathematical cognitive developmenttagee worlds of mathemati@nd explicitly points at
a relation between the stage of understanding in the cotitearaing and the properties of the
language used to communicate mathematics. In the nexbseut briefly review Tall’s theory.

3.1.2 Learning mathematics and mathematical language

From the point of view of cognitive development, understagdalso mathematical) and cre-
ative thinking is crucially dependent on three basic humagniive activities:perception ac-
tion, andreflection(Skemp, 1971, 1979). Perception is concerned witfectsand theirat-
tributes Objects can be manipulated using acquiaetion schemasvhich, in turn, can them-
selves be perceived as objects (in the sense that they atalroaits) and become subject of
thought processes. More sophisticated mental objectseéorimed througheflection on per-
ception and actions This step-wise cognitive development model is based orPihgetian
tripartite theory of abstraction: empirical (objects)epdo-empirical (actions), and reflective
(actions and operations as objects of thought) (Piage§)19Bther stratified models of devel-

2Incidentally, though unintended, the structural ambigiritthe reading of “and” in the next section’s title is
actually appropriate: on the one hand, the theory points dgpendency betwedrarning mathematicand the
mathematical languagesed at different stages of learning, on the other hand,dbimcerned both witthearning
mathematicand withlearning mathematical language
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3 Language phenomena in proofs

opment are conceptually related in that they share the lymagrcommon distinction between
the three stages of cognitive development: interactiom wie environment (enactive stage),
mental representations and operations on them (iconi&itigh and abstract reasoning (sym-
bolic/formal thinking). In the context of mathematics, thation of a number, the construction
of natural numbers, and the extension of the notion of a nuiftaedinal numbers), for instance,
are based on abstraction and generalisation using seec{gpand counting (action) and form
an axiomatic and definitional basis for formal proofs in deman which numbers are objects.

Building on existing established theories of cognitive @lepment, David Tall formulated
a theory of mathematical thinking in terms of (not nece$sagquential) transitions between
three “worlds” of mathematicsvhich are distinct, but interrelated, and which reflect tiigat-
tite structure of cognitive development outlined above. dims that the three “worlds” are
characterised by different mechanics and ways of operatiffgrent forms of proof, and, most
interestingly in our contextifferent use of language

Tall's Three Worlds of Mathematics® The conceptual-embodied embodied worlds the
world of experiences with our physical and mental realityr perceptions of things we sense
and interpret. Early conception of numbers and arithmetiedargely set in the embodied world:
a single object is associated with the number one, a grougistorg of one object and another
object, with the number two, etc. Early counting is also edied. Through reflection and
development of language, we can envisage idealised canedyth do not exist in reality, for
instance, an infinite line that is perfectly straight andhindily thin or non-euclidean geometries.

The second world, proceptual-symbolicaoceptual world is the world of symbols used for
calculations. Their crucial property is their dual roleattlof denotingprocesses or actionsnd
concepts For instance, the notation+ 1 represents both the process of addition (counting)
and the concept of a sum (an action encapsulated in a coremmpsenting the result of count-
ing).* Within the proceptual world we move to more involved numbenaepts: from fractions
and negative numbers through rational and irrational nusmtsecomplex numbers. Complex
numbers and operations on them are examples of evidencgythabl manipulation can be per-
formed without any reference to the embodied world. Theylmrhowever, also represented
as points in a plane, giving them an embodied interpretatiom abstraction of the notion of
mathematical operation leads also to more sophisticatedrgeconcepts, such as limits.

The third world, the formal-axiomatic dormal world, is the world of formal definitions that
specify properties of mathematical structures (for insgamroups, fields, vector and topologi-
cal spaces) using formalised axioms. There are no emboejgdsentations in this world, only
formal symbolic representations. New objects can be defiisguy existing axiomatic defini-
tions and their properties can be deduced in formal prootutih which new theorems can be
established, thus building new coherent formal theories.

The embodied world, inhabited by objects and actions on therhus linked to the basic

3The following two subsections summarise the main ideasepted in (Tall, 2004b) and (Tall, 2004a)
“This dual nature of mathematical symbolism is also disaibyeSfard (1991).
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activity of perception. The proceptual world with actionmsabjects, reflections on these actions
and their symbolic representations (which, in turn, are alsjects that can be processed) is
linked to the basic (cognitive) activity of performing antian. Finally, the formal world of
axioms can be linked to the activity of reflection upon theperties and relationships between
the objects in the embodied and the proceptual worlds. Tafitp not only at the fact that the
three worlds reflect the different ways of understandingheauiatics, but also at the fact that
language operates differently in each of these worlds.

The language in the Three Worlds of Mathematics In the embodied world the use of lan-
guage starts with references to everyday world experienitbsmathematical objects. Once
basic categories afbjects are name{‘point”, “line”, “circle”, “square”, and “triangle”) thér
properties are describedfor instance, squares and triangles “have sides”; squanesfour-
sided figures with all sides equal and (at least) one righteingnd so on. Moreover, similar
or related objects can be prescribed: a “four-sided figutk @pposite sides equal and (at least)
one right angle” is a “rectangle”. With such descriptive digfons focusing on properties of
objects a learner can build first complex object hierarghsegiares are special kind of rect-
angles, for instance. In the embodied wattheé language is mainly used as a descriptive and
prescriptive tool The linguistic devices include (complex) noun phrases iaane concepts,
property-naming adjectives, adverbs that further qualifgperties, and basic common verbs
(such as “is,” “*has,” “contains”) to talk about relationstveen the objects.

The action-based proceptual world needs language whichatlaabout actiongprocesses
or algorithms, for instance) and which includes derivededated lexical forms tdalk about
objects that correspond to the actiort®or the process of counting we need ordinal and cardinal
numbers, for summation or adding, we need the notion of a sten;The conscious use of the
flexibility of language to name processes and conceptssepted symbolically and the realisa-
tion that symbols denote both processes and concepts isoa faetor in mathematical compre-
hension, in particular, in developing calculating and sghrhanipulation skills. An additional
function of language in the procept worlddsnarrateor report on the conducted operatio(fer
instance, in the form of a self-talk or an internal monoldgte specify operations that need to
be performedandto manage progresfby asking questions, stating completion of calculations,
etc.) The main function of the processes is to perform catimns, whilethe main function of
the language is to perform speech acts that correspond taahmulations hence the use of
“action” verbs, performative speech acts and the imperatiood in the internal monologue.

The formal world usegechnical language The technical language is based on everyday
language, however, if everyday words are used, they areinsggrecisely defined technical
sense: dield is not a kind of area, the worsletis not synonymous witlgroup, an identity
does not care about its psychological identificatigrgup theoryis not another name for the
theory of the crowd, and aero idealis not an oxymoron. Aside from common words with
new technical meaning, the formal language use$inical terminologynvented specifically
for the given mathematical domain or reserved for technisal, in the “real world,” it would
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sound rather odd to remark casually about a woman: “I likedeep brown eyes and the gentle
ellipsoid of her face.” Finally, the formal world, is the waof symbolic languageDefinitions,
theorems, and proofs in the formal world refer to axioms upigoously expressed in a formal
notation. Herethe language is a means of formalisatighipeculiar characteristic of the formal
world is that the structures defined in terms of axiomatigprties do not at all need to have
corresponding embodied counterparts.

The point of the this somewhat lengthy introduction to theptbr was to show that because
of the nature of mathematical language as a special lanquatjgiven the type of user we have
in mind, a mathematickearner, a lot of the phenomena we will describe can be considered uni
versally characteristic of our setting. Tall's theory, @rficular his observations on the students’
language, explain some of the phenomena in our mathemdiiialgues: the use of impre-
cise language to express mathematical concepts (discusSmttion 3.2.2.4), the use of cer-
tain types of anaphora in referring to objects expressegritbslic language (Section 3.2.2.5),
verbalisation of symbolic expressions (Section 3.2.10R)the action verbs “narrating” proof
construction (Section 3.2.2.4). Moreover, and most ingly, they point at the fact that these
properties of the language (its imprecision, recurrenceedfain reference phenomena, the oc-
currence of action verbs) are an inherent part of (studem&sbal expression in mathematics.
Thus, the phenomena we discuss in the next section, in plarti¢those characteristic of infor-
mal language, are not specific to our corpora alone, but ratie be expected to be found in
other corpora of students’ mathematical language as well.

3.2 The language of mathematical proofs

Natural language can be considered inherently unsuitablm&thematics because its interpre-
tation is strongly context-dependent and because of i@rioos main flaws: imprecision and
vagueness, which tend to lead to ambiguities in interpogtatyet, in spite of these “imperfec-
tions”, natural language was for a long time the sole mediontémmunicating mathematics.

Before symbolism was introduced in the sixteenth centuhgfamathematics was done in
ordinary language. In early algebra, solutions to what wewkmoday as polynomial equa-
tions were presented as worded rules in Arabic. InStisrt book of al-jabr and al-mwdpala,
al-Khwarizmi, an eighth century Persian mathematician, consideredrgtia equation prob-
lems formulated as follows:

Property and ten things equals thirty-nine
(z2 4+ 10z — 39 = 0 in today’s notation) and presented solutions in the follaywvay:

Take the half of the number of things, that is five, and muliiipby itself,
you obtain twenty-five. Add this to thirty-nine, you getysieiur. Take the
square root, or eight, and subtract from it one half of the bemof things,
which is five. The result, three, is the thing. (Kvasz, 2006, page 292)
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In the sixteenth century, Cardano still worked with wordegiaions ¢ubus and thing equal
numberfor 23 4 bz — ¢ = 0; ibid.) and it was not until Descartes and Viéte that the &ysh-
bolic language for equations and manipulation of formulas wmtroduced. However, counting,
numbers, simple calculations, and “natural language madkies” had existed since the Babylo-
nian civilisation (ca. 2000-1600 BC); even earlier, sifm$umerian times (ca. 3000-2300 BC)
already. Al-Khwarizm’s description of finding the unknown is in fact perfectlyngprehensible
even if it sounds more like a worded recipe or an algortiffor a method known as “completing
the squares”) rather than the kind of solution with which wermore familiar nowadays (using
the discriminant).

What the example illustrates is that natural language, kiewienprecise, is flexible and re-
markably expressive in that using words (nouns, indefinit definite descriptions, cardinals)
we canname(abstract) objects and we can furthiefer to these objects in the subsequent dis-
course using a range of linguistic devices. For instancehenEnglish translation of the re-
produced text, the noun phrase “the half of the number ofyiiintroduces a new entity of a
number type into the discourse as well as refers to an entityiqusly introduced with the noun
phrase “ten things” in the problem description. The newtgns further referred to with its
name, “five”, in the parenthetical clause and evoked agaih svpronoun “it”. In order to fol-
low the solution, the reader must just keep track of the dissmreferents, much like in ordinary
discourse, and perform the mathematical operations samediusly. Natural language words
such as “a thing,” “something” serve as placeholders, anmaatanguagerariables for which
no symbolic representation existed at the time. The inttdn of symbolism for variables by
Viete lead to a revolution not only in written mathematicst also in mathematical thinking.

Unlike natural language, the symbolic language of mathieséias not been evolving over
many centuries. Most of basic algebra and calculus notatemestablished in the seventeenth
and eighteenth centuries in the works of Oughtred, Leilangd, Euler and conventionalised to a
large extent within a short time. Set theory notation is @uB&¢ano and Cantor (late nineteenth
century) and Russel, Landau and Bourbaki (twentieth cgntivtost of the calculus notation is
due to Leibniz and Euler (late seventeenth and eighteemtturgg, and to Gauss, Weierstrass,
and Cauchy (from the nineteenth century &n).

In the following sections we deconstruct the language oheragtics. The analysis is per-
formed from point of view of a computational linguist whodends to design and implement
a language processing architecture for mathematical uiseo The task of the interpretation
component in such an architecture is to bridge the gap betwéarmal language of proofs and
a formal language of a mathematics assistance system whitdrims reasoning tasks (a proof
checker or an automated theorem prover); see Section 1.@sid&ning these practical aims,
philosophical aspects of mathematics and mathematicabulise — the nature of the universe of
discourse, the existence of mathematical entities — wilbeoeven touched upon here.

SNota bene, the origin of the word is al-Klazm’s name.

SCajori's A History of Mathematical Notation§1993) is the classic source on the subject of math-
ematical symbolic language. A resource on the earliest wdemathematical symbols is maintained at
http://jeff560.tripod.com mat hsym ht ml (Last accessed in December 2007)
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3 Language phenomena in proofs

We first analyse the symbolic component alone (Section Bahd then the familiar informal
mode in which natural language is interspersed with syrobwditation (Section 3.2.2). The
sections have a similar structure: we break the languag® toits lexicon, its syntax, seman-
tics, and discourse-pragmatic, context-related phenamptost of the example utterances are
directly quoted from our corpora, preserving the originmléng and capitalisation; some of the
guoted mathematical statements are also false. In thedbnigéinslations we attempt to repro-
duce the phenomena present in the German originals in avdsraw that they appear across
languages, however, where this is difficult or impossible,provide additional explanation.

3.2.1 The symbolic language

According to the oft-repeated slogan, all mathematics &language. On a cursory look, in a
mathematical paper or textbook one sees hardly anythingstalien” symbol system which
typically stands out displayed in indented formulas cehtre the page. The title of Ervynck’s
detailed analysis of mathematical symbolic language andyihtactic structurdylathematics
as a foreign languageemphasises precisely this point (Ervynck, 1992). In tleistion, we
analyse the symbolic language of mathematics from a litigymint of view: we look at its
lexicon, syntax, discuss semantic and pragmatic phenagnreparticular, its ambiguity, surpris-
ing imprecision, context- and convention-dependence, amgrammaticality” (ill-formedness)
in symbolic expressions constructed by learners.

3.2.1.1 Lexicon

The mathematical symbols’ vocabulary typically includes bowercase and the uppercase (sty-
lised) letters of Latin, Greek, and exceptionally old Gemnaad Hebrew alphabets, numbers,
multi-character abbreviations, and a range of non-alptmemic iconic signs and punctuation
symbols. Unlike in natural language, arbitrary identifiess be defined to stand for any concept
so long as consistency is maintained. Of course, arbiteagsignment of known symbols or
assignment of new symbols to concepts for which exiting ssimbre widely used would be
counter-productive and might introduce unnecessary sy therefore it is not practiced.

Letters, numbers, and their bracketed sequences namemadita “individuals” in a given
domain (be it primitive objects or complex mathematicalstures, such a6z, y) or {1,2})
and constitute thatomic termsof the formal language. In principle, the symbolic vocabyla
is infinite: letters can be subscripted or superscriptedh witmbers or punctuation (typically
apostrophes) to obtain an infinite repositaryz1, zo, ... orz’, z”, 2", ... In practice, however,
only a small subset of the infinite lexicon is mentioned eifh)i; infinite collections of objects
are marked with an ellipsis symbol (much like in the precgdiantence).

Mathematical operators (relation, function, and bindat guantifier symbols) are typically
iconic signs &, Vo <G UL Y etc.), accent- and punctuation-like symbofls { !),
mnemonic abbreviationsifn, sin, | M and lettersX;, 11, 9, d). New abbreviations and graphical
signs are continuously introduced as new mathematicattsbgre being defined.
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Operators come with the notion afity, that is, information on the number of arguments
they take, and with information on the types of operands tickvithey can be applied; this
is analogous to predicate-argument structures of natangluage relational lexemes and sortal
restrictions on their arguments. In standard mathemati#cas, the addition operatos;, for
example, takes exactly two arguments, while the summafpamnador,’:, three arguments: the
conditions on the lower and upper summation bounds and fhregsion representing the terms
being added, of which the first two (the summation bounds)oealeft implicit if they are clear
from the context; this is often the case if summation ranges)fminus to plus infinity, for
instance, or if the summation range is given in the text plimgethe occurrence of the symbolic
expressiorl. The sortal restrictions on the operands are specified bydheuh of the concept
(relation or function) for which the operator stands in tliveg context. The domain, in turn,
is specified in the concept’s definition. The previously rnardd +-symbol, for instance, is
typically defined as an addition operator in (all) number doms, hence, the expressiant ¢
does not violate the sortal restrictions if syande we mean the two real numbers, however, the
corresponding operation on sets is denoted by the set upierator,U.

Much like natural language needs punctuation symbols, éhenta and the full-stop, to de-
limit clauses and sentences, the mathematical languagepasentheses and brackets (square,
curly and angle brackets) to delimit the scope of mathemalatiperators. In some formal texts,
a square or a bolded dot is used as an additional scope definimguation in order to reduce
the number of parenthesgsBrackets of different shapes have also a grouping functiche
notation of mathematical objects. For instance, by cofwanpairs are enclosed in round paren-
theses, while sets in curly brackef$,(2) is an ordered pair witt as the first an@ as the second
coordinate, whilg{1, 2} is a set containing these elements).

Also certain punctuation-like symbols serve to denote erathtical concepts. For instance,
single vertical lines denote the absolute value of an eseg|z|) and pairs of vertical lines,
the norm of a vector|[x||). Primes and accents (circumflex, check, tilde) tend to aavedify-
ing function: they introduce an object in some way relatethéoobject they modify. Likewise,
functionally related objects often receive the same letganes distinguished by primes or ac-
cents; for instance, irf7, a prime marks the derivative of a functigh X might be chosen to
name the closure oX. Primes also mark collections of objects of the same typer”, ...

Horizontal and diagonal lines may also act as typograplsiephrators, as in the set compre-
hension notation{(z|z > 7}) or in the notation for fractions;t or 7/17). The comma is used
in enumerations, much like in natural language:;y # 0. ...

3.2.1.2 Syntax

Mathematical expressions are built according to rules ofasywhich are often introduced only
informally. In mathematics textbooks, examples of expagsswith particular operators are

"We will return to the role of context in Section 3.2.1.4
8Saving on parentheses is common in logic and meta-mathesnagie, for example, the use of dot®iincipia
Mathematica
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typically presented together with the definition of the givancept and with natural language
phrases illustrating how the given expression is to be “puoiced”, as in the following definition
from Bartle and Sherbert (1982):

If A denotes a set and ifis an element, we shall write
ze A

as an abbreviation for the statement thats an e ement of A, or that z is a member of
A, or thatz belongsto A, or that the setd containsthe element, or thatx isin A.

In formalised systems, such as formal logic or proof theitrg,syntax of the formal language
(the complete range of licensed expressionsyvelt-formed formulasis explicitly introduced
inductively. Inductive syntax definitions follow a defimiti schema that starts with an introduc-
tion of atomic terms (constants and variable symbols angedions for obtaining an infinite
set of those; for instance, using primes or numerical sifisyr followed by a definition of
complex terms (including operator symbols that combinen&tderms into complex terms), and
finally formulas are defined in terms of operators which idtrce statements (stand for logical
connectives and predicates). An inductive definition ofgleage syntax typically closes with a
statement that no expressions other than the ones intrd@duedicensed in the given formal sys-
tem. The language of first order predicate logic, the sinipdegyuage suitable for representing
mathematical facts, may be formulated as follows:

The set of symbols consist of (countably infinite) sets of:

constants (7r, 52, L,...)

individual variables £, y, z, 2/, 2", A, B, C, ...)
n-ary functions {, —, cos,U,...)

n-ary predicates <, C,=,...)

logical connectives \(, A, =, ...)

quantifiers =)

The set of atomic terms consists of all constant and indaligariable symbols.

If t1,... t, are terms and is an n-ary function, therft;...t, is a term.

If t1,... 1, are terms and is an n-ary predicate, thefit;. . .7, is an atomic formula.
If A andB are formulas and is a variable, therrA, A = B, AVB, AAB, A & B,
Jx A, Vz A are formulas.

®Boldface type preserved from the original.
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V = { <IND_VAR>,<SET_VAR>, <SET_CONST>, <SET_FUNC>, <MEMB_PRED>, <SET_PRED>
<OPEN_PAR>, <CLOSE_PAR>, <VERTICAL_BAR>, <TERM>, <FORMULA> }

T={2yzm1,...,4,BC,. . .,0,0U\....€C=..[]}

S = SET_EXPRESSION

P
<INDIVIDUAL _VAR> = z|ylzlzi]...
<SET_VAR> = A|B|C]...
<SET_CONST> = 0
<SET_FUNC> = NJUl\]...
<MEMBERSHIP_PRED> 1= €
<SET_PRED> = Cl=]...
<OPEN_PAR> = |
<CLOSE_PAR> =}

= |

<VERTICAL_BAR>

SET_EXPRESSION <TERM> | <FORMULA>

<TERM> <SET_VAR>| <SET_CONST>| <TERM> <SET_FUNC> <TERM> |
<OPEN_PAR> <INDIVIDUAL _VAR> <VERTICAL_BAR> <FORMULA> <CLOSE_PAR>
<FORMULA> 1= <TERM> <SET_PRED> <TERM> | <TERM> <MEMBERSHIP_PRED> <TERM>

Figure 3.1: A context-free grammar fragment for naive sedty expressions.

The syntax of symbolic mathematical expressions, at |efa$teir considerable subset, can
be described in terms of context-free grammars (CF@).CFG for a subset of set theory ex-
pressions is shown in Figure 3'1 The productions generate well-formed, however, strutiyura
ambiguous expressions such4s) B € AN BUC. 7* 7+ 7is an analogous structure from
arithmetics (neither set union and intersection nor aaldiind multiplication are associative).
These kinds of structural ambiguities in mathematical esgions are common, however, and
they are immediately resolved based on the assumptions edsotentionabperator precedence
(see Section 3.2.1.4 below). Grouping parentheses, winichat of the grammar, can be used
to explicitly delimit ambiguous expressions, especidiiyan-default interpretation is intended.

10A context-free grammax, is defined as a tupléV, T, P, S), whereV andT are finite sets of variables and
terminal symbols, respectivel®, is a finite set of productions of a forh — « (with A € V anda € (VUT)*), and
S is the start symbol. Context free languages, generatedmgxisfree grammars, were invented independently by
Chomsky and Backus in the 1950s; the general idea datesd&dst’'s work on string rewriting production systems
in the 1920s. Already Backus observed that algebra expressan be analysed in terms of context-free grammars,
while M. Wells (1961) and R. Anderson (1977) were among ttst tirapply the formalism in computational analysis
of mathematical expressions. Fateman (2004, 2006) pdiatsigext-sensitive semantics of mathematical expression
and argues for the need of more expressive formalisms.

1The grammar is presented in the Backus-Naur form. The alatbeelrule names for the terminal symbols stand
for individual variables INDIVIDUAL _VAR), set variablesgET_VAR), set constantsSET_CONST), set functions
(SET_FUNC), the membership predicat®t€ MBERSHIP_PRED), set predicatessET_PRED), and opening/closing
parenthesesoPEN_PAR/CLOSE_PAR). The vertical bar, |, denotes alternative. The grammaf é®orse oversimpli-
fied (it does not, for instance, make a distinction betweénhafedifferent order: sets vs. sets of sets); it is only meant
as an illustration of a context-free representation.
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a) b)

<FORMULA> C
<TERM> <SET_PRED> <TERM> n C
<TERM> <SET_FUNC><TERM> C C A B

A al B

Figure 3.2: Tree representations of a mathematical expregg) Chomsky-style tree
generated by the context free grammar in Figure 3.1, (b)-deadhter dependency-style.

Internal structure  Symbolic mathematical expressions can be representediastibs trees

of the CFG fragments that generate them. These trees conedp phrase structure trees of
natural language sentences and represent hierarchicstitosency of the expressions’ internal
structure. For instance, based on the grammar in Figurét® et expressiod N B C C can

be represented as shown in Figure 3.2 on the left. The thmedss are labelled with the names
of production rules and leaves are the terminal symbols lggjysnfrom the vocabulary of the
context-free language). The tree on the right represeatsaime expression in another diagram-
matic presentation, with the operators at the tree-interodes and the operands at the leaves.
This representation emphasises the relational naturesobpierators and the recursive proper-
ties of the hierarchical structure of mathematical expoess each complex expression has one
main operatoi‘,2 the root of the tree, and any number of atomic or complex sugitaents,
subformulas, and subterms, which, in turn, can be identlietheir main operator nodes and
by tracing the subtrees headed by those nédéte that some elements of the (sub-)structures
may be omitted. We will return to this when we discusglerspecification

Written notation  Mathematical expressions written down on paper, a blacgkboarendered
on a computer screen are of two-dimensional character. &heal dimension is manifested,
for instance, in the notation of fractions: the numeratowigten above the denominator, the
vertical structure emphasised by the fraction bar. Sityilarthe notation for integration, limits,

2Chains of like terms, for instance, in iterated equationm@et expressions, such dsJ B U C U D, can be
thought of as right branching trees with the first operataghanchain as the root.

There is empirical evidence that both experienced mattieimas as well as learners perceive mathematical
expressions in terms of their syntactic structure, thabis,internal representation of mathematical expressisns i
based on the phrasal structure of the expressions’ paes(#&shner, 1987; Jansen et al., 1999, 2000, 2003).
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3.2 The language of mathematical proofs

and iterated sum and product, the bounds are written abal/below the operator symbol.

Along the horizontal dimension, symbolic expressions arearised in a certain order. An
interesting property of the internal tree structure of reathtical expressions is that they may
be presented in different linearisation variants; muck dord order in natural language. An
expression can be written in thefix notation(operators linearised between operands they act
upon), in thePolish notation also known as prefix notation (operators precede the oggyaor
in theinverse Polish notatioffoperators follow the operand¥).While there is a consistency in
modern Western mathematics to linearise expressions wiimboperators in the infix notation,
there is little consistency in linearisation of differemtaury operators: the factorisation symbol,
is postposed with respect to its operand, the negation symlmr -, preposed, the root symbol,
Ve preposed, in the notation for derivatives, the primes postposed, whild andd preposed,
powers of trigonometric functions may be either infixadfx) or postposed (kin x)?) etc.
There is a special compact infix notation for writing down aeseof formulas in a chain. If the
relation between the objects is transitive, the terms catetsed in a sequence:. = ... =
similar notation is common for implication=) and equivalence<{). A variant of the cham
notation can occur with dual relations (for instance,< ... >...or... C ... D...).

The hierarchical internal structure, the linearisationvamtion, and explicit delimitation of
certain subexpressions give rise to a number of visualigrsasubparts of symbolic mathemat-
ical expressions which can be identified by their spatiahfionn or marked delimitation. First,
the horizontal dimension comes with the left- and rightemisientation with respect to a cer-
tain point (or vertical line) of reference: the root of an eegsion’s (sub-)tree (see Figure 3.2b).
Second, the vertical dimension comes with the up- and doartherientation with respect to a
certain horizontal line (or point) of reference: the topaghic centre-line of a (sub-)expression
in the linearised form (for instance, the fraction bar orree lrunning through the centre of an
iterated summation symbaly. Third, due to marked delimitation, bracketed expressidss a
form distinguishable objects which, in turn, may embed obracketed expressions.

Now, the purpose of this and the previous section, in whiclilugrated the internal structure
of mathematical expressions and their written form, is#allep to a later discussion on referring
in Section 3.2.2.5. Visually recognisable forms in mathiéicainotation give rise to a range of
natural language spatial expressions which can be usedeoteethe respective subparts of
mathematical notation, exploiting its internal tree- apdt&l structure and the relative location
of its elements. We can, for instance, identify a term to #fe df the main operator of an
expression and refer to it as “the left term”, “the term on lgfe-hand side”, or “the left side”
(keeping in mind the internal tree structure of the expme®&t or identify a term enclosed in

paired symbols written on both sides of an expression (ssigfagentheses or absolute value vertical bars) are
said to be in amutfixcircumfixor mixfixtranfix notation.

SMathematical expressions’ topographic properties of kitisl are exploited in mathematical OCR; see, for
instance, (Fujimoto et al., 2003; Tapia & Rojas, 2004)

184 eft” and “right” make sense with infix operators; the rafeg expression “the left side” fails in the context of
>~ n, but succeeds in the context B n + m. Referring expressions of this kind may also introduce guikies.
Consider, for instance, “the left side” in the contex®af n + m = > m + n.
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parentheses to the right of the main operator and refer &"tha term in brackets on the right”
or “the right bracket”. In a language interpretation arebitire, referents of these expressions
need to modelled. We will return to this in Section 6.3.

Verbalisation Aside from referring to salient parts of notation, as exéfigal above, we also
read symbolic expressions out loud. Vocalisation rougireelcompanies writing in a form of
think-aloud (for instance, at the blackboard) or internahwiogue. In mathematical textbooks,
examples of natural language verbalisation may accompdrgdiction of new symbolism, as
the paragraph on set membership notation, cited earlidisrsection, illustrates (see page 72).
In mathematical articles, a comment on wording may accomparoduction of new notions
and their notation which the given article defines for the fime. Ways of symbolism wording
for “known” concepts is rarely explicitly stated in textd@oand certainly never in articlés.
Learners must simply sooner (or later) “pick it up” in thesseoom on their own. It is useful to
realise in the tutoring context that this may result in miszptions as to how symbolic expres-
sions should be meaningfully read. Booker (2002) discudgisulties that learners experience
in understanding mathematics as a result of inconsistengithe language used to talk about
mathematics, especially its symbolism, and as a resulteofatt that the verbal language bears
no connection to the symbolic language used to record mattemhfacts. Likewise, Thompson
and Rubenstein (2000) stress the importance of teachingdeerbalise mathematics and even
suggest vocalisation of symbolic notation as one of oraksgjies in teachintf

While we are not aware of systematic studies addressingrpeistic structure of symbolic
expressions spontaneously verbalised by expert mathearetior learner®’ it appears that in
many cases, verbalisation of symbolic expressions folltvesrules of syntax of the natural
language in question, whereas the syntactic structures inseerbalisation reflect the object
or proposition status of the entity which the expressionoteesr Hence, terms (objects) are
verbalised using noun phrase syntax, while formulas (pitipas) using verb phrasés.

“Known” in inverted commas because what is assumed to be ki®also often left implicit . . .

18Thompson and Rubenstein mention an example of a misconoegiiout reading the logarithm notation which
surfaced only by coincidence when a student in the clasalfictead an expressidig.8 out loud as “log of two to
the eighth.” The authors cite Usiskin (1996) arguing thgf § student does not know how to read mathematics out
loud, it is difficult to register the mathematics ...”"

1%But see (Karshmer & Gillan, 2003; Gillan et al., 2004) for @uitive psychological study on understanding
key issues in reading and understanding mathematicaliegaat

2There is a number of studies addressing speech interfacemfbematical notation in the context of voice nav-
igation in scientific documents and, above all, in the caméaccess to mathematics for the visually impaired. Since
Raman'’s pioneering work on 4T gR (Raman, 1994, 1997) there has been growing interest ionséaspects of spo-
ken interfaces for mathematics. (See, for instance, (8tegeal., 1996; Guy et al., 2004; Ferreira & Freitas, 2004;
Fitzpatrick, 2002, n.d.; Fateman, 2004, 2006) and refereticerein.) Pontelli et al. (2009) survey (multi-modal)
accessible mathematics. Existing speech-enabled systeinde MathTalk, MathSpeak, MathGenie MathPlayer,
LAMBDA, AudioMath, TalkMaths. Fateman, among others, disses a number of problems related to vocalisation
of symbolic mathematical expressions, in general, howetadies aimed at accessibility necessarily tend to focus
on wording which conveys the semantics unambiguously,pedéently of whether the proposed wording would
be actually spontaneously produced by humans. Uniquepitition is ensured, among others, by special “lexical

76



3.2 The language of mathematical proofs

There is often more than one way of verbalising a given syml@ipression. For instance,
the symbol for a function of one variable, written asf(x) can be verbalised in English as
a bare noun phrase “f of x” or simply “f x,” a function of two vables,x andy, written as
f(x,y) can be verbalised as “f of x and y” or “f of x y,” etc. Arithmetexpressions can be
verbalised in different ways bringing out their process amaept nature. The ter?+ 2, for
instance, can be verbalised as a cardinal number, “two pla% (with the word “plus” in the
function of preposition, “two, with two added”) or as coardted cardinals, “two and two” (with
the conjunction, “and”, conveying aggregation). The eifpalymbol can be verbalised as the
verb “equal(s)” or with a copula construction (“be” in thense of identity) or using action
verbs, such as “make” or “give,” which bring out theocess-concepduality of the symbolic
language (Sfard, 1991; Tall, 2004a). The specific wordelisedipn depends on context (the
term2 + 2 in isolation or within running text is not likely to be reatid as “two and two,” but
rather as “two plus two,” whereas in an equation both phgssare possible, as ih+ 2 = 4.).

Aside from valid syntactic structures, symbolic expressiare sometimes verbalised using ir-
regular synta¥! There is a range of symbolic forms which can be verbaliseaguisiosyncratic
syntax which does not correspond to their internal striectim English, arithmetic expressions
can be worded as instructions (commands) in imperative méod instance2 +2 —1 = 3
can be realised as “two add two take away one leaves threéchvidasically comprises four
ellipted utterances (“(To/We have) two (objects); add tebjécts), remove one (object), ...")
Another class of irregularities comprises ungrammati¢drances. In English, this can be il-
lustrated with the verbalisation of set expressions, fetance, “A union B equals B union A’
for AU B = B U A. With “A” and “B” treated as proper noun categories, and tinfias a
common noun, the structure “A union B” is ungrammatical, s&eth structures are routinely
used to read expressions of this form. Examples of langudgtaets related to irregular syntax
in vocalisation which occurred in our corpora will be showrSiection 3.2.2.3 (page 95).

3.2.1.3 Semantics

However formalised, mathematical expressions are oftatiewrin an underspecified way.
Omission of information may lead, in turn, to ambiguity. €di&al lexical ambiguity is also
found in mathematical language. In the following, thesengineena and the role of context and
convention in disambiguation are briefly discussed.

indicators,” key-words which signal grouping. For instayihe expressiotu + b) /(c+ d) might be verbalised as “a
plus b all over quantity ¢ plus d,” where “all” signals the esfd term, “over” is short for “divided by” and “quantity”
signals a start of a new grouping (Fateman, 2006). Fitapat#002, n.d.) argues for effectiveness of speech prosody
and standardised prosodic effects; see (O’'Malley et ar.318treeter, 1978; Stevens et al., 1996; Ferreira & Freitas
2005) for investigation of prosodic correlates of mathecahexpression structures.

210only two examples are shown; data collection would be neéateal systematic analysis of the phenomenon.

22By underspecificationve mean here omission of information, rather than undeifipésemantic representa-
tion in a technical sense.
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Underspecification Frequently occurring forms of underspecification in the bgtit notation
areomission of notation elemerdsdsuppression of parametelp®th of which can be explained
in pragmatic terms as adherence to Maxims of Quantity andnétaim mathematics; discussed
further in Section 3.3 (page 113ff).

Delimitation symbols, in particular, brackets are one tgpeommonly omitted notation el-
ements. From a formal point of view, unbracketed expressinay be considered syntactically
ambiguous; the expressi@+ 2 x 2 could be (in principle) interpreted as another name either
for 8 or 6. This kind of underspecification is, however, typically imdiately resolved based
on assumptions on operator precedence. While operatoegeace is rarely explicitly stated,
in some domains (for instance, basic arithmetics) it is mred “common knowledge”, an
obvious part of generaonventionsn the given domain (see Section 3.2.1.4).

C. Wells (2003) points out another common type of undergigation in the symbolic ex-
pressions: suppression of arguments (parameters) ofrcéypes of operations. An obvious
example of suppression of parameters is the notation usingep for derivatives of functions of
one variable. Indexed sums or products are often writteh iwiprecisely specified summation
bounds, however, in many cases, the omitted parametergtageaxplicitly stated in the natural
language text surrounding the symbolic expression or canfeged from it. For instance, if in
a given paragraph or sectionis declared to be a natural number, an underspecified eixpmess
>, can be interpreted &s.,,—° or >~ °, depending on whether the adopted convention is

n=1 "

for the set of natural numbers to include zero or not.

Ambiguity  Ambiguities in the symbolic language result from the factttmathematical sym-
bols are oftempolysemousOne symbol may denote different objects depending on thiegbin
which it is used, in particular, on the subarea of mathematiquestion; this can be considered
a special case déxical ambiguityin mathematical language.

The omnipresent equality sigs;, is a notorious example of a polysemous symbol. Depend-
ing on context, the equality sign takes different types @rapds as arguments and is interpreted
accordingly?® Object naming symbols, certain punctuation, and typogcaptayout have the
same property; for instance, the dot may occur as the miglijbn symbol, the decimal sepa-
rator, or as punctuation separating the bound variableg@)tee body in a quantified formula, a
superscripted number may be interpreted as a power opgPatar?), except in the context of

functions, where it may denote the n-th derivati\’i%]i;éﬂ), unless itis a-1, in which case it is
an inverse functionf(~!), unless, of course, it is indeed an exponést:{ z)~!). Even special
layout elements can be polysemous; consider the horizbatah 1—73 VS. g—g. Table 3.1a shows
other examples of polysemous notation and their interfiosis

Given the abundance of polysemy, it is no wonder that learsguggle with notation (R. C.
Moore, 1994; Dorier et al., 2000; Downs & Mamona-Downs, 20G¢fowever, an experienced
reader can in most cases disambiguate the symbolic noiastantaneously using context and
his knowledge of mathematical conventions.

BThis kind of multi-purpose use of operators correspondsitation or methoaverloadingin programming.
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3.2 The language of mathematical proofs

Table 3.1: Examples of ambiguous symboals, (a), and alteeabtational conventions, (b).

a) b)

D superset “Ais a proper subset of B’A C B
proper superset ACB
implies

= number, set, function equality “Alisa subset of B"A C B
index assignment (as i, ;) ACB
name assignmenf (z) = 22 + 1)

(x,y) open interval “pimpliesq” p=g¢q
ordered pair p—q
inner product pogq
single-dimensional vector Cpq

3.2.1.4 Conventions and context

The use and the interpretation of the so-called “formal” meatatical language is to a large
extent governed by convention and the mathematical canddtktiough in principle any symbol
can be defined to denote any object (for instance, the symlmauld be declared to stand for
the subset relation) certain traditional conventions amegally followed and the knowledge of
these conventions is assumed of the recipient of a mathesthdixt.

By convention, certain symbols have fixed interpretatiohs ¢o, (), or the Arabic and Roman
number symbols), while others systematically evoke prefereadings in specific contexts, ¢,

R, >, 1 € 6, i, etc.). Objects of certain types are typically denoted kcHjr symbols. For
instance, functions are typically denoted by the prime®; su super-scripted lettef, groups
by uppercasé?, relations by uppercask (following the mnemonic convention), summation
index variables by or i, and sets by uppercase letters from the beginning of theab#ih
Also by convention, functionally related objects tend todemoted by the same letter names
distinguished by accents (circumflex, check, tilde, barimes (X might be chosen to name
the closure ofX), upper-case letters tend to be used for structures (stadcctmathematical
objects) and lower-case letters for the elements of strestyprimes are used to mark collections
of objects of the same type’( z”,. .. for the elements of a séf), and stylised letter shapes and
typefaces for specific distinguished objects (blackboatd btyle or German Altschrift, fraktur,
for specific number sets: reals, integers, complex).

The choice of symbols itself is also a matter of conventioor. iRstance, the subset relation
is denoted as- by some authors and as by others, open/closed intervals may be denoted as
(., )., .Joras(.,.)/< .,. >, the cardinality of a set asK(S), K(K(S)), |S], etc. National
and cultural conventions may differ; for instance, in WastEurope and North America, the
symbols3 andV are used for the existential and the universal quantifigye@s/ely, while in
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Eastern Europe the symbd|s and /\ are still used; although the Western convention tends to
take over. Also, different conventions are applied in mathtcs and in natural sciences or
engineering; for instance, in algebra vectors are denoyeldoldface letters from the end of
the alphabeta) while in physics the arrow notation is commow, (for the z-component of a
velocity vector), the imaginary part of a complex numberdaated with in maths and typically
with j in engineering® Table 3.1b shows other examples of notational alternatives

Knowledge of mathematical conventions plays a role in prieting symbolic notation, in par-
ticular, in interpreting expressions which appear ambigud\lready in elementary arithmetics
we are taught that multiplication should be performed befaddition, hence, the expression
2 + 2 * 2 can be unambiguously interpreted without the parenthe$bss interpretation ex-
ploits the notion oprecedenc@mong operators, that is, rules that state which operatoss loe
applied first or which operators have “higher” and which “exivprecedencé®

Finally, interpretation of the symbolic notation dependascontext, both theéextual context
as well as thenathematical domain conteitt which the given notation is used. For instance,
in the context of binary relationgz, y) is not likely to denote an interval and in the context of
complex numbers, the lowercasés reserved for the imaginary part of a complex number and
when a summation index over complex numbers is used, it dhimutlifferent fromi. Similarly,
concatenated symbols are interpreted with respect to ¢oatext; while77 denotes a natural
number,7z typically denotes muItipIication?,% addition, whereasin = functional application
(application of the sine function to the argumeit

3.2.1.5 Errors in the symbolic language

Learning the language of mathematics, much like learnirgyeidn language, involves making
mistakes. Therefore, it is not surprising that symbolicregpions produced by students are
prone to errors, both of form and substance. While textstewiby mathematicians contain
only valid and pertinent statements, learners’ discourag contain statements that are false or
irrelevant in the given context. These are errors of sulstanfpragmaticnature. Diagnosing
and addressing these types of errors requires knowledgenfethe mere knowledge of the
symbolic language, namely, the knowledge of the given donthé ability to reason within this
domain and, in the case of tutorial dialogue, the knowledgeedagogical criteria (for instance,
what is an appropriate size of a proof step from a pedagopaiat of view).

In general, before a semantic and pragmatic evaluation gfrébglic expression can take
place, the expression must be ascertained to be meaningfg given symbolic language. An
expression isvell-formedwhen it conforms to the rules of syntax for expressions froengiven
mathematics subarea or to the rules of admissible simplffiedentations (for instance, rules

24See (Libbrecht, 2010) for further examples and (A. Kohlh&shlhase, 2006) for a discussion on communi-
ties of practice in mathematics and implications on repred®n of mathematical notation.

A thorough precedence table for mathematical operators bmarfound on the Mathematica website:
http://reference. wol fram com mat hemati ca/tutorial / Operatorl nput Forns. ht il (Last
accessed in May 2012)
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which permit to reduce the number of parenthesis withoubihicing ambiguity; we mentioned
this already in Section 3.2.1.1.) Well-formedness core@amexpression’s structure, its syntax
and the properties of the lexical identifiers of which it isrgmsed.

There is a range of errors affecting the form of mathematgalessions which render them
ill-formed and thereby meaningless. Unlike mathematical textboollsesearch publications,
in which most errors of form can be most likely attributed tdartunate typographical oversight
and only rarely to misconstrued reasoning or lack of knog#gedtudents’ writing may contain
errors which are due to genuine misconceptions. Moreowenpater-based mathematics can
be additionally error-prone due to keyboarding or intezfacoblems. Students’ input may be
especially affected in this respect because the blackbaaddpaper still remain the primary
media for written mathematics up to the level of universityeation.

Generally speaking, errors of form in the symbolic languemyebe categorised into two broad
classes o$tructuralandsemanticerrors. Structural errors affect the syntactic structdiraath-
ematical expressions, while semantic errors affect theirastic interpretatio®® Expressions
with structural errors cannot be parsed by a standard nawagammar for well-formed expres-
sions in the given domain. Expressions with semantic ervange structurally valid, cannot be
assigned a meaningful interpretation or, in case of tratlred expressions, are simply false. A
well-formed and semantically meaningful proof step may tileisappropriate forpragmatic
reasons: it may be irrelevant for the given task or, everéfamnt, it may be too much of an “ar-
gumentative shortcut,” too large a step. Pragmatic erniss at the level of proof steps (rather
than individual symbolic expressions) and in the given pdiscourse context.

An analysis of the two corpora of tutorial dialogues revda@&umber of further subcategories
of form errors produced by learners. Among structural ertbere are two subcategorie®eg-
mentationerrors are possibly an artefact of keyboard input and araaloaitting white-space
or punctuation (in the notation for pair&r) in place of(s, r), for instance) resulting in fused
identifiers. Delimitation errors arise from inappropriate use of parentheses: eifpening or
closing parenthesis may be omittd®hfenthesis mismatghboth parentheses may be omitted in
a term which requires bracketinlyl{ssing parenthessor double (or more) unnecessary paren-
theses may be use&\perfluous parentheged-inally, a constituent, atomic or complex, may
be omitted resulting in €onstituent structurerror corresponding to invalid predicate-argument
structure in natural language. Among semantic errors, tandimn can be made between lex-
ical errors and correctness errors. Lexical errors arimm finappropriate use of identifiers: an
expression may contain an identifier which has not been dkiinthe given contexti{nknown
identifier) or a known identifier may be used inappropriatdliyappropriate identifiey. As a
result of the latter an expression beconiketyped: some of the expression’s operators are ap-
plied to incompatible operands; this corresponds to a tiarieof sortal restrictions in natural
language. Correctness errors have to do with validity ahtualued expressions (formulas).

Z\While we are not aware of systematic studies dedicatedystgbrm errors in the symbolic language, there
is a number of related studies in the larger context of ma#tiesilearning disabilities; see (Magne, 2001) for an
extensive bibliography on special educational needs irhemaatics and also, for instance, (Kennedy et al., 1970;
Babbitt, 1990; Hall, 2002; Melis, 2004) for error patterngroblem solving in general.

81
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Table 3.2: Categories of errors in students’ mathematiqalessions

Error category Description Code
Structural errors Expression ill-formed I
Segmentation Omission of white-space or punctuation -1
Delimitation Inappropriate use of grouping symbols -2
Parentheses mismatch  Opening or closing parenthesiqugissi I-2-a
Missing parentheses Required parentheses omitted I-2-b
Spurious parentheses  Extra parentheses [-2-c
Constituent structure Constituent missing -3
Semantic errors Incorrect or unknown identifiers or invatatement Il
Unknown identifier Identifier not defined in context -1
Wrong identifier Known identifier used incorrectly -2
Correctness error False statement -3
Pragmatic errors Logical argument invalid or inapprogriat i
Relevance error True expression unrelated to solution 2 1lI-
Granularity error Inappropriate proof step size -3

The two subclasses of pragmatic errors have to do with net&vand granularity of proof steps.
An overview of the error categories is shown in Table3.2.

Table 3.3 shows examples of flawed expressions from C-I ahida@e their corresponding
error categories given the identifiers defined for the praefeses in the experiment8. Exam-
ples (el)—(eb5) illustrate structural errors. In (el) ndy@space between the operator symbBol
and the identifiel”, but also the parentheses required for the powerset oparatmissing; as a
result, the tokerPC' is an unknown identifier (lexical error). The expression) (e2ncomplete
(closing bracket missing), (e3) is structurally ambigutesause the required brackets have
been omitted, whereas in (e4) duplicate brackets are ussa&ce In (e5) the second constituent
in the pair object is missing. Examples (e6)—(e18) illustisemantic errors. The lexical errors
in (e6) are most likely due to sloppy keyboarding: not only tire set identifiera andb in the
wrong case, but also the symbois used in place of the set identifig; even if we accepted the
lower-case symbols as a typgsyould still be an example of inappropriate identifier usesfep
ator in place of a variable symbol). In (e7) undeclared Vs« andy, are used even though a

ZThe classification summarises only observations basedeotwit collected corpora. Thus, it is not meant as
exhaustive. Earlier error categorisations were presant@doracek & Wolska, 2005a, 2006a) and issues related to
generating responses to erroneous statements in (Horadéddgka, 2007, 2008)

BDefined symbols wereA, B, C, M for first order setsR, T, S for relations,z, y, z for individual variables,

P for the powerset of a self’ for set complement, and' for the inverse relation, as well as basic naive set theory
and predicate logic symbols. Erroneous symbols are boxeptyeboxes denote omitted symbols. Previous context,
where relevant, is shown in square brackets. Error codestieflable 3.2.
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Table 3.3: Examples of invalid symbolic expressions fronushts’ proofs.

Erroneous expression Error code
(el) P((AUC)N(BUC)) =| PC|]U(AN B) -1, 1-2-b, II-1
(€2) Ize M : ((x,2) e RA(2,y) €T)V ((x,2) € SA(2,y) € T I-2-a
(€3) (a,b) eR o T[N S o T -2-b
(e4) (RUS) o T <[ ([(RoT)U(SoT)))] l-2-c
(€5) STto Rt ={(x,y)F2(2 € MA (IE,D) €SI A(z,y) e R7H} I-3
(e6) (p]n[a) € P([a]n[b) II-1
(€7) [(b,a) € (Ro S),z € M]...([z]][z]) € Rund( ,)eS -1
€8) (zc[b)[¢]Aa lI-1, 11-2
(€9) A C K(B) thenA|¢| . B 11-2
(e10) [M : set] ... (z,y)[€] M -2
(ell) = !K -2

€e12) (T-to S H)tu(T toRr 1) ! (y,z) € (T71oS YV (y,z) € (T Lo R71) II-2
(e13) (RUS)oT = {(x,y)|32(2 € M A (z,2) € {[z]|[z]€ RV[z]€ S} A (z,y) € T)} -2

(el4) Iz € M : (z,y) € RoT V (z,y)[V]SoT -2
(elS)RUS:{x|xeR.xeS} -3
(e16) (RoS)™ ' = {(z,y)|F2(z € M A (y,2) € R A (2,2) }.S oR7! -3
(e17) P(ANB)UC)[=]P(ANB)U P(C) -3
(e18) [(s,7) € (RoS)™']...|(s,7)|€ Ro S -3

previous declaration was made for the given conteayda. Examples (e8)—(el1l) illustrate the
common confusion of the subset and membership relationgtsn &8) contains additionally
an unknown symbah. In (e10) the student appears to think thatcontains pairs (is a relation)
whereasM was declared as a set in the task definition. A type mismaishsadue to a wrong
operator for a definition in (€12). In (e13), the same vadablis used in two contexts in which
it would have to be of different types: first as an element ddiaand then as an element of a set.
In (e14) unrelated operators have been confusett place ofc. (e16)—(e18) are examples of
logically incorrect statements: in (e16) and (el7) a steoragnd weaker assertion, respectively,
is expected (about equality of sets rather than inclusiowice versa). A logical error in (e18) is
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3 Language phenomena in proofs

(1) S: Esbleibt zu zeigert(RU S) o S = (RUS) o S~1
T: <correct, appropriate, relevant
Ist diese Aussage allgemein gueltig?
(Is this statemen valid in the general cake?
S: Ja.
(Yes)
T: <incorrect / 11-3, appropriate, relevant
Koennen Sie das beweisen?
(Can you prove itp
S: Esseiz,y) € (RUS)o S, also gibtes eir € M mit (z,2) € RUS
und(z,y) € S
(Let(z,y) € (RUS) o S, then there isa € M such that(x,z) € RUS)
T: <correct, appropriate, irrelevant / ll1=2
Ihre Folgerung stimmt.
(Your conclusion is correqt.

(2) S:(RUS)oT=(RoT)U(SoT)

T: <correct, appropriate, relevant
Das ist richtig!
(That's correct)

S:(RoT)U(SoT)= (T toRYH1U(Ttos !

T: <correct, too coarse-grained / 111-3, relevant
Wie kommen Sie darauf? Gehen Sie in kleineren Schritten vor!
(How did you get this? Please use smaller stgps!

(3) S: Wenn(z,z) € S~'und(z,y) € R~', dann giltS~ o R~!
(If (z,2) € S~ and(z,y) € R, thenS~1 o R~! holdg
T. <patrtially correct, too detailed / 111-3, relevast
Meinen Sie vielleich{xz,y) € S~'o R71?
(Do you mear(z,y) € S~! o R™!, perhaps?y

Figure 3.3: Examples of proof steps inappropriate witheesfo relevance and granularity.

caused by swapped variables. Among pragmatic errorsirihesl in Figure 3.3} (1) illustrates

a step which the tutor considered irrelevant (definitioteingation in S20). The last two are step
size errors: in (2) the student restates the propositioretprbven, an open goal, in his second
step (too coarse-grained) and in (3) the tutor consideretiirsg out the definition unnecessary

2Tutors’ evaluations of correctness, granularity, andvagiee of the steps are shown in angular brackets along
with the corresponding categories from Table 3.2.
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3.2 The language of mathematical proofs

Table 3.4: Possible sources of symbol confusion and thédtirgserrors

Possible error source Examples Resulting error category
Dual operator C|D,C|o Ny, AV 11-3, 11-2
Stronger/weaker relation cl|C,Cl=D22,2|= -3, -2
Conceptually related relationC | €, C | €,2[3,D |3, & | = -2, 11-3, 1
Typographic artefact UV, NIA, K|P, alb, P|B I, 1

(too detailed). As mentioned previously, pragmatic erevesof different nature than structural
and semantic errors; recognition of these errors involeonly reasoning but also pragmatic
criteria, for instance, pedagogical criteria stemmingrfritie adopted pedagogical strategy and
the student model.

A closer look at the most common erroneous expressionsisseartain systematism within
the class of semantic errors which may be due to systemasicoméeptions that students have
about pairs of set theoretic and logical operations. A aadsilication of semantic and pragmatic
errors with respect to their possible source is shown inef@. Often recurring errors result
from students confusing operators which are “dual”, in aldreense of the word, with respect to
each other. Examples of these include the logical conjonctnd disjunction (dual with respect
to negation), the set union and set intersection (dual wipect to set complement; analogous to
the former), and (partial) order relations on sets (subsesuperset); example (el14) in Table 3.3
illustrated erroneous conjunction in place of disjuncti@onfusion about ordering relations re-
sults, moreover, in statements which are weaker or strothger the expected statements, as
in (e16) and (e17). A large number of errors have to do withfusion about the set hierarchy
(sets vs. sets of sets) and the set membership and set anchesations which are conceptually
related, as in (e8)—(ell). Misconceptions related to tkkeseepts have been previously dis-
cussed by Zazkis and Gunn (1997) and Bagni (2006). Set &gaalil logical equivalence, as
in (e12), are another pair of confusable relations found; & instance, (Kieran, 1981; Sdenz-
Ludlow & Walgamuth, 1998; E. Knuth et al., 2005) for a diséasson students’ problems with
equality and equivalence. The last group of errors, invgvinrelated symbols, may be simply
artefacts of typographic or shape similarity, or genuirgotgr oversight errors.

What is interesting and relevant from the point of view of garational processing is that the
tutors rarely rejected utterances wibkelimitation errors, even if there was more than one:

4) S:3z(ze M A(((z,2) € RA(z,y) € T) v D(x,z) € S Nz,y)eT))) =
dz(z € MA(z,2) € RA(2,y) € T)\/Elz(z e MN(z,z) € SA(z,y) €T)
T: <correct, appropriate, relevant
Bis auf Klammerung korrekt. Fahren Sie fort!
(Correct up to bracketing. Go op!
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The tutor accepted ill-formed steps of this type in 53 cagesly in 7 cases did the tutor ex-
plicitly request a correction. What this means is that tutended to focus on the higher-level
proving task, rather than on low-level syntactic detaitiedlly, a cooperative automated system
should behave analogously, which, in turn, means that ds\aeobust parser for mathematical
expressions, with a correction mechanism. In Section 6.gregent a preliminary study aimed
at correcting some of the error categories.

3.2.2 The informal language

While the formal language of mathematics consists of symlespressions, the most prominent
characteristics of thmformal language is the familiar combination of natural languagegés
and symbolic expressions, with symbolic expressions shivwembedded into the natural lan-
guage text. In this section we turn to this informal language

3.2.2.1 Multi-modality

A typical sentence from a mathematical proof, be it in a tegtbor in tutorial dialogue, may
look, for instance, as follows:

(5) Wennx € Bdannx ¢ A
(If z € Bthenz ¢ A)

(6) K(AUB)istlaut DeMorgan-1K(A) N K(B)
(K (AU B) is by DeMorgan-1K (A) N K (B))

(5) is a prototypical conditional statement. (6) statesquméity between two sets and provides
a justification. The equality is expressed with a predicateded in natural language, “istisj,
and two symbolic expression& (A U B) and K(A) N K (B), denoting sets. The justification
is expressed in words using an adverbial construction,H'raDative” (by). While the equality
could be stated with the equality sign, there is no standarbslic notation for justifications of
proof steps imarrative mathematical text; justifications are signalled in natlaauage’®

In the tutorial dialogues in our corpora, this kind of emheddof symbols within natural
language occurs also in variants which are not likely to hmdbin textbooks or publications:

(7) AnBistevonCU (AN B)
(AnBiseof CU(ANB))

(8)  Nach der Definition vor folgt dann(a, b) istin S~ o R~!
(By definition of it follows then that(a, b) is in S~! o R~1)

30(Unlike in tabular proof presentations, such as Fitchestydtural deduction, in which rule names, typically
abbreviated, are highlighted by their placement in a déeitkyout area, along with references to line labels.)
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3.2 The language of mathematical proofs

(99 AauchC B
(AalsoC B)

In (7) and (8) the set membership symbel, and relation composition symbail, have been
used as a kind of shorthand for a part of the object of the megdipate, “to be an element
of” or prepositional phrase “of composition”. These exaagdllustrate two tendencies in infor-
mal mathematical discourse: one towaitural language verbalisatioand the other toward a
telegraphic style The same sentence could be expressed more economicalty aisymbolic
expression alone, yet wording is perhaps more natural. )lar{@dditive adverb is verbalised
within the formula. There is no symbolic notation corresgiog to the intended meaning of
“auch” (alsg), however, from the mathematical point of view, the adveybginot add any math-
ematical content, so it could be omitted aItogetEHer.

The most interesting characteristics of the two languageéesmahich form the informal math-
ematical language is that they atemplementanand interchangeablewith respect to each
other: they can be flexibly interleaved, either one, the mthe both can be used to express
the same mathematical content, and different parts of matieal content can be expressed
using one mode or the other. Examples (10) through (14 }ri#itesthese properties:

(10) z€eB = x¢ A

(11) Wennz € Bdannz ¢ A
(If z € Bthenz ¢ A)

(12) B enthaelt keinc € A
(B contains nar € A)

(13) A hat keine Elemente miB gemeinsam.
(A has no elements in common with)

(14) A enthaelt keinesfalls Elemente, die auctHirsind.
(A contains no elements that are also#)

All the above utterances express the same content: the ttairthe setst and B are disjoint.
They do this, however, using different language modes: &)y symbols alone, (11) and (12) us-
ing mixed language, and (13) and (14) using natural languaitpeonly the set names expressed
as symbols. The difference between (11) and (12) is in whegrisalised: the implication in (11)
and the relation between the set elements in $42)/hile in (11) the symbolic and natural lan-
guage parts form independent constituents, there is ait@rgtoverlap of a kind between the
symbolic and natural language parts in (12): the scope oftbreled negation “kein”r{o) is
only overz, a part of the symbolic expression following it. Similaréraiction and textual con-
text dependence can occur with other scope-bearing ndéungliage word categories, such as

31we will return to the discussion of pragmatic aspects in maidtical discourse in Section 3.3
32 classification of proof contributions with respect to tlype of content worded in natural language will be
presented in Chapter 4 (Section 4.3.4).
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(generalised) quantifieral{, every any, only, etc.) The scope of the overlap (that is, of the
guantifier) is dependent on the semantic contexB i§ a set whose elements are mathematical
formulas, the expressian € A could be considered a mention of a particular element of this
set. In this case the scope of negation would be over theeamtpression. Structures of this type
are also found in textbooks and publications. (13) and (hdjvsthat the same content can be
naturally expressed using words alone with only atomic $ertine set variables, expressed as
symbols, and that various natural language syntactic aarigins can be employed. In (13),
a complex predicate “gemeinsam habemde in commonis used; “haben’lave is a kind of
support verb here; the actual lexical meaning is expresgékebadverb “gemeinsamin com-
mon). In (14) a complex noun phrase with a relative clause paxtification is used.

Much like symbolic language can be fluently embedded withitural language, the opposite
is also possible: natural language can be incorporatedsimbolic expressions. This occurs
when there would be no benefit of the symbolic presentatiaaulme the focus is not on the
formalisation of the worded concept; that is, if the symbokpresentation is not relevant and
would only cause unnecessary additional cognitive loacherpart of the reader. Consider for
example the following expressions which introduce a cemaimber set:

A={p|lpeEZNIxe€Z, p=2x+1}

A={plpeNA(VzeN, Vy €N, plzy = plz Vply) }
A={p|lpeNA-TzeN, JyeN@x<pAy<pAzy=p)}
A={p|lpeNATxeN p=x+2 A JzeN,IyeN, (z+2)x(y+2) =p)}

and their counterparts in informal language with embeddgdral language text:

A={ p|p isodd}
A={p|p isprime}

Unless the purpose of these examples were to symbolicaitydiise the notions of an odd
or a prime number, the natural language presentation of didamoncept is preferred. These
examples show that the symbolic notation, merited for itvity and succinctness, is not always
that brief. Hence, natural language wording is also pretefor concepts whose formalisation is
difficult or complex. We will return to this and related issughen we discuss Gricean Maxims
in mathematical discourse in Section 3.3. What all the exasnip this section illustrate is that
parsing symbolic expressions in the context of natural dagg surrounding them is a basic
requirement that a computational interpretation modulerfathematical language must fulfil.

3.2.2.2 Lexicon

The vocabulary of the mixed language of mathematics cansfshe vocabulary of the symbolic
notation and the vocabulary of natural language. The l&biéows its own morphology and
orthography rules. As illustrated above the two languagdaa@an be tightly interleaved. The
vocabulary of symbols may be used to substitute entire adamguage phrases {or “the ratio
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3.2 The language of mathematical proofs

of the circumference of a circle to its diameter”®for “is an element of"/“belongs to”) which
often do not even form linguistic constituents for “for all”, < for “if and only if”, or ¢ for
“is not an element of”). Mathematical symbols typically dat mndergo linguistic inflectional
processes in writingj other than acquiring genitive forms, as in'$ value” or “A’s elements”.

3.2.2.2.1 Technical vocabulary The lexicon of mathematical language consists of a subset
of the lexicon of ordinary language, tlgeneral lexiconand a terminological part specific to
the mathematical domain, therminological lexicon In this respect, mathematical language
is lexically more complex than everyday language. Many erattical words have Greek or
Latin origin; “isosceles”, “asymptotic”, “idempotent,t@ There is a set of lexemes coined as
neologisms, for instance, “pathocircle,” “polygenic,Itharadicals™>* Some lexemes from the
general lexicon acquire special technical meaning in thteot of mathematics (meaning re-
striction or specialisation) and in most cases the new mearare impossible to guess: the terms
“group” or “field” are such examples. In the process of megmipecialisation, a common word
may also obtain a new grammatical category, for instanogedral,” an adjective in the general
lexicon, a noun in the mathematical terminold§yThompson and Rubenstein (2000) discuss
lexical phenomena in mathematical language from the péwiea of potential problems which
may arise during learning. Table 3.5 summarises a fragnfehew classificatior?®

33In verbalisation they do of course.

34Examples fromMathematics and the imaginatidsy E. Kasner and J. Newman

%An interesting resource on the earliest uses of mathenhatteaminology is maintained at
http://jeff560.tripod.conl mat hword. ht nl (Last accessed in May 2007) H. Becker's work traces the
evolution of mathematical concepts in the 19th century &edchanges in the terminology and the semantics of the
language used (H. Becker, 2006).

A digression: A lot of mathematical terminology (technitalminology in general) in Western languages — En-
glish, German, and French — have the same etymological:ra@sn, Greek, or Arabic. (See (Schwartzman,
1994) for the origins of English mathematical terms.) By tcast, Polish terminology bears no resemblance to
the Western counterparts: compare, for instance, “intégraegral’/“intégrale” vs. “catka”, “differential”/ “dif-
férentielle”/“Differential” vs. “rézniczka, or “derivative”/“dérivée” vs. “pochodna”. A lof the Polish terminology
is due to Jozef Jakubowski's translations of French workkJamSniadecki's contributions to popularising mathe-
matics.Sniadecki believed that in order for mathematics to be aiioles itshoulduse national terminology and the
vocabulary should be derived from common words by analodly thieir use in known contextS(miadecki, 1813).

%0nly one example from each mathematical area is given. Fiiduexamples, see the original source. The
category descriptions are reproduced as in the original éaxept we do not refer to English since the phenomena
are cross-linguistic. A simpler classification of lexichlgmomena was previously proposed by Shuard and Rothery:
Mathematical words are classified into three types: (i)nézl words (those which have meaning only in mathemat-
ics; for instance, “square centimeters”), (ii) lexical Wsr(those which have a similar meaning in mathematics and
in everyday language, for instance, “reminder”, “origin(f)i) everyday words (those which occur both in everyday
language, but can have both simikmd differentmeanings in mathematics and everyday language, for irsstanc
“points”, “change”); (Shuard & Rothery, 1984), as reportedRaiker, 2002).

The importance of understanding the differences in wordjeidzetween everyday language and mathematical
language in the process of learning mathematics has beediatsissed in (Kane et al., 1974; Usiskin, 1996; Raiker,
2002), to mention just a few. Booker (2002) attributes thfadilties that children experience in mathematics to the
inconsistencies in the language and a lack of connectiomeske the way ideas are represented, the language to talk
about them, and the symbols used to record them.
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Table 3.5: A fragment of Thompson and Rubenstein’s classifio of lexical phenomena
in mathematical language (Thompson & Rubenstein, 2000).

Lexical phenomenon Examples

Words shared by mathematics and everyday lgrime, imaginary, right (angle), combination, tree

guage, but with distinct meanings

Words shared with natural language, with compaquivalent, limit, similar, average, and

rable meanings, the mathematical meaning being

more precise

Terms found only in mathematical context quotient, asyrsyiguadrilateral, outlier, contra-
positive

Words with more than one mathematical meaning inverse, bagad, range, dimension

Modifiers change mathematical meaning in invalue vs. absolute value, root vs. square root,

portant ways bisector vs. perpendicular bisector, number vs.
random number, reasoning vs. circular reasoning
Idiomatic mathematical phrases at most, one-to-one,df@mly-if, without loss

of generality

3.2.2.2.2 Multi-word lexical units A multi-word expression (MWE) is a general term used
for different kinds of linguistic units consisting of two onore words, be it phrasal lexemes,
phraseological units or multi-word lexical items. Theselude: named entities (names of
places, persons, organisations, etc.), idioms ( “get dofttstee” and “Bob’s your uncle”),
phrasal collocations (“make a claim”, “take a stand”), acamional metaphors (argument is
journey: “follow an argument”, argument is balance: “shakgument”, argument is war: “de-
fend an argument”), proverbs and sayings (“As you saw, sibygtareap”, “The truth will out”,
“Unless a miracle happens”), similes (“lie like a pro”, “cung as a fox”), and routine formulae
(“you know what | mean”, “beyond any doubt”). We used the mgeaeral term “multi-word
units” here, rather than “multi-word expressions,” beeatl® latter, under current interpreta-
tions, are typically associated with non-compositiogadit meaning. Mathematical discourse is
abound in multi-word units; some of which are also non-cositimal.

The obvious multi-word named entities, aside from numexigressions, include names of
theorems, lemmata, conjectures, hypotheses, and axiohish are often named after the re-
searcher who introduced them, for instance, “Peano’s AgsfonNamed entities of this type
often appear in different syntactic, lexical, and spelluagiants, for instance, Peano’s Axioms
are also known as “Dedekind-Peano axioms” or “Peano pds&ilathe name of De Morgan’s
laws can also be referred to as “De Morgan laws” or “the lawB@®Morgan”.

The two tutorial dialogue corpora contain numerous occwes of multi-word names of set
theory and binary relation theorems and lemmata which wesegpted to the students in the
study material. Below are examples of students’ refereteéise De Morgan’s laws (left) and
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to the distributivity laws (right) found in the corpora (dipey and capitalisation preserved):

DeMorgan-Regel-1 Distributivitaet von Vereinigung uedden Durchschnitt
de-Morgan-Regel 1 Distributivitat von Vereinigung tUberrbhschnitt
DeMorgan-1 DAS GESETZ DER DISTRIBUTIVITIT VON
De-Morgan-Regel-2 VEREINIGUNG UBER DURCHSCHNITT
deMorgan-Regel-1 Distributivitaet von Durchschnitt ueldereinigung

de morgan regel 2 der Distributivitaet 1

The two De Morgan laws were labelled “De Morgan Regel 1” ane ‘Ndorgan Regel 2” in
the study material and distributivity laws “Distributigit von Vereinigung tGber Durchschnitt”
and “Distributivitat von Durchschnitt Gber VereinigungAs the examples illustrate, learners
use their own rather unpredictable spelling and segmentati names (hyphens in place of
white-space, for instance), even of those which were ptededn them in a specific forr.

Moreover, a number of technical terms in mathematics (nahesmthematical concepts and
objects) are multi-word units, for instance, “degrees e&fftom” or “dot product.” Much as in
the case of named entities, different lexical variants ofoept names denoting the same object
may exist, for instance,j“function”, “Dirac’s delta function,” or “Dirac’s delta” @& names of
the same concept. Multi-word constructions which incoap®rsymbolic expressions, such as
“§ function” or “a-stable” (stochastic process), are not uncommon. Setythtsaif has a few
multi-word domain terms, for instance, “the universal gatiie Universelle Menge” in German)
or “the power set” (“Potenzmenge”, a compound in German).

Finally, certain conventional mathematical phrasings lmawconsidered domain-specific col-
locations orroutine formulaein the sense of Wray and Perkins (2088) Examples include
natural language translations of propositional logic @mtives, such asA if and only if B,”

“A andB”, “if A, thenB”, as well as other fixed phrases, such as “without loss of igdihg”
“what was to be shown,” or “This completes the pro®t.”(A full-text search for the phrase
“This completes the proof” on the entire arXiv repositoryuraed over 29000 hit$§ All of
these expressions have their German, also multi-word tequarts and occurred in the corpora.

Abbreviations Much like ordinary language, the language of mathematies abbreviations,
i.e. shortened forms of words and phrases: initialismspraens, or syllabic abbreviations.
Aside from those found in ordinary language, e.g., “e.g."i@.” in English, mathematics uses
its own domain-specific abbreviations: references to sid@sathematical formulas, “the left-
hand side” and “the right-hand side”, are often abbreviatid “.h.s.” or “LHS” and “r.h.s.” or
“RHS”, the end of a proof is signalled with the Latin “q.e.@f “QED”, a well-formed formula

370f course, these examples can be recognised automatieakydon simple string matching rules.

384A] sequence, continuous or discontinuous, of words oeotimeaning elements, which is, or appears to be,
prefabricated: that is, stored and retrieved whole from orgnat the time of use, rather than being subject to
generation analysis by the language grammar” (Wray & Peria000).

39Trzeciak (1995) compiled a thematic list of the most commaihematical formulaic phrasings.

4OFull text search performed drt t p: / / ar xi v. or g/ f i nd on August 21, 2010.
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is a “wff”, “if and only if” is shortened to “iff”, etc. Some direviations are used in specific
subareas of mathematics more often than in others: in pildpabeory, for instance, some
of the standard terms are often abbreviated: “almost suvéth “a.s.”, “infinitely often” with
“l.0.", “almost every” or “almost everywhere” with “a.e.” @ne abbreviations are so specific
that without the knowledge of the particular field in whicteyhare used, it is impossible to
unfold them, for instance, the French-origin “cadlag” oadtag” and its English equivalent,
“RCLL". Examples of German abbreviations which occurrethiemtwo corpora include different
spelling variants of the following:

General language abbreviations:
d.h. das heif3tthis mean}
bzw. beziehungsweiseespectively
Bsp. Beispiel(e)éxample(s)
z.B. zum Beispielfor exampl¢

Maths-specific abbreviations:
0.B.d.A. ohne Beschrankung der Allgemeinheiithiout loss of generalily
g.e.d. quod erat demonstrandum
s.t. such that

While most abbreviations are specific to the natural languaghe discourse, Latin abbrevia-
tions, such as “g.e.d.” in mathematics, are used intemallip Interestingly, one of our students
consistently used the English “s.t.” in the German disagurs

3.2.2.3 Syntactic phenomena

In general, the natural language part of the informal lagguaf mathematics follows the syntax
of the national language of the discourse, English, Germitai> While in textbook and publi-
cation proofs most utterances (or sentences in this cas) ardicative mood, tutorial dialogue
contains also other clause types (all examples from C-I1):

Indicatives state unqualified mathematical facts,

Interrogatives ask questions, for instance, requestrimdition on concept definition:
“Was ist eine inverse Relation?What is an inverse relation?

Imperatives command to perform actions, for instance, dtegproof steps or give help:
“Gib mir doch mal ein konkretes Bespiel wie man Beweise in dengen-
lehre loest!” Give me a concrete example of a proof in set theooy!“erk-
laere die DefinitionRo S in Worten!” (explain the definition aRo.S in words))

Exclamatives express emotions: “SchwachsinNoiisensg! or “Das beantwortet meine
Frage nur zur Haelfte!"That's only half an answer to my questipn!

A whole range of natural language syntactic clause strastavailable in the language of the dis-

41(Up to certain irregularities discussed further in thister)
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course can be found in learner proofs in tutorial dialoguee most frequent type of construction
is the conditional. Zinn discusses conditionals in mathtesat length in his Chapter 4 (Zinn,
2004), therefore, we will not repeat the discussion of ctioiatals here nor in the section on
semantics. Below, we only illustrate the complexity of tigatax of utterances involving condi-
tionals found in the learner corpora, with three examples:

(15) wennA C K(B), dannA # B, weil B # K(B)
(if A C K(B), thenA # B, becauseB # K (B))

(16)  V(z,y) gilt: wenn(z,y) € (Ro S)~t dann(z,y) € S~ o R}
und wenn(z,y) € S~'o R~ dann(z,y) € (Ro S)!
((¥(z,y) it holds: if (x,y) € (Ro S)~! then(x,y) € S~ o R7!
and if(z,y) € S~' o R~ then(z,y) € (R0 S)™1))

(17)  fuer(a,b) € (RUS) o T gilt: entweder(a,z) € R oder(a,z) € S,
weil (a,b) € (RUS), wenn(a, b) € R oder(a,b) € S und gleichzeitig gilt
(x,b) €T
((for (a,b) € (RUS) o T it holds: either(a,z) € Ror (a,x) € S
becausda,b) € (RUS) if (a,b) € Ror (a,b) € S and at the same time
(x,b) € T holds)

The quoted utterances contain multiple clauses: subdedinar coordinated and subordinated.
Their clause patterns can be summarised as follows:

wennA dannB weil C
wennA dannB und wennC dannD
entwederA4 oderB weil € wennD oderé undF

Extended concatenation of clauses is unusual both in spakein written language. How-
ever, many occurrences of conjoined clauses of this kindbeafound in our learner cor-
pora. In terms of computational processing, this calls fgraanmar formalism in which com-
plex multiple-clause utterances of this type could be nledelith sufficient generality. (In a
context-free grammar, every instance of clause orderingdvaave to be modelled explicitly in
order to obtain all the possible structural analyses; astithal solution.) Specific to German
is, moreover, the difference in word order between mainsgdawand subordinate clauses. The
former exhibit the so-called verb-second word order (rdyigpeaking, the inflected verb is the
second constituent), while the latter exhibit verb-lagtenr(the inflected verb is the last con-
stituent). The resulting dependencies require that thengrar formalism be expressive enough
for the syntax-semantics interface to return valid intetations.

Aside from clause structure complexity, informal mathdoatianguage is also characterised
by certain syntactic idiosyncrasies due to its mixed nat@tidents’ language in tutorial dia-
logue exhibits, additionally, syntactic irregularitietiieh are normally never found in textbooks
or scientific publications. These characteristics arstitated in the following sections.
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3 Language phenomena in proofs

Syntactic categories of mathematical expressionsin Section 3.2.2.1, we showed examples
of mathematical expressions smoothly integrated into yhéax of natural languag®:

(18) K(AU B)istlaut DeMorgan-15(A) N K(B)
(19) Wennx € Bdannx ¢ A

(20) B enthaelt keinc € A

(21) AauchC B

(22) AnBistevonCU(ANB)

In (18) and (19) symbolic expressions, terms and formulasysed in place of complete valid
constituents: subject and object noun phrases in (18) amd ama dependent clauses in (19).
This kind of symbolic expression embedding is easy to erpléhe key observation here is that
mathematical expressions can be naturally interpretes@esponding to two linguistic syn-
tactic types: clauses and noun phases, and the consistehowimathematical expressions are
embedded into natural language context stems from thiggeondence. In most cases, math-
ematical formulas (proposition denoting) correspond tmimzd language clauses, while mathe-
matical terms (object or type denoting) amgntionsof mathematical formulas, as il*C B
is a formula,” correspond to noun phrases. This is in turrabse in the symbolic language
formula-forming operators correspond to natural languaigelicates (with “be” as a support
verb if the operator does not have a verb reading), termifayroperators to natural language
relational nouns, and atomic terms (variables and corgtantnoung® (19) is a grammati-
cal sentence under the standard grammar of German (andsBEnigécause the formulas’ main
operators fill in for the predicates (or their parts, as indase ofc).

The next example, (20), illustrates another recurring tyfpoembedding of symbolic expres-
sions which on the surface have an appearance of formulé20)m natural language sentential
predicate is already present. This signals the need foasijatreinterpretation of the symbolic
expression such that the utterance is paraphrasef asritains nac which is an element ofi”.
Under this interpretation, only the left-hand side of tharfala is in the scope of the negation
word preceding it, filling the role of a direct object of the imaerb, “contain”, pre-modified
by the negation word, while the remaining part of the expogsserves as a post-modifying re-
strictive relative clause, of which the formula-formingeoator is the main predicate (here, with
“be” as a support verb). Thus, the syntactic chunk #ne A” is read as “nar which is in 4.4

Several observations can be made of this syntactic configard-irst, the interaction of sym-
bolic expressions of type formula with the left linguistiontext appears to be an artefact of the

42English translations on page 87.

“Formula mentions, such as the one presented, must be peitet to be treated as a whole, a “name”, in
order to arrive at the right interpretation. The questioh@# to treat mathematical terms semantically — as definite
descriptions, for instance — can be left aside at this point.

4 Alternative readings could be “nosuch that it is ind” or “no suchz thatz is in A”. The simplest construction
is adopted.
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3.2 The language of mathematical proofs

fact that formulas are written imfix notation. Thus, “contains € A" is licensed, whereas the
same expression in prefix notation, “contaéns: A”, would not result in a meaningful reading
and it is questionable that in postfix notation, “containd <", would read naturally. Second,
the distribution of linguistics context which licence suzheading is not random and includes
categories which form valid constituents with individaknoting (as opposed to eventuality-
denoting) words in their right context: in English and Gemtizese are transitive verbs (preced-
ing the symbolic expression), nouns and adjectives, dfienstiand a negation wofd. Finally,
only individual-denoting constituents of a symbolic exg®ien can interact with the preceding
context. Thus, in order to recover the reading, a meanirajjdct-denoting substructure must
be identified in the symbolic expression, based on its paese the subexpression to the left of
the main operator is the one which enters into a dependetatjorewith the left context, while
the other substructure headed by the top-node becomegpiadient.

Finally, the last two examples, (21) and (22), show that eratitical expression “fragments”
can be also embedded into natural language text. (21) shawsmn adverb can modify a sen-
tential predicate expressed in the symbolic language a®dtfat formula-forming operators,
which otherwise serve as predicates, can also serve as wholgects formed by their predica-
tion. Here, the symbaot (“be an element of”) fills in for the nominal object (“elem&nof the
predicate “be”; similarlyC could be used in place of the noun “subset” andn object-forming
operator, would work in 4 U B is au of A and B” (a constructed example).

These last two uses illustrate a tendency towteligraphic stylén learner language in which
symbolic notation is used as a kind of shorthand for the spoeding natural language wording.
While the latter two forms are perhaps too informal to be entered in textbooks, it is plausible
that they can occur in written student homeworks, examsais the case here, as input to a
tutorial system. In a computational processing framewbik ¢alls for a lexicon representation
and an approach to parsing which would enable systematitiment of symbolic expressions
embedded within text, be it complete constituents or fragsjeon a par with natural language
lexemes and phrases.

Irregular syntactic constructions As a sublanguage, informal mathematical language admits
of constructions which outside of mathematical discourselld be considered syntactically
invalid. One type of syntactic irregularity is an artefathow symbolic notation is verbalised
(discussed in Section 3.2.1). For instance, an expressio3, when spoken, will be typically
read from left to right as it is written by substituting words symbols: “A union B”, resulting

in a construction which is not only ungrammatical, but doesyield the intended semantics
of “the union of A and B” under any standard interpretatiorcofmpounds of this type eithéf.

“The list is based on an ad hoc analysis of textbook discoukskirther more systematic analysis of a large
corpus of mathematical discourse is needed. In (Wolsk&3)20& make a step in this direction.

“*The expressioml U B corresponds to a natural language construction involvivayriouns,A and B, and a
relational noun “union (of)”. In an analogous constructiamatural language, for instance “friend of Peter and
Paul”, the alteration “Peter friend Paul” is ungrammatical
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Example (23) illustrates a similar construction in Germdriol appeared in C-I:

(23)  wennA vereinigtC ein Durchschnitt vorB vereinigtC' ist, dann missen
alle Aund B in C sein
(If A unionC' is intersection ofB unionC, then all A and B must be inC')

Here, the student uses the construction “NP vereinigt NR€dw This is a corrupt German
participial construction with the verb “vereinigentr{ify) which in its grammatical predicate-
argument structure requires a prepositional phrase “mitativ®” (with). Another irregular
syntactic construction resulting from writing an expressas it is spoken is illustrated below:

(24)  Wenn(b, z) in R ist, ist dannz in R hoch minus eins?
(If (b, 2) isin R, then isa in R to minus onep

In this example, the student verbalises the notation foers® relation as “hoch minus eins
(to minus ong the way it is normally read aloud when exponentiation i@ived. The con-
struction “hochNUMBER” is syntactically marked in German: “hoch” as a modifier oftamber
category appears exclusively in the mathematical congext,normally only in spoken verbal-
isation?’ The fact that it is found in type-written tutorial dialoguaggests that the learner
adopted an informal conversational style of interactiod assumed that understanding spoken
language style should be within the capabilities of theesy& input interpretation component.
Interestingly, non-canonical telegraphic syntax of thisdkappears also in mathematical text-
books. Natho (2005, page 109) quotes the constructfanjektiv” ( f injective with the copula
verb omitted. This type of syntactic reduction is anothenifiestation of the telegraphic style.

Syntactic ambiguities Finally, natural language structures, especially comphenti-clause
utterances, are prone to syntactic ambiguities. Thisustilated in the example (25), in which a
structural ambiguity is introduced by the worded coordorat

(25) =z € B undsomitx C K(B) undz C K(A) wegen Voraussetzung
(x € B and thereforer C K (B) andx C K(A) given the assumptiyn

The alternative readings of the utterance can be repressobematically as follows:

[[ A undsomit B ] und [ C wegenD ]
[[ A undsomit [ B und C J][ wegenD ]
[ A undsomit [[ B und e ] [ wegenD |]]

The previously presented example (17) (page 93) exhihitdlagi structural ambiguity. Since
domain inference is needed to evaluate the propositionakob of the utterances, a linguistic
interpretation module alone cannot identify the most likelading, however, its parser should be

4"The word “hoch” pighly/upward$is an adverb in German and usually appears in participiatroctions such
as “hoch kompiliziert” bighly complicatejl
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capable of parsing complex conjoined clauses of this tygadantifying structurally ambiguous
readings, be it by representing them in a compact way or bynerating alternative parses.

3.2.2.4 Semantic phenomena

Ordinary language and the language of mathematics songtisethe same vocabulary, but
its mathematical meaning differs from its meaning in ndtlasaguage®® Quantifiers and con-
nectives are examples of such words, often confused bydeaim formalisation. The natural
language quantifier “any” can be used either in the existefdis in “Did you see any movie
lately?”) or universal (as in, “Any dream will do.”) sensehi$ “sloppiness” of natural language
may lead to a confusion when “any” is used in an impreciseimeunathematical construction
“for any”. A similar problem arises with “and” and “or”. As adjical connective in mathe-
matics “and” has a unique meaning: that of a truth functimoaljunction. In natural language,
however, “and” can have other meanings than that of a logicajunction: for instance, that
of a discourse marker introducing a rhetorical relationadiexy result, implication, or temporal
sequence, or that of an additive particle. In mathematiesrthaning of A or B” can be para-
phrased as “eithed or B or both” and, naturally, different truth conditions apptyinclusive
and exclusive disjunction. While natural languages tylpiado have a linguistic device to ex-
press the exclusive meaning (for instance, “either ... dt in English) “or” may be used in
both contexts. The following sections illustrate semaptienomena in informal mathematical
language which require special processing resources fopatational interpretation.

Imprecision While mathematics itheprecise discipline par excellence, its informal language
is remarkably imprecise. The following examples illustrdte phenomenon:

(26) B enthaelt keinc € A
(B contains nar € A)

(27)  also gilt ferner, dad und B keine gemeinsamen Elemente haben, dé&d),
definiert alsU \ A, die MengeB enthalt
(therefore sinced and B have no common elemenfs(A), defined ad/ \ A4,
contains the setB

(28)  daraus folgt, dass, y € R~ und(z,2) in S~!
(from that it follows thatz,y € R~ and(x, z) in S~1)

(29) (AnB)mussinP((AUC)N(BUC))sein,daANB)e (ANB)UC
((AnB) mustbeinP((AUC)N(BUC))since(ANB) e (ANB)UC)

In the first two utterances, the students used the predieathdlten” ¢ontair); in (26), B, a
first order set, is its subject and a set element, its object and in (2K)( A), a first order set, is
the subject and, also a first order set, the object. The predicate “contaiffiowever, imprecise

“®\\e already showed some examples of confusable vocabulahy dicussing the lexicon; see page 88.
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(ambiguous). In the context of set theoOONTAINMENT may refer toSUBSET/SUPERSETOr
ELEMENT relation. In the context of symbolic mathematical expr@ssjCONTAINMENT could
be also interpreted as structural composition; one exiprebging a structurad UBEXPRESSION
of another’® In (26) the ELEMENT relation is meant, while in (27) theuBSET relation is
intended. Similarly ambiguous is the locative preposdiophrase with “in” in the next two
examples. In (28) theLEMENT reading is intended. In (29), while tlEMENT reading more
plausible, it is not clear whether the student realises tfierdnce between the two relations
considering the error in the dependent clauseR, andC' are first order sets).

The examples illustrate the fact that in informal matheoshtianguage mathematical con-
cepts are named using common words which are imprecisdl(ttee@xamples from Table 3.5
on page 90) but which do have precise mathematical intexiwas®® The same common word
or construction may be used to name a class of conceptuddhedemathematical notions, espe-
cially if the mathematical notions are conceptualised asipified subclasses of a more general
concept, as is the case with different type£oiNTAINMENT above.

In fact, in the course of learning mathematics, studentsofiem explicitly told toconcep-
tualisemathematical concepts as analogous to specific real-woidés, that is, to buildon-
ceptual metaphorén their minds which visualise mathematical notions. Lalkaid Nufiez
(2000) take a radical stance on mathematical understamdihere mathematics comes from
claiming that all of mathematics is a mental product whiclses from ourembodiedminds,
everyday experiences, and from human mind’s unconsaouygirical cognitive mechanisms,
such as metaphors and image schemata. In line with Lakaffis pognitive linguistic theories
Lakoff and Nufiez attribute (almost all) mathematical ustierding to the process of under-
standing layers afathematical conceptual metaphgirsference-preserving mappings between
conceptual domains: a source domain, from which metapddogixpressions are drawn, and a
target domain, the domain which is being interpreted. Mathtéecal metaphors make it possible
to understand complex, abstract mathematical notiongetisy in terms of simple, concrete no-
tions from our everyday reality (source domains). For eXdamrgbstract sets can be understood
via the (physicalrontainermetaphor: The notion of a set is conceptualised as a contaiiset
is a container with things in it. The things may be simple glsiror sets of things. Given this
image, we can conceptualise different configurations inkgl containers: one container inside
another, as in the former examples, or two containers witrdnt things in them:

(30) B vollstaendig ausserhalb vohliegen muss, also im Komplement veh
(B has to be entirely outside of, therefore in the complement 4j

“If in the previous context there would have been an assighofeR to a formula in whichz € A is a subex-
pression, the structural composition reading could benated.
%0Also Halmos (1970, page 144) comments on the natural largwagding used for set relations.
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(31) dann sind4 und B vollkommen verschieden, haben keine
gemeinsamen Elemente
(then A and B are completely different, have no common elen)ents

“Lying outside”, (30), and “being different”, (31), are mfmal natural language descriptions
of an empty intersection of sets. A mental image of a conta@ivekes a vague relation of
similarity between containers (here, the property of twatamers being different) and relations
and properties associated with containers, such as loc@tare, of one container’s content).
Although the authors do not make specific claims as to theulage phenomena resulting
from the mapping, the theory appears to explain the factliegaianguage used to talk about sets
reflects the language used to talk about the source domalreahétaphor, containers: hence,
we talk about sets “containing” elements, to express thensatbership relation, and about sets
“being contained in” or simply “being in” another set, to egps the subset relation. The result-
ing ambiguity in the interpretation of the specific mathanatset relation meant is an artefact
of the imprecision of the natural language phrasing. Howeiece the phenomenon is system-
atic, a computational interpretation component needs r@septation of the imprecise concept
names and an appropriate mapping to the possible specifiematical interpretations. Notice
moreover that this kind of ambiguity appears also in texkbdiscourse (recall, for instance, the
previously quoted definition of set membership from (Ba&tl8herbert, 1982); see page 72 of
this chapter) which all the more motivates this as a basigirement for a computational pro-
cessing architecture. In our domain model specific mathiealatlations are subsumed under
more general relations reflecting the conceptual struais@issed above; see Section 6.2.1.
The metaphor mechanism can result in further imprecise wgrdollowing the CONTAINER
metaphor, students can of course think of smaller and la@eriners, as in the example below:

(32) Der Schnitt von zwei Mengen ist kleiner gleich der kéggn dieser Mengen,
also ist das Komplement des Schnitts groRer gleich das Kengoit
der kleineren Menge
(The intersection of two sets is smaller equal the smalleheda sets,
so the complement of the intersection is larger equal theptement of the
smaller sex

“Smaller” and “larger” refer to sets’ cardinalities rathtban their physical size, of course.

Note that while natural language introduces imprecisibig an imprecision in the sense of
ambiguity, that is, a discrete set of possible interpreteti(precisifications) exists. Mathematics
is in general void offaguenesi that mathematical concepts gnecisely definedThere exist,
however, technical terms, also used in definitions, whighiaherently vague. Consider, for
instance, the mathematical uses of “almost all” (all exdepfinitely many or all except for a
countable set) or “sufficiently large” (greater than sommhbar).
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Contextual operators Consider the following two examples from the corpora:

(33) Wenn alled in K(B) enthalten sind und dies auch umgekehrt gilt, muB3 es sich
um zwei identische Mengen handeln
(If all A are contained inkK'(B) and this also holds the other way round,
these must be identical spts

(34) S5: esgilt naturlichP(CU (AN B)) C P(C)UP(AN B)
(it holds of course:P(C U (AN B)) C P(C)U P(AN B))
S6: nein doch nicht... andersrum
(no not that either... the other way round

“Umgekehrt” and “andersrum” or their English counterpéttie other way round”, are com-
plex operators which require contextual interpretatiorthk first example, (33), “the other other
way round” is ambiguous: the clause “and this also holds therovay round” may be inter-
preted as “und allé(B) in A enthalten sind”4nd all K (B) are contained inA) or as “und
alle B in K(A) enthalten sind”&nd all B are contained ink'(A)), the intended interpretation.
In the first interpretation, the entire dependent subatrestof the head verb “enthaltem4,and
K(B), are involved, whereas in the second, only parts of sulistiess; A and B, are involved
(the directly dependent nodes, but not their dependergsnaag we analyse mathematical ex-
pressions in terms of the same dependency syntax as in nlaingaage analysis). In (34) the
entire dependent subtrees of the predicate expressed sytimolic languagec, are involved,
however, the scope of the semantic reconstruction invaleagent which appeared two dialogue
turns prior to the turn with the operator; following S5 théotuuttered “Wirklich?” Really?)
upon which the student revised his proof step in S6 with “tteioway round”.

“The other way round” is a typical example otantextual operatorKay (1989) defines con-
textual operators as “lexical items or grammatical comsitbns whose semantic value consists,
at least in part, of instructions to find in, or impute to, tlatext a certain kind of information
structure and to locate the information presented by theesea within that information struc-
ture in a specified way”. Other items which have this propartgt which have been discussed in
the linguistic literature include “respective”, “respeety”, and “vice versa’ (B. Fraser, 1970;
McCawley, 1970; Kay, 1989). Interpretation of operatorthig type is non-trivial precisely due
to their contextual and parasitic nature: the context neédaleinterpretation may span multiple
clauses (or even dialogue turns in our case), it may contailtiplie candidate arguments for
the operator, and the candidates may appear in a varietyntdctic and semantic-dependency
configurations. Computational interpretation must inedlientifying the scope of the semantic
reconstruction and a transformation process which resdwerimplicit propositional content.

While the scope of “the other way round’-like operators mpgrsa number of clauses, the
scope of “analogously”, another contextual operator, n@nsentire larger discourses. The
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following examples illustrate the complexity of the phersrn:

€ RA(y,2) €T)}

(35) S13:(RoT)istdefiniert als{(z,y)|3z(z € M A (x,y)
) € RA(y,2) €T)})

(RoT)isdefined ad(x,y)|3z(z € M A (z,y
S14: (S o T') ist genauso definiert.

((SoT)is defined in the same way.
S15 (S o T) ist analog definiert.

((S o T) is defined in an analogous wa).)

(36) DerBeweis vorfT ! o S71)~1 = (S o T) ist analog zum Beweis von
(T o R = (RoT).
(The proof of T o S~1)~! = (S o T') is analogous to the proof of
(T o R™)™' = (RoT))

(37) Der Beweis geht genauso wie oben
(The proof goes the same way as aljove

In (35) interpreting “analog” gnalogously requires an appropriate variable substitution in
the definition of the composition of relations which the smdformulated two turns earlier
in the dialogue. Note that the tutor did not accept the sttgléinst phrasing with “genauso”
(the same wagyand asked for clarification: “Was heisst ‘genauso’AVhat does ‘genauso’
mean?.5! In (36), however, “analogously” is used in place of an engireof which spanned
about 15 student turns. In this case, the complete previmgaf pbject would have to undergo a
rewriting transformation involving multiple variable ssttiutions. In the case of definition, (35),
the phrasing “genauso” was not accepted, however, follpW®7) the tutor accepted it in the
case of a larger proof. This is justified because here “thees&@more plausible to refer to the
high-level proof structure, rather than the specific vdeabstantiations, as is the case with the
definition. “Proofs by analogy” of this type occur frequegrith textbooks and publications.

From a computational point of view, interpreting “analoglyti or “genauso” in the case of
proof steps or entire proofs, would involve, first, ideritily candidate objects in the previous
discourse representation, which could undergo a transfitomand, second, identifying paral-
lels between the object currently under discussion anddhdidate objects retrieved from the
previous discourse. While in the case of “the other way rétinel transformation is at the level
of linguistic entities and can operate on linguistic reprdations, the transformation needed
for “analogously” does not operate on linguistic entitibst rather on domain objects built up
by a domain reasoner based on discourse analysis: a dedsgstem’s proof or proof step
representations, and is therefore outside of the scopdfttbsis. Our approach to semantic
reconstruction of “the other way round” will be presenteimapter 6.

Adjectives Mathematical adjectives are interesting from the pointiefwof their semantic
properties and their computational representation. @endor instance, the terms “left inverse”

*1The tutor apparently overlooked a typo in the variable ngmin
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and “right inverse”. In a set with a binary operation,and an identity elemer, « is a left
inverse and is a right inverse ifa * b = e. However, by convention, an element is called an
“inverse” (or “two-sided inverse” alternatively) when &hotha left inverse and a right inverse
with respect tox. Thus, from the point of view a taxonomy of mathematical otgeheis-a
relation holds in a counter-intuitive direction: it it alwaysthe case that a left inversg-an
inverse and a right inverdgs-an inverse, which would be the case if pre-nominal modificatio
worked the way it usually works with adjectives in naturaidgaage. The cases of an “ideal”
and “left/right ideal” are analogous in this sense. Typiattibutive adjectives also exist in
mathematics; “monotonic/monotone”, as in “monotonic fior’, is an example.

The second class of interesting adjectives are those whithe used predicatively. Examples
of such adjectives include properties of relations, suckyasmetry, commutativity, etc. When
expressed in an adjectival form in natural language theyareof copular constructions such
as the one illustrated below:

(38) Da die Mengenvereinigung kommutativ ist, . ..
(Since set union is commutative, ). . .

When formalised mathematically, commutativity of a binaperation« on a set is defined as
x xy = y * x for all the set elements andy; for the set union operation this would be instan-
tiated asA U B = B U A, whereA, B are sets. In this representation, a functional operator is
involved and a structural result is defined. In natural laggy as in (38), commutativity is pred-
icated of set union. Informally, this could be representgatzolically ascOMMUTATIVE (U),
that is, a property is predicated of a function. Thus, thecstire of the two representations is
different and needs to be mapped. The same holds of the @tla¢ion and function properties
such as “symmetric”, “distributive”, “connected”, etc. §eneral, the meaning of mathematical
adjectives, denoting properties of mathematical objésfermally defined and a computational
language understanding component needs to be able togapeesiapping between the natural
language adjectival use and the formal representationadtticplar, in a tutorial dialogue sys-
tem, this mapping has to link to an automated deduction systiaternal representation, so that
the validity of an assertion such as (38) can be verified.

Verbs In the course of problem solving learners verbalise “actiamhich they intend to per-
form on terms and formulas before they actually carry ougygropriate formal operation. The
following examples illustrate this:

(39) Ich zerlege jetzt die Potenzmeng&C U (AN B)) O P(C) U P(ANB)
('m now splitting the power set?(C' U (AN B)) 2 P(C) U P(AN B))
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(40) Ich sclize die Vereinigung der Teilmenge &C) U P(AN B) 2 P(AN B)
DANB
('m estimating the union of the subsB{C) U P(AN B) O P(ANB) 2
AN B)

(41) Nun wendet man das Relationenprodukt nochmals an?oder
(The relation product should be applied now, right?

(42)  damit kann ich den oberen Ausdruck wie folgt schreib&(A U B) N (C' U
D))=K(AUB)UK(CuUD)
(thus | can write the above expression as follo#s((A U B) N (C' U D)) =
K(AUB)UK(CUD))

This kind of language is characteristic of Tall's proceptriddsee Section 3.1.2, page 65) in
which focus is on actions, procedures, and algorithms. dieroto obtain a complete interpreta-
tion of the intended proof-step a formalisation of meaniofysuch “actions” would be needed.

The information about the fact that elements of the procapgliage occurred in the stu-
dent’s solution could be useful for the tutoring system'damgpgical module to reason about the
student’s knowledge state. This, however, means that amaiéd system would have to be
able to verify whether the result of the operation actuallyfgrmed on a symbolic expression
can be indeed considered an instance of “splitting”, “eating”, “applying”, or “(re-)writing”.
This would in turn mean that the semantics of these actionddumave to be operationalised.
While “applying” a lemma or a theorem or “rewriting” an expson could be formalised in
relatively straightforward wa$? a symbolic operationalisation of “splitting” is not so obus;
notice moreover that in the quoted example (39) the arguwfahie verb “split” has to be type
recast: it is not the power set object that is being “splitit tather the term headed by the power
set operator. Further similar examples will be discussdatiémext section when we talk about
bridging references.

3.2.2.5 Discourse phenomena

The discussion of discourse phenomena in mathematicaludise should perhaps start with an
introduction on denoting. Mathematics is a tricky area is thspect; we will not attempt even
a brief digression into the philosophical — ontological prseemic — aspects of mathematics.
These areas are outside of the research scope of this tAémspurpose of this section is far
more down-to-earth: in the following sections, we will migrifustrate a number of discourse
reference phenomena in proofs. In relation to referring, pwints need to be mentioned about
the universe of discourse.

Mathematics is about mathematical objects and, even mapertantly, relations between

%2The predicate “apply”, for instance, can be modelled as agl&oe function with arguments of typ&sTH -
EXPR (mathematical expression) amdEOREM, returning a result of typ®ATHEXPR which should have the prop-
erty that it can be derived from the inpuRTHEXPR in one step by rewriting USINQHEOREM.
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3 Language phenomena in proofs

them. At the conceptual level, mathematical discoursestalioutmathematical entitieanakes
statementspropositionsor claims about these entities and ascribraathematical properties
to both the entities and the propositions. Mathematicababj— non-physical, timeless and
spaceless, formally defined abstract entities — are evakedathematical discourse by their
names. The words that name them are technical terms of matiesmMathematical objects
in the domains of our corpora include sets, relations, aretatipns on sets and relations (set
union, intersection, relation composition, etc.) which etiremselves mathematical objects too.
Although in principle all of mathematics can be done in thednand mathematical con-
cepts can be considered purely mental constructs which toesal words, mathematics is of
course communicated: in the form of natural language, asliregperiments, or using other
means, such as diagrams or graphs. Words, phrases, andcesnté the formal mathemati-
cal languagemathematical expressionare symbolic textual representations of mathematical
objects, relations, and propositions. This structuretusdxnotation can be written in a precise
formal way (as is the case in formal logic or proof theory) eméformally. We talked about the
properties of the symbolic language already in Sectiorl3T&e written representations are of
course themselves mathematical objects and mathematscaludse talks about them as well.
Thus, among reference phenomena, aside from the usual@iapiferences found in natural
language, in mathematical discourse other types of refeeeare to be expected: references to
the textual mathematical signs (notation) or parts of tisiges and references to mathematical
propositions or sets of propositions which form a proof at pha proof, that is, larger mathe-
matical discourse objects. We discuss and illustrate theeeomena in the following sections.

Referring to domain objects Both definite and bare noun phrases can be used as specific ref-
erences to refer to domain objects or as generic referenges$er to domain concepts. For in-
stance, “die Vereinigung'tile union in (43) below is a specific reference, whereas “die Potenz-
menge” the power seétin (44) is a generic reference to power set as a type:

(43) Die Vereinigung der MengeR und S enthaelt alle Element auR und alle
Element auss.
(The union of the setB and S contains all elements frorR and all elements
from S)

(44)  und fur die Potenzmenge gile(C U (AN B)) = P(C)U P(AN B)
(and for the power set it holds?(C' U (AN B)) = P(C) U P(AN B))
The interpretation of the reference “Potenzmenge” in (439 is unclear:

(45) S1:AC(AuUC),BC(BUC(C),also(ANB)C ((AuC)n(BUCQ))
(AC(AuC),BC(BUC),thus(ANB)C (AuC)n(BU()))
S2: Potenzmenge enthaelt alle Teilmengen, also édch B)
(Power set contains all subsets, thus alsbn B))
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3.2 The language of mathematical proofs

S2in (45) can be interpreted as an informal paraphrase afefieition of a power set, in which
case the reference is generic, or the learner may have niregodwer set of the specific instance
of asetin S1((AUC)nN (B UC(C)), inwhich case the reference is specific.

Aside from evoking defined objects, mathematical disconrag contain references to named
theorems, lemmata, definitions, or proofs. These entitieslao mathematical objects and they
are often referred to by their proper names as in (46):

(46) Ich benutze das Extensionalitaetsprinzip
(m using the Extensionality Axiom

The definite noun phrase “das ExtensionalitaetsprinzfXidm of Extensionalidyis a non-
anaphoric reference to a class of statements intentioagliyvalent to the following:

A=B&Vazx(re As xe B),whereA, B : sets

Other examples of named mathematical objects of this tymeiirdomains include: “De Mor-
gan Regeln” De Morgan Law}or “Distributivgesetz” Distributive property. Proof methods
or strategies, likewise, have names, for instance, “intlipgoof” or “proof by contradiction”,

“(Cantor’s) diagonal proof”; specific proofs can be nametities as well, for instance, “the
Euclid’s proof” (of the Pythagorean theorem), “the Wilesopf”, or “the Hales proof”. In most
contexts, occurrences of these references are non-amaphor

Referring to (parts of) symbolic notation When mathematics is committed to written form,
referring devices can be also used to relate to symbolicessfns in discourse or to their parts.
Both direct — anaphoric — and indirect — bridging — refersnice(parts of) symbolic notation
can be found in mathematical discourse. Both types of et are illustrated below.

Direct reference  In a direct reference eoreference relatioexists between two discourse ref-
erents: the one introduced by the referring expressioneftdhe anapho)) and another one
introduced previously (called thantecedent the two expressions denote the same entity. Pro-
totypical anaphoric references are pronouns, illustradw>3

(47) Da, wennA C K(B;) sein soll,A Element vonk (B;) sein muss. Und wenn
B; C K(A) sein soll, muss gguch Element vork((A) sein.
(Because if it should hold that C K(B), A must be an element df (B).
And if it should hold thaB C K (A), it must be an element & (A) as well)

(48) S1: Wie istR o S definiert?
(How is Ro S definedp

3Coreferring discourse entities marked with matching stiptc
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3 Language phenomena in proofs

Tl Ro S :={(z,y) | 3zi(zs € M A (z,2;) € RN (2zi,y) € S}
(RoS:={(z,y)|Fz(z € M A (z,2) € RA(2z,y) € S})

S4 istz; nur fuer die Definition eingefuehrt oder hat emnen anderen Sinn?
(is z introduced only for the definition or does it have a differarganing?

In (47), the pronoun “es”i{) is used to refer to a term in a formula, a set variablén the
previous clause. The syntactic function of the anaphorijestiof the clause, is parallel to the
syntactic function of the antecedent in the formula vedadion. Syntactic parallelism between
the anaphor and a candidate antecedent is used in compataivaphor resolution as a strong
indicator of coreference. Similarly, in (48), the pronowes™ is referring to a variable naming a
member of a sety, which was first introduced a couple of turns earlier in treatjue.

Coreference between variables in mathematics is dependehe type of denotation that the
given variable has (specific unknown vs. continuous unknesnarbitrary fixed object, and
so on), the logical structure of the argument (the functiod scope of the discourse segment
in which the variable is found), and quantification (insesof the same variable name in two
existentially quantified formulas do not necessarily cenef* The very notion of a variable,
the meaning of variables, and quantification has been showause major difficulties to learn-
ers (Epp, 1999; Dubinsky & Yiparaki, 2000; Selden & Selded03). A typical error in the use
of variables from one of our corpora is shown below:

(49) S18: DarausfolgtRUS)oT = {(z7,y) | 32(z € M N(x,z) € {z7 | x7 € RV €

S} A(zy) €T)}
(From that follows(R U S) o T' = {(x7,y)|32(z € M A (z,2) € {x7|z? €
RVazr e S}A(z,y) €T)})

T19: Was bedeutet die Variable; bei lhnen?
(What is the meaning of the variahbi®)

S19: x; hat zwei Bedeutungen gsommt in zwei verschiedenen Mengen vor
(z has two meanings it appears in two different yets

T20: Benutzen Sie bitte fuer die zwei verschiedenen Bedeatiu vonz zwei ver-
schiedene Bezeichnungen.
(Please use two different designations for the two diffenesanings of:.)

In (49) the same name, is introduced with the intention of denoting two differamttities.
The entities are moreover of different types: in one case,a variable in a pairzx, y), and in
the other case, a set member variable in a set constructisrkifid of ambiguous designation is
invalid in a proof, so the tutor asks for clarification, “Wasdeutet die Variable bei Ihnen?” (in
which “die Variable ;" is an example of appositional anaphoric reference). Aphoaappears
also in the clarification subdialogue: the pronoun “es” ia second clause of S19 corefers with
the z in the preceding clause and in the tutor's turn, however,rafecence chain cannot be
established with the previous occurrences dlue to the ambiguous designation.

%4See (Kapitan, 2002) for a discussion on the nature of varsaibl mathematics.
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3.2 The language of mathematical proofs

The last examples illustrate pronominal adverbs, (50) &4, (referring to complex terms
and formulas and, (52), an anaphoric epithet which idestdie expression by its type, (52):

(50) SIL: [RoS]i:={(z,y)|Iz(z € M A(x,2) € RA(z,9) € 5)}
S2: Nun will ich das Inverse [ davon |
(Now | want the inverse of that

(51) Dann gilt fuer die linke Seite, wenrfJU (ANB)]; =[ (AUC)N(BUC) ];
der Begriff A N B dann ja schon dadrin und ist somit auch Element [ dayon ]
(Then for the left side, ' U (AN B) = (AUC)N(BUC)thetermAN Bis
already there and thus also an element df it

(52) T: [RoS = {(v,y)|Fz(z€ M A(x,z) € RA(2,y) € S)} ]
S: So, und was ist da¥/ in [ der Formel ]?
(Right, and what is thé/ in the formula?}

Other examples of anaphoric epithets include “the ternfie ‘tariable”, “the constant”, as well
as named results of operations (“the sum”, “the union”, ‘thetors”), named components of
symbolic expressions (“the numerator”, “the denomingtostc.

Indirect reference  Bridging is a term introduced by Clark (1975) for definite noun phrases
identifying a referent which has not been introduced eiplicdout which is “associated” with

a previously evoked enti}? Bridging references can be used to identify mathematicalesx
sions by their typographical features or physical proper{ithe left side”), the linear order of
their constituents (“the first term”), their structural gpings or delimited subexpressions (“the
bracket”), or the type of object they denote (“the complethemhen it refers to a term headed
by the complement operator). The following dialogue fragtrexemplifies the phenomenon:

(53) T1: Bitte zeigen SieAN B € P((AUC)N(BUC(C))!

(Please showAN B € P(AUC)N(BUQO))!)

S1: Distributivitaet von Vereinigung ueber Durchschnitty (BNC) = (AUB)N
(AU C) Hier dann alsoC U (AN B) = (AU C)n (B UC) Dies fuer [ die
innere Klammer ] Auf [ der linken Seite ] A N B. Hierfuer gilt Fall 10: Falls
Ae P(AuC)N(BUC))undB € P(AUC)N(BUC)) =ANB €
P((AuC)n(BUQ))
(Distributivity of union over intersection: ...So here: This for the inner
bracket. On the left sidd N B. Case 10 applies here: If ...and )..

%SOther terms used for this kind of reference are “indirectpiinaa” (Chafe, 1972, 1976), “associative
anaphora” (Hawkins, 1978), or “inferrable” (Prince, 1981)
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S2: Dann gilt fuer [ die linke Seite;]JwennC U (ANB) = (AUuC)N(BUC)
der Begriff A N B dann ja schon dadrin und ist somit auch Element davon.
(Then for the left side it holds, if ... the terhn B is already there and thus
also an element of)it

S3: ANB auf [ der linken Seitej]ist e vonCU(ANB), was ja nur durcld’ erweitert
wird. Es kommt auf [ der rechten Seitgjh nurC' als Vereinigungsmenge
Zu A N B hinzu.

(AN B on the left side i€ of C' U (AN B), which is extended only Y. On
the right side is only(' intersected wittd N B.)

The definite noun phrases “die innere Klammehig(inner bracket “die linke Seite” (he left
sidg and “the right side” in S1, S2, and S3 refer to a structuraispaf the formula in T1 and
they are all used in a bridging sense: “the left side” and fight side” refer to the terms left
and right of the top-node operator in the formula (rathenttiethe general areas to the left and
right, respectively,) while “the inner bracket” refers tbracketed subterm embedded in another
bracketed term, rather than to a bracket itself in the sehagmuping element. (In English, of
course, yet another interpretation of the reference “laticlvithout the adjectival modification,
would be possible in algebra. Lexical interpretation isalgays, dependent on the domain;
here, mathematical subarea). The reference “die innemaidlzx” is in this case unfortunately
ambiguous: the singular “Klammer” may refer to eittiefrU C') or (B U C') both of which are
bracketed subterms of the tef{(A U C) N (B U (C)); the plural “Klammern” was most likely
intended, but mistyped.

The next set of examples, (54) through (56), illustratedirid references to terms by means
of the names of objects which the terms denote:

(54) T1: Bitte zeigen Sie: K(AUB)N(CUD) o= ([ KA ]-Nn[K(B)1],)U
([ K(C) ]2 N[ K(D)])!
(Please showK ((AUB)N(CUD)) = (K(A)NK(B))U(K(C)NK (D))"
S2: de morgan regel 2 auf [ beide komplementangewendet
(de morgan rule 2 applied to both compleménts

(55) S2: hab mich verschriebed((AUC)N(BUC))]:=[P(CU(ANB)]»
(made atypaP((AUC)N(BUC))=P(CU(ANB))
S5: habe probleme mit [ der potenzmengekhnn sie nicht ausrechnen bzw mir
sie; vor augen fuehren!
(have problems with the power set, can’t calculate it, caed &
(56) S33: Nach Aufgabe WigtS o (SUR)™ ) ! =[((SUR) ) loS1];
(By Exercise W: ... holds

S34: Diesist nach Theorem 1 gleich(S U R) o S71];
(This is by Theorem 1 equal (¢ U R) o S~ 1)
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S35: Ein Elementa, b) ist genau dann in [ dieser Mengg fvenn es ein € M gibt
mit (a,z) € SURund(z,b) € S~!
(An elementa, b) is in this set if and only if there is am € M such that
(a,2) € SURuUNd(z,b) € S71)

The quantified noun phrase “beide Komplementadth complemen}sn S2 of (54) refers to
a pair of terms headed by the complement operator in T1. Timalgh this case is multiply-
ambiguous. First, there is an ambiguity between the digfvi® and collective reading, and
second, there are five complement-headed terms in the jmgdedmula. It is clear, however,
that only two pairs of those are equally plausible as antsuisdi (A) and K (B) or K (C') and
K (D); in fact, De Morgan rule has to be applied to both, pair-wise.

There are two ways of interpreting the definite noun phrase Rbtenzmenge'ttie power
sethqe.) in S5 of (55). On the one hand, it may be referring to a terndbday the power set
operator in S2 (rather than the power set operator itsel@imtontains the following expression:
P((AUC)N(BUC)) = P(CU(ANB)). Under this interpretation, the reference is ambiguous
since there are two power set-headed subexpressions. @thtrehand, it is more plausible to
interpret it non-anaphorically, as a generic referencecéihe student had a general problem in
understanding the concept of a power set, so it is unclearhwdrie he meant.

In (56) the definite noun phrase “diese Mengtig se} in S35 is again a bridging reference
to the set defined by the composed relation denoted by the (i§rmR) o S~! in S34. Yet
another related type of bridging reference, of which we ditlhave examples in the corpora,
are bridging references to structures by means of theirnyidg objects; in the context of
groups, for instance, given a sgtand a binary operatior, one could refer to “the grou@”.
Bridging references of this kind occur frequently in texdkaliscourse€® (56) also exemplifies
a discourse deictic reference to a part of a mathematicaksgjon: “dies” this) in S34 points
at the term on the right-hand side of the equality in S33.

Ganesalingam suggests that Zinn's (2004) analysis oftsteat mathematical terms which
makes their subterms available for reference is incorr§Zinn’s analysis] frequently makes
incorrect predictions about anaphor, even though this ésafrthe great strengths of Discourse
Representation Theory. For example, consider the disepu@s+ 15 is prime. It is divisible
by 1 and 17 (only).” Zinn’s analysis incorrectly predictath?’ is an available anaphoric an-
tecedent at the end of this discourse (Zinn, 2004, pagesr}0@sanesalingam, 2009, page 20).
Considering the phenomena illustrated above, Zinn's aimlgppears well-justified; even the
guoted example could continue along the lines of “The lefintés prime”, for which, clearly,
‘2" would need to be an available antecedent. In fact, Zirexample (93a) on the quoted
page 106: 1,1,2,3,5,8,13,21,... in which [ the first two terms ] are ..." also supports this,
as do his other examples (43c—e) on page 74 which illustnateame phenomenon (albeit under
an unfortunate heading of “Deictic form”).

%6C. Wells (2003, page 239) points out that this is an exampjmodmeter suppression.
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3 Language phenomena in proofs

The question which substructures of mathematical expmesshould be available for refer-
ence does not have an obvious answer. The purpose of thessimeun Section 3.2.1.2 was
to show that certain substructures of mathematical exjpres€an be considered salient: they
are valid constituents, in terms of the expression’s tregcsire, and they are distinct in the
Western-tradition infix notation. Constituent structurelgsis is also supported by studies on
human perception of mathematical expressions (Jansen &88B, 2000, 2003). Considering
this and the observations on referring from our corporah labdmic and complex subterms, in-
cluding the information on their bracketing, should be &l@eée for reference. Now, the operator
nodes of the expressions would need to be modelled too if-fee¢h discussion on mathemati-
cal expressions were to be allowed (a student could refahtoplus sign” for instance), as well
as the type of their result (see examples (54) and (56)). i§habt only KX ando as the symbols
themselves can be candidate antecedents, but the expiehe@ded by the operators need to be
available, as already mentioned, along with the infornmatia the type of objects they denote
(a set; the type of the result to the complement operatioroanelation composition).

Referring to propositions Both in our data as well as in narrative mathematical diss®ur
pronouns, demonstratives and adverbial pronouns refeiofmopitions as well as sequences of
propositions which form a proof. The examples below illatrthis:

(57) S: 3z € M,sodas§z,z) € S~tund(z,y) € R}

(3z € M suchthat(x, ) € S~'and(z,y) € R7!)

T: Richtig. Wissen Sie, ob ein solchesxistiert?
(Correct. Do you know whether suetexists?

S: Nein
(No)

T: Erinnern Sie sich daran, dass [ es eigibt mit (x, z) € S~! und
(Z7y) € R ]'L
(Do you remember that there iszasuch that(z, z) € S~! and
(2,y) € R71)

S: Ja, ich habe gsorausgesetzt
(Yes, that was the assumptjon

(58) S7: Alsoist[(z,x) € Sund(y, z) € R]; und damif auch [(y,x) € Ro S];
(Therefore(z, ) € S and(y, z) € R holds and by that als¢y, z) € Ro S)
S8: [ Somit ] ist (z,y) € (Ro S)™!
(Given that it holds thafz,y) € (Ro S)™1)

In (57), the pronoun “es”i{) is used, as in ordinary discourse, to refer to a proposition
this case, an assumption restated in the tutor's turn T1%eMueresting are references with
adverbial pronouns exemplified in (58). “DamitVith this) in S7 refers to the proposition stated
in the first conjunct of the coordinated clauses. “Somititly thaf) in S8 may refer to the
conjunction of the assertions in S7 or only to the last asse(tnarked withj in the example).
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On the one hand, in most cases, as here, references of tHisuldrunderspecified in terms of
their scope. On the other hand, their function is to signalltigical structure of the argument:
the antecedent of “somit” or “damit” provides justificatifor the subsequent statement. In order
to resolve the scope of such references, and so to recaonsieutitended logical structure of
the proof, domain reasoning is needed.

Signalling proof structure and status Proofs are structured discourses. The discourse struc-
ture and linguistic realisation of a proof are dictated bg #mployed reasoning: the proof
method and the sequence of inferences. Certain proof tygesdncharacteristic form and el-
ements: a proof by induction consists of a base step part ariddactive step, a proof by
contraction has an assumption of the negated propositidnaacontradiction, and proof by
cases a sequence of case distinctions. The logical steuafuhe reasoning is made explicit in
the proof using linguistic means: there exists conventiamading typically used to signal the
proof method employed, the proof step elements (asserfastifications, etc.), and the end of
the proof. Aside from these proof components, studentsdfisroonstructed in an interactive
setting contain contributions which are typically not fduin textbooks nor scientific publica-
tions. A broader characterisation of utterance types ifiettin the corpora will be presented in
Chapter 4. Here, we focus only on those student contribsitiainich add information about the
solution being constructed, that is, contain informatielated to the proof. A classification of
these types of contributions, based on our corpora, is slowable 3.6.

From the point of view of their function, solution-relatedntributions can be divided into
object-level and meta-level types. At the object-levedttis, at the level of the actual proof,
four categories of contributions were found in the corpdteof stepsare the actual complete
or partial proposed steps in a proof. A minimal proof stepsigis of a proposition. The propo-
sition may be an inferred assertion or an assumption. A cei@phferred proof step consists
of an assertion and a justification (a warrant) of the validit the inference (by reference to
proved claims or axioms and valid inference rules). Theriesecan be formulated as a formal
statement or a natural language statement in an indicatigeraitional/hypothetical mood. A
justification of a claim can be signalled using discourseneatives (in German: “aber”, “und”,
“weil”, “da”, “dann”, etc.; in English: “thus”, “hence”, ‘therefore”, “because”, etc.), other ad-
verbial connectives, such as those discussed in the preséamtion (‘damit”, “somit”, “deshalb”,
“also”), or descriptively using appropriate wording, fostance, “aufgrund des Extensionalitaet-
sprinzips”, “aus SymmetriegriindenD(le to extensionality/symme}ryor “Begriindung: ...”
(Justification: ..) Much like the adverbial pronouns, discourse connectivesaope bearing,
but their scope is many cases underspeciiielth. most cases, moreover, the link between a new
proposition and the previous propositions is not overtiyegiat all. Note that underspecifica-
tion manifested in unclear scope of discourse markers Hiiggnahe logical structure in proofs

"Adverbs such as those mentioned take two arguments, bothiohwnay span multiple assertions. In English,
one argument immediately follows and the other may takeesomgr just the previous assertion (here: a previous
step) or over a larger discourse (here: a number of proo§ stépng with their justifications; a subproof).
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Table 3.6: Categories of solution-related student coutions

Category Description
Proof contributions
Proof step Contributes a proof step or part of a proof step

Proof strategy ~ States a solution strategy to be adopted
Proof structure  Signals solution structure

Proof status Signals the status of the (partial) solution
Meta-level
Self-evaluation States an evaluation of own step
Restart Signals that a new attempt at a proof is being started
Give up Signals abandoning the solving task

is present also in textbooks. Again, in order to resolve th@euspecified scopduman-level
deductive reasoning is needed, that is, knowledge beyome seenantic interpretation.

A declaration ofproof strategyis a statement which does not bring the proof forward, but
based on which the intended line of reasoning to follow caariiipated. It can be signalled
using wording such as “Beweis durchund D" (Proof by C and D) or “es genlgt zu zeigen
..." (it is enough to show .), etc. Byproof structurewe mean explicit signals of a proof’s
structural composition. This includes utterances sucltgahtitt 1.” (Step ) or “Ich mache eine
Fallunterscheidung”lim making a case distinction Proof statusis a category for utterances
which signal the current state or status of the proof, fateinse, “g.e.d.”, “Damit ist insgesamt
gezeigt ...” With that we have shown .),.or a more informal “Halfte geschafftHalf done.

Unlike proofs in textbooks or scientific publications, stats’ solutions may be invalid (false)
or not goal-oriented; a student may be going in the wrongctioe or may not know at all
how to proceed. In proofs constructed with tutor's asstsarstudents can communicate this
kind of meta-level information about their solution to thuar. While all the proof contribution
categories are also found in scientific publications, tited@ontribution types are more likely to
appear only in pedagogical contexts. Among meta-leveltispitrelated communication, three
types of contributions were found in the corpog&elf-evaluationsire student’s own evaluations
of the validity, granularity, or relevance of a proof step $teps) which he proposed. Examples
of such utterances include: “ich habe die falsche Richtuenqutzt” ( used the wrong direction
(of an implication) or “Korrektur: ...” (Correction: ...); the latter being an implicit self-
evaluation. If a solution attempt is not successful, a studanrestartand try a new solution
signalling that the previous one is abandoned: “Ich beguhere Beweis neu”l{m starting the
proof anevy or “Wieder von vorne” Once again from the beginnihgFinally, if a student cannot
find a solution, he may decide to give up: “Ich gebe aufth(giving up), “Bitte die richtige
Antwort!” (Show me the right solution, pleake!
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3.3 Pragmatic aspects in mathematical discourse

From a pragmatr® point of view the main purpose of the language of mathematitsconvey
“mathematical content,” that is, factual propositiondlbimation about mathematical objects,
relations, and properties. Thus, on the one hand, in G. BremehYule’s terminology mathe-
matics is aransactional discours€G. Brown & Yule, 1983). On the one hand, a mathematical
proof is a form ofpersuasive discoursa “validating act”, in which the speaker (the proof’s
author) is attempting to convince the hearer/reader thétioemathematical facts hold (Hersh,
1993). A proved mathematical assertion becomes a theordmraarbe invoked in another proof
to make new inferences. Assertions without proofs can ompear if they are postulated to be
true (axioms), conditionally assumed to be true (hypotslese explicitly declared as such (con-
jectures). From a pedagogical point of view a proof is alsedurcational tool: by constructing a
proof a learner is attempting to convince, himself and taeher that his argumentation is based
on understanding, rather than on mere repetition of memmbriseorems and lemmata, and
he is discovering relations between mathematical conctpseby deepening his understand-
ing (Hanna, 1990; Sfard, 2001); hence the importance ofgameér showing (justifying) how
the proposed proof steps have been derived. Much like in #mr dialogue situation, partic-
ipants of mathematical dialogue follow certaiooperative principle¥ and make assumptions
as to the stock of knowledge that is shared between them. €ttt of the tutor, cooperativity
involves contextual interpretation: resolving undergfeat scopes, covert arguments, and ref-
erences, both in the natural language and in the symbolationt(discussed in Section 3.2.1.3)
as well as resolving semantic ambiguities due to impreeisguage (Section 3.2.2.4). At the
proof-level, it involves filling in the gaps in coarse-graihreasoning. These concern also mathe-
matical prose. From the pedagogical point of view, it mag asolve ignoring certain low-level
errors in favour of the higher goal of teaching mathemattgumentation (Section 3.2.1.5).

Unlike in other areas of human activity, in mathematics ttuht of claims haghe central
place; the Gricean maxim of quality issane qua norf° There are interesting aspects to how the
other Gricean maxims regulate mathematical proofs. Thermaxk quantity is manifested in
the differences in level of detaijranularity, between various mathematical expositions. What
is too much and too little information depends on the authassumptions as to what the ad-

%8In a technical sense of the word.

%9Grice’s Cooperative Principle (Grice, 1975) states thabraversational contribution should be made “such as
is required, at the stage at which it occurs, by the accepieggbge or direction of the talk exchange.” Cooperative
communication is governed by conversational maxir@aiality: Try to make your contribution one that is true.
1. Do not say what you believe to be false. 2. Do not say thawfuch you lack evidenceQuantity: 1. Make
your contribution as informative as is required (for therent purposes of the exchange). 2. Do not make your
contribution more informative than is requird@elation: Be relevantManner: Be perspicuous. 1. Avoid obscurity
of expression. 2. Avoid ambiguity. 3. Be brief. Avoid unnssary prolixity. 4. Be orderly.

®paradoxically, the Quality Maxim is routinely flouted in oofethe standard proof methods: proof by contradic-
tion, in which a false statement is stated to be assumed twbeThis, however, serves the method’s higher goal of
showing that the assumption is invalid by reaching a coittiaa, thereby proving the original proposition.
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dressee knows — the common ground — and the purpose of thsixpo A mathematical
textbook for novices differs in the level of detail from aestific paper intended for experts;
see also Chapter 2 (page 42). Violation of the maxim may rasincomprehensible textbooks
(overestimated assumed knowledge: too much informatioitt@ah or in tedious mathematical
articles (underestimated assumed knowledge: too muchniafiion included). In a tutoring
setting, it is the tutor who, based on his assumptions onttidest's knowledge, monitors the
level of detail. A poorly performing student may be requitednake some reasoning steps and
justifications explicit which a good student may be allowedKip; examples of tutor’s reactions
to the granularity of students’ proof steps were shown irtised.2.1.5%1

There are two interesting aspectsrétevancein the context of mathematics: one concerns
the mathematical content and the other the informal langudarlier in this section we said
that the purpose of mathematical discourse is to communfeats. In receiving mathematical
discourse, the relevance of the presented content shoutdkke for granted: if something
is said, it must be relevant and said for a reason. A mathealgiroof does not admit of
arbitrary facts if it is to fulfil its purpose of persuadingjtlrather only of those facts that make
the addressee more convinced. An irrelevant assumptionleaayto undesired implicatures.
Halmos (1970, page 138) illustrates this with the followgxg@mple: “If R is a commutative
semisimple ring with unit and andy are inR, thenz? — y? = (z — y)(z +y)’ The alert reader
will ask himself what semisimplicity and a unit have to dotwithat he had always thought was
obvious.” Likewise, irrelevant notation should be omitetd certain propositions, while true,
may be unnecessary from the point of view of the argumentdesiis, however, do contribute
irrelevant steps; we showed examples of such proof cotimitsiin Section 3.2.1.%

The other aspect of relevance concerns the language of matical discourse. The formal
language of mathematics, due to the nature of mathemadel$, its void of emphatic expres-
siveness and redundancy typical in natural language. udtitor sentiment toward the pre-
sented facts, any information which cannot be expresseleiridrmal language or repetition
of previously stated information is superfluous from the meatatical point of vievf3 How-
ever, informal mathematical discourse, especially in gedical context, does contain this kind
of “irrelevant” content: statements may be reworded, gamaged, or repeated for emphasis in
order to facilitate understanding and recall or becauséefiimits of the addressee’s attention
span. Both the student and the tutor may explicitly lingoély markinformationally redundant
contributions in order to bring out the fact that they areqloould be) already part of common
ground® Moreover, certain linguistic expressions may be used aptire mathematical “jar-
gon” or for stylistic reasons to make the text “read more raiy” Linguistic means to convey
this extra-mathematical content include adverbs, asdiralsoC B” (previously quoted from

®1Granularity in human reasoning has been discussed by HaBBSY and granularity in proofs by Rips (1994).
A computational framework for evaluating granularity inetttontext of proof tutoring has been proposed
in (Benzmuiller & Vo, 2005; Autexier & Fiedler, 2006; Schillet al., 2008)

62Computational aspects of judging relevance are furtheudised in (Benzmiiller & Vo, 2005).

83(Except, of course, in formal systems in which formulas aggieitly reiterated.)

4See (Karagjosova, 2003) for a linguistic analysis and (Bayc& Wolska, 2007) for a computational model.
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the corpus; see page 87) or discourse markers which do nisiteda information on the logical
structure of the proof, such as “moreover” or “now”. From pant of view of mathematics,
even haming theorems is unnecessary, but it makes comntionicAmathematics easier. There
is no place for this kind of information in a formal represaian for an automated reasoner; for
computational processing of learner language this meantshiallow methods could be used to
identifying such lexical material and to simplify the ingareserving only the relevant content.
The maxim of manner is manifested in how proofs are presenfedemarkable property
of formal mathematics is its precision. A formal proof cantano ambiguity, however, the
symbolic notation may render it unreadable, a violationhaf tnaxim of manner; recall the
formal notation of sets of odd numbers and primes on pag® 88/hile an informal proof
presented in natural language may contain ambiguitiesragldvant linguistic content (the kind
mentioned above), it is typically cognitively easier told@ than a formal proof consisting of
mathematical notation alone. The mode of presentation dhenaatical discourse depends,
in turn, on the purpose of the exposition and the intendedeadde: In the tutoring setting
different factors play a role than in textbooks or scientffiblications. (Which brings us back
to the motivation for collecting data specific to tutorindtisey; see Section 2.1 of Chapter 2.)

3.4 Conclusions

In the beginning of this chapter we presented mathematigcaejuage from the point of view
of its properties as a sublanguage and as a kind of “foreignjllage which students have to
master in the course of learning mathematics. We have shmatiphenomena typical to sublan-
guages, such as symbolic representations (Sections 3i@3.2.2.1), deviant rules of grammar
and recurrence of certain characteristic constructioest{@ 3.2.2.3), as well as phenomena
typical of various stages of mathematical cognitive dgweient, such as imprecision of linguis-
tic expression leading to ambiguity (Sections 3.2.2.4 aBd®3®) or self-talk describing actions
on the objects of discourse (Section 3.2.2.4), indeed dnaur corpora. Thus, modelling these
phenomena in a language processing architecture for ggigeaofs should receive priority.

As we mentioned earlier, the examples in Section 3.2.2.%v $hat a method of parsing sym-
bolic expressions tightly interleaved with natural langeids the fundamental functionality re-
quired for a computational interpretation module for math#cal language. Neither Zinn (2004)
nor Natho (2005) offer a transparent computational salutmthis problem although both do
mention examples of such constructions. Zinn models cotstnd variables, effectively, as
individual referents in DRSs with operators in complex teand formulas as predicates in the
DRSs’ conditions and shows how to model only simple caseppbsitive noun phrases and
copula constructions in mixed language where the symbagjicession forms an atomic con-
stituent (see Section 5.2 of (Zinn, 2004)). The approackslgeneralisation (individual atomic
terms in the lexicon), modularity (single module for pragiag symbolic expressions and natural

%Halmos famously remarked “The best notation is no notatinifHalmos, 1970, page 144) and Gillman coined
the termsymbolitisfor overuse of symbols in mathematical writing (Gillman8I9page 7).
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language), and is somewhat cumbersome by comparison witkppuoach proposed in (Wolska
& Kruijff-Korbayova, 2004a). Natho claims to analyse thdural language and the symbolic
language separately mARACHNA (see (Natho, 2005, Section 3.3.3, discussion of Example
3.3.16, page 121)). While examples of constructions witpsebearing words interacting with
parts of mathematical expressions are mentioned, forriastdEs gibt eire € G ...” (There
isane € G) on page 143ff., no illustration of how they are handled isegiand the result of
the analysis of the symbolic expressions is not integratamlthe final interpretation result. In
the “Outlook” section of (Jeschke, Natho, et al., 2008), alihappears to be the most recent
publication of theM ARACHNA group, the authors say that “[including the content of folasu
in the analysis and representation ...] is not implementdéowever, we are investigating an
approach to rectify this deficiency. Therefore the use ofrdamtical analysis, similar to those
used in computer algebra systems in combination with ctuéxgrammars (e.g. Montague
grammars) to correlate the information given in a formulghvwinformation already provided
in the surrounding natural language text, is proposed.” él@r no further details on how the
Montague grammars would be realised are provided.

The presence of abbreviations in mathematical discousgecally those with full stops, in-
troduces extra complexity into the problems of computai@entence-boundary detection and
word-tokenisation for mathematical discourse (Grefdtesi® Tapanainen, 1994). A common
approach is to create a lexicon of frequent abbreviatiortsetp disambiguate occurrences of
full stops (Reynar & Ratnaparkhi, 1997; D. J. Walker et alQ2, Mikheev, 2002); see, for
instance, (Schmid, 2000; Kiss & Strunk, 2006) for unsupsdiapproaches. Clearly, for math-
ematical discourse, a domain-specific abbreviations ¢exis needed.

The existence of two subsets of lexica in mathematical disen general and domain-specific
(Section 3.2.2.2), motivate the need for modularity in thedon representation. First, a general
lexicon should comprise general natural language vocabalad the basic vocabulary of logic,
necessary for any branch of mathematics. Second, sepamaiairdspecific lexica should be
accessed in specific contexts, depending on the mathehddicein of discourse. Both lexica
should include a representation of multi-word expressichplausible approach would be to
identify fixed phrases, such as “dann und nur darihard only if), already in preprocessing
using shallow methods and to encapsulate them for furttegssing. Domain-specific lexica
should, in turn, link to appropriate knowledge bases wittmfalised knowledge on the given
domain®® The approach we propose in Chapter 5 is based precisely ®tyfi@ of abstraction
over domain-specific terminology; in Chapters 4 and 7 we sttat even upon this lexical
abstraction the students’ language nevertheless provesssngly linguistically diverse.

Since imprecision phenomena are systematic and impracisicooperatively resolved, a
computational interpretation component needs a reprasemtof the imprecise concept names
and an appropriate mapping to the possible specific mathheahatterpretations. Notice more-
over that this kind of ambiguity appears also in textboolcalisse (recall, for instance, the

®MBase (M. Kohlhase & Franke, 2001) is an example of such aureso See (Fiedler et al., 2002; Horacek et
al., 2004) for a discussion on the interface issues.
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previously quoted definition of set membership from (Ba&l&herbert, 1982); see page 72
of this chapter) which all the more motivates this as a basjuirement for a computational
processing architecture. In order to account for discoteferences to parts of mathematical
expressions, three issues have to be taken into accoust; thie set of substructures of mathe-
matical expressions which are relevant to resolving refaee must be identified, for instance,
by a systematic corpus study and by observations on commameus references to specific
mathematical expression parts. Second, symbolic repegmeTs of these entities must be in-
cluded in the domain knowledge representation. And thind, substructure entities must be
available for reference in the discourse model. An anapdswslution algorithm needs to iden-
tify plausible reference scopes within complex symbolipressions within which antecedent
search should be performed. We address some of these iasBestion 6.3. Aside from coop-
erative interpretation of imprecise language, coopegatiterpretation of ill-formed expressions
is needed. The fact that the tutors hardly ever explicityuessted that errors in the symbolic
language be corrected suggests that focus should be orepraalving; that is, an intelligent
tutoring system should be capable of cooperative reactien & formulas are ill-formed. In
Section 6.4 we show results of a study on error correctiomdas the common sources of
errors showed in Section 3.2.1.5.

Finally, frequent occurrence of complex clause structurgmratactic and hypotactic config-
urations calls for a grammar formalism in which complex riplét-clause utterances could be
modelled with sufficient generality. (In a context-freemraar, every instance of clause ordering
would have to be modelled explicitly in order to obtain ak thossible structures; a suboptimal
solution.) For German specifically, the different word aedin main clauses and subordinate
clauses need to be modelled in a systematic way. This reqairexpressive enough grammar
formalism with a syntax-semantics interface capable o$tranting appropriate semantic repre-
sentations. Moreover, structurally ambiguous readingst{@n 3.2.2.3) need to be represented
(be it in a compact underspecified way or by enumeratingreltee parses) since the linguis-
tic processing module is not in a position to disambiguateititended reading. In Chapter 5
we motivate the choice of Combinatory Categorial Grammaa gsammar formalism which
enables perspicuous modelling of various phenomena adxsémthe corpora, in Chapter 6 we
show how we model basic German syntax relevant for matheatatiscourse, and finally, in
Chapter 7 we show that the CCGs we have developed based oatawprdvide better linguistic
generalisations than CFGs, while remaining at manageatédslin terms of grammar ambigu-
ity. Before presenting our approach to modelling languagenpmena, in the next chapter, we
analyse the diversity of students’ productions in quatitigaterms.
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Quantitative analysis of the students’ language

In this chapter we quantitatively analyse the diversityha students’ language. Both corpora
described in Chapter 2 are used as data. The analysis ismpedat a “shallow” level in sense
that we only look at linguistic verbalisation patterns,ttizathe actual wording patterns, and at
the patterns’ shallow (quantitative) characteristicse pharpose of the analysis is to verify two
hypotheses: The first hypothesis stems from prior claimsenbaded on textbook mathematical
discourse which suggested that the language of proofs terfs simple and repetitive (Zinn,
2004; Natho, 2005); we postulate, to the contrary, that théemts’ language is complex and
diverse. The second hypothesis is that the language ofrdgideteraction is influenced by the
style of presentation of the study material (see “Study nten Section 2.4.3). The analy-
sis is moreover intended to inform and motivate the choiceoofiputational input processing
methodology for a tutoring system for mathematical proofs.

We start by classifying the students’ utterances withiir tti@logue context. Next, we outline
the preprocessing procedures. The results are presenf@tbes: First, the students’ language
is characterised in terms of linguistic “modality” (natul@nguage vs. symbolic notation). The
binary relations corpus is characterised in terms of difiees in the language between the two
study material conditions. Then, we look at the distributiof utterance types in both cor-
pora. Proof contributing utterances are further analysd kespect to their function in the
proof under construction (proof steps, declarations obpstrategy, etc.) and the type of con-
tent verbalised in natural language (logical connectivayg, @omain-specific vocabulary, etc.)
Linguistic diversity along these dimensions is quantifiederms of type-token ratios over the
normalised linguistic patterns, frequency spectra, artbpavocabulary growth curves. Mate-
rial presented in this chapter appeared in (Wolska & Krifirbayova, 2006a; Wolska, 2012)
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Solution-contributing Other Uninterpretable
Proof contribution Request help
Proof step Yes/No
Proof strategy OK
Proof structure Answer
Proof status Address
Meta-level Agree
Self-evaluation Cognitive state
Restart Self-talk
Give up Session

Discourse marker (DM)
Politeness/Emotion/Attitude (P/E/A)

Figure 4.1: Typology of students’ utterances

4.1 Utterance typology

Students’ contributions in a tutoring interaction may fidéveral functions. We already showed
examples of dialogues from both corpora in Chapter 2 (pafieen@ 62), however we did not
point out different functional types of students’ utterancFigure 4.2 shows two further excerpts
which exemplify different utterance types found in our da&a the examples illustrate, students
contribute not only proof steps — complete or incompleteina8-I S5 (a justification of the
statement is not given), explicit or implicit, as in C-ll S8 figh-level description of a set of
steps is given rather than explicit proof steps) — but alkeratontent which adds to the solution
indirectly, as in C-Il S1 (a solution strategy to be adoptediéscribed) or C-ll S11 (a proof
structure to follow, case distinction, is signalled) or aihidoes not add to the solution at all, as
in C-1l S9 (help is requested). In order to investigate lisga diversity of students’ language
at a level corresponding to different contribution type® designed a typology of students’
utterances based on the two corpora. The present clagdsffidatilds on previously proposed
dialogue move taxonomies for tutorial dialogue (Marinetale 2000; Campbell et al., 2009;
L. Becker et al., 2011) and has been adapted specificalijhéoptoof tutoring domain based on
the analysis of our data. The classifications by Marinead..e€Campbell et al., and L. Becker
et al. model students’ contributions at a high-level andtagecoarse-grained at the task-level
(here: proving) for our purposes. Our previous classificapresented in (Wolska & Buckley,
2008) was designed with dialogue modelling in mind, rathantanalysis of language diversity
or input interpretation, and it does not make distinctiorsolv are relevant here either.

The classification we propose, shown in Figure 4.1, has éshhlerarchical structure focus-
ing on Solution-contributingcontent. All the non-solution contributing utterances greuped
into one categoryOther, with an extra clas®ninterpretablefor utterances whose semantics or
pragmatic intent could not be interpreted; for instancealbise they were cut off mid-utterance.
The distinction between th@olution-contributingclass anddtheris that withsolutionsthe stu-
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C-l

S1: Wennd C K(B),dannANB =0
(If AC K(B),thenAN B = ()

S5: inK(B) sind allex, die nichtinB sind
(in K (B) are all z which are not inB)

C-ll
S1: Ich moechte zunaechgt o S)~* C S—! o R~! beweisen
(First 1 would like to provg(Ro S)~! C S~1o R71)
. Sei(a,b) € (Ro S)~!
(Let(a,b) € (RoS)™1)

S

N

S6: Nach der Definition von folgt dann(a, b) istin ! o R~}
(By definition ob it follows then thata, b) isin S~! o R~1)

S8: Der Beweis geht genauso wie oben, da in Schritt 2 bis 6 rquifalenz
umformungen stattfinden
(The proof goes exactly as above since in step 2 to 6 there &equnivalences

S9: wie kann ich jetzt weitermachen?
(how can | continue now?

S11: 1. Fall: Se{a,b) € R
(1. Case: Leta,b) € R)

S12: Ich habe mich vertippt. Korrektur: Sei, z) € R
(I made a typo. Correction: L€, z) € R)

S17: Ich habe gezeigtu,b) € (RUS)oT = (a,b) € RoTV (a,b) € SoT
(I have shownia,b) € (RUS)oT = (a,b) € RoT V (a,b) € SoT)

S24: Dann existiert ein, so dasga, z) € (RU S) und(z,b) € T
(Then there exists ansuch that(a, z) € (RUS) and(z,b) € T)

S25: Nach Aufgabe AgifRU S)oT = (RoT)U(SoT)
(By Exercise ARU S)oT = (RoT)U(SoT)holdg

S29: Da die Mengenvereinigung kommutativ ist, koennen veses in student 25 einsetzen
und erhalten die Behauptung
(Since set union is commutative, we can use what'’s in stuéesn@ obtain the theorem

Figure 4.2: Examples of students’ utterances from bothararp
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dent is adding information to the solution he is construgtibe it by contributing a step or
steps, changing the meta-level status of the solution (f&tance, stating that a new attempt at
a solution will be made) or by signalling a revision or an eegion of an already contributed
solution. TheOtherclass may also comprise utterances which express stud@aisiedge, but
only those explicitly elicited by the tutodhswe). The classification of utterances which do
not contribute solution steps is coarse-grained for twgams: First, we are mainly interested
in the analysis of students’ proof language. Second, asbe@dbme clear in Section 4.3.3 the
frequency of théther utterance types is in general low; with the exceptioiefp requests

The Solution-contributingutterances are subdivided into two subclass@eof contributions
with four subclassesPfoof step Proof strategy Proof structure Proof statu$ and Meta-level
contributions with three subclass&e(f-evaluationRestart andGive up. The utterance classes
are described below and exemplified:

Proof step Contributes a proof step or part of a proof step. Examplegtefances
of this type include C-1 S1 and S5 and C-1l S2 and S6 in Figue ds
well as the utterance “Begruendung: C (U \ B)” (Justification: ..)
which specifies only the justification of a proof step.

Proof strategy States a solution strategy already adopted or about to batextio Ex-
amples include “Ich benutze das Extensionalitaetsprindip using the
Extensionality Axiom “Beweis durchC und D" (Proof byC and D).

Proof structure Signals the structure of the solution being constructedn &-11 S1 in
Figure 4.2 or “Ich mache eine Fallunterscheidunfifn(making a case
distinction), “Hinrichtung” (Forward directior).

Proof status Signals the status of a (partial) solution: “Damit ist eim&llision be-
wiesen” And so one subset relation is shgvam “qg.e.d.”

Self-evaluation States an evaluation of own step: “Ich habe mich vertippte(made a
typo), “Schwachsinn” Nonsenskg or “Korrektur” (Correction).

Restart Signals that new attempt at a proof is being started: “neudary” (hew
start) or “Wieder von vorne” Once again from the beginnihg
Give up Signals abandoning the solving task: “Ich moechte die Antwissen”

(I would like to know the solutign*“ich gebe auf” 'm giving up).

The non-solution-contributing utterancé&ther, are subdivided into 11 subclasses:

Request help Requests assistance explicitly: “Ich brauche einen Tipieged a hin},
“Wie ist R o S definiert?” How is R o S defined?, “bin ich auf dem
richtigen Weg?” &m | on the right trackp

Yes/No A “yes” or “no” answer
OK A simple acknowledgment: “okay”
Agree Expresses agreement: “du hast natuerlich reafftturse you're right

122



4.1 Utterance typology

Address

Answer

Cognitive state

Self-talk

Session

Discourse Marker

Provides anon-elicitedreaction to a previous contribution: “Das beant-
wortet meine Frage nur zur Haelfte!"Tijis answers my question only
halfway)), “Die Klammer koennte ich nach meinem Dafuerhalten auch
ganz woanders setzen!Tlie bracket could just as well be in a different
place if you ask mé!

Provides arelicited non-Yes/No answer to a question posed:

T: “Was sind moegliche Eigenschaften von binaeren Relati@h

(What are the possible properties of binary relations?

S: “symmetrisch” §ymmetry

T: “Was bedeutet die Variable bei Ihnen?”

(What does the variable mean?

S: “(u)x hat zwei Bedeutungépu) (u)es kommt in zwei verschiedenen
Mengen vot/u)” (« has two meanings it occurs in two different 3ets
Expresses the state of knowledge or understanding: “ichswécht, was
ich mit den Tips anfangen soll'l flon't know what i can do with these
hints!), “Das weiss ich” [ know that)

Expresses an unelicited comment: “Fraglich was ist uriégdczwis-
chen= undN” (The difference betweenandn is questionablg “Muss
mit der Differenz zusammenhaengeist have something to do with
the difference.

Expresses a meta-level statement related to the tutorisgjoseitself:
“Allerdings ist Aufgabe E (wie Du es bezeichnest) bei mir daife A!”
(Actually Exercise E (as you call it) is called Exercise A heréwie
waere es, Aufgabe W nach hinten zu verschieben und mit Aef@aibu
starten?” flow about postponing Exercise W and starting with A?

The utterance has a sole discourse marker function: “NaR#jht..),
“Also gut” (Good then.

Politeness/EmotionT he utterance is a conventional politeness form or has fledsaction of

Attitude

expressing the speaker’s emotion or attitude: “Sorry!¢h“verde Dich
im Geschaeft umtauschenl’ Will exchange you at the shgp!“Keine
PAnik” (Don't panig), “NERV!” ([annoyance]

Note that the classification can be mapped to previouslygeeg classifications of dialogue

actions in tutoring.

For instance, the categémpof contribution corresponds t@ssertions

in (Marineau et al., 2000Contribute domain conternih (Wolska & Buckley, 2008)nforma-
tion Exchange : Asseit (L. Becker et al., 2011), and comprises the categdd@sition-step
andSolution-strategyrom (Buckley & Wolska, 2008a). Following the general sclegmoposed
in (Campbell et al., 2009) our class Bfoof contributionswhich do not explicitly signal infor-
mational redundancy would be further coded inMwyeltydimension for steps which contribute
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new content (C-1l1 S17 is a counter-example) and inNtadivation dimension asnternal or Ex-
ternal, depending on whether they have been elicited by the tutierdhces in thiotivation:
Externalcategory would be found, among others, in dumswercategory.

The presented utterance typology has been developed byhamstive analysis of all stu-
dents’ utterances in all dialogues from the two corpora askt on the insights from applying
our previous tutorial dialogue coding scheme presente@ucKley & Wolska, 2008a) and its
generalisation presented in (Wolska & Buckley, 20b8pver multiple annotation cycles, we
arrived at a reference annotation which will be used in thievdng sections. At present, the
utterance typology has not been applied by independenttaion® and evaluated in terms of
inter-coder agreement. Notice, however, that classifinatif utterances into the critical cate-
gories, the solution-contributing classes, do not redinguistic knowledge, but rather domain
knowledge of set theory and binary relations and knowledgmethods of proof. Assuming
clear understanding of proof-related notions, no ambjgsiexpected. Therefore, reannotation
has been omitted. Moreover, the classification has beegroesin such way that cross-category
confusion is minimised. Among th@ther class,Request helpAgree Cognitive stateSession
Yes/N@OK, Discourse markeare clear-cut. The first four are semantically clearly digtish-
able, while the latter three can be considered for the mastigecally defined. Within the
remaining four classes confusion may arise betwsdaressandSelf-talk however, there were
only two instances of the latter and the distinction was nadg because in the dialogue con-
text theSelf-talkutterances appear to refer to the students’ own contribatim have a character
of think-aloud comments, whereasldressesend to refer to the tutors’ contributions. The dis-
tinction between the elicitednswerand the non-elicitedddressappears clear-cut. Utterances
such as “The hint was rather lousy” could be mistakenly diassasP/E/A (that is, interpreted
as expressing an attitude toward the tutor’s hint, a plésiliernative), however, this can be
avoided by placing the decision question targeting Grognitive stateclass higher in the an-
notation scheme’s decision tree. Within tBelution contributingutterancesMeta-leveltypes
are clear-cut. A confusion may arise betwéanof strategyandProof structureif an annotator
should not understand the notion of proof strategies, heweagain, the frequency of the classes
is low relative to the frequency of the majority clasdemof stepandRequest help

4.2 Preprocessing

Three types of preprocessing transformations have beéorpexd on the students’ data before
the analysis: First, utterance boundaries have beenfigehtsecond, mathematical expressions
have been normalised, and third, a number of textual nosatédins have been performed with
the goal of abstracting over domain-specific terminologgt atiminating spelling and writing
mechanics differences. Details of corpus preprocessimgutiined below.

Utterance identification guidelines we followed will be geated in the next section.
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4.2.1 Turn and utterance preprocessing

Turns in both corpora were sentence-tokenised based ondastbset of end-of-sentence punc-
tuation marks. Word-tokenisation was performed using adstad tokeniser. The output of the
sentence tokenisers was verified and manually correctecewleeessary.

Turns were then segmented into utterances. While a sentetggically defined as a unit
of speech containing a subject and a predicate, there is @msprlinguistic definition as to
what constitutes an utterance. Broadly understood, anauntte is an intentional, meaningful
communicative act in an interaction. An utterance may &ssif a word, a phrase, or a complex
sentence with embedded clauses. It may form a completeliutrg turn may also consist of
more than one utterance. For the purpose of this study, iticpkar also for the purpose of
utterance type annotation, the notion of an utterance waisatipnalised as follows:

e An utterance never spans more than one turn or one sentence;

e Multiple clauses conjoined with conjunctions (“‘uncérn(d), “oder” (or), “aber” (buf),
“weil” (becausg “fur (for), “also” (sg, “wenn” (if ), “als”/“wann” (wher), etc.) were
considered one utterance;

e Multiple clauses conjoined without conjunctions were édered separate utterances;

e “If-then” constructions, also omitting the words “if” ortien”, were considered a single
utterance;

e The following non-sentential fragments, not containinguajsct, were considered ut-
terances: noun phrases, discourse markers (also insects,as “acha”, “oh”, “naja”,
“schoen” fice)), colloquial subject-drop phrasings in indicative anttinogative mood,
single question words and ellipted questions (for instatfeertig?” (Done?), politeness
phrases (such as “sorry”, “Danke”), exclamatives (“Weitklilfe!” (Further help)), non-
sentential answers to questions, including acknowled¢gndar instance, “ok”, “klar”
(that’s cleai), as well as yes/no answers.

Examples of tokenised multi-utterance turns from Figueade shown below (vertical bars,
mark token boundariesy) and (/u) mark utterance boundaries; here and further: “O” labels
the original utterance, “P” the preprocessing result):

Dann gilt auch : Allex, die in B sind, sind nicht in A
(u)|Danrgilt|auch:|Alle|z|,|die|in| B|sind),|sind nichtjin| A|{ /)

1. Fall: Sei(a,b) € R

(w)|1.|Falll:{/u) (u)Sei(a,b) € R|{/u)

Ich habe mich vertippt. Korrektur: Sgi, z) € R
(u)|lch|habémich|vertippt.|(/u) (u)|Korrektud:|(/u) (u)|Sei(a,z) € R|{/u)

10 1O 1O
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4 Quantitative analysis of the students’ language

4.2.2 Preprocessing mathematical expressions

In both corpora, mathematical expressions were identifedi-automatically, using a regular-
expression grammar. The grammar comprised a vocabularmgtterd, mathematical symbols
(unicode or ATEX), brackets, braces, delimiters, etc. The parser’s out@st manually verified
and corrected where necessaryhe quantitative analyses were conducted based on turns and
utterances in which the identified mathematical expressi@ve been substituted with a sym-
bolic tokenMATHEXPR. As we will show in Chapter 5 utterances preprocessed thiscaa

be parsed using a lexicalised grammar if the informatiorheneixpression’s type — term or for-
mula — is known. With this in mind, we therefore also classifg symbolic expressions into
one of the following categories: (i) atomic termssRr, for set, relation, or individual variables,
(ii) non-atomic terms:TERM (object-denoting expressions) oreERM_ (term-forming opera-
tion symbols appearing in isolation, as in the example atteg (8) in Section 3.2.2.3 of the
previous chapter; underscores denote non-realised (rg)ssiguments), etc. and (iii) formulas,
FORMULA, for truth-valued statementsfORMULA__ (statement-forming operators appearing in
isolation), etc. Examples of utterances from Figure 4.2teefind after mathematical expression
preprocessing are shown below:

O: DaA C K(B) dilt, alle z, die in A sind sind auch nicht i3
P: DaMATHEXPRrormuLa Jilt, alle MATHEXPRyaR, di€ iINMATHEXPRyr Sind
sind auch nicht IMATHEXPRyagr

O: Nach der Definition vor folgt dann(a, b) istin S—! o R~1
P:  Nach der Definition VOMATHEXPR rery_ fOlgt danNMATHEXPRrerw
ist in MATHEXPRgrm

4.2.3 Textual normalisations

Following extensive research into the properties of spakehwritten discourse (Chafe & Tan-
nen, 1987; Biber, 1988), recent studies on computer-megliz@mmunication (CMC) — or elec-
tronic discourse more generally — have shown that, muchdpeken language differs from
written language, the language of type-written computedigted communication shares some
properties with spoken language, however, it also possdsgeual and linguistic characteris-
tics which are not typical of standard written language (Nay 1994; Crystal, 2001; Hard af
Segerstad, 2002; Baron, 2003). Among those non-standardatiristics are the frequent use
of abbreviations and acronyms, words and phrases writtel capitals or all lower-case, ex-
tensive use of certain punctuation marks and lack or incofrandom) use of other punctuation

2We do not report precision results on mathematical expesdentification and parsing as it is not the focus
of this work. It is assumed that an end-to-end system prevagheentry method for mathematical expressions which
would enable clear, possibly real-time, identification cdithematical expressions. This could be accomplished
by explicitly defining “math mode” delimiters, for instancas key combinations indicating the start and end of
mathematical expression strings or as textual delimiteasogous to the $-symbols ifilEX.
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4.2 Preprocessing

(for instance, excessive use of the exclamation mark, l&ck incorrect use of commas, lack
of valid end-of-sentence punctuation), and the use of emiosi. Type-written tutorial dialogue
shows qualities which are found both in spoken and writteguage and those of CMC. It
is prone to textual ill-formedness due to the informal settnd the telegraphic nature of the
linguistic production.

In order to avoid the effects of CMC-specific qualities of tbarners’ productions at the
utterance-level, prior to the quantitative analysis leeshutterances were normalised with re-
spect to certain writing mechanics phenomena (alternggiedling variants, capitalisation, punc-
tuation) and with respect to the wording of common abbraxigt A number of lexical normal-
isations were performed on lexemes and phrases in orderoid apurious diversity due to
domain-specific terminology and task-specific contexteétnences. Different lexical realisa-
tions of single and multi-word domain terms and conventigpaech acts were substituted with
symbolic tokens representing their lexical, in case of tmmkr, or communicative, in case of the
latter, types. Discourse-specific references were likew@malised. General language expres-
sions and references other than those mentioned below dasvgtneral mathematical terms
(such as “assumption”, “definition”, for instance) were notmalised. All the normalisations
were performed semi-automatically; the results of a pregssor were reviewed and corrected
manually in case of errors. Details of textual normalisagiare summarised below.

Spelling The German umlaut diacritics were replaced with their ulydey vowels and an “-e”.
The eszettigatures were replaced with double “s”. Spelling mistakese identified and cor-
rected using the German aspell, a Linux spell-checker, &igemeral dictionary has been ex-
tended with a custom dictionary of relevant domain terms.

Punctuation Repeated consecutive occurrences of the same punctugtidoos were re-
placed with a single occurrence (“!II” with “I”; “....” witH.”, etc.) Punctuation in abbreviations,
missing or incorrect, has been normalised (“bzw.” for ‘W.’2d.h.” for “d.h”, etc.). In the final
analyses inter-sentential and end of sentence/utteramceyation was ignored.

Abbreviations Upon correcting punctuation, different correct and ineotiexical variants of
common abbreviations were substituted with symbolic tekdiese includedyspfor different
spelling and capitalisation variants of “z.B&.¢), Bzw for “bzw.” (respectively, OBDA for
“0.B.d.A.” (without loss of generalily bH for “d.h.” (that is), QeD for “g.e.d.”, ST for “s.t.”
(such tha}, OK for “ok”, “oki”, “Okay”, etc.

Common speech acts and inserts Conventional expressions of gratitude, such as “Danke”,
“VIELEN DANK” and apologies, for instance, “Tut mir leid”, Sorry”, “Verzeihung”, were
substituted with tokensHANKYOU and APOLOGY, respectively. “Ja"/“Nein” responses were
substituted with the tokemesNoO. Conversational inserts and other discourse markers sich a
“So”, “Na ja” were substituted with the tokemSCOURSEMARKER
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4 Quantitative analysis of the students’ language

Domain terms and domain-specific references Different lexical variants of nominal and ad-
jectival domain terms which were included in the prepasatoaterial have been mapped to
a single form,DOMAINTERM. If single-word domain terms were part of a multi-word term
which can be considered a named entity, the multi-word ters mormalised. For instance,
“‘DE-MORGAN-1", “DeMorgan-1", “DeMorgan-Regel-1", “de nrgan regel 2" all mapped to
DOMAINTERM, as did “Distributivitaet von Vereinigung ueber den Dursitt” as a multi-
word term (a name of a statement/theorem), as well as “syrisulet as a single-word term.

Non-deictic references to proof exercises, such as “Awggab (Exercise VW, theorems pro-
vided in the preparatory material, such as “Theorem 9” or {f#rts of proof structure, such as
“Schritt 1” (Step }, or turns in the dialogue history, such as “Student®2@/ere mapped to the
tokenREFERENCE Deictic references, such as “obigeffi€ abovg were not normalised.

Different conventional wordings used to signal the end afafy such as “quod erat demon-
strandum”, “was zu zeigen warhich was to be showyn“woraus der beweis folgt”ffom
which the proof follow “Damit ist der Beweis fertig” hich completes the progpfetc., were
mapped to the token corresponding to the “g.e.d.” abblieviaQED.

Capitalisation The analyses were performed on corpus utterances norchalisabove with
case-insensitivenatching. Examples of utterances from Figure 4.2 prepsazkas outlined in
this section are shown below:

dann existiert eiMATHEXPR SO dassVMATHEXPR Und MATHEXPR

NachREFERENCEQilt MATHEXPR

daDOMAINTERM DOMAINTERM ist koennen wir dieses IREFERENCEeinsetzen
und erhalten die Behauptung

nachREFERENCEUNd REFERENCEQIlt MATHEXPR

Further in this chapter we will refer to students’ contribas preprocessed in this way as “ver-
balisation patterns”, “utterance patterns”, or simplyttpems”. Whenever we say “turns” or
“utterances” we mean turns or utterances preprocessedashd above.

4.3 Diversity of verbalisation patterns

We begin the quantitative analysis with a high-level ovenwof the amount of natural language
in the students’ contributions by looking at the distribuatiof turns and utterances formulated
using mathematical symbols alone, using natural languégyee aand using natural language
interleaved with mathematical symbols and at the diffeesrin the amount of natural language
verbalisation between the two study material condition€#hl. Next, we focus only on ut-
terances formulated usirgpmenatural language. We first look at the distribution of uthes
types, as defined in Section 4.1, in the two corpora. Then ke @acloser look at th@roof

3References of this form are artefacts of our dialogue djsplterface. In the dialogue history, student turns
were numbered and labelled “Student 1", “Student 2", etdlentator turns were labelled “Tutor 17, etc.
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4.3 Diversity of verbalisation patterns

contribution utterances, in particular at thi&roof stepcategory in terms of the type of content
that is verbalised. We summarise the most frequently erteceoh linguistic forms — linguistic
verbalisation patterns- by category, and analyse the growth of the diversity of fomith the
increasing corpus size. In all analyses we consider the bsooca separately and also a larger
corpus consisting of the two corpora combined into one dettéG1 & C-II).

Two frequency counts are reported in the descriptive $isdisables throughout this chap-
ter: “Total” denotes the number of turn/utterance instar(tieat is, tokens or “vocabulary size”;
where by “vocabulary” here we mean linguistic patterns)nitiie” denotes the number dfs-
tinct types (unique pattern types). The proportion of these twasmes is known as “type-token
ratio”. The two raw frequencies rather than the summarisedsure are provided because the
number of tokens is different for each cell in the tables hworaw counts are more informative.

Aside from frequency distributions, we plot frequency gpec Spectrum visualisations are
typically used with word frequencies to show a frequencyritligtion in terms of number of
types by frequency class, where a frequency class is a seets ¢f) instances with the same
number of occurrences in the data. In other words, they slmwrhanydistinct typeqy-axis)
occur once, twice, and so on (x-axis), thus revealing theadegf skewedness of the types
distribution; the earlier the tail with around 1 starts, the more idiosyncratic types are likely to
exist in the data. We use verbalisation patterns — prepsedestterances — as units of analysis.

4.3.1 Mathematical symbols vs. natural language

As the first approximation of linguistic variety in learnemopf discourse, we analyse the stu-
dents’ contributions in terms of two types of content mdakdi natural language and symbolic
expressions. Table 4.1 shows the distribution of turns dtetances in both corpora with re-
spect to natural language and symbolic content. ME denates &nd utterances consisting
of symbolic expressions alone, NL those consisting of m&tanguage alone (as in C-1l S8 or
C-ll S29), and ME & NL those consisting of natural languageiileaved with mathematical
expressions (C-I S1, C-ll S6, or C-1l S24).

In both corpora the majority of turns and utterances corgaime natural language (turns: 54%
NL/ME & NL vs. 46% ME in C-1 and 70% vs. 30%, respectively, inlG-utterances: 57%
NL/ME & NL vs. 43% ME in C-l and 73% and 27%, respectively, inlQ-There are 64Q@urn-
level NL/ME & NL patterns in C-1 and C-II considered in isdla and 626 in C-1 & C-1l and
728 utterancelevel patterns in C-1 and C-Il in isolation vs. 700 in C-I & [C.-This means that
there are only 14 NL/ME & NL turn-level patterns and only 28uance-level patterns which
occur both in C-1 and C-Il. Verbalisation patterns which weed in both corpora are shown
in Table 4.2. Overall, 69% of the utterances in C-I & C-Il aintsome linguistic material,
among which there are 700 distinct verbalisation pattefingre is proportionally more natural
language in C-1l even though, as we will show in the next sectihe participants in the formal
study material condition were less verbose than those irghHgose material condition.

“The zipfR package (Evert & Baroni, 2007) used to generatguiracy spectra. Only the first 15 frequency
classes are shown since in all cases the frequency of ther lelegsses oscillated between 0 and 5.
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4 Quantitative analysis of the students’ language

Table 4.1: Descriptive information on learner proof dismauin terms of content modality:
symbolic (ME), natural language (NL), and natural languiagerleaved with symbolic
expressions (ME & NL)

C-l C-ll C-1&C-ll
Unique / Total Unique / Total Unique / Total
Turns 147 /332 497 /927 628 /1259
ME 2/153 21274 2/427
NL 34/ 51 134/162 163/213
ME & NL 111/128 361/491 463/619
Utterance$ 200/ 443 531/1118 702/ 1561
ME 2/189 1/300 2/489
NL 64/ 92 185/278 240/ 370
ME & NL 134/162 345/540 460/ 702

'Non-empty utterances after removing punctuation (seerpeegsing
in Section 4.2; A single occurrence of an utterance comngjgif a question
mark alone (in C-Il) is included in the NL category.)

Table 4.2: Verbalisation patterns found in both corpora

Solution-contributing patterns Other

es giltMATHEXPR was iStMATHEXPR
dann istMATHEXPR ich brauche hilfe
also isStMATHEXPR warum nicht
MATHEXPR UNdMATHEXPR YESNO

daraus folgt dasgIATHEXPR oK

daraus folgMATHEXPR THANKYOU

damit iStMATHEXPR APOLOGY

damit gilt MATHEXPR DISCOURSEMARKER

somit iIStMATHEXPR

dann iStMATHEXPR UNdMATHEXPR
das heissMATHEXPR
AUSMATHEXPR folgt MATHEXPR
MATHEXPR iSt DOMAINTERM

also giltMATHEXPR UNdMATHEXPR
also gilt auchMATHEXPR
MATHEXPR iSt DOMAINTERM VON MATHEXPR
also ist aucCMATHEXPR

das gleiche gilt fueMATHEXPR
DOMAINTERM

QED
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4.3 Diversity of verbalisation patterns

Table 4.3: Distribution of students’ turns by content mddkd and study material condition

FM-group VM-group
(N=471) (N=456)

Content modality

ME 200 (42%) 74 (16%)
ME & NL 184 (39%) 307 (67%)
NL 87 (18%) 75 (16%)

4.3.2 The effect of the study material presentation

Recall that the second data collection experiment was séb tgst a hypothesis concerning
the students’ language production. The hypothesis wasttleatormat of the study material

presentation, formal vs. verbose, would influence the siisdéanguage, resulting in proofs
presented using mainly the symbolic mathematical lang(fageal) or using mainly the mixed

or natural language (verbose). C-1l comprises 927 stutdemtss (Table 2.2), 471 in the formal

material condition (FM-group) and 456 in the verbose mat@dndition (VM-group).

Measures In order to investigate the differences in dialogue styléth wespect to language
production we first compared the general dialogue chaiatitar in terms of distribution of
turns by content modality (mathematical expressions, ME mixed language, ME & NL, vs.
natural language alone, NL) and session lengths measutbd &&al number of turns (Session
length). Then, we compared the followisgssionandturn characteristics: number of math-
ematical expressions (ME tokens), number of natural lagguakens including punctuation
(NL tokens), and mathematical expression lengths measnorebaracters (ME-length). Note
that by ME tokens we mean the number of mathematical expressihat is mathematical ex-
pressions normalised as described in the previous sedtidivjdual symbols are not counted.
Occurrences of formulas, terms, as well as single chargaitens intended to represent relation
or set symbols were counted as ME tokens. ME-lengths wergutad by counting all char-
acters intended to form a mathematical expression, inegugunctuation and single character
tokens for variables and constants; ill-formed expressigare included.

If parametric assumptions were met (as per Shapiro-Wilklaawne tests), two-sided inde-
pendent samples t-test was used to compare the means ofahermlentioned measures be-
tween groups; otherwise the Mann-Whitney-Wilcoxon tesswaed. The significance level
was set at 0.05. Statistical differences between meansrsimoglescriptive summary tables are
marked in bold; standard deviations are given in parenthese

Turns by content modality Table 4.3 shows the absolute numbers and proportions (gerce
age) of students’ turns which consisted of mathematicatesgions alone (ME), natural lan-

5The figures presented here differ from those in (Wolska & fffrifiorbayova, 2006a) for two reasons: here we
exclude turns automatically generated by the interfacewstedent clicked on the next exercise button or ended the
session and we include punctuation as tokens. These diswieg do not affect the overall comparison results.
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Table 4.4: Means and standard deviations of session leirgthe formal and verbose condition

FM-group VM-group
(N=471) (N=456)

Session length  48.50 (15.89) 55.06 (22.78)

Measure

Table 4.5: Means and standard deviations on the studentgidaye production variables

~Measure FM-group VM-group
'% ME tokens 26.95(10.49) 44.70(21.74)
9 NL tokens  93.00 (89.03) 151.18(103.03)
g ME-length 27.79(17.64) 12.45 (8.85)
% ME tokens 1.14 (1.12) 1.67(1.70)
% NL tokens 3.95(5.65) 5.63(6.02)
o ME-length 32.53(27.71) 15.69 (14.16)

guage alone (NL), and of a mixture of natural language andvemaétical expressions (ME &
NL). A cursory comparison based on these measures showbhélatgest proportion of turns in
the FM-group consisted of mathematical expressions alehide in the VM-group of a mixture

of mathematical expressions and natural language. Alsoptibportion of turns consisting of
symbolic material alone was larger in the group presentél fermalised material; 42% of all
student turns in the FM-group vs. 16% in the VM-group.

Session length Table 4.4 shows the means and standard deviations of sdesgths in the
two conditions. The dialogues in the verbose material dodi tended to be longer, however,
the difference in the session lengths between the two dondits not statistical (p > 0.10).

Students’ language production Finally, we compare the students’ language production per
session and per turn in detail. The average number of matieaexpression tokens per session
was 35.11 (18.67) and the average number of natural langoges was 119.73 (98.82). The
average mathematical expression length in the dialogueslw&5 (20.55) characters.

Table 4.5 summarises two sets of measurements: mean nuafb®giral language tokens
(NL tokens), mathematical expression tokens (ME tokenms),raean mathematical expression
length (ME-length). The top part of the table shows the ayesdor the entire sessions (per
session). The bottom part shows the same measurementgeydéoa turns (per turn).

While there was little difference between the VM- and FMgrs in the number of turns
which contained natural language words alone (see Tabje the average number of natural
language words per session and turn is higher in the VM-g(pgp.05). The average number
of mathematical expressions per session and turn was ajkerhin the VM-group (p<0.01),
however, the average mathematical expression length wasisantly higher in the FM-group
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Table 4.6: Distribution of utterance types

C-l C-ll C-1&C-ll
Unique / Total Unique / Total Unique / Total
Solution-contributing 149/187 335/548 465/735
Proof contribution 143/180 326 /539 450/719
Proof step 138/171 2871469 407 /640
Proof strategy 4/4 25730 29/34
Proof status 1/5 7124 7129
Proof structure -/- 7116 7116
Meta-level 6/7 9/9 15/16
Self-evaluation 212 5/5 717
Restart 1/2 3/3 4/5
Give up 3/3 1/1 474
Other 46/ 64 193 /267 231/331
Request help 16/16 136/ 154 149/170
Yes/No 1/18 1/24 1/42
Cognitive state 15/15 15/16 30/31
Politeness/Emotion/Attitude 2/3 14 /21 14/ 24
Discourse marker 1/1 1/21 1/22
Answer 5/5 14/15 19/20
OK 1/1 1/6 1/7
Address 1/1 5/5 6/6
Session -/- 4 4/4
Agree 2/2 1/1 3/3
Self-talk 2/2 -/- 212
Uninterpretable 3/3 4/4 717

(p<0.01). Note that the maximal mathematical expressingtlewas 145.00 characters in the
FM-group and 110.00 in the VM-group. The relatively large MEgths may be an artefact of
the interface’s copy-paste mechanism. The students tandampy formulas from the previous
dialogue or the study material into their input-line and fified or extended them, thus building
longer and longer expressions; recall that we recordedttieests’ screen capture feed (see
Section 2.4.3 of Chapter 2) and were able to observe thisvimira

The analysis of the same statistics for the tutor turns staivat there was no significant
difference in the tutors’ language production between W donditions: none of the dialogue
and turn differences for word and formula counts were sigaifi. Interestingly, systematic and
statistical differences were found, however, while cormgathe student and the tutor language
behaviour, that is, comparing, for instance, the NL/MEetoldistributions between students
and tutors. In both conditions, the tutors used more natargjuage and fewer mathematical
expressions than the students. We did not analyse the thieMfEa distributions further due to
the previously-mentioned copy-paste artefacts.

From this point on we focus on a subset of the data: we lookuaestt utterances only and
only those which do contain natural language (NL and ME & Ntegaries in Tables 4.1 and
4.3). We start by looking at the distribution of utterancpdy.

133



4 Quantitative analysis of the students’ language

4.3.3 Distribution of utterance types

Table 4.6 shows the distribution of utterance types, as efim Section 4.1, in both corpofa.
The majority of utterances in both corpora are solutiontdoating, 74% of all utterances in
C-l and 67% in C-Il, and most of them proof steps. This is napsdsing of course. The
second experiment involved more complex proofs requitioiginstance, considering cases and
proving both directions of a bi-conditional, which resdlie explicit verbalisations not only of
proof steps, but also of the proving strategy, the proofcsting, and in students signalling that a
complex proof (or its part; for instance, one direction of-adnditional) is completed.

Among the non-solution-contributing types, the largeass| 51%, are help requests of differ-
ent specificity; from general requests (such as “Hilféfe(p!) to specific requests, for instance,
for providing a definition (such as “Wie lautet die Definiticler Operatior1?” (What's the
definition of~?) or “Erklaere die DefinitionR o S in Worten!” (Explain the definition oR o S
in words)), or questions whether propositions hold (such as(dst) in R?” (Is (a, z) in R?)
or “Elemente von R o S) o T" sind Tripel der Forn{z, y, z), oder?” Elements ofRo S) o T’
are triples of the form(z, y, z), right?)) The second largest category are closed-class types,
YES/No and OK, which together make up 15% of all the non-solutiontgbuting utterances.
The second largest category of open-ended verbalisatienseta-cognitive statements on the
state of knowledge (or, for the most pdeck of knowledge), 31 occurrences. Statements such
as “Keine Ahnung mehr wie der Nachweis korrekt erbracht werkdann” (No idea how the
proof can be correctly producgar “Verstehe die definition nicht'on’t understand the defini-
tion), can be of course interpreted as indirect requests for Iaterestingly, only one utterance
wording appeared more than once, “Dann weiss ich nicht vi€igo I'm los).

Aside from the two common variants of expressions of grdét(‘Danke”/“Vielen Dank”
(Thank you/Thank you very mygland the four common German variants of apologies (“Tut mir
leid”/“Entschuldigung”/“Verzeihung’/“Sorry”), the reaining expressions of emotions and atti-
tude (thePoliteness/Emotion/Attitudelass) were idiosyncratic and unpredictable, and spanned
both positive polarity emotions, for instance, “Das magba$s mit Dir” (t's fun!) and negative
polarity (“Wollen Sie mir nun Mathematik beibringen oder lgo Sie mich pruefen???"Do
you want to teach me math now or do you are you giving me a t&stIERV!!” ( [annoy-
ance)). Not surprisingly, idiosyncratic were also the occuoes of the remaining open-ended
classesAnswersand Addresseswhose content is entirely determined be the precedingeggnt
that is, the tutor’s contribution which triggered them.

It is interesting that there were 22 occurrences of diseouorarkers and that they had a col-
loquial character, the kind typical of spoken language: doH’, “na ja” (oh wel), “oh”, “hm”,
“ach so” oh, | seg, “halt” (hang on). The variety of discourse markers suggests that the dsbjec
treated the dialogues much like natural spoken interactiean though they were typewritten.

50nly the utterance types with more than five occurrencesheiltliscussed here. Utterance types with lower
frequency of occurrence are too sparse for any conclusiomst @aheir wording.
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Figure 4.3: Frequency spectra: Utterance types (x-axistaded)

Figure 4.3 shows the frequency spectra (explained on pa@jeof2ll the utterance types and
of the two major classes. It is clear from the plot that theritistion of distinct verbalisations
is heavily skewed. For all subsets of pattern types, the murobpatterns occurring three to
five time is less than 10. The tail of patterns with frequencstdrts between 5-10 or more
occurrences. In the “All utterance types” category, thediency-1 class covers 597 instances,
whereas the remaining classes together 475 instances .(d4%)requency spectra also show
that the data is sparse and even though some utterance gymea high frequency of occurrence
(Table 4.6) they consist of mainly idiosyncratic linguisiatterns. Of course, most interesting
from the point of view of formalisation are the core argunag¢ime utterances which build up a
proof. Therefore, we now take a closer look at the verbatisatof proof contributions.

4.3.4 Proof contributions

Since the ultimate goal of this work is to enable computatidranslation of natural language
into a formal language of a deduction system, aside fromteetclasses of proof-level de-
scriptions — proof strategy, proof structure, and prodiustg¢see Table 4.1) — in the analysis that
follows we distinguish three subclasses of proof steps.slibeategorisation takes into account,
on the one handhe type of content expressed in natural languagd, on the other hanthe
type of linguistic knowledge which needs to be encoded ierdod formalisation to be possible
The simplest case for translation are steps in which nalangluage is used only for logical
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4 Quantitative analysis of the students’ language

operators (connectives and binders/quantifiers) or taasigroof step components, and where
no discourse context nor domain-specific linguistic infation is needed for interpretation. By
proof step components we mean elements of a deduction sggpenof language such as the
declarative proof script language presented in (Autexiat.e2012). In order to formalise proof

steps of this kind, the only knowledge needed is the natarajuage vocabulary and syntax of
logical connectives and of the proof structural markeredgpidiscourse connectives); that is,
only a basic interpretation lexicon. Examples of this clafsgerbalisations includé:

WennA C K(B),dannAN B =0
(If AC K(B),thenAn B = ()

Sei(a,b) € (Ro S)~!
(Let(a,b) € (Ro S)™1)

We will refer to this class akogic & proof step componentghich stands for “natural language
logical connectives and proof step components”.

The second and third class of verbalisations are those whiphire contextual and domain
knowledge for interpretation and formalisation. If beydhd type of content described above,
only domain concepts from the domain(s) of the proof (hegttreory and binary relations) and
discourse references have to be translated, then the gegiobelongs to the categoBomain
& context The domain concepts may be named using single or multi-@ondain term$, but
also using informal wording, such as the locative prepasiti phrase with “in” to stand for the
set membership relation. Examples of the second class of pteps include:

in K(B) sind allex, die nicht inB sind
(in K(B) are all z which are not inB)

Nach der Definition vom folgt dann(a, b) istin S~ o R~1
(By definition ofo it follows then that(a,b) isin S~! o R71)

Nach Aufgabe AgilfRU S) o T = (RoT)U (SoT)
(By Exercise Aitholds thatR U S) o T = (RoT) U (S o T))

In the last example, the reference “Aufgabe EXercise Aneeds to be resolved. Note, however,
that the utterance “Es gilt nach Definition ausserdemoR~! = ...” (By definition it moreover
holds that ..) belongs to the clashIL logic & proof step componentsecause no domain-
specific vocabulary is needed; the word “definition” is in Hasic lexicon of mathematics.
Finally, the third class comprises those steps which arespetified explicitly, but rather
indirectly as high-level meta-descriptions of a (possitynplex) transformation which needs
to be performed in order to reconstruct the intended stepexample of such as complex proof
step is C-1l S8 in Figure 4.2: “Der Beweis geht genauso wienplgi in Schritt 2 bis 6 nur
Aequivalenz umformungen stattfindenTHe proof goes exactly as above since in step 2 to 6

"Examples shown as they occur in the corpus; for analysissanttes preprocessed as described in Section 4.2.
8See the paragraph on normalisation of domain terms and despacific references in Section 4.2.3
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Table 4.7: Descriptive information on proof contributions

C-l C-ll C-1&C-ll
Unique / Total Unique / Total Unique / Total
Proof step 138/171 2871469 407/ 640
Logic & proof step components 54780 136 /286 175/ 366
Domain & context 78185 140/171 216/ 256
Meta-level description 6/6 11/12 16/18
Proof strategy 474 25730 29/34
Proof structure -/- 7116 7116
Proof status 1/5 7124 7129

there are only equivalencgsOther examples include:

Analog geht der Fall, wenfu, z) € S
(The case fofa, z) € S is analogoup

de morgan regel 2 auf beide komplemente angewendet
(de morgan rule 2 applied to both compleménts

(S oT) ist genauso definiert
((SoT)is defined the same wpy

Complex proof steps of this kind will be referred to Beta-level description The three
subclasses dProof contributionsare summarised below:

Logic & proof step components  Only logical connectives and components of a proof step
need to be interpreted,

Domain & context Domain terminology and contextual references need to
be interpreted (as well as, possibly, logical connectives
and proof step components),

Meta-level description An indirect proof step specification needs to be inter-
preted (as well as, possibly, all of the above).

An alternative proof step classification has been propog&tldgner and Lesourd (2008). The
classification is also verbalisation-oriented and wasgiesl with a motivation similar to ours,
however, it is imprecise. First, itis not clear whether tlzssssimple connectionaccommodates
utterances with adverbs or adverbial phrases, such as tvereas previously shown, it follows
that ...” Second, and more importantly, the distinctioni@etnweakly verbaliseéndstrongly
verbalisedformulas is unclearWeakly verbalisedormulas are defined as those “where some
relations or quantifiers are partly verbalised”, wisteongly verbalisedormulas as those “where
all relations and quantifiers are fully verbalised”. Basedlese definitions it is not clear why
the example & is the limit of (a,)nen”, given in the paper, should be classified vasakly
verbalised whereas “For alt holds: there exists ayg(e) € N with ...” asstrongly verbalised
clearly, the set membership relatiorrig(e) € N is not verbalised.
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Figure 4.4: Frequency spectra: Proof step types (x-axistaded; y-axis range extended
to match Figure 4.3 for comparison)

Table 4.7 shows descriptive statistics on proof contrimgj with proof steps subclassified as
described above. Not surprisingly, the wording of prooftdbations which refer to proof-level
concepts — proof strategy and proof structure — is diverserdifg of proof status information
is repetitive; indeed, most often only the end of the prodigmalled explicitly and most often
using the abbreviation “g.e.d."Now, also not surprisingly, within the class of proof stejhe
more complex the content, the more varied the wording. Niteldescriptions of proofs are al-
most entirely idiosyncratic. Only two utterance patternswred more than onceMATHEXPR
ist analog definiert” JATHEXPR is defined analogoughand “das gleiche gilt fuemATHEXPR"
(The same holds famATHEXPR). The wording of proof steps in thBomain & contextcate-
gory is also diverse: 92% of instances are distinct in C-%88 C-1l, and 84% overall. Most
repetitive patterns are found in thegic & proof step componentdass: 67% of all utterance in-
stances in this category are distinct in C-1, only 47% in Gatid 48% in both corpora combined.
Overall, 63% of proof step verbalisations (from all the thoategories) are distinct.

Figure 4.4 shows the frequency spectra of the three propfcstiegories in the combined cor-
pus, C-I & C-Il. Again, the distribution is heavily skewed the largest categorfpomain &
context 210 out of the 216 unique patterns occur only once or twha; is 97% (191 patterns
occur once; 75% of all instances in this category). Inltbgic & proof step componentsate-

®Recall that the different spelling and verbalisation vatseof “g.e.d.” have been normalised.
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4.3 Diversity of verbalisation patterns

Table 4.8: Top-10 most frequent utterance patterns eXxpgepsoof steps

Type Linguistic pattern Frequency

SEIMATHEXPR 54
es giltMATHEXPR 13
WENNMATHEXPR dannMATHEXPR 12
alSOMATHEXPR 12
dann iStMATHEXPR 11
also iSstMATHEXPR

MATHEXPR UndMATHEXPR
MATHEXPR ist dannMATHEXPR
daraus folgMATHEXPR

daraus folgt dassATHEXPR

Logic & proof step
components

NachREFERENCE MATHEXPR

DOMAINTERM

nNachREFERENCEISt MATHEXPR

MATHEXPR NacChREFERENCE

DOMAINTERM VON MATHEXPR iSt DOMAINTERM MATHEXPR
AUSREFERENCEfolgt MATHEXPR

wegen der formel fuebOMAINTERM folgt MATHEXPR
oderMATHEXPR wegenDOMAINTERM VON MATHEXPR
nachREFERENCEQilt MATHEXPR

NachDOMAINTERM gibt es eiNMATHEXPR mit MATHEXPR

Domain & context

MATHEXPR ist analog definiert
das gleiche gilt fueMATHEXPR
gleiches gilt mitMATHEXPR
DOMAINTERM auf beideDOMAINTERM angewendet 1
der fall MATHEXPR verlaeuft analog
der beweis VOMATHEXPR ist analog zum beweis VanATHEXPR
beweis geht genauso wie oben d&iEFERENCEbIS REFERENCENUr
DOMAINTERM umformungen stattfinden 1
analog geht der fall wenmATHEXPR 1
andersrum 1
die zweiteDOMAINTERM ergibt sich aus der umkehrung aller bisherigen beweigsehti

PNN NNNDNWWWANN ~N~N~N0©

Meta-level description
R

gory, around 150 out of the 175 unique patterns, 73%, ocote ontwice, and there are only 8
patterns with at least five instances of occurrence (12&petioccur once, 35% of instances in
this category). Table 4.8 shows the top-10 most frequegtiistic patterns in the three classes of
proof steps from the combined corpus, C-I & C-Il, with theiduency of occurrence. Recall,
moreover, that only 20 solution-contributing utterancesuored in both corpora (see Table 4.2).

4.3.5 Growth of the diversity of forms

Finally, we are interested in how the diversity of forms &eal with an increasing number of
conducted dialogues. Specifically, we would like to know hoany dialogues are needed to
have observed most of the verbalisation patterns.
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Figure 4.5: Growth of verbalisation patterns over 10 randiimogue sequences

Figure 4.5 shows a plot of a variant of the type-token (votatyugrowth) curve (Youmans,
1990). The verbalisation patterns are used as vocabulamth©x-axis is the number of dia-
logues seen. Rather than the raw type count, the y-axis shewsoportion of observed pattern
types out of all pattern types in the given corpfis10 random sequences of dialogues have
been generated; for the C-1 & C-II plot, the corpora were cim@dh in random order and 10
sequences were drawn from the combined set.

What can be seen from the graphs is that the pattern vocgbgtews linearly, showing,
however, a large variance over the 10 samples drawn. Thenewds similar in both corpora: on
average, half of the patterns have been seen at about 40%dditi sets and 80% of the patterns
at about 77% into the data set in C-I (ca. 17 dialogues) andii0Z6l1 (ca. 26 dialogues). In
the combined corpus, however, half of the patterns have been already about 32% into the
data set on average. 80% of the patterns have been seen 8bointd the data set on average
(ca. 41 dialogues).

4.4 Conclusions

It is clear from the results that the language of studentalirse in proofs is not as repetitive
as one might expect. Students use complex natural languterances not only during meta-
communication with the tutor, but also when contributinggdrsteps. 57% of all utterances in

10798 NL + ME & NL utterance patterns in C-1, 530 in C-Il, and 700G-1 & C-11; see Table 4.1.
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C-land 73% in C-IlI contained some natural language. Thetlfettnatural language was more
often used in the C-II corpus may be explained by the facttti@binary relations proofs were
more complex than the set theory proofs. However, set thsovery naturally expressed in
natural language, so the reason why this was the case woeittifugher investigation.

An analysis of the C-1l data revealed differences in the dssatural language and mathe-
matical expressions between the two study material camditi The VM-group tended to use
more natural language than the FM-group and the dialogues tof the subjects in the VM-
group contained more, but shorter, mathematical expmessi@he FM-group tended to use
more and longer formulas overall, and less natural langu8gee the tutors’ statistics showed
no significant difference between the two conditions in thters’ dialogue behaviour with re-
spect to language and mathematical expression produdhiendifferences in dialogue styles
were at least partly due to the format of the presentatioh@study material having a priming-
like effect. However, another factor that may have contafuo the differences could involve
individual differences in the mathematical skills of thedsnts or specific dialogue styles of
subject-wizard pairs having to do with the student’s skills

The results on the influence of the study material presemtéive implications for the imple-
mentation of tutorial dialogue systems. On the one handematural language, be it resulting
from a verbose presentation of the study material or fronsthdents’ individual preference for
a particular language style, imposes more challenges onpla¢ understanding component. In
the context of mathematics, this involves a reliable andisbparser and discourse analyser ca-
pable of interpreting mixed natural language and mathealadixpressions. On the other hand,
prompting for more symbolic language by presenting stugeith formalised material imposes
stronger requirements on the mathematical expressiorpsirsce longer expressions tend to
be prone to errors. The same holds of the copy-paste furditignwhile convenient from the
user’s point of view, it may lead to mistakes of sloppinessewvising the copied text. This,
in turn, calls for flexible formula parsing, error correctisuch as the one we present in Sec-
tion 6.4), and specific dialogue strategies to address flasnwith errors (such as our those we
proposed in (Horacek & Wolska, 2007, 2008)).

From the pedagogical point of view, the format of the studyeral presentation should be
adequate to the tutoring goals. For example, in teachingdbproofs more rigour should be
imposed than in informal proofs. The material should be aldapted to the skills of the stu-
dent: formal material presented to a novice may lead to dfidient dialogue centering around
such issues as syntactic formalities, instead of the hilgivet goal of teaching problem solv-
ing (recall the discussion in Chapter 2). The general issising here is what study material
formulation a tutoring system should present to the studémt advantage of verbose mate-
rial, including worded explanations, is that novice studem particular those unfamiliar with
formal notation, can compensate for this weakness ancaiinpt to build proofs using their
problem solving skills. Advanced students might be ablexjoress proofs formally anyhow,
while the verbosity of the material might encourage themrumdpce conceptual sketches of
proofs typical of skilled mathematicians. As previouslyntiened, this assumes that the tutor-
ing system’s interpretation and dialogue management nesdifin handle a variety of discourse
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and dialogue phenomena, including potentially telegm@pligmentary utterances and informal
natural language descriptions which we discussed in Sedtih2.

The wording of proof steps is surprisingly diverse and timgilage used in the two corpora
is different. The fact that only 28 utterance verbalisatioccurred in both data sets is surpris-
ing. Among the 28 common patterns there were only 20 commaof gtep verbalisations, the
majority of theLogic & proof step componentgpe. This low number of common patterns is
reflected in the type-token plot (Figure 4.5) which exhilitsteady increase with only one area
of slower growth in the combined corpus, about 20-25% intorimdomly-ordered data set.

The difference in the linguistic diversity of the proof larage (the proof contributions class)
in the two corpora can be also seen in the different disiobgtof distinct linguistic patterns
(Table 4.7). Among thé&.ogic & proof step componentdass, 67% of the verbalisations were
distinct in C-1 and 47% in C-Il. In th&®omain & contextclass, 92% of all the verbalisations
were distinct in C-1 and 82% in C-II. That is, the language il@ppears more repetitive. In
both corpora, however, the language in the latter classaufffateps is more heterogeneous than
in the formert! The frequency spectra and the pattern growth curves shdiefuthe degree to
which the language is indeed diverse. In thogic & proof step componentdass, 81% of the
distinct types were single-occurrence utterances (81% ira@d 72% in C-I1). In theDomain
& contextclass, 90% of the types were single-occurrence (96% in G18&86 in C-I1).

Not surprisingly, the majority of the meta-level communica are the students’ requests for
assistance: requests for hints, definitions, explanatietts Out of the 170 help requests, 149
(88%) were distinct verbalisations; 136 single-occureepatterns. A further subclassification
of help requests might reveal more homogeneity in the wgrdiithin subcategories.

The relatively large number of discourse markers, typi¢apmken interaction, suggests that
participants had an informal approach to dialogue styletagated it much like a chat, adapting
spoken language, which they would have otherwise used itugahaetting, to the experiments’
typewritten modality. This is a known phenomenon (Hard afe8stad, 2002). The diversity of
verbalisations may be partly due to this.

The key conclusion which can be drawn from the analyses isrtl@tutoring setting, even the
seemingly linguistically predictable domain of matheratiproofs is characterised by a large
variety of linguistic patterns of expression, by a large benof idiosyncratic verbalisations, and
that the meta-communicative part of discourse which doédinectly contribute to the solution
has an conversational character, suggesting the studigiotshal attitude towards the computer-
based dialogues and their high expectations on the inperpirgtation resources. This calls for
a combination of shallow and deep semantic processing metloo the discourse in question:
shallow pattern-based approaches for contributions wihichot add to the proof and semantic
grammars for the proof-relevant content, in order to opté@rdoverage. In the next chapter we
propose a language processing architecture for analysidgrsts’ proof language. In Chapter 7
we show that deep lexicalised grammars provide better ghisation and thus better scalability
in terms of coverage for this type of discourse than a phbased formalism.

1The Meta-level descriptionare too sparse to draw conclusions (18 occurrences overall)
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In this chapter we describe an architecture for processifogral mathematical discourse. We
start by motivating the general properties of the architectind of the interpretation strategy
which we propose. Then we present the high-level interpogtgrocesses, discuss their com-
ponents and the employed methods of language analysis. réserpation of the interpretation

strategy for mathematical discourse is divided into twdgain Section 5.2.3, we present the
basic approach to processing mathematical language reatitag the most prominent language
phenomena discussed in Chapter 3 and show a complete wallgthanalysis of an example

utterance from the corpus in Section 5.3. The following ¢dapChapter 6, shows how we

model selected language phenomena found in our corporalia detail and discusses various
extensions to the basic resources for processing a subtde Enguage phenomena. Material
presented in this chapter appeared in (Wolska & Kruijffd6@yova, 2004a; Wolska et al., 2010).

5.1 Rationale of the approach

The approach to mathematical discourse processing whicdmet rests on a number of well-
motivated design principles: The underlying philosophyof approach isnodularity, that is,
encapsulation of information required for the differenbqessing tasks and of the processes
themselves, andarameterisationIn order to be able to address the peculiarity of matheralatic
discourse, that of fluently interleaving natural language mathematical notation (discussed in
Chapter 3) we argue that the interpretation strategy fohemastical language should be such
that the information contributed by the two language modeshe seamlessly integrated into the
semantics of utterances presented in the mixed languag@rafyese to achieve this by means
of encapsulation of symbolic contesmida uniform processing strategthe same for utterances
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presented in natural language as well as those presentetkél tanguage. Considering the
complexity of the language phenomena and the fact that waiamiag at a uniform analysis of
language phenomena of various complexity, we argueldéep linguistic analysias method of
providing a systematic and consistent account of the miaeduage discourse and propose a
step-wise interpretation proceds which a representation of the utterance’s semanticsad-gr
ually enriched with more specific information. Finally, weyae that the output representation
produced by the language processing component should speléic to a proof representation
language of a particular deduction system. It should beeralinguistically-motivated output
representation, independent of a domain reasohethe following sections we briefly elaborate
on the motivation behind these design decisions.

Modularity and parameterisation Modularity in complex systems is a desirable feature as
such because, among other reasons, rigorous definition dbiles’ interfaces facilitates ex-
change of processing methods. In language processing,lanidgis a natural choice because
the individual linguistic processing tasks are structyrahd functionally different. In the case
of mathematical discourse, it is also motivated by the faetdpecification of the processes of
certain architecture components needs to be parametevidedespect to a number of vari-
ables (which we will discuss in Section 5.2.1) in order tdlfte portability across scenarios.
First, at the level of the larger architecture, the linguaisinalysis (which operates on language
input) and domain reasoning (which operates on constrigytatbolic representations of proof
contributions) are clearly separated (see Figure 1.2 op R4y Second, the architecture en-
capsulates language processing subcomponents whickspimmgénput in a step-wise fashion,
contributing information at different levels of granutsrbf linguistic analysis. Thus, similarly

to Zinn's (2006) andvARACHNA's (Jeschke, Wilke, et al., 2008) approaches we argue for a
highly modular architecture for processing mathematiésdalirse. However, our architecture
includes components whose processes are functionalhceethined and which the other ap-
proaches integrate into larger components (for instanegh@matical notation processing) or do
not mention at all (for instance, parsing mixed language@rpretation of imprecise wording).

Encapsulation of mathematical expressions and uniform proessing As illustrated in Sec-
tion 3.2.2.1, mathematical notation can be seamlessly dddukinto natural language. While
in certain contexts, the presence of symbolic expressicag Ime a source of deviation from
the norms of syntax of natural languageymbolic expressions behave just like other linguis-
tic entities in that they enter into grammatical and sencargiations with other constituents in
a sentence (or dialogue utterance). Therefore, we propogeat mathematical notation con-
stituents occurring within natural language utterancessime way as linguistic content, while
abstracting from the individual symbols which are part ef thathematical expressions. In other
words, we argue for uniform processing of the two languagdenaat the level of utterance or

!Non-standard syntax is, however, characteristic of sujlages of which mathematical language is an example.
We discussed these phenomena in Sections 3.1.1 and 3.2.2.3
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sentence syntax in which meaningful constituents of matiead expressionas wholesrather
than symbols individually, are treated as tokens by therablanguage parser.

The interpretation process we propose comprises a numbsep$ during which mathe-
matical expressions are first encapsulated and subsegaalysed as structured linguistic
constituents represented as special lexical or claus#d (ffiseudo-lexemes”) in the parser’s
grammar. In the course of parsing, content encapsulateldisnvay is treated on a par with
natural language lexical units. This approach is supeoidnat of representing individual sym-
bols of mathematical notation within the parser’s lexicas proposed by Zinn (cf. (Zinn, 2004,
Section 5.2)) because it supports modularity and paraisatien: parsing mathematical expres-
sions can be delegated to a dedicated mathematical nogstiser which has access to its own
resources and parsing knowledge adapted to the notatiomafand mathematical domain in
guestion. Clearly, it is also superior tVARACHNA’s approach in which mathematical notation
within sentences is not at all analysed in the context of @einal language within which it
is embedded (see (Jeschke, Wilke, et al., 2008)), whichoaisly results in information l0s5s.
More details and example analyses will be presented in@ex§.2.2, 5.2.3, and in Chapter 6.

Deep linguistic analysis Traditionally, two approaches to language processing &tnd
guished in computational linguistics: “shallow procegsitypically refers to approaches based
on more or less coarse-grained lexico-syntactic inforomasuch as information on word classes
(parts of speech), phrase (noun phrases, verb phrasemgteedrgument structures) and clause
structure, or statistical word co-occurrence informatiout without or with only limited access
to semantics. Information and document retrieval is tylhigaerformed based on this kind of
“shallow” information. At the other end of the spectrum it processing” which uses se-
mantic parsers to construct a symbolic representation agsjply underspecified) semantics,
so-calledlogical form, based the sentence’s surface form. Logical forms reprasamext-
independent (literal) meaning of sentences (utterangekjreey are typically represented using
some form of logic notation, such as the Montagovian (sirtphed) lambda calculus or other
guantified or quantifier-free languages (see, for instaffdshawi & Crouch, 1992; Copestake
et al., 1995)). Shallow processing offers robustness —eathi¢é result of processing may not
be always correct, a result is always produced — howevelgvithis possible to produce some
semantic representation based on shallow processingeginesentation may be incompléte.
Therefore, considering the fact that we aim at a formal gwation which can be reliably
mapped to an input language of a deduction system, we argtlecfoeep processing approach
for mathematical discourse.

The advantage of a deep approach is that the syntax-semartdcface, that is, the mapping

2The same approach, proposed in (Wolska & Kruijff-Korbayd®@04a), has been also adopted BACTIVE-
MATH project (Callaway et al., 2006).

3A variety of language processing architectures can be itestashybrid approachesthat is, approaches
which either use both shallow and deep methods for proagésilguage or attempt to integrate various processing
components. Heart of Gold (Schafer, 2006) is an example gbedsystem in which such an integration is done in
a principled way using (R)MRS as semantic representationpgstake et al., 2005).
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of lexico-syntactic forms to logical forms, is well-definadd ensures precision in meaning as-
signment thanks to the explicit definition. Semantic repnéstions are derived in a principled
way based on the notion eébmpositionality of meanint Deep semantic parsers use carefully
hand-crafted grammars, typicallgxicalised grammarswhich encode language phenomena
based on principled linguistic analysis. Examples of suxmélisms are Head-driven Phrase
Structure Grammar (HPSG) (Pollard & Sag, 1994), Lexicatdtional Grammar (LFG) (Bres-
nan, 2001), or Categorial Grammar (CG) (Ajdukiewicz, 198at-Hillel, 1953; Lambek, 1958).
At the core of the processing architecture we propose areb@atory Categorial Grammar
(CCG) and a dependency-based semantic representation.isC&@&riant of categorial gram-
mar in which categories (categorial grammar types) aswatigith lexemes are combined using
a set of rules (Steedman, 2000). The specific “multi-modafiant of CCG and its implemen-
tation which we adopt provide a way of controlling derivasoby restricting rule application
through the use of features on categories and modes on patagjtting operators (more in
Section 5.2.3.1). These mechanisms are particularly artewhen modelling languages with
relatively free word order, such as German. Our semanti@septations, produced in parallel
with syntactic category derivations, are based on the Faagwtion oftectogrammaticend re-
flect thesemantic dependency structurthe parsed sentences (Sgall et al., 1986). Semantics in
this sense is context-independent and modelditdral meaningof the input utterances. Thus,
our basic formalisation of the language of mathematics terms of thdinguistic meaningof
mathematical content, modelled as a semantic dependancyuse. This structure is formally
represented using Hybrid Logic Dependency Semantics (HLBSIdridge & Kruijff, 2002),
a semantic formalism based on the syntax of hybrid modatI@@lackburn, 2000). Linguis-
tic meaning is subsequently interpreted in the context ehtiathematical domain of discourse
and the semantic representation is enriched with domanHsp information (see below). De-
tails on parsing and further processing of the dependemagtates will follow in Section 5.2.3
of this chapter and in Section 6.1 of the next chapter. Armtitation of semantic interpretation
based on transforming dependency structures will be shavBettion 6.2.2 when discussing
the interpretation of the “the other way round” operator.

Step-wise interpretation Similarly to many other language processing systems, tttatac-
ture we propose for processing mathematical language &lb@sa sequence of analysis steps
which attempt to provide gradually more specific informatabout the input under analysis.
Once high-level information on the structure of a commutiteaunit is known (that is, informa-
tion on the utterance units’ boundaries and the boundafi®gabolic mathematical expressions
within the utterance units) meaning assignment starts séthantic parsing; briefly outlined
above. At this stage, our basic semantic representatigoritext-independerdnd represents
the linguistic meaning of an utterance under consideratiaerms of a dependency structure.

4 The notion “logical form” goes back to the work of Tarski, Ral, and Frege. The “Principle of composition-
ality” is due to Frege. Work on formal “translation” of naslifanguage sentences into logic dates back to the early
70s and the work of Montague, Partee, Dowty, May, and Co@peong others.
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Subsequent analysis steps operate on this represent#gompting to assign a more precise,
domain-specificinterpretation to its elements. These subsequent iriton processes enrich
the original semantic representation with further infotioraif it can be found based on the ded-
icated resources: a semantic lexicon and a linguisticaliyivated domain model. The resulting
output representation can be thought of agnderpreted dependency structur€he interpreta-
tion process will be further elaborated in Section 5.2.@/ile more details on the structure of
the interpretation resources will be presented in Sectidri6

Linguistically-motivated reasoner-independent output iepresentation In the overall archi-
tecture for processing mathematical discourse we envisageall Figure 1.2 (page 21) — the
domain reasoning and the language processing tasks arly deparated. The reason for this
is that a generic language interpretation component dagsaossess knowledge to reason about
the discourse at the domain level; that is, reason aboutrtiefg Linguistic analysis is what

it is: it is an analysis of théanguageitself. While certain inferences can be made based solely
on the verbally expressed content (for instance, sortaticdsns violations), many domain-
specific mathematical inferences cannot. For instancs,iihpossible to decide on the scope
of a sentence-initial discourse marker “hence”, whichadtrces a conclusion froome or more
previously stated proof steps, without the knowledge ofdleal structure of the proof. There-
fore, we argue that the core linguistic analysis in a pros€diirse processing system may stop
short of any interpretation which requires knowledge of matatics beyond the knowledge
of the languageused to talk about mathematics. The representation iteelild belinguis-

tic, rather than express the communicated mathematical daditently in a formal language of
logic or of a specific deduction system. On the contrary: deoto facilitate portability, the out-
put representation of the language interpretation prosiessld not be specific to any particular
deduction system. Such are our HLDS-based interpretedrgEntependency representations.
The translation of these representations into an inputuagg of a domain reasoner should be
performed by the proof representation processing compensae Section 1.2 — as this trans-
lation is entirely reasoner-specific, that is, dependentheninput language of the deduction
system employed for domain reasoning tasks.

In the following sections, we present a modular architector processing informal math-
ematical discourse designed according to the principlesudsed above. We first introduce
the core components of the architecture and then elaboratioapproach to computational
interpretation of informal proof discourse in the scemsiiitroduced in the beginning of this
chapter. The presentation of the interpretation strategyqy is divided into two parts: First we
present the basic analysis steps which address a set ofsibupfrequent linguistic phenomena
and illustrate the analysis process with a walk-throughrgta. Methods of modelling specific
selected phenomena in students’ language are presentdjnet 6.
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Figure 5.1: An architecture for processing informal math8oal language
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5.2 Language processing architecture

The language processing architecture we propose for matieatdiscourse is built on a pipeline
of (standard) larger language processing subcomponéngseprocessing, (ii) parsing, and (iii)
sentence- and discourse-level interpretation. The desigrfunctionality of these components
is motivated by the properties of mathematical languagsgudised in Chapter 3. The overall
architecture is shown in Figure 5.1. In the reminder of thispter we present the individual pro-
cessing components and their functionality, includingdbee contribution of this thesis: an in-
terpretation strategy for the language of mathematicabdfsrdDetails on how specific language
phenomena are processed will be presented in the next ch@fiten discussing the interpreta-
tion strategy we focus on proof contributions and do not eslsliother types of communicative
units. Non-solution-contributing utterances would lehdmselves better to shallow processing
methods since, first, they do not need a translation to folamgluage, and second, due to the va-
riety in their verbalisations (Section 4.3.3). We startifilyaducing three obvious variables with
respect to which a larger system for processing mathenhéditguage must be parameterised.

5.2.1 Parameters

In order to facilitate portability across scenarios, thehmenatical language processing archi-
tecture is parameterised with respect to the followingdtvariables:

¢ the natural language of the contributions,
e the mathematical domain,
e and the format of the mathematical notation.

Parameterisation with respect to the input language is obvparsing is language-specific,
hence the architecture’s input analyser should supporhignas, or language models in gen-
eral, of different natural languages in which proof conttibns can be expressed. The language
models, in turn, should comprise appropriate terminoklgixica for the mathematical subarea
of the given discourse. (These are also dependent on theematital domain of the proof
discourse under analysis.) Before syntactic and semandilysis can proceed, preprocessing
modules prepare the input for parsing by identifying uttees, (multi-)word units, and ele-
ments of mathematical notation within the input commumieatinits. Sentence (or utterance)
and word boundary detection by themselves are languagéispethe process of identifica-
tion and analysis of mathematical notation, however, mastgecialised both with respect to a
mathematical domain (the set of symbols used and their sawaliffer across domains; recall
the discussion in Section 3.2.1) and also with respect to¢teral language of the input (in
English, for instance, the token “a” needs to be disambegliaetween an indefinite article and
a mathematical symbol). Identification of symbolic math&oah expressions within natural
language needs to be moreover parameterised with respiset oput format in which mathe-
matical expressions are entereflgX (D. Knuth, 1986) is a de facto standard for mathematical
document formatting for scientific publications. While tiecument processing scenario would
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most likely involve ETpX-based documents, possibly further processed using aatedi math-
ematical document processing system, such as LaTeXML @jahanns et al., 2010), tutoring
environments and web-based interactive proof checkerddwgpically offer a graphical user
interface with buttons for entering mathematical symbdisthis case, the underlying repre-
sentation format for mathematical expressions might bénMaf or OpenMath or, as was the
case with our corpora, a custom format for representing emaghical symbols as ascii text, for
instance, for the purpose of storing interaction logs. bjuFé 5.1 the components marked with
downward diagonal lines are those whose resources arefisgecthe natural language, up-
ward lines mark dependence on mathematical domain, angiicgaines mark processes which
depend on both the language and the mathematical domain.

5.2.2 Preprocessing

By “preprocessing” in language technology one understanelpart of text processing whose
purpose is to prepare the input for the analysis proper. c&ypreprocessing steps include
sentence and word boundary detection (or tokenisatiamplsistemming or full morphological
analysis, part of speech tagging, that is, identifying ate&’s word class, etc.

Our parsing process is based on a lexicalised grammarsthedt word forms as well as their
word classes are explicitly specified in the parser’s laxi(see Section 5.2.3.1). Therefore, in
the present architecture, input is not stemmed nor partedaptagged. However, preprocessing
mathematical discourse, as well as any type of technicabdise which uses mathematics as
its formal language, aside from the standard sentence arditakenisation, involves identify-
ing and analysing symbolic mathematical expressions asasetlentifying domain terms, the
technical vocabulary of the special language. Figure 5o%vska general preprocessing pipeline
for mathematical discourse. The three preprocessing atepsutlined below.

5See footnote 19 on page 34
5See footnote 20 on page 34
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5.2.2.1 Sentence and word tokenisation

The purpose of the tokenisation process is to segment the agmtributions into utterances
(or possibly sentences) and word-like units (tokens), ihatlentify utterance and word bound-
aries. As we have pointed out before, sentence and word boyigtection is language spe-
cific. Moreover, in order to account for the symbolic exprass embedded within the natural
language text, the process distinguishes between tokeioh ate natural language lexemes and
those which form part of symbolic mathematical expressions

Although conceptually simple, in general, automatic secgeand word tokenisation are non-
trivial tasks; see (Grefenstette & Tapanainen, 1994) faseudsion of tokenisation issues. Ap-
proaches to sentence boundary detection in narrative dexgferfrom simple heuristics to sta-
tistical, machine learning approaches; see, for instafiteynar & Ratnaparkhi, 1997; Palmer
& Hearst, 1997; Mikheev, 2000; Silla & Kaestner, 2004; KissS&unk, 2006). In dialogue-
based interaction input may be ill-formed, in particulamptuation may be omitted. In the two
collected corpora, 40% of utterances either lacked the finattuation or the utterance final
punctuation was non-standard, for instance, a comma oneedwe used, as in (59) and (60):

(59) Dannis{AUC) = A, und(BUC) = Bf;jdaraus folgt der Beweis4AN B €
P(ANB)
(Then(Au C) = A, and (B U C) = B hold, the proof follows from this,
ANB e P(AN B))

(60) das wars: went C K(B), dann sindA und B verschieden, haben keine
gemeinsamen Eleme@d;araus folgt, das® C K(A) sein muss
(that'sit: if A C K(B), thenA and B are different, have no common elements
it follows from that thatB C K (A) must hold

Since tokenisation issues are not the main focus of this yweekimplemented only simple
procedures for the tokenisation step of preprocessingchwhiowever, ensured that our en-
tire data set is correctly processed. Sentence and wordiszken of both corpora has been
performed using a set of regular expressions, as in the mgitaposed by Grefenstette and
Tapanainen. Sentence and word tokenisers were iteratived in such way that both of our
corpora have been correctly processed, that is, we adjastedxtended the regular expressions,
reprocessed the data, and verified the accuracy by inspabtnresults, until the corpora were
processed without errors. For the purpose of the evalugtiesented in Chapter 7, utterances
have been manually segmented as described in Chapter 4 \8&focus on semantic analysis,
we do not address the tokenisation step any further in teisigh

5.2.2.2 Domain term identification

Mathematics, as a specialised domain, is rich in technimedbulary, domain terms which name
the objects about which mathematical discourse treatsari@lean architecture for processing
mathematical discourse needs to be capable of identifyimtgisterpreting mathematical ter-
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minology. Examples of technical vocabulary from both of carpora as well as from other
mathematical subareas, both single and multi-word uniesevpresented in Section 3.2.2.2.
Because our experiments were set in only two mathematicahdts, set theory and binary re-
lations, and covered only small subsets of those domaiesedhof technical terms appearing in
the corpora is not large: there are 111 instances of nomirain phrase) domain terms in the
set theory corpus and 250 instances of nominal domain tertiieibinary relations corpus.

Terminology identification and extraction as well as idiécdition of multi-word expressions
are research subareas of computational linguistics im tven right. Corpus statistics and ma-
chine learning are the currently prevalent approaches twagdoterm identification and MWE
tasks. Examples of recent work in these areas include (&rantl., 2000; Pazienza et al.,
2005) or (Kubo et al., 2010). In the context of the restrictietinains of our experiments we
can employed a simple lexicon-based approach to idengifgiomain terms. For the purpose of
the analyses presented in Chapter 4 and the evaluation ipt€@ha domain terms have been
identified based on a list extracted from the collected aarpmd from the background reading
material presented do the experiment participants; seeriaxpnts’ overview in Section 2.4.
The list included all the wording variants for each term Haotr single- and multi-worechominal
units (examples of different wording variants of de Morgalsdws and of the Law of Distribu-
tivity of Union over Intersection have been shown in Sectio®a.2.2). In order to account for
misspellings and inflection suffixes, a simple fuzzy matghprocedure based on string edit dis-
tance (Levenshtein) has been implemented in order to fgadtioccurrences of domain terms.
Output of the domain term tagger has been verified and cedenanually. Since in this thesis
we do not focus on domain term identification as such, we tsned that the terminology lists
are exhaustive for the collected corpora and we do not asidhesdomain term identification
process any further. However, important from the point efwbf the interpretation strategy is
how domain terms are treated during processing.

In the approach we propose, nominal single- and multi-wancha@in terms, once identified,
are abstracted over in the course of syntactic and semaatsing. The meaning of domain
terms is incorporated into semantic representations ahtbgpretation stage, following seman-
tic parsing. In practice, as part of preprocessing, we #ubsteach occurrence of a domain
term in a contribution with a symbolic token which represeiit the same way as described
in Section 4.2.3. This can be considered a kind of textuatnadisation step. In our imple-
mentation the strin@OMAINTERM was used to represent technical terminology. We argue that
this approach is well-motivated and adequate for mathealatiscourse for two reasons: First,
once a (multi-word) lexical unit is identified as a domaimigits interpretation requires also
domain knowledge and not just the sentence context. (Ribealleft ideal” example from Sec-
tion 3.2.2.4 of Chapter 3.) Second, separating the two aisaprocesses enables a better sepa-
ration of parsing resources, and thus better resource rear@y. The parsing lexicon becomes
smaller and focused on sentence-level phenomena, whilaidot®rms can be handled by a
dedicated noun phrase grammar with a terminological lexmamprising solely noun phrase
forming word classes: articles, adjectives, participterjns, and prepositions.

152



5.2 Language processing architecture

5.2.2.3 Processing mathematical expressions

Unlike typical genres which are commonly addressed in ahtanguage processing, for in-
stance, news text or general narrative prose, mathemdts@lurse requires that the symbolic
mathematical expressions, mathematical notation whichg@n inherent part of content, be in-
terpreted in the context of the natural language within Whiey are embedded. To date, large
scale efforts at processing scientific discourse tend toeaddhigher level tasks (for instance,
argumentative structure identification, author attribatior citation graph analysis) ignoring al-
together the semantic import of the content expressed tisingymbolic language. In scenarios
involving proof interpretation, in which constructing arsantic representation of contenttie
computational task, bringing the two languages togetharsime qua non. Yet, as we had pre-
viously pointed out, existing systems for processing nratitecal discourse do not analyze the
symbolic content at alfARACHNA; see (Jeschke, Wilke, et al., 2008) and the overview in Sec-
tion 1.3.3) or merely gloss over phenomena related to thexantion of natural language and
mathematical notation (see (Zinn, 2004)).

In this work, we propose a method of achieving a systematityars of the mixed language
by viewing the symbolic expressions within utterances atlével of theirsyntactic typesand
treating these types on a par with natural language. Toaelties, processing symbolic math-
ematical expressions embedded within utterances corsyhisee subtasks:

¢ |dentification, that is, delimiting symbolic expressions within the natdanguage text,

e Parsing and annotation analysing their structure and semantics and marking theaet
information on the expressions’ derivation trees, and

e Interpretation in context, that is, integrating the symbolic expressions into thetayn
and semantics of the utterances in which they appear.

The identification subtask is clear: the purpose of this ggeds to recognise mathematical
expressions within the surrounding natural language tAstwe pointed out when discussing
parameters in Section 5.2.1, how this process is perforrepdrdis on the language of the in-
put contributions, on the mathematical subarea of the disep and on the encoding format
of the mathematical symbols. Once identified, every mattieaiaexpression is parsed by a
specialised mathematical expression parser. In the agfpnva propose, the parser performs
four tasks: (1) it constructs the expression’s dependsendg- derivation treé, (2) it identi-
fies the expression’s high-level syntactic type, (3) it tif@s certain salient substructures, and
(4) it annotates the derivation tree with the type and substre information. We distinguish
eight types of mathematical expressions. The two obviosg Itgpes araé ERM andFORMULA.
Their definitions are standard: Term is the type of ontolalgimathematical objects. Formulas
are sentences, expressions with a truth value. The rengaiirtypes are derived from the basic
two and account for incomplete expressions. We will retarthbse in Section 6.1.3. Once a
derivation tree of an expression has been constructedatsiode is annotated with information

"See Figure 3.2 (page 74) and the discussion in Section3.2.1.
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about the expression’s type. We also annotate nodes whagh Visually salient substructures,
namely: the head node of every bracketed subexpressiohg#tenode of the subexpression to
the left of the root node, and the head node of the subexpressithe right of the root node.
This information is relevant for reference resolution whige will discuss in Section 6.3.

Once the mathematical notation is parsed and analysedngafsutterances with embedded
symbolic expressions operates on utterance represargatiovhich the specific mathematical
expressions has been abstracted over. As with domain tdreeriginal mathematical expres-
sions are substituted with tokens which represent theggypnathematical expressions which
denote terms are substituted with the tokemrm and those which denote truth values are substi-
tuted with the tokelFORMULA; likewise, partial expressions are substituted with thespective
tokens. For instance, the expressiohs) B and K (A) N K (B) would be substituted with the
tokensTERM. These tokens are, in turn, represented in the parsersolexiln the course of
syntactic and semantic parsing, the parser operates ors¢help-lexemes, and not on the orig-
inal mathematical expressions; more details follow in Best5.2.3.1, 6.1.2, and 6.1.3. This
approach is superior to the one proposed by Zinn of encodiagyéexeme of the mathemati-
cal vocabulary as part of the utterance parser’s lexicomuinapproach the two parsing tasks,
which can be performed independently, are cleanly sephrdtereby improving modularity of
the overall architecture and reducing the complexity ofutierance parsing grammar.

The mathematical expression parser implemented for th@oparof the evaluation in Chap-
ter 7 takes word-tokenised text as input and finds matheatatixpression substrings using
regular expressions. ldentification of mathematical esgiomns within natural language text is
based on: single character tokens (including parentheasigltiple-character tokens consisting
only of known relevant characters, mathematical symboésddnicodes andTgX-commands
in C-1 and C-Il, respectively), and new-line characters. ltpdle-character candidate tokens
are further segmented into operators and identifiers bytingethe missing spaces. A basic
precedence-based parser which builds dependency-stgedpresentations of the mathemati-
cal expressions found in the corpora has been implementedpdrser uses knowledge resource
with information about all the mathematical symbols usedHgylearners in both corpora. We
also implemented a correction procedure for ill-formedregpions, based on typical errors
found in mathematical expressions constructed by studsets Section 3.2.1.5). A prelimi-
nary evaluation will be presented in Section 6.4. As with denterms, for the purpose of the
analyses and evaluation presented in Chapters 4 and 7 thelfoparser’s outputs were ver-
ified and corrected by hand. In principle, an external corepbrtould be integrated into the
implemented processing architecture, so long as for evathematical expression it can pro-
vide its type EORMULA, TERM or the fragment expression types) as well as access fusction
to retrieve meaningful subcomponents of symbolic expoessileft/right-hand side, (nested)
bracketed subexpressions, etc.

8Recall the discussion on the structure of mathematicalesgions in Section 3.2.1.2.
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Figure 5.3: An interpretation strategy for informal matlatival language

5.2.3 Core interpretation strategy for proof discourse

The basic processes involved in understanding informabfplemguage are (i) syntactic and
semantic parsing of proof contributions viewed as lingaidiscourses, independently of their
specialised domain, whose goal is to construct represemsadf the contributions’ linguistic
meaning, and (ii) interpretation of the linguistic meannegresentations constructed as a re-
sult of parsing within the domain (on the one hand, within degain of proving in general
and, on the other hand, within the specific mathematical doméh which the given proof is
concerned) and in the context of prior discourse. Once a oloiterpretation is found, the
interpreted semantic representations can be translatedoirmal representations which serve
as input to a domain reasoner.

The complete utterance-level interpretation procesgpiesented schematically in Figure 5.3.
In the following sections we present the two core processiegs and a walk-through analysis of
a typical utterance from the first corpus (C-I). We focus lmre general strategy for processing
the sublanguage of informal mathematical discourse in lwhitural language and symbolic
expressions can be interleaved.

5.2.3.1 Parsing

The first stage of interpretation consists of syntactic amdantic analysis of the proof contri-
butions. The task of the syntactic-semantic parser is tgtooct representations of thieguis-
tic meaningof utterances and syntactically well-formed languagerfragts. As the linguistic
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meaning we understand an encoding of the content of an nttenahich represents the utter-
ance’s decontextualised semantics, where by “decontéeséda we mean meaning independent
of the domain of discourse, the context in which the uttezaaqmpears, of the utterance’s propo-
sitional content, and illocutionary force. In this senseguistic meaning can be thought of as
the literal reading of an utterance perceived without exfee to any special knowledge of the
situation in which the utterance was observed.

Linguistic meaning representation To represent the linguistic meaning we adopt the notion
of tectogrammatics, the Functional Generative Descrifgi(FGD) representation of the utter-
ance’s semantic dependency structure. FGD is a lingulstiory and a formal grammar formal-
ism which is being developed by the Prague School of lingisitince the 1960s (Sgall et al.,
1986). At the heart of the framework is the notiond#fpendencyoriginally due to Tesniére
(1959), which describes subordination relations betwkemiords in an utterance. Building on
Tesniére’'s work, FDG views the utterance in terms of imé&sd layers of description which
correspond to different levels of meaning: morphologiealalytical (surface syntax), and tec-
togrammatical (deep syntax/semantics). The tectograioahdevel of linguistic meaning, its
most abstract layer, is conceptually related to logicainfonowever, differs in coverage: while
it does operate at the level of deep semantic roles and atscéamtopic-focus articulation, it
does not address such aspects of meaning as, for instaadetdtpretation of plurals and does
not resolve the scope of quantifiers or negation.

In FGD the central unit of utterance description isadency framea structure which consists
of an autosemantic lexical unit (a verb, a noun, or an adjecfor instance) which constitutes
the frame’s head, and a set of its possible obligatory andmgitcomplementations, that is, syn-
tactically dependent autosemantic units in certain @hstito the head. The head of a valency
frame explicitly specifies theectogrammatical relationsf its dependents (or “participants”, in
the Praguian terminology). A distinction is drawn betwésmer participantsand free (adver-
bial) modifications also called “functors”. Inner participants of a valencgnfre (arguments;
corresponding to theta roles, deep cases, or Tesniereatagtare the lexeme-specific argu-
ments of the head. Five types of inner participants arengjstshed (Sgall et al., 1988):

Actor The “first actant”, the agent performing an action or the eeaf a property
(“a catsleeps”),

Patienf  The object affected by the action and the primary functiothefdirect com-
Objective plement of a verb, (“to pet a ¢at

Addressee The primary function of the indirect object (“to give a chiddcat”),

Origin The source or initial state of an object (“to let a cat out obg'h

Effect The effect of an action; a primary function of a predicatimnplement of
verbs such as “nominate”, “elect”, or a result adverbiab (tthoose a cat
as a peb.

°In the examples, the fragment which contains the dependetet im the given relation to the head is underlined.
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loverrep
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dmod decl
Actor Patient
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a-node-num  sg a-node-num  sg

Figure 5.4: A simplified tectogrammatical tree of the seoéetEvery man loves a woman”.

Free modifications (adjuncts or circumstantials) expresitianal information about the head.
A large set of free modifications has been proposed for Emffigjicova et al., 2000; Hajova,
2002). Among the most common are:

Locative and directional modifications, suchLaxation Where to Where from
Modifications expressing manneExtent Means Regard Norm (“to act in accordance
with the law’, “to build a machine_after a modg| Criterion (“according to the weather
report...")

Causal modificationsCause(". .. because .."), Condition(“If ..., then ...”),Aim, Re-
sult, Concessionthese relations may be also realised by prepositionalspkrafor in-
stance, “for personal reasdr€ause), “under the circumstanéen this casée (Condi-
tion), “for the sake of clarity (Aim).

Temporal modificationsWhen Since whenTill when How long For how long
Rhematizers and sentence adverbiddsdality, Attitude

Functors marking paratactic constructiodgposition Conjuction Disjunction

Valency and modification concerns not only verbs, but alamepadjectives, and some ad-
verbs. Among free modifiers occurring with nouns there areirfstance)dentity (“the notion
of identity”, “the steamboat Titanid, Material (“a cup of coffeé), or Appurtenancg“the dog
of my cat's). Participants and free modifications can be obligatorpiional. Inner partici-
pants are prototypically obligatory and only one inner ipgrant of a given type is allowed to
cooccur with one head. Free modifications are prototypicgtional.

A tectogrammatical dependency structure is a tree with éhgasteme which represents the
head of an utterance at the root, and with dependent argehsemiantemes at the linked nodes.
Only autosemantic words (content bearing words) are repted as nodes of the tectogrammat-
ical layer. Function words are typically represented atbates of the relevant content words.
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The nodes (or edges) are labelled with the tectogrammatitations in which they stand to
their directly superordinate nodes.

Figure 5.4 shows an example of a simplified tectogrammasinalysis of the notorious lin-
guistic example: “Every man loves a woman.” The lemma “loigethe main predicatePQED)
and the root of the tectogrammatical layer. The valency érafithe transitive verb “love” spec-
ifies two participants: awctor, here filled by the lexeme “man” andRatient here filled by
the lexeme “woman”. The node contains grammateme infoomain the verb’s mood (vmod:
indicative) and deontic modality (dmod: declarative). Tiogles representing both dependents
contain references to the analytical layer’s auxiliary esidnformation about the quantifier and
indefinite modification (a-node-aux), as well as to morppmal information about the num-
ber (a-node-num®

The tectogrammatical relations which we use in the semagieesentations, unlike surface
grammatical roles, provide a generalised view of the mfabietween (domain-specific) con-
tent and the linguistic realisation. To derive our set of aefic relations we generalised and
simplified the collection of Praguian tectogrammaticaatiehs in (Sgall et al., 1986; H&jpva
et al., 2000). One reason for simplification is because iceredations have to be understood
metaphorically in the mathematical domain.

The most commonly occurring relations in our domain @ause Condition and Result-
Conclusionwhich coincide with rhetorical relations in the argumentastructure of the proof:

(61) Da[AC K(B)dilt]_ _allex,dieinAsind sind nichtin B
(Becaused C K (B) holds all x which are in A are not in)B
(62) Wenn[AC K(B)] dannANB =10

Condition

(If AC K(B)thenANn B = 0)

(63) Somitist]|... lesuh
(With this it holds that . .)

The wording which expresses justification of an inferencanterpret as &riterion:

(64) [nach deMorgan-Regel-gri]erion istK((AUB)N...)=...)
(according to De Morgan rule 2 it holds that)...

10For a formal definition of tectogrammatics, see (Sgall etl#l86, page 150ff.). The tree description presented
here is somewhat simplified. For instance, in treebank atioot, a technical node for the tree’s root is introduced,
which we omitted here. In annotated corpora, referencdsetanalytical layer’s annotations are used instead of the
actual forms. In general, because FGD analysis as such @néitcus, here and in further examples we simplify the
representations and omit a lot of information which consti$ part of FGD analyses. We do not show the analytical
layer and the links to the tectogrammatical layer. At thédg@ammatical layer we omit morphological grammatemes
as well as information on topic-focus articulation. Degdilguidelines on tectogrammatical annotation for English
can be found in (Cinkové et al., 2006).
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(65) K((AuB))ist[laut DeMorgan-1] (K (A) N K(B))
(...equals, according to De Morgan rulel, )..

Other relations are grouped into clasbiesProperty GeneralRelatiorffor adjectival and clausal
modification), for example:

(66) dann muessenallaAundB[in (H:“L enthalten sein

roperty-Location

(then all A and B have to be contained in C
(67) Allex, [diein B sind L
(AllxthatareinB..)

(68) alle elemente [ aus Q'Jspropeny_mmsind in K (B) enthalten
(all elements from A are contained Ki(B))

eneralRelation

where HASPROPERTY¥LOCATION denotes dHasPropertyrelation of typelLocation GENER-
ALRELATION is a general relation, as in relative clause complememiaiind HASPROPERTY¥
FrRoM is aHasPropertyrelation of typeDirection-Fromor From-Source All relations which do
not need to be translated into a formal representation awggd in the categor@ther.

Meaning construction with Combinatory Categorial Grammar To construct the linguis-
tic meaning representations we use Combinatory Categ@riamar; more precisely, Multi-
Modal Combinatory Categorial Grammar. We built a lexicapecified grammar for a fragment
of German and use an existing available CCG parser to directistruct semantic dependency
representations which are analogous to those of the tectogatical level described above.

Categorial Grammars (CG) are a family of syntactic theaaied grammar formalisms which
are closely related to Dependency Grammars in that both &tam research on type theory
and category theory. Early work which lead to the develogneéiCategorial Grammar dates
back Leniewski, Adjukiewicz, Husserl and Russell in the 1920 a®8Q] and was extended by
Bar-Hillel and Lambek in the 1950s. CGs explicitly define taynin the lexicon by associating
lexical units of a language with categories of two typesmalatary (atomic) types and complex
(functional) types built up using a category-building ader (denoted with a slash). When
modelling linguistic data the types might encode syntaictiormation on predicate-argument
structure, subcategorisation, word order of the objeajuage, etc. Table 5.1 shows examples
of atomic categories associated with sentences and nodniactional categories of English
verbs and adjuncts (sentential modifiets).

In the Type Logical, or deductive, tradition of Categoriab@mar, which builds on the Lam-
bek calculus and van Benthem’s and Moortgat’s categoristesys (Lambek, 1958; Benthem,

Mwe use the so-called result-first notation for syntactiegaties. The signe\ anda/S denote functional
types fromg to a, where the location of the argumem, is indicated by the direction of the slash: lef) or right
(/) of the functora, respectively. The sign\(3 is thus to be interpreted as forming a categarif an argument of
categoryg is found immediately to its left.
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5 Processing informal mathematical discourse

Linguistic category CG category
Sentence S

Noun phrase NP

Intransitive verb S\NP

Transitive verb (S\NP)/NP
Ditransitive verb ((S\NP)/NP)/NP
Adjunct S/S

Table 5.1: Example categories of Categorial Grammar

1987; Moortgat, 1988), parsing is viewed as deduction. GrMiew, the slash, which builds up
partial categories, is considered as a kind of a logicaliragbn operator. The slash (and other
operators) together with a set of axioms (inference rule$ind a proof theory. For instance,
the application rule (slash elimination) corresponds &Ntodus Ponens rule of classical logic.
Examples of basic inference rules of type logical grammaisapown in Table 5.2. Parsing, that
is, determining whether a linguistic expression is wetlied, amounts to finding a proof in the
proof system of the given categorial logic.

Combinatory Categorial Grammars (CCG), due to SzabolaiSteedman, are based on a
set of explicitly specified combinatory rules, callegmbinators which govern the deviation of
syntactic structures built up from the categories (Szap&®92; Steedman, 2000). The basic
set of combinators includes forward and backward direatigariants of the rules of functional
application, composition, and type-raising; the forwand &@ackward directions are applicable
to an argument to the right or left of a functor, respectivéligeir schemata are presented in Ta-
ble 5.312 Multi-Modal Combinatory Categorial Grammar (MMCCG) refirthe original frame-
work by introducing a means of controlling the applicatidhcombinatory rules (Baldridge,
2002). Control of rule application is achieved by specifyimodes” on category forming oper-
ators, the slashes, and making application of rules dep¢maethe slash mode. There are four
basic modes, organized in a hierarchy, which govern diffeie/els of associativity and permu-
tativity between signs. The modes the most restrictive, allowing only functional appliicat
between adjacent signs. The modeand x allow associative, non-permutative (harmonic) and
permutative, non-associative (crossed) compositiopeaas/ely. The mode is the least restric-
tive and allows application of all combinatory rufE€sFigure 5.5 shows an example derivation
of the sentence “Every man loves a woman” in combinatorygoatel grammar. Figure 5.6
illustrates blocking the derivation of an ungrammaticaggfnent “a good from Bordeaux wine”
(from (Baldridge & Kruijff, 2003)) in MMCCG. The mode, more restrictive thar, prevents
modifiers in invalid order from being combined. Grammarsiamglemented in OpenCC&:

12There is a strong analogy between the inference rules ofyfrelogical categorial grammar system and the
combinators of combinatory categorial grammars; see (&taa, 2000) for details.

BIn the following examples of syntactic categories we comsitiex mode as default, that is, unless a slash is
marked with a specific mode, the functional application misdessumed.

“ht t p: // waww. opennl p. or g
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Table 5.2: Basic deduction rule schemes of Type Logical geaial Grammar

Rule Schemes
o - e
Lexical instantiation 7 Lx
S A/B B B A\B
Slash elimination
— /E ——\E
[A]" [A]"
Slash introduction B /I B \I"
B/A B\A

Table 5.3: Basic combinatory rules of Combinatory Catej@sirammar

Rule Schemes
Application ¢) XYY =X (<) Y WX =Y
Composition eB) X/Y Y/Z = X/Z (<B) X\Y 2\X = Z\Y
Type-raising tT) X = Y/(Y\X) (<T) X = Y\(Y/X)
a woman
Lz L
Every , man loves " NP/NP NP >
NP/NP NP "' (S\NP)/NP NP
NP ~ S\NP
S <

Figure 5.5: A Combinatory Categorial Grammar derivatiothef sentence
“Every man loves a woman”.

good from Bordeaux

Lx Lx
a N/ON N\*N < B, wine La

NP/NP ) N

*

Figure 5.6: Blocking ungrammatical derivation using modeslashes in MMCCG
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5 Processing informal mathematical discourse

We argue that CCG, or CG in general, is an appropriate framefeo modelling syntactic
language phenomena in mathematical discourse. The motivatr this approach is two-fold:
First, categorial grammar is a recognised formalism whiwbées modelling complex linguistic
phenomena. It is known for its account of coordination pmeaoca (Steedman, 2000), widely
present in mathematical discourse, and word order phermsen, for instance, (Hepple, 1990;
Steedman, 2000; Baldridge, 2002). Moreover, CCG accodmarimus word order phenomena
in Germanic languages have been proposed; see, for inst@agenter, 1998; Steedman,
2000; Hockenmaier, 2006; McConville, 2007). Second, andtrmaportantly in the case of
mathematical discourse, mathematical expressions,semed as their types, lend themselves
to a perspicuous categorial treatment described below.

An approach to interleaved symbolic and natural language As mentioned earlier, in the
course of parsing, we treat symbolic tokens, which repteypes of mathematical expressions
(see Section 5.2.2.3), on a par with natural language lexigts. Within utterances, mathemat-
ical terms typically occur in the syntactic functions of neuwr noun phrase categories, while
mathematical formulas are syntactically sentences osekun the parser’s lexicon we encode
“generic” lexical entries (pseudo-lexemes) for each mathtécal expression type together with
information on the plausible syntactic categories whicpregsions of the given type may take.
The basic mathematical lexemes in our grammartamv and FORMULA. For mathematical
expressions denoting terms, representeteaM lexemes, we encode the noun and noun phrase
categories)N and N P, while for truth-valued expressionspRMULA lexemes, we encode the
category of a sentencs, as the following two examples illustrate:

TERM equal s TERM
(NP (S\NP)/NP NP)

If FORMULA then  FORMULA
((5/8)/5 5 (S\(5/9))/S  9)

A number of further atomic and partial categories are defingtle grammar for mathemat-
ical expression types in order to account for more complexractions between mathematical
expressions and the linguistic material within which they be embedded. We will return to
these in Section 6.1. The choice of the syntactic categassgciated with mathematical expres-
sion tokens was guided by a study of the syntactic context¢hinoh mathematical expressions
are used in the tutorial dialogue corpora and in mathemaégtbooks and publications.

The semantic language Aside from syntactic analysis, the parsing framework wetasana-
lyze proof language builds semantic representations ahiha utterances. The semantic forms
reflect the tectogrammatical structure of the utterancdsaamencoded using a formal language
capable of capturing the relational nature of the tectogmatital dependency representations.
The linguistic meaning, built in parallel with the syntactierivation, is represented using
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5.2 Language processing architecture

Hybrid Logic Dependency Semantics (HLDS) (Baldridge & Kifui2002, 2003). HLDS is

a fragment of the language of hybrid logic (Blackburn, 20068yeloped specifically to repre-
sent natural language semantics in terms of dependendionsla In this work we do not use
HLDS as logics; we use it merely as a representation langfagbe relational structures of
dependency-based semantics. Dependency relations afitagtmatical structures are encoded
as modal relations, denoted as in modal logic with Each dependent is associated with a
nominal, d, which also represents its discourse referent. PredicttetogrammaticabREDs,
correspond to propositions and form the head of HLDS terrhs.fdllowing term illustrates the
notation (after (Baldridge & Kruijff, 2002)):

@y, (proposition A (d;)(d; A dep;,))

d ranges over the set of tectogrammatical relations, a meféyés created for each autosemantic
lexeme,dep;, at the tectogrammatical level. Given this notation, thguiistics meaning of the
sentence “Ed read a red book in London” is represented as:

@p,(read A (Actor) (wg A ed)
A (Patient (w4 A book A (GeneralRelatioi(ws A red))
A (Location) (wg A london))

As explained earlier, the linguistic meaning of an uttegaisccontext- and domain-neutral: it
represents the literal interpretation of the utteranceasgics. That is, the semantic representa-
tions built at the parsing stage do not contain any inforomatis to how the utterance is to be
interpreted in the context of the given domain. In order tacplthe meaning representations
in the context of the proving task and the domain of mathersathe elements of the semantic
representations, the terms and relations of the logicat$pare further interpreted using lexical
and domain-specific resources.

5.2.3.2 Domain interpretation

The interpretation process in our approach gradually basi¢“annotates”) the linguistic mean-
ing representations with information stemming from donraisources. Interpretation is a step-
wise procedure in which predicates and relations of thetgatnmatical dependency represen-
tations are assigned domain- and task-specific semantisk-specific interpretation concerns
the meaning in the context of the task of theorem provingJeuy domain-specific semantics
we mean semantics in the context of the mathematical dos)awith which the given proof is
concerned; set theory or binary relations in the case ofweaicbrpora.

First, semantemes and relations of the tectogrammatimales are mapped to concepts through
a language-specifisemantic lexiconThe mapping serves either to assign the elements of tec-
togrammatical frames predicates and roles which denotetoooncepts, or provides procedu-
ral “meaning recipes” for computing lexical meanings. Tisislone by associating dependency
frames output by the parser with linguistically-motivatdédmain-relevant conceptual frames
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5 Processing informal mathematical discourse

Table 5.4: Example entries from the semantic lexicon

TR structure Lexical meaning
(equakgep, Actor,;, Patient,) (EQUALITY, X, Y)
(holderen, Actory) (cLAIM, p)
(FORMULApgep,p; ) (cLAIM, p)

(Criterion,,)
(Pleren, Reasopy)
(pLeren, Condition,s)

(EVIDENCE, X)
(REASON, p1, p2)
(CONDITION, p1, p2)

represented in a semantic lexicon. The input structureBeo$émantic lexicon are described in
terms of tectogrammatical valency frames of lexical itenisclv evoke given concept(s) or in
terms of information on which elements of dependency sirestneed to be retrieved in order
to recover the lexical meaning. The output structures daheethe evoked concepts with roles
indexed by tectogrammatical frame elements or results efing “interpretation scripts”, op-
erations on dependency structures which enable to redodetical meaning. Where relevant,
sortal information for role fillers is also given. Exampleslmaentries from lexicon are shown
in Table 5.4. Consider the fourth and fifth entries: @wterion tectogrammatical relation in-
troduces the concept of evidence or referring to evidendgth, tive dependent in th€riterion
relation actually expressing thevIDENCE according to which the head proposition holds, the
Reasortectogrammatical relation is interpreted as expressiRgsasoNfor an eventuality, with
the daughter dependent actually specifying the reasonxample of a procedural recipe is the
representation of the adjective “gemeinsamdrimon or of the semantically complex adverb
“umgekehrt” the other way (a)roundwhich will be shown in Chapter 6.

Next, the concepts are interpreted within the mathematoatain using a manually con-
structed intermediate domain model. The model lisguistically-motivated domain ontology
a hierarchically organised representation of domain ¢bj@ad relations along with their proper-
ties, which enables limited reasoning about relations betwobjects; for instance, type check-
ing. It provides a link between the conceptual frames evdiyelédxical items encoded in the se-
mantic lexicon and domain-specific (here: mathematicaicepts. For instance, the concept of
evidence is linked via the relations ontology to the refatioSTIFICATION in the mathematical
domain of proofs. The purpose of the ontology as an interatedepresentation is also to me-
diate between the discrepant views of linguistic analyst @duction systems’ representation
(see also discussion in (Horacek et al., 2004)) since theadoespecific objects from the ontol-
ogy could be, in principle, further linked to their logicafthitions in a mathematical knowledge
base, such as MBase (M. Kohlhase & Franke, 269 Mhe motivation for using an intermediate
representation instead of directly accessing a matheahddimwledge base will become clear
when we discuss imprecision and ambiguity in Section 6.2reMietails on the domain model

5This link has not been realised as part of this thesis.
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5.3 A walk-through example

and examples of the modelled objects and relations will be ptesented in Chapter 6.

To summarize, as a result of the interpretation processasgrrdependency structures of in-
put contributions are “annotated” with gradually more sfi@esemantic information first at the
level of domain-independent concepts, and then (possihbiguous) domain-specific interpre-
tations. Two points need to be kept in mind: First, if mukipeadings are found, the language
interpretation module alone ot in a position to identify the one that is plausible in the give
proof context. In particular, linguistic meaning ambiguitay lead to both logically correct and
incorrect proof steps. (Consider, for instance, the utimedformula if and only if formula and
formula”.) All parses are assigned an interpretation byldimguage understanding component
and passed on to a reasoner. It is also plausible to assumdighebiguation could be per-
formed at the dialogue level, before evaluation, by askim@xplicit clarification question. In
the case of a structurally ambiguous pattern suchFrartuLA if and only if FORMULA and
FORMULA”", the system could ask, for instance, “Do you mean ‘formtianid only if formula
and moreoverfformula holds’ or ‘formula if and only iboth formula and formula hold’?” In
the dialogue in which the utteranceSRMULA genau dann wenRORMULA und FORMULA”
appeared the tutor did not clarify the intended reading ameted the proof step, that is, he
cooperatively assumed that the correct interpretationimtaaded. (Or, possibly, did not even
realise that ambiguity was present.) For a tutoring systema,option would be to take the same
strategy: if at least one reading yields a correct step,réasing could be assumed to be in-
tended. Another option would be to leave the decision whdthaccept an ambiguous step to
the pedagogical module which could, in turn, refer to itglefit model to decide on the appro-
priate action. Modelling this decision is, however, outsaf the scope of this thesis. Second,
within the annotated HLDS terms only thieguistically realisedcontent is represented and the
language processing system is not in a position to reasart #imlogical validity of the domain
content, the proof steps themselves, which the utteranqeess. However, the annotated de-
pendency structures can be transformed (rewritten) irmeesentations for further processing,
for instance, by an automated theorem prover. In the tig@ystem’s architecture presented in
Section 1.2 this is the task of the Proof representationgaging module (see Section 1.2)

5.3 A walk-through example

As an illustration of the interpretation process, we giveep 9y step analysis of utterance (6)
which is a typical utterance from C-I. The utterance is rdpozd below:

(69) K(AU B)istlaut DeMorgan-1K(A) N K(B)
(K (AU B) is according to DeMorgan-¥(A) N K(B))

As a result of preprocessing, the utterance is transformtechiform that abstracts away from
the mathematical expressions and concrete domain terms:
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5 Processing informal mathematical discourse

TERM i St | aut DOMAI NTERM TERM

The categories, encoded in the grammar, which correspotie: twords in the utterance are:

TERM = NP
i st = ((S\NP)/NP)/(5/5)
| aut = (S/S)/NP

DOMAINTERM NP

The abstracted form is parsed using a CCG parser as follows:

laut I DOMAINTERM La
ist L. G/SUNP NP
((S\NP)/NP)/(S/S) 5/5 TERM |
TERM , (S\NP)/NP NP
NP S\NP -

S

The linguistic meaning representation constructed by #rsqy consists of the German cop-
ula, “ist”, with the symbolic meaningqual as the head of the dependency structure, and three
dependents in the tectogrammatical relatidwsor, Criterion, andPatient The HLDS term
corresponding to this dependency structure is shown below:

@;(equal A (Actor)(w; A TERM )
A (Patient (ws A TERM)
A (Criterion) (w4 A DOMAINTERM ))

Step-wise domain meaning assignment proceeds as folloint; Fased on the semantic lexi-
con, a concepEQUALITY is assigned tequal, with the Actor andPatientdependents as relata,
and theCriterion dependent is interpreted as adiEENCE. Next,EQUALITY, in the context of
set theoryTERMS, is interpreted aSET EQUALITY, and B/IDENCE, in the context of theorem
proving, as a USTIFICATION in a proof step. A simplified presentation of the entire ipteta-
tion process is shown schematically in Figure 5.7.
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5.3 A walk-through example

K (AU B) ist laut DeMorgan-1K (A) N K (B)
|l preprocessing
TERM i st | aut DOMAI NTERM TERM

| syntactic and semantic parsing

TERM i st | aut DOMAINTERM TERM
NP ((S\NP)/NP)/(S/S) (S/S)/NP NP NP
equaprep

Patient
Criterion

TERM DOMAINTERM TERM

| semantic lexicon

equaprep

| (Equality(Actor, Patient)) |

Patient

TERM DOMAINTERM TERM

| domain interpretation

equapreD
[ (Equality(Actor, Patient))

(Set equality(Actor,Patient))

Justification

TERM DOMAINTERM TERM

Figure 5.7: The interpretation process of the utterarf€éA U B) ist laut DeMorgan-1
K(A) N K(B)” (notation semantic lexicon and ontology entries simptifie
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5.4 Summary

This chapter outlined an architecture for processing mfdrmathematical proof discourse such
as that found in tutorial dialogues. The design of the aechitre was motivated by the goal of
processing not only students’ input in tutorial dialogums, also narrative discourse such as that
found in textbooks or mathematical publications. This isi@eed by modularisation of the sys-
tem’s components while taking into account the peculiesitf mathematical language: its two
“modes” (natural language interleaving with mathematiwatiation), the presence of technical
vocabulary (single and multi-word domain terms). While hesatical notation itself is anal-
ysed by a dedicated module and not by the natural languagerp#ne information identified
by the mathematical expression parser is used to encapshtaspecific instances of notation
in terms of psudo-lexemes denoting the expressions’ tyfeshvare encoded in the natural lan-
guage parser’s lexicon. Likewise, specialised terminplisgecognised by a dedicated module
and domain term instances are encapsulated in pseudodexeModularisation of this kind
facilitates efficient management of system resources:ribpg on the mathematical subarea of
discourse, an appropriate mathematical expression parggmain lexicon can be integrated
without changes to the overall system. By abstracting dwvesymbolic notation and domain ter-
minology we moreover ensure that the adaptation of the adamguage parser when switching
to a new mathematical domain is limited as much as possil#gtemding the parser’'s coverage
of syntactic constructions, rather than its vocabulanys timinimising out-of-vocabulary parser
errors. As we will show in Chapter 7 this approach and theaghof categorial grammar over a
simpler formalism results in good scalability of the pagsprocess.

The basic processing strategy presented in this chapterstve most prominent language
phenomena found in mathematical utterances: (i) the masihmn syntactic categories of
mathematical expressions embedded within natural largguaterances: terms as nouns or
noun phrases and formulas as sentences/clauses, (ii)dheslyatax of mathematical language
found in our corpora as well as in typical textbook proofs (ftstance, constructions such as
“Wenn FORMULA dannFORMULA” (If FORMULA, thenFORMULA ) or “DeshalbFORMULA”
(Therefore FORMULA )), (iii) the basic syntactic categories of the most frequembal construc-
tions (such as “gelten™hpld) or “(gleich) sein” pe equal (to), etc.), and (iv) the semantics of
constructions which can be directly interpreted in the exnof proofs and within the domains
of naive set theory and binary relations (for instance,Ghigerion or Reasorrelations to be
interpreted as a justification of a proof step or the meanirigasic verbal constructions, such
as those mentioned above). However, the mixed, naturalanthf-symbolic, language and the
informality of the mathematical discourse in our settinguiee extensions to the basic analysis
strategy in order to account for a wider range of linguistiepomena and, in particular, to enable
cooperativeinterpretation. By “cooperative” we mean that, for instncertain hon-canonical
syntactic structures or domain-specific readings of comwamadls should be interpreted without
resorting to signalling non-understanding, requestinmire or entering a clarification subdia-
logue. The next chapter presents details on processingsatsnitianguage phenomena found in
our corpora and the resources constructed for cooperatiegretation of imprecise language.
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Modelling selected language phenomena
in informal proofs

In this chapter we show how selected phenomena identifideeistudents’ contributions can be
modelled. As we have shown in Chapters 3 and 4 students’ éayegis complex, rich in linguis-
tic phenomena, and diverse. Modelling all the linguistiepbmena found in our data is out of
a scope of one thesis. The selection included in this chagemotivated by two factors: First,
we addressed those phenomena which systematically redwararcritical for automated proof
tutoring, the core scenario and motivation for this thdsife feasible. This includes modelling
basic syntactic phenomena (German word order in recur@ngtouctions in mathematics, the
mixed language, and the syntactic irregularities chartite of our domain) and basic semantic
imprecision phenomena. Second, we also selected a numib@edsting phenomena, which
are not as highly represented in our corpora, but which daiigsuggesting that they might
also reappear in new or other corpora (semantic reconstnuof a certain contextual opera-
tor, reference to symbolic notation and propositions, amathematical expression correction).
Because our data is sparse, we designed preliminary dgwiand evaluated them in proof-
of-concept evaluations or conducted corpus studies aigrmaky step toward algorithm devel-
opment. The chapter shows that the processing methodoleggdapted, in particular, deep
parsing using categorial grammars which build domain{eteent linguistic meaning repre-
sentations of the analysed input, lends itself well to miagtph number of phenomena found in
students’ informal mathematical language. The materidgmted in this chapter has been pub-
lished in the following publications: (Wolska, Kruijff-kbayova, & Horacek, 2004; Wolska &
Kruijff-Korbayova, 2004a; Horacek & Wolska, 2006b; Gerdierger & Wolska, 2005; Horacek
& Wolska, 2006a, 2006c; Wolska & Kruijff-Korbayova, 2008Horacek & Wolska, 2006c¢).
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6 Modelling selected language phenomena in informal proofs

6.1 Syntactic phenomena

The scope of the implemented parser resources, the vocaland syntactic categories, are

limited to the input language of our corpora. The methods adefliing syntactic phenomena —

basic German word order, incomplete mathematical expessised as a form of shorthand for
natural language, scope phenomena involving parts of mmttieal expressions, and the use of
spoken-language syntax to verbalise mathematical expnsss are outlined below.

6.1.1 Basic German word order in Combinatory Categorial Granmar

German is typically described as a “verb-second” languadee placement of the finite verb
depends on the clause type (main vs. dependent) and theesemmod (declarative vs. inter-
rogative vs. imperative). Three types of clauses can bindisshed with respect to the finite
verb position: verb-initial, verb-second, and verb-ldatises.

In declarative main clauses, such as (70) below, and whtigass (71), the finite verb is in
the “second” position. It need not be literally the secondadnn the sentence, as (70) illustrates,
but the secondnacro-structural elementmore in the section on topological field model below.

(70)  Der Mann fuhr den Wagenvor.  (71)  Wer fuhr den Wagen vor?
(The man drove the car uUp. (Who drove the car up?

The matrix clause of yes/no questions, (72), and alteragiixestions as well as imperatives, (73),
are verb-first, that is, their finite verb is in the sentendgal position®

(72)  Hatder Mann den Wagen gefahre(?3)  Fahre den Wagen!
(Did the man drive the cal)? (Drive the car)

Other clause types in which the finite verb occurs in the fiostition include the verb-initial
conditional, hypothetical, and formal concessive clamdsntroduced by a conjunction (corre-
sponding to the English forms “Should ..., ...").

Finally, subordinate adverbial clauses, (74), relatiaeises, (75), and complementation clauses,
(76), exhibit the verb-last pattern:

(74)  Wenn Du willst, kannst Du den Wagen fahren.
(If you want, you can drive the car.

(75)  Maria fahrt den Wagen, den der Mann gefahren hat.
(Maria is driving the car that the man drove.

(76) Ich glaube, daR Maria den Wagen fahren kann.
(I think Mary can drive the cay.

LAn exception are intonation questions, as in “Du hast denaiaggfahren?. .. "You drove the car?. ), which
may be meant ironically.
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6.1 Syntactic phenomena

Topological Field Model German clauses are traditionally analysed in termgpblogical
fields syntactic macro-structures delimited by verbal eleménfiite verb or a verb complex)
or clause markers (for instance, a complementizer, a whelative pronoun). The Topologi-
cal Field Model (TFM) proposed by Hohle (1983) is a linguiatly-motivated theory-neutral
description of the macro-structure of the clause, whichraittarises the clause not from the
point of view of phrase structure, but from the point of viefatloe distributional properties of
constituents in the clause with respect to the finite verbe B&sic model divides clauses into
five macro-structural elements: the Vorfelor€-field, the Linke Klammer left bracke}, the
Mittelfeld (middle field, the Rechte Klammeri@ht bracke), and the Nachfeldpost-field. Ta-
ble 6.1 shows the elements of the model and the placemenedfitierent constituent types
within the macro-structure.

In verb-initial and verb-second clauses, the finite vertup@es the Linke Klammer field. In
the verb-final clauses, the finite verb occupies the Recraenkier. Not all the fields have to be
occupied in a sentence and certain elements are optionateRain fields there are restrictions
on the number and type of constituents which can occur. Rbamte, German grammar rules
restrict the number of constituents in the Vorfeld to at novst. In main declarative clauses this
can be an argument of the finite verb, an adjunct, or, in cas®miplex sentences, a fronted
dependent clause. The latter type are frequent in matheshdiscourse (consider, for instance,
“weil"-clauses or conditional clauses without the suboading conjunction). In case of adjuncts
of the same semantic type, a cluster of adjuncts is also atlow the Vorfeld® In complex
sentences, the model is applied to each clause individutghatively in paratactically conjoined
clauses and recursively in hypotactically conjoined agudable 6.2 shows the topological field
analysis of the sentences (72) through (76) above. For titersees (74) through (76) both the
analysis of the main clause (m) and of the subordinate cléa)ssre shown to demonstrate the
recursivity of the model in embedded clauses. Examplesdi@d)78) below illustrate the word
order phenomena based on utterances from the corpora:

(77) [K(AU B)istlaut DeMorgan-1K(A) N K(B) Jv2
(78) [ [ Wenn alle A in K(B) enthalten sind\J. und [ dies auch umgekehrt
gilt Jvi, Jv. [ muB3 es sich um zwei identische Mengen handegin |

Modelling German word order in CCG  Work on Combinatory Categorial Grammars for
Germanic languages often focuses on addressing lingpiséinomena peculiar to this language
family, such as cross-serial dependencies in Dutch; seéndtance, (Steedman, 2000). Verb

2Presentation after (Wéllstein-Leisten et al., 1997, paje 5

3In certain cases complements of different semantic types atso be fronted together, as in the following
sentence from (Muller, 2003): “Zum zweiten Mal die Weltmeischaft errang Clark 1965 . . . Fgr the second time
Clark became the world champion in 1965)..A temporal adverbial “zum zweiten Malfdr the second timjeand
a Goal dependent of the verlsgach), “die Weltmeisterschaft”the world championshjp both occur in the Vorfeld
here. There are a number of further exceptions to the singffeM constituent rule which account for syntactically
marked topic-focus realisation. See, for instance (M{ill809; Miller, 2003) for a detailed discussion.
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Table 6.1: Constituent ordering in the Topological Fielddéh Optional elements in italics.

Clause type Vorfeld Linke Klammer Mittelfeld Rechte Klammer Nachfeld
verb-first finite verb constituents non-finite verb constituents
verb-second constituent finite verb constituents non-finite verb constituents

subordinating

. . constituents
conjunction

verb-last

non-finiténite verb  constituents

Table 6.2: Topological analyses of example German sendeifEgample numbers refer to example numbers in text;
“m” denotes a matrix clause, “s” a subordinate clause.)

Example No. Vorfeld Linke Klammer Mittelfeld Rechte Klammer Nachfeld
(72) Kannst den Wagen fahren?
(73) Fahre den Wagen!
(70) Der Mann fuhr den Wagen vor.
(71) Wer fuhr den Wagen vor?
(74s) Wenn du willst, ...
(74m) Wenn du willst, kannst den Wagen fahren.
(75m) Maria fahrt den Wagen, den der Mann gefahren hat.
(75s) ... den der Mann gefahren hat.
(76m) Ich glaube, dafld Maria den Wagen fahren kann.

(76s) ... daB Maria den Wagen

fahren kann.

sjooud ewojur ur euawouayd abenbuel pa1oajas buljspon 9



6.1 Syntactic phenomena

argument fronting is also commonly discussed, howevelafayuages like German and Dutch,
the phenomenon of fronting concerns not only verb arguméntsalso free modifiers (such as
adverbs, adverbial prepositional phrases, etc.) whicib#@xhe same syntactic behaviour. This
phenomenon has been rarely addressed in CCG accountsal Radiword order in Germanic
languages has been modelled by employing language spegifibicatory rules. Steedman
(2000); Baldridge (2002) show accounts of verb argumenttiing and free modifiers in the
sentence-medial position. However, a way of controllindtiple constituents in the sentence-
initial position is not shown for free modifiers. The Bielefe&serman CCG for human-robot
dialogue employs a counting mechanism to check the numbgomwtied verb arguments as a
way for testing which clause type has been derived: if noraggu has been fronted then a verb-
initial clause has been derived, if there is only one argunfremted then the derived clause
is verb-second, etc. (Hildebrandt et al., 1999; Tilman £t28103). Again, optional adjunct and
free modification fronting is not addressed. Carpenter&)88es account for adverbial fronting
by compiling context-specific syntactic categories inte lixicon with appropriate features to
control derivation. The approach we present is similar, éwa@y, while Carpenter populates
verb categories by instantiating them for every licensedtfng configuration. Our approach
attempts to minimise the number of context-specific lexérdfies via generalisation exploiting
topological field information and a rich set of features niragknot only verb but also conjunction
and adjunct categories. In recent work, Vancoppenolle.e2111) employ language specific
topicalisation rules (type changing rules) which derivebveecond order from verb-first order
by fronting a verb argument or an infinitival clause, whiclowk them to reduce the number
of lexical entries even further. Our approach is simplerhat tintroducing topological field
information into the CCG analysis constrains derivatioirgatly in the lexicon. Taking into
account clause bracketing formed by the verbal elemenisttiited in Table 6.2), we model
the CCG lexicon in such way that, where it is relevant, thetasftic categories incorporate
information about the topological fields of adjacent catiego The following sections outline
the basic principles of our lexical category description.

Verb categories  In main declarative clauses, the Vorfeld must be non-emptltae number
of constituents occupying it is restricted to one. (RecalbtRote 3 on exceptions). In order
to account for these constraints, we mark verb categorieeng others, with attributes which
indicate the clause type (cl-type): main vs. subordinate,the status of the Vorfeld/F). The
attributeVF takes values from the set, —}, where “—” indicates that there is no material in
theVF and “+” indicates that a verb taking the given category expectenain its left context.
Different word order configurations are compiled into théden of the grammar. For example,
the syntactic signs of a transitive verb, such as “fahreiniv€) are the following?

4A number of attributes, such as, person, number, tense pédise arguments, etc. are omitted to simplify the
presentation.
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6 Modelling selected language phenomena in informal proofs

s{cl-type=nmai n, tense=past, numrsg, pers=3rd, vfornmefin, VF=+} :
@2(fahren » <Actor>(wl ~ Mann) ~ <Patient>(w4 ~ \Wgen))
(lex) np/~np : @X _0(<det>def)
(lex) np : (@_6(Mann) ~ @X_6(<nunpsg))
(> np : (@_0(Mann) ~ @X 0(<det>def) N @ 0(<nunpsg))
(lex) s{cl-type=main, tense=past, nun¥sg, pers=3rd, vformefin, VF=+}
\ np{case=nom nun¥sg, pers=3rd}/” np{case=acc}
o (@_12(fahren) N~ @ 12(<Actor>X_12) ~ @ _12(<Patient>Y_12))
(lex) np/~np : @X_18(<det>def)
(lex) np : (@< 24(Wagen) ™ @< _24(<nunpsg))
(>) np : (@X_18(Wagen) N @X _18(<det>def) ~ @X_18(<nunpsg))
(>) s{cl -type=mai n, tense=past, numrsg, pers=3rd, vformefin, VF=+}
\ np{ case=nom nun¥sg, pers=3rd}
o (@_12(fahren) » @ _12(<Actor>X_12) ~ @_12(<Patient>X_18) ~ @X_18(\Wagen))
(<) s{cl -type=mai n, tense=past, numrsg, pers=3rd, vformefin, VF=+}
o (@ _12(fahren) ~ @_12(<Actor>X_0) N @_12(<Patient>X_18)
N @ 0(Mann) N @< _18(\Wagen))

Figure 6.1: Logical form and derivation of the sentence “Blann fuhr den Wagen”
(OpenCCG output; some parts of derivation omitted for the sd readability;
see page 163 for the explanation of the semantic notation)

fuhr = S[VF:+, cl-type : main|\ N Pactor/N Peatient  (for SVO word order)
[ VF : +, cl-type : main|\N Pratient/ N Pactor ~ (OVS)
[ VF : -, cl-type : main| /N Pacor/N Peatient~ (VSO)
[VF : -, cl-type : main| /N Peatient/ N Pacor ~ (VOS)
[ cl-type : subord\ N Peatient\ N Pactor (sov)
[

cl-type : subord\ N Pactor\ N Pratient (0OSV)

(@]

The first two entries account for fronting verb arguments,nbxt two allow constituents other
than arguments (such as adjuncts, subjunctions, etc.ctgpgdhe Vorfeld. The last two entries
model subordinate clauses. Since subordinate clausedwargsaverb-last there is no need to
control the status of the Vorfeld which in this case is alwaigser empty — see (74s) and (76s)
in Table 6.2 — or occupied solely by the relative pronoun —(3&s) in the same table. The
derivation of a simple SVO sentence “Der Mann fuhr den Wagd@iie man drove the car
shown in Figure 6.1, reflects the attribute marking intragliby the verb entry: the status of the
Vorfeld is occupied { F : +) and the clause type is maia-{ype : main). The grammar will also
be able to parse the string “der Mann den Wagen fuhr”, howtinei-type value of the resulting
structure will besubord, indicating a subordinate clause structure.

Conjunction categories The same mechanism is used to model complex sentences with re
cursive embedding. Given the marking on the verb categonwesmodel subordinate clauses
introduced by subjunctions such as “wenif’)( “weil” (becausg see (74s) in Figure 6.2, by
setting syntactic category for subjunctions as follows:
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6.1 Syntactic phenomena

wenn = S[VF:+|\S[VF:+, cl-type : main|/S]cl-type : subord

S[VF: +, cl-type : main| /S[VF: -, cl-type : main /S| cl-type : subord
S[cl-Type : subord /S| cl-type : subord /S| cl-type : subord

S| cl-type : subord\S| cl-type : subord\S| cl-type : subord

A subordinating conjunction may occur in a sentence mediaition (subordinate clause fol-
lows the main clause as in “Du kannst den Wagen fahren, wenmiltkt”) or in a sentence
initial position (the subordinate clause precedes the rolause as in “Wenn du willst, kannst
du den Wagen fahren”). These configurations are modelletdfirst two entries. The last two
entries account for recursive embedding of subordinatgsels as in “Wenn ..., ..., weil ...";

see Section 3.2.2.3 (page 92) for further examples.

Adverb categories  In main declarative clauses the Vorfeld must be non-emponsider the

sentence “Der Mann schenkt seiner Frau jetzt einen Waggme (nan is giving his wife a car
for a present noy A subset of all word order variants of the sentence, inalydhe unmarked
syntax with the subject in the Vorfeld, are shown befow:

Der Mann schenkt seiner Frau jetzt einen Wagen
Seiner Frau schenkt der Mann jetzt einen Wagen
Einen Wagen schenkt der Mann jetzt seinder Frau
Jetzt schenkt der Mann seiner Frau einen Wagen
*Jetzt seiner Frau/einen Wagen schenkt der Mann einen \isjear Frau
*Seiner Frau/Einen Wagen jetzt schenkt der Mann einen Wagigrer Frau
*Jetzt der Mann schenkt seiner Frau einen Wagen
*Der Mann jetzt schenkt seiner Frau einen Wagen

The first four variants of the sentence are grammaticalliglv&lach of the three arguments of the
ditransitive verb “schenken’g{ve as a preseias well as any optional adjunct can occupy the
Vorfeld. More than one constituent in the Vorfeld (one or mwerb arguments and a temporal
adverb), as in the remaining variants, are not grammatigalid. The Rechte Klammer and the
Nachfeld of the sentence remain empty.

In order to account for fronting elements other than verluargnts, the marking on the verb
categories is complemented by a corresponding featureeocatiegories of word classes which
can be fronted. The syntactic category of adverbials, fetaimce, is set as follows:

ADV = S[VF:+|\S[VF:+]
S[VF:+]/S[VF:-]

The first entry accounts for sentence medial and final adedement. The second entry ac-
counts for adverbial fronting while ensuring that the finiggb immediately follows the fronted

SUngrammatical sentences are marked as usual with an &steris
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6 Modelling selected language phenomena in informal proofs

adverb. The unification mechanism guarantees that onlg theid categories which are marked
as [VF : -] can combine with an adverb with the same marking, disatigwWurther fronted el-
ements; see the third and fourth entries of the example @atdgr the transitive “fuhr” @rive)

on page 174.

6.1.2 Mathematical expressions in the context of scope-bi#ag words

In order to account for interactions between symbolic nratitecal expressions and natural
language scope-bearing words, such as determiners, figianthegation, etc., in their cotext,
as illustrated by the example (20) (page 94), we identifieatiktructural parts of mathematical
expressions which may be modified by natural language wohilshwrecede them. Each math-
ematical expression is reinterpreted in terms of thesetimdbgres by assigning them types of
partial expressions. These categories are then combirtbdhei surrounding linguistic context
in the course of parsing.
Consider the example (20) reproduced below as (79):

(79) B enthaelt keinc € A

The expression: € A, while in isolation has a surface form of a formula (truthueal type),

in the context of the sentence has the reading of a post-raddifiun phrasezwhich is in A”
(object-denoting type). This is a systematic phenomeneoliing scope-bearing modifiers in
the left context of expressions of typ®@RMULA. Based on this observation, we obtain the in-
tended reading by considering two systematically relesatiént substructures of mathematical
expressions: the subexpressions directly below the top imodhe expression’s tree. (Recall
the discussion in Chapter 3 Section 3.2.1.2 and SectioR.3.2.For each expression of type
FORMULA we produce two additional readings:

TERM _FORMULA whereTERM denotes the expression left of the top-node operator
and FORMULA denotes the expression consisting of the top-node
operator and the expressions to its right

FORMULA_TERM whereFORMULA _denotes the expression consisting of the top-
node operator and the expressions to its left aBEM denotes
the expression right of the top-node operator

The underscore notation indicates an incomplete expresgiich requires material in the left
(_FORMULA) or right context EORMULA ). In the case of the expressiane A, the two
readings areERM:="z", _FORMULA:="€ A” and FORMULA_:=“z €", TERM:="A". The cor-
responding syntactic categories for lexicon entries ohmiatical expression types are thus:

TERM = NP
N

FORMULA = §

_FORMULA = NP\NP
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6.1 Syntactic phenomena

The categorywP\NP is analogous to the resulting category of a restrictive fitedi) relative
clause and its semantics is “which iSORMULA” (an alternative reading could be with a “such
that"-clause (“such thaterRm is _FORMULA"). The corresponding category f®IORMULA_
would benNP/N P, however, we did not find contexts in which partial expressiof this type
would be relevant.

Each of the above readings is embedded within the originixtdn the course of prepro-
cessing. (Recall the general architecture of the systesepted in Sections 5.2):

TERM enthaelt keirFORMULA
TERM enthaelt keimrERM _FORMULA

Following this preprocessing multiple readings of the erat are interpreted (parsed). The
first reading fails because the category of “keitv’'H/N P) cannot combine with the category of
FORMULA (S) leaving the intended reading of (79) obtained throughasstitt reinterpretation
of the original formula.

6.1.3 Mathematical expression fragments

In order to account for mathematical expressions used ashsimdl for natural language, as
in (22), reproduced below,

(80) AnBistevonCU (AN B)

both the mathematical expression parser and the naturglidgie parser are adapted to sup-
port incomplete mathematical expressions and their ioterss with the surrounding natural
language text. To this end, the mathematical expressiolysasgrocess identifies incomplete
expressions using knowledge of syntax and semantics ofalcerpressions in the given math-
ematical domain and assigns them symbolic tokens repiegeantomplete expression types.

In the case of (80), the mathematical expression parsetifiégsrthe symbole, and, based
on its knowledge of symbols in set theory, it finds that it isarfula-forming operator requiring
two arguments: one of typeltHABITANT and the other of type . The symbol is assigned a
symbolic token FORMULA_ and the utterance is preprocessed as:

TERM iSt_FORMULA_ VONTERM

In line with the lexicalised grammar approach, incomplethmmatical expressions as cate-
gories are modelled in the lexicon by compiling non-canahéonstructions into the grammatr;
that is, symbolic tokens for incomplete expressions arkided in the CG lexicon as pseudo-
lexemes with appropriate syntatic categories. The entryFORMULA_ in the parser’s lexicon
for the occurrence above corresponds to the relational reagting, “element (of)”:

_FORMULA_ = NP/PP[lex: von|
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6 Modelling selected language phenomena in informal proofs

Other kinds of incomplete mathematical expressions and tyyges are treated in a similar
way: by identifying their incomplete type (which is used akean during parsing) and introduc-
ing a corresponding entry in the parser’s lexicon.

6.1.4 Irregular syntax

With utterance (81), reproduced below, we illustrated the of domain-specific syntax while
verbalising a formal expression in natural language:

(81) wennA vereinigtC ein Durchschnitt vorB vereinigtC' ist, dann missen
alle Aund B in C sein
(If A unionC' is equal to intersection aB unionC, then allA and B
must be inC)

The past participle “vereinigt’unified is normally used in a verbal prepositional construc-
tion: “vereinigen mit” + Dat. ¢nify with). The construction A vereinigt B” is, however,
commonly used in spoken verbalisation of the tetroy B. (Recall the discussion on verbalisa-
tion of symbolic notation in Section 3.2.1.2) In order to@aat for this kind of domain-specific
constructions, appropriate syntactic categories for diorspecific lexemes are introduced into
the parser’s lexicon. In this case, the lexical entry forréieigt” includes a reading analogous
to that of a mathematical operatorfERM_, an incomplete term requiring terms to its left and
right. The parser’s lexicon includes the following syniaciategory for the lexeme “vereinigt”:

vereinigt := NP\NP/NP

Note that this category also enables parsing constructook as “die Mengel vereining B”
(the setA union B) with two readings: [[the sefl] [union] [B]] and [[the set /A union B]]]. Of
course, the lexicon includes canonical categories foreivggt” as past participle.

6.2 Semantic phenomena

Of the semantic phenomena illustrated in Section 3.2.2.4osas on ambiguity introduced
by imprecise language and on computational reconstruaifothe semantics of “the other
way round”. Imprecision of the kind we address here is fretlyfound not only in students’
language, but also in mathematical textbooks, thus psorg its modelling is well justified;
see also Section 3.2.2.4. The contextual operator is Bttegebecause of its complexity and
because a non-standard and non-trivial semantic procélnoezded to reconstruct its meaning.
Moreover, to date, the literature on semantic and pragnfeatiors in the use of “the other way
round”-like operators is scarce and there is little work tsrcomputational modelling.
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Table 6.3: Example entries from the semantic lexicon

TR structure

Lexical meaning

Containment
(a) (containerep, Actor,, Patient,)
(b) (containegep, ACtOr, typecompLex me, Patient, ypewe)

(c) (berren, Actor,, Location, jexin)
(d) (bepren, Actor,, Location, jexausserhal)

Difference
(e) (bePREDv ACtorCOORD(z1,typeSET;ac2,typeSET) '
HasPropertyxverschiedeh

() (besreo, ACtorCOORD(acl,typeSET;w2,IVDGSET) J
HaSPrOPert)éx:disjunkt)

Common property

(@) (Porep,semhave ACtOlcoorD(zy 25, .20 )
(Patienb,semPred,reh GenRQLx:gemeinsar})

(h) (PredPRED,SemhaVei ACtorCOORD(acl JT2yey T )
(Patienp,non—rely Gen Ralex:gemeinsar)l)

(i) (Predlsgeprel, ACtorCOORD(xl,xg ..... Tp)
(Patienb,semPredz,reI, Gen RQszgemeinsar)\)

(CONTAINMENT, CONTAINER,, CONTENTS,)
(STRUCT. COMPOSITION STRUCT. OBJECT,, SUBSTRUCTURE)

(CONTAINMENT, CONTAINER,, CONTENTS;)
NOt (CONTAINMENT, CONTAINER,, CONTENTS,)
(DIFFERENCE OBJECT, 1, OBJECT,2)

(e1 ELEMENT z1 andes ELEMENT 22 = €1 # e3)

(Pred(x, y) andPred(x%, y) and...and Pred(x, y))
(Pred(x, y) andPred(x%, y) and...A Pred(¥,, y))

(Pred1(x, y) and...andPred1(x, y) and
Pred2(x, y) and...andPred2(x, y))

evuawouayd onuewas g9



6 Modelling selected language phenomena in informal proofs

6.2.1 Imprecision and ambiguity

In Section 3.2.2.4 (page 97ff) we illustrated impreciseglaage which students use to refer to
domain concepts precisely defined in mathematics; for mestathe subset relation is phrased
using the verb “enthalten’cpntain (see example (20) on page 94) and the property of sets
being disjoint is phrased using the word “verschiedetifféren) (example 31 on page 99). In-
terpretation of imprecise and ambiguous language reqaissciating the linguistic meaning
representations with plausible interpretations withirttreenatical domain. We model imprecise
language in two stages: First, we extend the semantic lexigth predicates which repre-
sent the semantics of imprecise, ambiguous, and inform@alesgions. Second, we represent
the concepts in a domain ontology as generalisations offgpatathematical concepts. The
linguistically-motivated domain ontology mediates betwehe lexical representations and do-
main interpretations. The two knowledge sources, outlbeddw, allow us to obtain the intended
(possibly non-unigue) domain-specific interpretation.

Semantic lexicon To mediate between the ambiguous linguistic realisatidrdomain con-
cepts we use a semantic lexicon which maps the dependemogdrautput by the parser to
conceptual frames in a domain ontology (see below) or topnégation scripts. The mapping is
represented by means of rules. The input part of the rulgsesified in terms of tuples defin-
ing tectogrammatical valency frames, that is, predicatekralations evoked by lexical items.
The output structures are either the evoked concepts widls indexed by tectogrammatical
frame elements or interpretation scripts, that is, “regiger constructing symbolic meaning in
the form of unquantified first order representations. Whelevant restrictions on role fillers —
surface-lexical (marked witlkex), lexico-semanticqgen), sortal fypd, etc. — are specified.
Basic, most frequently used entries from the semantic dexigere shown in Table 5.4 (Sec-
tion 5.2.3.1; page 164). Table 6.3 schematically show$éurtmore complex entries encoded
in the lexicon for the most frequently recurring conceptievant while talking about sets:
Containment(set inclusion or membershipRifference(disjoint sets), andCommon property
(empty/non-empty intersection); see examples in Secti@r?3 (page 97). The symbols in
bold are predicates with specific semantics, italics detemttngrammatical roles, and capitals
domain concepts from the domain ontology. (Some technitfakmation needed solely for
implementation is omitted for readability.) The illusedtexample entries are explained below.

ContainmentThe CONTAINMENT relation — (a) through (d) — is evoked by the predicate
“enthalten” €ontain) or by theLocationTR. The tectogrammatical frame of
“enthalten” involvesActor and Patientdependents, (a). Two entities are in-
volved in theCONTAINMENT relation: CONTAINER @andCONTENTS The for-
mer role is filled by theActor dependent of the tectogrammatical frame and
the latter by thePatient dependent. CONTAINMENT is also evoked by the
Locationrelation realised linguistically by a prepositional pteagith “in”,
(c) and involving the predicate “seinbé and the tectogrammatical relations
Actor (asCONTENTS andLocation(CONTAINER). Another realisation, (d),

180



6.2 Semantic phenomena

dual to the above, occurs with the adverbial phrase “aufierfian
(liegen/sein)” (ie/be outside of and is defined as negation GONTAIN-
MENT. In the domain ontology (see belowpPNTAINMENT specialises into
the relations of (strictsUBSET, ELEMENT. A different kind of containment,
(b), may be meant if the entities involved are interpretedetyen syntactic
terms as mathematical expressios as in “The termA U B containsA” (a
constructed example). In this casSEBRUCTURAL COMPOSITIONiIS meant
and the roles of the entities involved are those effRUCTURED OBJECTa
complex mathematical expression as fwor relation), and &sUBSTRUG
TURE (a mathematical expression, complex or atomid?atseny.

Difference The DIFFERENCE relation — (e) and (f) —, realised linguistically by the
HasPropertyTr with the predicative adjective “verschieden (sein)e (dif-
feren), involves a pluralActor (here: coordinated dependentsoORD). A
generalisation of this rule would involve an arbitrary nuenbf coordinated
entities and a matching number@BJECTarguments obIFFERENCE This
would also enable interpretation of “pairwise differen#f’ ¢onstructed ex-
ample), for instance, by making an attribygairwise on the relation. The
other kind of domain-specific difference, evoked by the diomerm “dis-
junkt (sein)” (be) disjoin) is analysed by means of an interpretation script
which directly constructs the domain-specific interpiietat

Common  The concept of having a “common property” — (g) through (ian be inter-

prop- preted using three interpretation scripfsandPred are meta-objects which

erty can be instantiated with any predicate. The attributes-rel and rel re-
strict instantiation to non-relational and relational gicates, respectively.
The first entry, (g), models the case in which Petientdependent is a re-
lational noun and the predicate is a verb with the semanfidgaee as in
one of the utterances in the corpus: A[und B ]actor haben [ gemeinsame
Elemente gatient’ (A and B have common elemehtsThe second entry, (h),
covers the case of a non-relational noun, as in “[ Peter ant]R&or,cooro
[ have brensemhave[ @ cOMmon cardatientnon-re”- The third entry, (i), is the
case for utterances with both a relational noun and a reltpredicate, as in
“[ Peter and Pauldctor,coorn [ S€€ bredirel [ @ cOmmon friendgatientpredzre”-

Linguistically-motivated domain ontology Domain-specific interpretations of concepts in
the semantic lexicon are retrieved from a domain-ontologinlike the model in (Gruber &
Olsen, 1994) our ontology ibnguistically-motivated It is a hierarchically-organised repre-
sentation of objects along with their properties and tydesbgects for property fillers, which
serves as an intermediate representation mediating betwgeecisely expressed concepts and
a formal representation of knowledge for reasoning purpost¢oracek (2001b) and Horacek
et al. (2004) motivate why this kind of intermediate reprdéation is required as an interface
when mathematical knowledge is to be presented in natungukge. Our representation is
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6 Modelling selected language phenomena in informal proofs

motivated by analogous phenomena on the language undtirgiagide — see the discussion in
Section 3.2.2.4 — and, like the model in (Horacek et al., 200bsely reflects the knowledge
representation the intended domain reasdi®IEGA.

In the objects ontologywe model, among others, typographical properties of matiiead
objects, including substructure delimiters (such as etk linear orderings (for instance, ar-
gument positions with respect to the head operator), angpgrgs or delimited substructures
(for instance, bracketed subformulas). In thations ontologywe model imprecise relational
concepts which have a meaning independent of the mathexhdtienain, but need to be in-
terpreted in terms of their domain-specific meaning. Imigedg expressed relations are mod-
elled as general relations which subsume mathematicalae$a The former provides access
to substructures of mathematical expressions as potemtiatedents of referring expressions
(see Section 6.3.2). The purpose of the latter is to allowousaterpret ambiguous relations.
For instance, in order to interpret an imprecise verb “dteha (contair), we model a relation
of CONTAINMENT as asemantic relatiorin the ontology of relations.CONTAINMENT holds
between entities if one includes the other as a whole or iidluides components (elements)
individually. This is a generalisation of th&{RICT) SUBSET and ELEMENT relations in set
theory. An ambiguous lexical item “enthalten” is linked teetambiguous concept which it
evokes through the semantic lexicon and the concept isiingiven alternative domain-specific
interpretations through the domain ontology; a basic examps shown in Section 5.3.

Excerpts from the ontologies of object and relations arevshia Figures 6.2 and 6.3. Names
of objects and relations are capitalised. Names of prasedie in lower-case italics. (To sim-
plify the presentation, certain constraints on fillers ankld between properties are not shown.)
Properties are inherited monotonically. Object spe@ttis in some cases introduces further
properties (marked with a-") and in other cases, object properties become specidlsget’).
For instance, the propertontainerof the CONTAINMENT relation is a more specific instance of
the argumentproperty ofRELATION propagated througREMANTIC RELATION. Value restric-
tions on properties are marked with 'restr’. Restrictiomsnmmber are marked with a number
on a property. For instance, the filler of tight argument(specialising thargumentproperty)
of SET PROPERTYis restricted to be an object of tymeT (in the objects ontology) ankbft
argumentof aBINARY RELATION must be unique, as indicated by '1’.

The objects ontology includes moreover informationneareological relationdbetween ob-
jects (not depicted in the figure for the sake of readabilitg;list examples below). Mereolog-
ical relations concern both physical, surface propertfesbfects and ontological properties of
objects. The part-of relations specific to our domain camceathematical expression substruc-
tures (notations is part-of(part, whole); not all objecerg/shown in Figure 6.2):

part-ofSTRUCTURED OBJECTygrerm, STRUCTURED OBJECT:ry)
part-ofSTRUCTURED OBJECErackeTep Terms STRUCTURED OBJECTzrm)
part-ofSTRUCTURED OBJECTerm components STRUCTURED OBJECTery)
part-ofSTRUCTURED OBJECTygrormuLa; STRUCTURED OBJECTormuLA)
part-ofSTRUCTURED OBJEC#rackeTep FormuLa; STRUCTURED OBJECTormuLa)
part-ofSTRUCTURED OBJECTormuLa components STRUCTURED OBJECTormuLa)
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6.2 Semantic phenomena

These relations are especially relevant for resolutiorfgfrences to parts of notation (discussed
in Section 3.2.2.5; see also further in this chapter). QGaghe commonly recurring fragment
“Dann gilt fur die linke Seite, ...” Then for the left side it holds that .).. From the objects
ontology we know that terms and formulas have sides:

property6 TRUCTURED OBJECTerm, COMPONEREm sidd
prOpertySTRUCTURED OBJECIORMULA, Componen&'mmasidé

The predicate “gilt” bold) in the context of a prepositional phrase with “fifo) normally
takes two arguments: one of tyB@RUCTURED OBJECT¥ormuLa (the formula that holds) and a
PP argument of typ8 TRUCTURED OBJECTggry OF STRUCTURED OBJECHormuLa, Father than

an argument which is a propertgide. Using the objects ontology and the reinterpretation rule
OBJECT FOR PROPERTYSection 6.3.2) we can obtain the intended interpretation.

6.2.2 “The other way round” semantics

“The other way round” or the German “umgekehrt” is a complperator of higher-order, that
is, it takes a predicate or predicates as arguments. Inshéirgy proposition certain elements of
the original proposition are “swapped”, that is, the implproposition is a transformed version
of the verbalised proposition. Recall example (33) from @groduced as (82) below:

(82) Wenn alled in K (B) enthalten sind und dies auch umgekehrt gilt, muB3 es sich
um zwei identische Mengen handeln
(If all A are contained ik (B) and this also holds the other way round, these
must be identical seks

In the utterance abovéhe other way rounds ambiguous in that it may operate on immediate
dependents of the verb “contain”, resulting in the readialy £ (B) are contained iA”, or

on its embedded dependents, yielding the reading Balire contained iK' (A)”. The fact
that theContainmentelation is asymmetric and the overall task context — prp¥irat “If A C
K(B), thenB C K(A)” holds — suggest that the second interpretation is meamhilg8 other
operators were discussed in Section 3.2.2.4; see page 99)

Human-human interaction frequently exploits the efficien€ implicitness in communica-
tion. By contrast, computational understanding of implg@mantics is non-trivial. Formal
reconstruction of implicit meaning requires inference eagblving ambiguities, which, in turn,
requires context understanding and domain knowledge grpratation. Linguistic devices
requiring insertion of omitted content, such as gapping and ellipsis, have bddressed by
computational approaches, however, there is virtually nckvaddressing structures whose re-
construction requires transformation, such as “the othey und”. Chaves (2010) proposed
an HPSG-based approach to modellnce versahowever, evaluation was not performed. We
studied systematically the sentential contexts in whible tither way round”-like lexemes occur
and devised an algorithm for resolving the implicit semastiThe reconstruction algorithm uses

185



6 Modelling selected language phenomena in informal proofs

the deep semantic representations produced by the pasefarms the semantic representa-
tions using patterns, and applies pragmatically- and ecaliy-motivated preferences to restrict
the number of candidates. The reconstruction method igedtin the following sections.

“The other way round” data In order to learn about cross-linguistic regularities ie te-
haviour of “the other way round” constructions, we collectecorpus of German and English
sentences in which the predicate occurred. Aside from dari&d dialogue data, the sentences
stemmed from the Negtand Frankfurter Rundschau corpora, and the Europarl cgmehn,
2005). The latter we used in a pilot evaluation. A subset nfesees stemmed also from inter-
net searches. The corpora were searched for the Germamphaasiersrum” and “umgekehrt”,
and their English equivalents “the other way (a)round” avidé versa”. Uses of “umgekehrt” as
a discourse marker were excluded as were the cases in wigichatisformation needed was of
lexical nature (such as finding an antonym) and instancearaférsrum” expressing a physical
change (such as changing the orientation of an object; semstance, the use of “umgekehrt”
in the Bielefeld corpug. Example sentences are shown below:

(83) Technological developments influence the regulateaméwork and vice
versa.

(84) Itdiscusses all modes of transport from the Europedarito these third coun-
tries and vice versa.

(85) Ok — so the affix on the verb is the trigger and the NP isdhget. ... No; the
other way round

(86) Da traf Voller mit seinem Unterarm auf die Hufte des flaggow Rangers
spielenden Ukrainers, oder umgekehrt
(Then Véller hit the hip of the Ukrainian playing for Glasgowrigiers with his
lower arm, or the other way round

(87) Nowadays, a surgeon in Rome can operate on an ill patiestially an elderly
patient — in Finland or Belgium and vice versa.

(88) Der Ton der Klarinette ist wirklich ganz komplementadr den Seiteninstru-
menten und umgekehrt
(The clarinet’s tone is really very complimentary to striregsl vice versp

(89) Wenn alled in K (B) enthalten sind und dies auch umgekehrt gilt, muf3 es sich
um zwei identische Mengen handeln
(If all A are contained inK (B) and this also holdvice-versathese must be
identical sety

Shttp://www. col i . uni-saarl and. de/ proj ect s/ sf b378/ negr a- cor pus/; Last accessed in
April 2013
"ht t p: / / ww. sf b360. uni - bi el ef el d. de/; Last accessed in May 2012
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6.2 Semantic phenomena

Table 6.4: Types of “the other way round” transformations.
Transformation type Description

Argument Case role fillers (arguments) of a head need to be swappedfimm
diate daughters of a head)

Modifier Argument modifiers need to be swapped (lower dependents of a
head)

Mixed Combination of the two cases above (a modifier is swapped for

an argument which, in turn, takes the role of the modifier i th
reconstructed form)

Proposition The proposition’s “dual” needs to be applied (in some casgs-
mentswap can be applied there as well)

(90) Dann ist das Komplement von Mengen Bezug aufB die DifferenzA/B =
K (A) und umgekehrt
(Then the complement of sétin relation to B is the differenced/B = K(A)
and vice versp

(91) Ein Dreieck mit zwei gleichlangen Seiten hat zwei digio3e Winkel und
umgekehrt
(A triangle with two sites of equal length has two angles ofbgize, and vice
versg

(92) ...Klarinette fir Saxophonist und umgekehrt
(...aclarinet for a saxophonist and the other way round. ..

(93) Man muR hier das Gesetz der Distributivitat von Durbhngt Giber Vereinigung
umgekehrt anwenden
(One has to apply the law of distributivity of intersectiorepunion in reverse
direction her¢

(94) Esgqilt:P(CU(ANB)) C P(C)UP(ANB).....Nein, andersrum.
(It holds: P(CU(ANB)) C P(C)UP(ANB). .... No, the other way rouny.

(95) Wir wissen, dald sich Sprachen in Folge von geographisSkeparierung au-
seinanderentwickeln, und nicht umgekehrt
(We know that languages branch out as a result of geograpbkiggration, not
the other way roungd

Analysis of the examples reveals that “the other way roumgiears in contexts which can
be classified in terms of the type of elements which must eFéhtinged (“swapped”) in order
to recover the implicit proposition. The four types of trimmmations needed to reconstruct the
implicit semantics are summarised in Table 6.4.
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6 Modelling selected language phenomena in informal proofs

Sentences (83) through (86) illustrate #hmumentswap. The transformation may be ap-
plied to different dependent roles, for instanéator and Patient dependents, as in (83), or
Direction-From/Toroles, as in (84). Transformation should also work acrosgses, as in (85).
Example (86) shows that role fillers themselves may be cotgiteictures and that their parts
may participate in the transformation; in (86) world knotde is needed in the reconstruction
(involved here are persons including their mentioned baglyspand these together need to be
swapped, not just the body parts or just the persons).

Modifier swap is illustrated with examples (87)—(88). Utterance) (87ambiguous. From
a structural point of view, it could be categorised asAagumentswap, however, given world
knowledge, this interpretation is rather infelicitous. @ntextually-motivated metonymic re-
construction, prior to applying the transformation, isuiegd in (88); “the strings” needs to be
interpreted as “the tone of the strings”.

Mixed transformations are illustrated with utterances (89) ®).(9The first example, (89),
has been already discussed earlier in this section. In (Miple occurrences of the items
need to be swapped and the transformation must be propagated formula. In (91) the
properties of a triangle need to be swapped. This can be dasexllon the surface structure of
the sentence. The resulting implication states that agigawith two sides of equal length is a
triangle with two equal angles. In this case, the reconstmicould also fall into the last type,
Propositiontransformation; here, this would involve reversing the ligggion. In (92), a lexical
reinterpretation is needed prior to the reconstructiorsai®phonist” needs to be expanded into
“a saxophone player”, so that the intended reading “saxalfar a clarinet player (clarinetist)”.

The fourth type of transformation, illustrated with exaesl(93) to (95), involves swapping
entirePropositions in the domain of mathematics, these may be formulas. In (88)distribu-
tivity law needs to be applied “right to left” (rather tharefi to right”) and in (94), the superset
relation needs to be swapped for subset. The last examg@g, r€quires structural recasting.
Once the utterance’s semantics is represented as headeeRgsultrelation, swapping the two
propositions — “branching out of languages” and “becomiaggyaphically separated” — yields
the desired result.

Processing The examples show that “the other way round” transformatiypically operates
at the level of semantic roles of the elements in a sentenag:. |&38t categoryProposition
transformation, can be in some cases also realised Asgamenttransformation; for instance,
instead of swappin® for C in (94), the two sides of the formula could be swapped. Clearl
however, the information relevant in meaning reconstancts the sentence’s semantic depen-
dency structure. In our approach we employ the tectograrabatructure and show it to be an
appropriate level of semantic description.

The linguistic analysis consists of semantic parsing, tileation of candidate pairs whose
elements are to be interchanged, followed by contextualthyivated reconstruction and optional
recasting. In a fully automated setting, sentences wouldriadysed with the parser which is
part of our discourse processing architecture and whicktoacts deep dependency-based rep-
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6.2 Semantic phenomena

Table 6.5: Examples of interchangeable relata in “the otfegr round” transformation.
Interchangeabl&ctor, Patien)
Interchangeabl&jrection-Where-FromDirection-Where-Tp
Interchangeabl@fme-From-WhesiTime-Till-Whei
Interchangeabl€ausePRED)

Interchangeabl€ondition PRED)

resentations of utterances’ linguistic meaning; as deedrin Section 5.2.3.1. Here we perform
manual analysis.

Reconstruction heuristics Based on analysis of the corpora, we have identified conibireat
of dependency relations which commonly participate in ‘ditteer way round” transformation.
Examples of pairs of such relations are shown schematigalfable 6.5 Similarly to Cause
andCondition arguments of other discourse relations are also candiflatéhe transformation,
for instance ResultEffector enumerative relations, such &squencer List of the Rhetorical
Structure Theory. During processing, we use the table eféhiangeable relata as a preference
criterion for selecting candidate relations for transfation. If one of the elements of a can-
didate pair is aroptional argumentvhich is not realised in the given sentence, we look at the
preceding context to find the first instance of the missingele.

Reconstruction is performed based on formally defined ridesach of the identified trans-
formation types shown in Table 6.4. The rules consist of éepatpart and an action part.
Patterns are matched against the output of the semantiergarsdentifying the relevant tec-
togrammatical roles and accessing their fillers. Actionghagransformations (below) on the
items identified by the pattern parts to build the implicitisture.

The reconstruction rules are shown in Table 6.6 There arga#terns for arArgumentype
transformation: If the scope of the swap is a single clause,arguments (semantic roles) of
compatible types are identified as interchangeable. Fardbke of a two-clause scope, the rela-
tion must be a conjunction and swapped are arguments initie idations. In dModifier swap,
type compatible modifiers of distinct arguments are setector aMixed swap, a dependent
is selected, as in the first case Mfgumentswap, and a type-compatible modifier of another
argument, as in Modifier swap.Propositionswap inverts the order of two propositions.

Rules are applied to the parser output (see Section 5.23ade 155). For each node
all patterns are tested on its dependency substructureifesut;cessful, the result is bound to
p¢ (transformed). PRED(p) is a function which checks ip has aPRED feature, that is, it is a
proposition. Similarly, Coorg) and Subor¢p) perform tests for complex propositions: co-
ordination or subordination, respectively, based on aofigiectogrammatical relations which

8As in the presentation in Section 5.2.3?REDis the immediate predicate head of a relation.
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6 Modelling selected language phenomena in informal proofs

Table 6.6: Reconstruction rules

Transformation Reconstruction pattern
type
Argument PRED(p)ATRL(p, z) A TRa(p, y) A Type-compatibleg, y) A InterchangeabldR;, TR:)
- Swap@, Z, y7pf)
Coordp) A TRi(p, ) A TR(z,u) A TR:(p,y) A TR(y, v) — Swapp, u, v, pt)
Modifier PRED(P) A TRy (p, ) A TR}, (x,u) A TR(p,y) A TRY, (y,v) A (TR # TRy)
A Type-compatibleg, v) — Swapp, u, v, p)
Mixed PREIXp) A TRy (p, l‘) A\ TRll(l', u) AN TRQ(})7 y) A\ (TR1 75 TRQ)
A Type-compatibleg, y) — Swapp, u, y, pt)
Proposition Subordp) A TRi(p, ) A TR(p,y) A (TR # TR:) — Swapp, , y, p+)

represent complex syntactic structures. Within a strectdependents (participants and modi-
fiers) in specific tectogrammatical roles are accessed bytttion TR(p, ), wherex specifies
the TR-dependent op; subscripts on: are used to define constraints on the relatiofR! is a
generalisation o Rwhich covers iterative embeddings (multiple occurrendeBRare found;
the roles in the chain are not required to be identical). &$idm access functions, two test
functions expressing constraints on the identified iteradafined: Interchangeabldg,, TR,)
tests whether a pair of relations is defined as a good cardidaia transformation, given the
table shown previously (Table 6.5). Type-compatiblef) tests whether the types ofandy
are compatible according to an underlying domain ontoléigyhe case of proofs, this is an on-
tology of mathematical objectsThe action part of the patterns is realised by Swap(y, p;)
which replaces all occurrences #fin p by y and vice versa, binding the result pg. Differ-
ent applications of this operation result in different argtations ofr andy with respect to the
dependency substructupe

In addition to the the pattern matching tests, A&rgumentand thePropositiontransforma-
tions undergo a feasibility test to check whether the peddi¢eRED) whose roles are subject
to the swapping operation is known to be symmetric or asymemdf the predicate is known
as asymmetric, the result is considered implausible forasgia reasons, if it is symmetric,
for pragmatic reasons (the converse proposition conveysemoinformation). In both cases a
swapping operation is not performed.

Finally, a set ofrecasting rules- shown in Table 6.7 — is invoked to reorganise the semantic
representation prior to testing the applicability of a mstouction rule. The recasting opera-
tions adapt the dependency representations for the pugdasamantic reconstruction. Three
recasting rules are definedexical recastingperforms lexical expansions of lexemes in order to
accommodate the fact that the semantics of some lexemesatesnthe meaning of two related
items. Lexical representations are expanded if there istarsiole with a filler whose type is

SWe did not construct a large-scale ontology of mathematibpcts. In an automated system such a knowledge
source would be of course necessary. For the purpose of dfigation we assume that such knowledge base exists.
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Table 6.7: Recasting rules for “the other way round” recartsion

Rule Formalisation
Lexical recasting PRED(p) A TRy (p, z) A Lex-Expandg, u, TR v) A TR:(p, )
(lexical expansion) A (TR, # TRy) A Type-compatiblef, y)

- Swap@a Z, TRU, U)apt) A Swap@tv Y, Uapt)
Role recasting PRED(p) A TRy (p, u) A TRy (p, v) A Type(u, t.) A Type, t,)
(optional role as head of A Recastable(R., t,, TRs, t,) A TRs;(p, w) A Type-compatiblef, w)
an obligatory role) ANTR AZTR)A (TR #TR) A (TR # TRy)

— Swapp, u, v, p:) A Add(p:, TR;(v,u) ) A Removef,, TR,)
Proposition recasting PRED(p) A TR(p, ) A Member{TR, Subords)
(optional role as a dis- — Build(TR(p, TR:(p, z) A TRy (p, Removép, x))
course relation)

compatible with the type of the expanded iteRule recastings performed if a dependent item
appears as a sister role in an overarchimframe, that is, if the dependency among items is
not reflected by the dependencies in the linguistic strectirhe case recasting rule builds a
uniform representation by removing the dependent role fitel inserting it as a modifier of the
item on which it is dependentProposition recastinds performed if a proposition in a subor-
dinate (discourse) relation (Subords) is expressed asdamjument). Uniform (dependency)
representation is obtained by lifting the argument (roleriland by expressing the discourse
relation as multiple relation structure.

Recasting operations use additional test functions. Thetifon Lex-Expand{, y, TR, u) ex-
presses the semanticsoby y with « in a TRrelation. Typeg, y) associates the typg with
x. Type information is used to access the table of recastalds;rRecastabléR; ,t1,TR,t2)
verifies whetheMR; with filler of type ¢; can also be expressed &R, with filler of type ¢s.
Add(p, a) expand® by an argument, Remove§, x) deletes occurrences ofin s, and Build)
creates a new dependency structsire

Reconstruction algorithm  The structure building algorithm consists of two steps st-ithe

scope for applying the heuristics defined in Table 6.6 isrddted, and, second, results of
rule matching are collected. For practical reasons, ptlysere make a simplifying assumption
concerning the scope of the operator: While the effect af ‘Gther way round” may range over
entire paragraphs, we only consider single sentences Wittoat two coordinated clauses or
one subordinated clause. This restriction is plausibleafiplication-oriented systems; only a
few examples from the corpora we have examined cannot bddthdde to this simplification.

The procedure takes an input sentenceparses it and analyses its dependency structure to

find predicate nhodes,RED), and binds potential scopes to the variaBl@pes. For complex

sentences, the entire sentenekds well as its last claus@R;(x, z))) is a potential scope for re-
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Structures— ¢

if PRED(x) then Scopes— {«}

else
if Subord(x)v Conj(x) A TR;(z, z) then Scopes— { z, x}
endif

endif

forall Scopegin Scopesio

Structures— StructuresJ X-SwapScopeg) U X-Swap(Y-Recasgcopeg))
end forall
return Sort(Apply-ranking-criteriggtructurey)

Figure 6.4: “The other way round” reconstruction algorithm

construction. In the next step, each transformation rubI@ 6.6) is tested against the candidate
scopes and the results are collecte@#nuctures. The function X-Swapfcope;) builds a set of
all instantiations of a given rule applied zope;. X in X-Swap isArgument Modifier, Mixed,

or Propositionswap rule. Some rules are also invoked with alternativerpaters stemming
from the recasting operations (Table 6.7). The call is is td@se X-Swap(Y-Recastfope;)),
whereY is Lexical Role Proposition recasprovided that they fit the given pattern. If multiple
readings are generated, they are ranked according to tloaviiod) ordered set of criteria: (1)
the nearest scope is preferred, (2) operations which swagdst] such as left-right, are ranked
higher, and (3) constructed candidate phrases are matghatsba corpus; pairs with higher bi-
gram frequencies are preferred (the complete corpora frbiohaour data stemmed were used).
The algorithm is summarised in Figure 6.4.

The linguistic analysis, the structure reconstructiortgras, the recasting rules, and the al-
gorithms operating on top of these structures are formdilizt@ domain-independent way, also
ensuring that the tasks involved are clearly separated. thuis up to a concrete application to
elaborate the required lexical semantic definitions (fstance, the lexical expansion for “sax-
ophonist” in (92) to capture the example), to define the &biterchangeable and Recastable,
and to adjust the preference criteria.

Preliminary evaluation A preliminary evaluation of the reconstruction algorithrashbeen
performed on a sample of English and German sentences froap&l (Koehn, 2005). Since
we do not have access to a wide-coverage semantic depenuknsey for English and German,
manual evaluation has been conducted. The evaluation setre@ated by extracting sentences
from Europarl using the following regular expression paise (i) for English: phrases “the
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Table 6.8: Distribution of transformation patterns in thsttdata
Transformation type No. of instances

Argument 64
Modifier 5
Argument/Modifier 3
Mixed 6
Argument/Mixed 2
Proposition 1
Argument/Proposition 1
Lexical 18
Other 10
Total 110

other way a?round” or “vice-?vers&’ (i) for German: (ii-a) the word “umgekehrt” preceded
by a sequence of “und’afd), “oder” (or), “sondern” put (instead), “aber” (but) or comma,
optional one or two tokens and optional “nichtiaf), (ii-b) the word “umgekehrt” preceded by
a sequence “gilt"tfold9 and one or two optional tokens, (ii-c): the word “ander¥then”. 137
sentences have been retrieved using these criteria. Giegarésent limitation of the algorithm,
we manually excluded those sentences whose interpretatiolved the preceding sentence or
paragrapH; as well as those in which the interpretation was explicifiglied out. There were
27 such instances. The final evaluation set consisted ofdrit@rsces: 82 sentences in English—
German pairs and 28 German-only. The reason for this difterés that the English equivalents
of the German sentences containing the word “umgekehrt” coayain phrases other than “the
other way round” or “vice versa”. Depending on context, glesasuch as “conversely”, “in
reverse” or “the reverse”, “the opposite”, “on the contfanyay be used. Here, we targeted
only “the other way round” and “vice versa” phrases. If theGan translation contained the
word “umgekehrt”, and the English source one of the altéreatto our target, only the German
sentence was included in the evaluation. Because thebdistm of sentences between the two
languages is to a large degree unbalanced, cumulativegésuboth languages are reported.

Distribution of categories  The structures in the evaluation set have been manuallg@ased
into one of the transformation types from Table 6.4 and tkeenehts of the dependency struc-
tures participating in the transformation have been matketiable 6.8 shows the distribution
of transformation types in the data set. Counts for altéreanterpretations are included. For
instance Argument/Modifiermeans that either thérgumentor Modifier transformation can be

1°The question mark denotes an optional element.

For example, sentences such as: “Mr President , concernimgndment No 25 , | think the text needs to be
looked at because in the original it is the other way roundotw h appears in the English text .”

12The author of this thesis annotated half of the data set. Tier balf has been annotated by the collaborator in
this work (see (Horacek & Wolska, 2007)), Dr. Helmut Horacek
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Table 6.9: Evaluation results of “the other way round” tfansation

Evaluation category
Correct Ambiguous Wrong Failed

Transformation type

Argument 46 17 0 1
Modifier 3 2 0 0
Argument/Modifier 3 - 0 0
Mixed 4 2 0 0
Argument/Mixed 2 - 0 0
Proposition 1 0 0 0
Argument/Proposition 0 - 0 1
Lexical 16 0 2 0
Other 8 0 2 0

applied with the same effect, as in the sentence “Exterrayploas become internal policy, and
vice versa”: either the words “external” and “internal” mas swappedModifier) or the whole
NPs “external policy” and “internal policy’Argumen}. Lexicaltransformation means that none
of the rules was applicable; a lexical paraphrase (sucheasfusn antonym) needed to be per-
formed in order to reconstruct the underlying semanticat () no structural transformation was
involved). Othermeans that a transformation-based reconstruction wakv@/chowever, none
of our rules covered the structure.

Evaluation results Transformation results have been classified into four caieg. Cor-
rect means that the algorithm returned the intended reading agjaaiinterpretation (this in-
cludes correct identification of lexical paraphrases (titegoryLexicalin Table 6.8) Ambigu-
ousmeans that multiple results were returned with the interméeding among themj/rong
means that the algorithm returned a wrong result or, if plgtiesults were found, the intended
reading was not includedFailed means that the algorithm failed to find a structure to tramsfo
because none of the rules matched.

The evaluation results are presented in Table 6.9. In cagessible alternative assignments
(as in Argument/Modifier Correct was assigned whenever the algorithm selected btieeo
possible assignments, independently of which one it wase Qbrrect results foOther are
“trivial”: the algorithm correctly identified the 8 caseswdich no rule applied. The two Wrong
results forOthermean that a pattern was identified, however, it was not tlead#d one. In two
cases, the algorithm failed to identify a pattern even thaagtructure exhibited a pattern in one
of the known categorieAfgumentandPropositior) (false negatives).

Discussion  The most frequently occurring pattern in our samplArgument This is often a
plausible reading. However, in 3 of the 4 false positivesdM¢grresults), the resolved incorrect
structure wag\rgument A baseline consisting of always assigning the most fretjoategory,
Argumentwould miss the other categories (altogether 12 instarared)yield the final result of
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63 Correct (as opposed to 96; after collapsing the Corretfambiguous categories) and 15 (as
opposed to 4) Wrong assignments.

The two missed known categories (Failed) involved multgguments of the main head: a
modal modifier of the predicate (modal verb) and an additaigle (“also”) in one case, and
rephrasing after transformation in the other case. To ingperformance on cases such as the
former, a list of dependents which the transformation sth@xclude as candidates could be
incorporated into the algorithm. Among the patterns culyemnknown to the algorithm, we
found four types (one instance of each in the sample) whichpodentially frequently recur:
aim and recipient constructions involving a predicate amdim andBeneficiarydependent re-
spectively, a temporal-sequence in which the order of theesgce elements is reversed, and a
comparative structure with swapped relata. The remainisgjugtures require a more involved
procedure: either the target dependent is deeply embeddmataphrasing as well as morpho-
logical transformation of the lexemes is required. Howgtheg presented algorithm is a good
first step toward automated reconstruction of the opesatamantics.

6.3 Reference phenomena

Computational approaches to anaphor resolution (or @w®fgnce resolution more generally)
typically address narrative text genres and use manuafig-beafted rules, machine learning
or a combination of both to find antecedents. Syntactic, simaand lexical features of the
anaphor carrier sentences and of the sentences contaandglate antecedents as well as prob-
abilistic distributional properties of the anaphor in etare used as indicators of coreference;
see, for instance, (Botley et al., 1996; Mitkov, 2000; Poesial., n.d.) for an overview on refer-
ence resolutions algorithms. Anaphor resolution in diaeopave been gaining attention, how-
ever, reference resolution in dialogue proves more diffiant the performance of algorithms
on dialogue corpora tends to be lower than on narrative drseocorpora (Poesio et al., n.d.).
Recently also studies specific to tutorial dialogue havaloeaducted; see, for instance, (Poesio
et al., 2006; Pappuswamy et al., 2005).

A peculiarity of mathematical discourse is that referringressions in this domain may be
used to refer to the elements of formal notation. Examplesuoh references were shown in
Section 3.2.2.5. References may address entire forma¢esipns or their parts. Most frequent
are references to propositions, specifically, proof stegihalised in natural or in the symbolic
language. Table 6.10 shows the distribution of referenceasbject-denoting terms expressed
symbolically (parts of mathematical notation) and to pretefps (expressed using mathematical
notation or natural language) in the student turns in ouaar. (The types of referential forms
included in this summary will be elaborated in the next sec}i Overall, the number of occur-
rences of referring expressions is small (155 instancesduming one referring expression per
turn, only around 12% of all student turns contain refergxgressions to terms or proof steps
(there are 1259 turns in total; see Table 4.1 on page 130YyeTdre more referring expressions
in C-1l (94) than in C-1 (61), however, considering that Cedntains almost three times as
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Table 6.10: References to object-denoting terms and ptep§sn the students’ turns

Data set
Antecedent type Cal Coll Col&Cell
Object-denoting term 26 13 39
Proof step 35 81 116
Column totals 61 94 155

many student turns as C-I (see Table 4.1), there are propalty more referring expressions
in C-1 (on average, around 18% student turns with a referexpression in C-1 and 10% in
C-I1). In the case of the tutorial dialogue scenario, ardecgs of referring expressions may be
found in either speaker’s turns: student’s or tutor’s. litespf a seemingly high potential for
ambiguity (many candidate symbolic terms as antecedéntsyr experiments only in one case
did the tutor initiate an explicit subdialogue to clarifytadent's ambiguous use of reference.

In the following sections we look more closely into two asgeaf modelling reference phe-
nomena in proof tutoring dialogues. First, we conduct a eergtudy on the types of referring
expressions. Anaphor resolution algorithms are typic@ilred to resolving expressions of a
specific form, for instance, pronominal anaphora or refegsro expressions of specific type,
for instance, discourse deictic anaphors (as in (Pappugwaia., 2005)). It is therefore useful
to know what types of anaphora occur most frequently in ourgy@nd to what entity types
they refer. Second, we analyse the referring expressiotesrims of their discourse scope. Con-
sidering the low overall number of instances of referringressions found in our corpora and
especially the low number of object-denoting references,dw not propose a complete com-
putational reference resolution algorithm. More data Wmeed to be collected in order for a
plausible computational algorithm to be developed. Irst@se again analyse the corpus data
with respect to the location of the different antecedenesyplhe analysis of referential scope
is relevant in determining the discourse scope for antedestarch, thus the two corpus-based
analyses form a good basis for a computational algorithmetddveloped and evaluated once
more data is available. Finally, we show how the interpiatatesources need to be extended in
order to address indirect references specific to proofingatialogues.

6.3.1 Forms of referring expressions and the scope of refanee

Linguistic referring devices identified in the studentgesénces include pronouns, pronominal
and locative adverbs, noun phrases, demonstratives (ugedeixis), and definite articles. As
will be shown further, all these types of expressions haemhesed to refer to parts of symbolic
notation as well as to propositions or partial proofs (segas of propositions) constructed in
the course of dialogue. Examples of the different referdargression types are shown below.
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Pronouns The use of pronominal anaphora is illustrated with exam(86é% and (97):

(96) ...Da, wenmd C K(B) sein soll,A Element vonK (B) sein muss. Und wenn
B; C K(A) sein soll, muss gsauch Element voik (A) sein.
(...Because ifA C K (B) should hold,A must be an element &f (B). And if
B C K(A) should hold,B must be also an element &f(A).)

(97) T19: Erinnern Sie sich daran, [ dass es ein z gibt(mit) € S~! und
(Zay) € R_l- ]Z
(Do you remember that there is a z such thatz) € S—! and
(2,y) € R7)
S14: Ja, ich habe ggorausgesetzt
(Yes, it was an assumption | made

In (96) a personal pronoun, “esit), is used to refer to a term. The term is part of a formula,
a set variableB, whose syntactic/semantic function in the formula can lesved as that of a
subject/agent, parallel to the semantic function of thephoain the utterance. The reference is
local; the antecedent is in the same turn. Notice that itid taproduce an comparable structure
in English. The reference in German works because the feriswdgain used as shorthand for
natural language; the subordinate clause reads “wemailmenge vonk (A) sein soll” and the
pronoun refers to its subject. (In the given task contexs, iththe more plausible interpretation.
An alternative antecedent candidate coulddand considering the student’s confusion about
the set membership and subset relations, it is not impaestilalt he actually meant to refer to
A.) The pronoun in (97) is referring to the proposition in tlieqeding tutor’s turn T19, that is,
the antecedent is found in the other speaker’s turn.

Pronominal and locative adverbs Pronominal adverbs (or “prapositional pronomen”; adver-
bial pronouns) are lexical constructions in Germanic laggs formed by joining a preposition
with a pronoun. Their anaphoric character is due to the prorabtaining thereby a locative
adverb function. English examples include “thereblgy thig or “therefor(e)” for that) and
German “damit” (ith that) or “daftr” (for that). Locative adverbs in mathematical discourse
also have anaphoric character; consider, for instancésgaent scope bearing locative “hence”
in English. The dialogue fragments below illustrate theafsgnaphoric adverbs in our corpora:

(98) S2:[RoSi:={(r,y) | Fz2(z€ M A (x,2) € RA(z,y) €5)}

S3: Nun will ich das Inverse daven
(Now | want the inverse of)it
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(99) S7: Also[ [ist (z,z) € Sund(y, z) € R]; und damif auch[ (y,z) € Ro S]; |
(Therefore it holds thatz, z) € S and(y, z) € R and by that also
(y,z) € Ro S)

S8: Somifeys ist (z,y) € (Ro S)~!
(With this it holds thatz, y) € (Ro S)™1)

In (98), a pronominal adverb “davond{(it) is used to refer to a complex teriR0 .S, on the left-
hand side of the definition. In principle, the reference ibmmuous: a competing antecedent for
“davon” is the definiens part of the definition. In (99) the exbial pronoun “damit” ith this)

in S7, refers to the proposition stated in the first clausé@futterance. The pronominal adverb
“somit” (with thaf) in S8 in the same excerpt may refer to the conjunction oricapbn of the
assertions in S7 (marked wit}) or only to the last assertion (marked wittin the example).

Noun phrases Within this category we consider referential uses of nouragéds including de-
ictic NPs, such as “(in) dieser Mengd(ir() this sej referring to a set expression in the dialogue
fragment (56), reproduced below as (100):

(100) S33: Nach Aufgabe WigE o (SUR) ) ' =[((SUR)" ) tosS 1],
(By Exercise W: ... holds

S34: Diesist nach Theorem 1 gleich(5 U R) o S7!];
(This is by Theorem 1 equal {6 U R) o S~ 1)

S35: Ein Elementa, b) ist genau dann in dieser Mengevenn es eirt € M gibt
mit (a,z) € SURund(z,b) € S~!

Definite noun phrases used to refer to elements of matheshatitation often involve meto-
nymic reinterpretation. In Section 3.2.2.5 we already stobwexamples such as “die innere
Klammer” (the inner parenthesjs“die linke Seite” (he left sidg or “beide Komplemente{oth
complemenig(see page 103ff.). These are indirect references to stalgarts of mathematical
expressions, terms in formulas; “the left side” refers te tarm to the left of the top-node
operator in a formula, “the inner parenthesis” to a braaketgbterm of a bracketed term in a
formula (rather than to a bracket itself), and the quantifiedn phrase, “both complements”
in “de morgan regel 2 auf beide komplemente angewendiet'ngorgan rule 2 applied to both
complemenisto two terms headed by the complement operator.

Both definite and bare noun phrases can be also used gelyericegfer to concepts in the
domain, for instance, to the concept of the set union as ihe‘llnion of sets R and S contains all
elements from R and all elements from S” (example (43) on 8¢ or “Potenzmenge enthaelt
alle Teilmengen, also aug N B)” (Powerset contains all subsets therefore gldon B)). In
the latter case, “powerset” is a generic reference, whéreas) B)” is a specific reference to
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a subset of a specific instance of a power set introducedeavioreover, named theorems and
lemmata may be referred to by their proper names, for exarfgideMorgan’s rule 2”. These
non-anaphoric uses are not included in further analyses.

Demonstratives The last type of referring expressions we analysed werdidegferences by
means of demonstrative pronouns, as in:

(101) Wenn| alle A in K(B) enthalten sind; und dies auch umgekehrt gilt, muf3 es
sich um zwei identische Mengen handeln
(If all A are contained inK (B) and this also holds the other way round, these
must be identical seks

where the demonstrative pronoun “die#fii§) refers to a preceding proposition, or as in (100)
above, where “dies” in S34 refers to the term on the rightdhside of the formula in S33.

As a preliminary stage for developing an anaphor resolutilgorithm we conducted two
studies on reference phenomena: First, we looked at thedrey of use of the above-mentioned
reference types to refer to the entities particular to nmatiteeal discourse: domain objects
evoked using symbolic notation and proof steps expresshdrén natural language or using
symbolic expressions. Next, we looked at the discourseregfial scope of the referring ex-
pressions, that is, the scope of discourse, with respebtteeferring expressions, within which
an antecedent is found.

Instances of anaphoric references as well as their antetsekdave been annotated in the two
corpora by the author of this thesis. Discourse was integreooperatively, that is, the most
plausible candidate was considered as the antecedentifstedents’ statements were invalid
or incomplete. Multiple annotations have not been perfarfioe the same reason as explained
in Section 4.1: antecedent annotation decisions do noireetinguistic knowledge, but rather
knowledge of the mathematical domains and the understarmditine solution constructed in the
course of dialogue. Considering the fact that the set thaodybinary relations proofs are of low
complexity, the most plausible antecedent types can bdifigehby cooperatively interpreting
the students’ intentions and by taking into account infdiamaabout the student gained based
his dialogue. Referential scope may be ambiguous in the afaseferences in the context of
invalid steps or incomplete proofs (omitted steps). In afaecertainty, we annotated the turn
in which the first plausible candidate was found.

Table 6.11 shows the distribution of referring expressitymes to two types of entities:
object-denoting terms and proof steps. Further distinctiomade between atomic and com-
plex terms (as il and A U B, respectively) and proof steps expressed in the symbotatina
(ME category; see Section 4.3.1) or using some natural EggME & NL and NL cate-
gories). The largest class of referential forms are pronaihand locative adverbs, the majority
of which refer to proof steps (or larger parts of proofs). fEhare approximately the same num-
ber of nominal references as deictic references using detnadires, however, there are clear
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Table 6.11: Distribution of referring expression types hieaedent type
Form of referring expression

Antecedent type Pronpmmal °" Noun phrase Demonstrative Pronoun
Locative adverb

Object-denoting term 2 30 2 5
Atomic 0 2 0 2
Complex 2 28 2 3

Proof step 59 15 40 2
ME 28 10 27 0
ME & NL or NL 31 5 13 2

Column totals 61 45 42 7

Table 6.12: Distribution of reference types by the locatibthe antecedent
Location of the antecedent

Antec. Form of referring expression Same Task
type wn o1 T S22 Too oo
e Pronominal or locative adverb 1 1 O 0 0 0
8 £ Noun phrase 4 5 4 9 8 10
‘g *g Demonstrative 0 2 0 0 0o o0
&.5 Pronoun 3 0 O 2 0 0
o Subtotals 8 8 4 11 8 10
2 Pronominal or locative adverb 21 38 O 0 0 0
® Noun phrase 4 6 O 2 3 3
§ Demonstrative 22 16 2 0 0 0
a Pronoun o 1 1 0 0 0
Subtotals 47 61 3 2 3 3
Column totals 55 69 7 13 11 13
(% all references) (35) (45) (5) (B) (7) (8)
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differences in the use of the two forms: the former are mairslgd to refer to parts of notation
(object-denoting terms), while the latter are mainly ugetkfer to proof steps. Further analysis
of the dialogues revealed that the majority of the latteesypccur in chaining equation contexts
in which a formula is contributed and the next rewriting stefintroduced by phrasing “This
is then (equal to) ...” or analogous. The majority of the nuahreferences to terms are indi-
rect references of the kind discussed in Section 3.2.2.6.nlimber of pronominal anaphora is
surprisingly small; only 7 occurrences overall. In all casé “es™-references (neuter personal
pronouns) to object-denoting terms, the anaphor was tlity entthe left side of a mathematical
expression of type formula. The low number of pronominagrences to terms can be perhaps
explained by the fact that nominal reference is more speaiiit thus reduces the chance of
unintended interpretation; compare referring to a lefichaide of an equation with “die linke
Seite” vs. “es”, as in (96), while there may be multiple “lsfles” competing as antecedent
candidates, the structure of the expressions which emieed itha good cue in resolution; recall
the discussion in Section 3.2.1.2.

Table 6.12 shows the distribution reference types by thatioe of the antecedent. The
interpretation of columns is the following: “Same turn” meathat the antecedent is found
in the same turn as the referring expression (as in (96) abt8e,” and “T_;” mean that
the antecedent is found in the preceding student or tutar taspectively (as in (97) and (98)),
“S>_5"and “T>_»” mean that the antecedent is in a student or tutor turn, twoare turns prior
to the anaphor, “Task descr.” (task description) meanghigentecedent is in the first tutor turn
which specifies the proof task. (Note that the task may haee Bpecified in the immediately
preceding turn if the analysed turn is the first student’strioution.) What can be seen from
the annotation results is that the majority of the referenoeproof steps are local, whereas
references to terms may have a large scope. Out of the 3@mnefs to object-denoting terms,
20 refer to entities in a close distance to the anaphor: same last tutor turn, or preceding
student turn. The majority of long-distance referencebgnmeans of nominal anaphora whose
antecedents can be found two or more turns back in the dialegth respect to the anaphor.
Around 25% of the references to terms have antecedents itaskedescription. The majority
of references to proof steps (around 93%) were within thpescd the same or previous student
turn. Only nominal references were used to refer to progissherther in the preceding dialogue.
Interesting to note is that the tutors did not request eiliarifications of the scope of reference
to proof steps, even if the scope encompassed a nhumber of ateph as the English “hence”
or “thus”, the German “somit” or “damit” can in principle &fto a larger part of a constructed
proof. This suggests that tutors cooperatively intergresteidents’ contributions and tended to
focus on the task progress, rather than on formal rigour arlasely monitoring the students’
mental representation of the solution.

As mentioned previously, the low overall number of refagraxpressions available for analy-
sis does not allow us to draw definitive conclusions nor tetigya scalable reference resolution
algorithm. However, preliminary observations based oratlsélable data can be summarised as
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follows: Anaphoric references have for the most part a Iscape. In most cases, the referent
occurred in the same or preceding student or tutor turn wipect to the anaphor. The structure
of mathematical expressions is a strong indicator in ifgnti the search space for antecedents;
see also Section 3.2.1.2. This holds both in the case of nlotase references to topographical
substructures of mathematical expressions (“inner phesig” or “left side”) as well as in the
case of quantified phrases (as in the “both complements” pbegm

The correctness status of the last student’s proof stepdsarm in antecedent search. As
the student develops the proof, salience of the propositigmich form the proof (proof steps)
changes. At the beginning of the dialogue, the most salisygsition is the goal formula in
the task description. As the proof progresses, the mostraghroposition globally is the last
correct proof step and students tend to make referencesststép. If the student makes several
incorrect steps, no correct steps, and the tutor has nob giway any steps, the goal formula
in the exercise definition remains the most salient projposieven after several turns. The
semantic content of the last tutor move also plays a rolefareace resolution. If the last tutor’s
turn contains a hint which gives away a correct step, theestuid likely to continue from this
step and so also refer to it.

6.3.2 Modelling concepts relevant in reference resolution

The corpus analysis summarised in the previous sectionsskitat two issues must be taken
into account in designing a computational reference réisolalgorithm for the proof tutoring
domain: First, a comprehensive analysis of mathematigalessions is needed. Second, pro-
cessing indirect referring expressions whose antecedeaslements of the symbolic language
(terms or formulas or parts thereof) and which use typodcaplproperties of mathematical ex-
pressions (“left side”), objects and relations buildingthip expressions (“both complements”),
and the expressions’ structure signalled by grouping sysrtioner bracket”), requires “ exten-
sions to the domain interpretation process: entities ifiedtthrough mathematical expression
analysis need to be included in the domain model. The extesso the processing architecture
are briefly outlined below.

Extensions to mathematical expression parsing In order to support resolution of references
to (parts of) mathematical expressions, the mathematiqakession parser is implemented in
such way that it is capable of identifying all the relevarthsuctures of mathematical expres-
sions. It parses the linear notation of mathematical espoas in the input into an expression
tree of the form shown in Figure 3.2b. The parser has accdasotwledge on the type of ar-
guments and results of operations in the relevant areas tifematics. In our case, this is,
for instance, the information that the subset relation ¢tieth by a specific symbol) takes two
sets as arguments and the type of the result is of a proposite or that the union operation
takes sets as arguments and its result is an object-dengtieg Each node of the expression
tree is marked (“annotated”) as to whether it denotes anab@eor a variable; operators nodes
are further marked with the type of their result. The rootenod the tree is marked with the
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Table 6.13: Examples of reinterpretation rules for indire¢erence

Concept Reinterpretation

SIDE TERM AT SIDE

BRACKET  BRACKETED TERM

OPERATOR TERM HEADED BY OPERATOR

OBJECT TERM HEADED BY OPERATOR OF TYPE OBJECT
PROPERTY OBJECT WITH PROPERTY

information on the type of the entire expressiaEgM, FORMULA, etc.). The expression tree
enriched in this way is an input structure to subroutinesvaait for reference resolution.

At the time of parsing we create a discourse referent for ttigesexpression, but not for
every substructure entity relevant for anaphor resolutiastead, the mathematical expression
parser includes subroutines which demandecover substructures of mathematical expressions
in specificPART-OF relations with respect to the original expression as wetthas types. Recall
that these are also represented in our domain model; se€la@gend the section below. The
choice of substructures was motivated by systematic nefera natural language to mathemat-
ical expression parts (see Sections 3.2.1.2 and 3.2.2d6haludes: (i) topographical features
(such as “sides” of terms and formula), (ii) linear ordef&$t”, “second” argument), (iii) struc-
tural groupings (bracketed subexpressions) with infoiwnabn the level of their embedding.
Execution of these subroutines is triggered by rules in these of lexical semantic interpreta-
tion of the utterances; for instance, the meaning of “sidgether with its modifier “left” in the
semantic representation of the noun phrase “the left side”.

Domain modelling As illustrated in Section 3.2.2.5 (page 107ff) and earliethis section,
informal mathematical language admits of referring to eleta of mathematical notation using
expressions of a metonymic flavour. By saying “the left sioied formula, we do not mean liter-
ally the side, but rather the term on the given side of the rop@rator in the expression. The use
of such metonymic expressions is so systematic in mathesnatien referring to mathematical
notation and they are such an integral part of the matheatatiominology that it is justified to
consider them as quasi-synonyms of the concepts evoked:tpntities to which they refer.
Motivated by the systematism in metonymic references tderaatical expression subparts,
we encodemetonymy ruless part of the domain model. The rules enable interpretaifon
utterances with certain sortal restriction violations bg@ding domain-specific reinterpretions
of concepts evoked by certain lexemes. This approach i®goas to the rule-based approach
to metonymy proposed by Fass (1988), except that here the ané strongly domain-specific.
Table 6.13 shows examples of the reinterpretation rulesdattbased on phenomena found
in our two corpora. The first rule means that the consepk (left or right) may be alternatively
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interpreted as referring to a left or right term, respedyivef an expression in the previous
discourse (as in “the left side is equal to ..."). The toppyieal properties of mathematical
expressions are encoded as features of nodes of the pardezhmatical expressions (see above);
thus an expression with the given property can be found blysing mathematical expression
parse trees. The second rule meansgiRaCKET can be interpreted to refer to a term enclosed
in brackets (as in “the inner parenthesis is equal to . . gajmpresence or absence of bracketing
is marked as a feature of mathematical expression tree ndthesnext two rules mean that an
OPERATORCan be interpreted as a term headed by the given operator ‘fas the complement
we have ...") and that anBJECT TYPECcan be interpreted as a term headed by an operator which
builds an object of the given type. The last rule means thabpguty can be interpreted as the
object which has a given property (as in “for the left sidedids that . .."). Multiple rules can be
applied in the course of reinterpretation until a concept wifatching type is found. For example,
the nominal reference “diese(r) Mengehig sej referring to the expressiofS U R) o S~1 in

the example (100) earlier in this section (page 198), carebelved by applying rulgerm
HEADED BY OPERATOR OF TYPE OBJECTor OBJECT.

6.4 Cooperative correction of mathematical expressions

In Section 3.2.1.5 we showed examples of flawed mathematigakssions constructed by the
students (Table 3.3). We categorised the errors (TableaB@)dentified their possible sources
(Table 3.4). In principle, in a dialogue environment, dladtion subdialogues could be initi-
ated to point out imprecise wording or errors, and to eli@rification or correction, respec-
tively. Clarification subdialogues may, however, turn ueldy making the dialogue tedious
which would be particularly undesirable when the probleiwiag skills of the student are oth-
erwise satisfactory. A better solution would be to atteroptdoperatively correct what appears
to be an error, or to resolve ambiguity, while allowing thedent to concentrate on the higher
problem solving goal itself.

Using domain knowledge and reasoning, proof contributioiasy be evaluated for correct-
ness. However, finding the intended reading of erroneousmiiguous statements and the
decision as to whether the flawed statement should be cedrégtthe student is pragmatically
influenced by factors such as the student’s knowledge of ¢ineath concepts and their prior
correct use, correct use of the domain terminology or canédyreference for one reading over
the others. On the one hand, in a tutoring context, it is ingrdrto recognise the student’s inten-
tion and knowledge correctly. On the other hand, howevéas gtso important not to distract the
student by focusing at all low-level errors. In the most ‘@oenodating” approach, erroneous
and ambiguous expressions evaluated as correct in one r@fatimgs could be accepted without
requiring clarification on the part of the student, thus mghkihe dialogue progression smooth
and maintaining focus on problem solving. As we already teairout earlier, the tutors did not
tend to focus on low-level errors and accepted proof cantiohs even with flawed notation.

In order to facilitate the kind of cooperativity, we devedoja strategy for flexible mathemat-
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ical expression analysis and correction. When a malformeithematical expression is encoun-
tered, we attempt to identify and correct type errors anici@dgorrectness errors. The goal

in this approach is to delay clarification, while making stirat the student’s intentions remain

tractable. The ultimate decision whether to accept an eaas or ambiguous utterance (a strat-
egy suitable for competent students) or whether to issuardichtion request for the student to

disambiguate the utterance explicitly is left to the tuigrcomponent (recall the overview of the

overall system presented in Section 1.2).

The correction strategy we tested is based on introduciiegnmed modifications to erroneous
expressions with the goal of finding the plausibly intendedect form. The highest-ranked
well-formed hypothesis generated by the algorithm is agsuto be the intended expression
and it is interpreted in the problem-solving context, sa ftecorrectness and relevance can
be addressed, while the fact that the expression was madtboan be merely signalled to the
student by pointing at the error. Finding meaningful modiiiens of a malformed expression
is guided by the expression’s error category. With eachr @ategory shown in Table 3.2 we
associate a set of replacement rules and apply these ra@esatiormed expression with the goal
of improving its status as a result of the modification. Tisaffiom a syntactically ill-formed
expression we try to obtain a syntactically well-formedreggion and from an expression with
a type mismatch we try to obtain a well-typed expression. Jélection of replacement rules
is motivated by an analysis of possible sources of errordiénetrroneous expressions in our
two corpora; see Table 3.4. The correction algorithm anda evaluation are outlined in the
following sections.

Correction algorithm  The correction algorithm assumes that mathematical esiores are
parsed by a tree-building algorithm; for experiments wedug®e same parser as the one we
use throughout this thesis; see Section 5.2.2.3 and thesiaites outlined in Section 6.3.2.
For unbracketed operators of the same precedence, albfmbsacketings are considered (for
instance, AU C'N B is ambiguous betweegml U C) N B andAU (C'N B)). For every tree node,
the parser stores information on whether the subtree hdadik given node was bracketed in
the original string, and whether the types of arguments ansistent with the expected types.
The output of the parser is the formula tree with nodes madsetb type compatibility and
bracketing where applicable.

Erroneous expressions are systematically modified by aqpltyperators considered suitable
for removing the reported error. The resulting new expogssare categorised by consulting the
formula analyser and, if needed, a reasoner for checkingetveexpression’s correctness. Since
the latter may be an expensive step, the generated hypstfeselidate corrected expressions)
are ranked and tested in the ranking order. The process cterrbaated at an intermediate
stage if calls to the reasoner are becoming too costly. Tleathprocess can also continue
iteratively if needed, resources permitting.

The hypotheses are ranked using the three ordered crifgyitne error-related category of the
modified formula, (2) the number of operators applied sodaokitain the current hypothesis,
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6 Modelling selected language phenomena in informal proofs

[* 1. Collect operators */

case< Category ofExpression-

3 : Hypotheses—<List of alternative analyses collectedHxpression-
goto Evaluate-and-check-validity

2 : Operators— Operatorgategory2
1 : Operators— Operatorgategory1

end case

Hypotheses—<Result forExpression-

* 2. lteratively apply operators to the original expressto
Iterate:
forall <Hypothesesot yet modified, Operatorsdo
New-expressions-<Apply Operatorto Hypothesis-
forall <New-expressionsdo
if not Trivial(<New-expression) then
Parse¢New-expression)
Hypotheses— <Results of parsinflew-expression
end if
end forall
end forall

/* 3. Decide if continuation needed/affordable */
Evaluate-and-check-validity:

<Compare new expressionshtypothesesvith expressions iContext-
<SortHypotheseby score-
forall <Hypothesesot yet modified> do

while not <Limit> do

if <Category oHypothesis-= 1 then
if <Hypothesisvaluated as correct by reasonehen
<Category oHypothesis-« 0
end if
end if

end while
end forall
<SortHypotheseby score-
if not <Category of togHypothesismproved>

and not <Limit> and <New modified expressions buit

and not <Category of originaExpression- = 3then

gotolterate
end if
return Hypotheses

Figure 6.5: Pseudo-code of the correction algorithm

206



6.4 Cooperative correction of mathematical expressions

and (3) the structural similarity of the hypothesis to th@ressions in the previous context.
Similarity of two expressions is approximated by countihg instances of common operators
and variables. The context consists of the goal exprestierprevious proof step, and possible
follow-up steps generated by the reasoner.

The pseudo-code of the algorithm is shown in Figure 6.5. Tdp@risthm has two parameters:
the original Expression(parsed by a mathematical expression parser) and a set fssigns
representingContext An expression can be of one of four categories: Categoryallagjical
error (an expression is well-formed and well-typed, howeaeaveaker or stronger statement is
expected), Category 2 is a semantic error (an ill-typedeasgion), Category 3 is an ill-formed
expression, and Category 0 is a valid correct expression.pftcedure consists of three parts.
In the first step, for ill-typed expressions operators dssed with the error category are se-
lected. In the second step, replacement operators — see Jdblpage 85) — are applied to the
original formula, possibly at multiple places. The appiica of operators addressing ill-typed
expressions is limited to those places where the parsertegpatype error. New expressions re-
sulting from each replacement are collectedtHiypothesesexcluding results considerdaivial
(for instance, an equation with identical left and rightesiabr applications of idempotent opera-
tors to identical arguments), and their error categorytisrned by the mathematical expression
parser (Parse). In the third step, the hypotheses are addasstwo-pass evaluation. First, sim-
ilarity to the expressions i€ontextis computed. For expressions which were originally false
statements, a call to the reasoner is made. Since the latidrecexpensive, the expressions ob-
tained by applying operators are ordered according to gardesimilarity, prior to invoking the
reasoner. The evaluation of the ordered list of expressianshe stopped anytime if resources
are exhausted; this criterion is encapsulated in the donditLimit>. The procedure termi-
nates when the problem is solved, that is, the category oésoodified expression is improved,
when no more operators can be applied, or when resourcegareded. If one of these cases
holds, the ordered list dflypothesess returned; otherwise, applying the selected operators is
repeated interactively to the newly created expressiorexer@l limits on resources involved
can be considered, including: (i) maximum number of modif@munulas created, (ii) a time
limit (checking correctness of an expression can be timswmmng), (iii) number of calls to the
reasoner, (iv) a limit on the number of errors addressederaiors to be applied).

Evaluation A preliminary evaluation of the proposed correction altfori has been con-

ducted. Only ill-typed expressions and false expressioegewonsidered in the evaluation.
The algorithm was tested on a sample of erroneous expredsan the corpora and on a larger
set of expressions into which errors of the above-mentiaradgories were introduced in a
controlled fashion.

Evaluation data  The evaluation data stemmed from two sources: a set of ieguerroneous

expressions from the corpor@dgrpug and a set of expressions obtained by systematically intro-
ducing errors to valid expressions, according to our categdConstructed errors TheCorpus
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6 Modelling selected language phenomena in informal proofs

Table 6.14: Results of formula correction

Evaluation data set  Unique result Ambiguous Target in top 10
Corpus 2 6 6
Constructed errors 0 100 64

data set contained 8 most representative cases of the Kietdsos which occurred in the data.
Multiple occurrences of similar expressions were not idell; by “similar” we mean expres-
sions of the same structure which differ only by the identfi€onstructed errorsvere created

in the following way: First, from the corpus we extractedigdbrmulas which occurred in proof
contributions evaluated by the tutor as correct; there Wnenique expressions. Then, for each
of these we generated a set of erroneous expressions bynsyistaly changing the operators
and identifiers according to error categories. For practEasons, we introduced at most two
errors into one expression in order to make the correctisk t@anageable. For example, for
the valid expressiosl N B C P(A N B) we generate, among others, the following erroneous
expressions:

Dual operator errors AUB C P(ANB)
AN B C P(AUB)
Confused operator errorsANB € P(AN B)
ANBCK (AmB)
ANB C P(ANP) (two errors)
Confused identifiers ANP C B(ANB)
AUP C P(ANB) (two errors)
XNB C P(ANB) (where X stands for an arbitrary identifier
not in context to simulate a typographical

error)

From the generated set of erroneous expressions, we bai@dhstructed errorglata set for
evaluation by randomly selecting 100 in which the numberprators was between 3 and 10.
The choice of the two data sets was motivated by complemefaetors: TheCorpussample
is intended to give an insight into the algorithm’s effeetiess when applied to authentic errors.
This sample is however very small, 8 instances. Tlastructed errorsample is intended to

assess the prospect for the algorithm based on a larger sebaf of the same type.

Limitsapplied In order to carry out formula modifications within feasib&sources, we ap-
plied two limits: (i) to keep the set of generated hypothesasageable, the number of consid-
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6.4 Cooperative correction of mathematical expressions

Table 6.15: Results of hypothesis generationGonstructed errorslata set

Evaluation measure Min  Max Mode
Number of hypotheses generated 5 38 18
Position of target expression in hypothesis list 1 18 14

ered errors was restricted to two at most in one formula (gviel of complexity accounts for
most of the errors that occur in the corpus), (i) the callhtoreasoner were limited to five since
this is the most expensive part of the algorithm; we prefer gualitative criterion over a time
limit criterion because the results are not influenced byirtiEdementation of the reasoner.

Results The results are summarised in two tables. Table 6.14 shawsvierall performance
in terms of the number of corrected expressions for whichglsicorrect hypothesis was found
(Unique), those for which multiple hypotheses were foundnbguous), and the number of
cases where the target expression was among the top 10 reakddiates. Table 6.15 shows
two results for the larger evaluation set: a measure oftafémyuired for generating corrections
in terms of the number of generated hypotheses and the gosifithe intended formula in
hypotheses list. Mode is the modal number. Note that the ésftipn in the list does not imply
that a unique solution is found since multiple candidatey aidain the same final rank.

Discussion  The results show that automating formula correction is atngral task. For an
objective sample of complex expressions with errors (ttween operators, up to two errors per
expressions) the algorithm was able to place the intendprkession in the top ten hypotheses
in 64% of the cases. However, there is no guarantee thatefuedaluation of the top candi-
dates by a reasoner yields a unique candidate. The two ugamisly corrected expressions
from theCorpussample (see Table 6.14) were very simple and only one chdraeincorrect
operator was applicable. The results on @@nstructed errorglata set show that both the hy-
pothesis generation needs an improvement (large rang@efated hypotheses) and the ranking
(most targets below top-10 ranked hypotheses). Error sisadyiggests that three factors could
contribute to results improvement: exploiting the reasdagher (for instance, by querying for
further formulas entailed by the formulas in context; thmuhd of course require a reasoner with
proof automation), adding more contextual informatiorr (fstance, analysing the kinds of er-
rors which a learner previously made), and improving thelaiity calculation (incorporating
information on structural similarity, rather than justidiéer overlap).
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6 Modelling selected language phenomena in informal proofs

6.5 Summary

As we have shown in Chapters 3 and 4 and contrary to expettatiodents’ mathematical lan-
guage is rich in interesting phenomena and diverse in tefrpatterns of verbalisation. Only a
subset of all the linguistic phenomena can be addressedhveiticope of one thesis. In order
to show the general feasibility of provisioning languagegassing capabilities for a tutorial
dialogue system for proofs, in this chapter we opted for tteathth of coverage, addressing a
wide range of phenomena, rather than focusing on a narrogfipetl linguistic problem and
modelling it in depth. For the same reason, we chose to aslddssets of phenomena at dif-
ferent levels of computational input analysis: syntad@&mnantic, and discourse, guided by two
criteria: frequency of occurrence in the corpora and coriyl@f computational modelling.

Among the basic phenomena which need to be modelled and ideighently recur in our
corpora are those related to the syntactic properties afithe language and its peculiarities due
to the mathematical domain. We have shown how we model basim&h syntax in combina-
tory categorial grammar and gave a categorial account ofrimdl mathematical language with
embedded formal notation, including its idiosyncratic @mspecific language constructions.
At the semantic level we focused on linguistic imprecisiom ambiguities in interpretation
which it entails. We have shown how a lexical resource, a séiméexicon, can be exploited
to link imprecise concepts with domain concepts via a lisgicilly-motivated domain ontol-
ogy. The step-wise interpretation process is well-matidan that it reflects the observations
on how mathematical objects are conceptualised in the eairgearning (see Section 3.2.2.4).
Among complex discourse phenomena, we model a contextesatyy, “the other way round”,
which frequently occurs in spontaneous speech and whiclbéas also found in our corpus
data. Both the semantic lexicon and the transformationslameg in “the other way round”
reconstruction exploit the dependency structures whiclhisegto represent natural language se-
mantics. This supports our choice of tectogrammaticalesgntation of meaning, proposed in
Chapter 5, as an appropriate level of abstraction for miogdedl range of semantic phenomena.
Also at the discourse level, we analyse reference phenorrethahow how to extend our do-
main model to account for indirect reference specific to midtical discourse. Finally, we test
our observations on common errors in mathematical expmesgoutlined in Section 3.2.1.5) in
a preliminary error correction method whose purpose is ppstt cooperative interpretation.

Our approach in this chapter has been mainly qualitativabnted and served the objective
of showing feasibility of computational interpretation tye range of phenomena addressed. We
showed implemented proof of concept models or performepussbased studies as preliminary
step towards computational implementation. Evaluatiaweeen of small-scale, pilot charac-
ter. As s clear from this chapter, the semantic interpi@tainethods we propose depend mainly
on hand-crafted resources (grammars, lexica, ontologiéss) and the methods employed are
deterministic in nature. Crucial is, however, that input & parsed. In order to gain insight
into the prospects for larger-scale computational inttgiion, in the next chapter we perform a
guantitative evaluation of the parser component, the al¢wfehe architecture on whose output
semantic interpretation relies.
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Prospects for automated proof tutoring
in natural language

This chapter reports on evaluation experiments designtgdtiaé goal of assessing the potential
of deep processing resources for computational undeistmd students’ mathematical lan-

guage and drawing conclusions about the prospects foratddimguage interaction for German
dialogue-based proof tutoring systems. We focus on therageeof the parsing component
which is the key part of the proposed input interpretatiochéecture (Chapter 5). Existing

corpora of learner proofs (Chapter 2) are used as data fortansic evaluation of the parser's

performance. Before presenting the results, we motivaehioice of the evaluation methodol-
ogy, the scope of the evaluation, and the design of the expets.

7.1 Methodology and scope of the evaluation

Holistic approaches to evaluating tutoring systems user@apmethods — laboratory or field
experiments —to show a relationship between an interveittimlving computer-based instruc-
tion and the students’ outcomes (Mark & Greer, 1993; Se®3]Baker & O’'Neil, 1994). The
Stanford tutoring systems, including the proof tutoringiEznments, have been evaluated in
this way since the 60s; see, for instance, (Suppes & Mortang$972; Suppes, 1981). Such
“end-to-end” evaluations presuppose, of course, that gt@imimplemented system exists and,
what is important, that it is robust enough to handle new ohagalive study. If a complete sys-
tem is not available, partial Wizard-of-Oz experiment®(Section 2.2) may serve as a setting to
evaluating parts of a larger system while simulating the poments which cannot be integrated.
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7 Prospects for automated proof tutoring in natural languag

The project of which this thesis has been part focusetasicresearch questions in modern
technology for dialogue-based tutoring of mathematicabfs rather than aiming at a deploy-
able system. Severakoof-of-concepstudies have been conducted within the project in order
to assess the validity of the proposed methods on a compbgertamponent basis. These in-
cluded: tutoring strategies (Tsovaltzi, 2010), fragmevitdhe dialogue model (Buckley, 2010),
granularity judgment models (Schiller et al., 2008), antkrely also proof representation and
reasoning (Autexier et al., 2012). Integrating the proeéancept modules into a working ex-
perimental system would be an interesting task in itself,ibis outside of the scope of this
thesis. At the present state, even in a partial Wizard-os@ulation most of the anticipated
system’s functionality would have to be taken over by a hufaaititator, making the experiment
logistically complex and costly. Therefore, instead, iis thrork we follow the same method of
component-based evaluation and irgeinsic criteria to evaluate deep-parsing German CCG
fragments based on the corpora we have collected.

Intrinsic evaluation (Galliers & Jones, 1993) focuses aponent’'s objective, rather than its
role in a larger setup (extrinsié).Precision and recall are often used as measures in intrinsic
parser evaluation; see, for instance, (Grishman et al2;1d8lla & Hutchinson, 2003; Carroll
et al., 2003). An evaluation which is closest to ours in teofithe application domain has been
performed by Dzikovska et al. (2005). The authors report @2erage and 68% precision
results for syntactic and semantic parsing of trBACTIVEMATH corpus of English tutorial
dialogues on differentiation (Callaway et al., 2086)he results were obtained by manually ex-
tending the lexical base of the TRIPS grammar (Allen, 198%)jde-coverage parsing resource
for dialogue, to support theHACTIVEMATH data.

Similarly to the above-mentioned work, we use the Wizar®afcorpora (Chapter 2) to in-
vestigate the growth of parsing coverage with an increasipg of grammar resources as well
as the amount of parse ambiguity generated by the grammats.ti\at in a step-wise deep pro-
cessing approach based on manually constructed lexidalesmurces and without robustness
features, parsing is the critical part of the input intetatien component: If the parser fails,
domain-specific interpretation, the next step of the preiogspipeline (Chapter 5), cannot pro-
ceed. Once a parse is found, assigning a domain-specifimgeiach deterministic (rule-based)
process. Grammar coverage is thus critical to the usaloifity system based on deep semantic
processing. Therefore, in order to assess the outlook f&p geocessing-based interpretation,
we focus on the performance of the manually constructedngpggammars.

The experiments we conduct are restricted to two typddadf contributioncategories. The
reason for this is two-fold: First, it is the proof-contrtimg utterances that need a domain
interpretation readable by a reasoning component; thepiiation strategy and the language

For an overview of parser evaluation methodologies see falsnstance, (Carroll et al., 1998)
2Based on the reported results it is not clear whether uttesaor turns (possibly multi-utterance) were parsed
and what proportion of the parsed units were unique verdidiss.
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Table 7.1: Summary of the utterance types distribution.

C-1&C-ll
Utierance type Unique / Total
Solution-contributing 465/735
Proof contribution 450/719
Proof step 407/ 640
Logic and proof-step components 175/ 366
Domain & context 126 /256
Meta-level description 16/186
Proof strategy 29/34
Proof status 7129
Proof structure 7116
Meta-level 15/16
Self-evaluation 717
Restart 4/5
Give up 4/4
Other 231/331
Request help 149/170
Yes/No 1/42
Cognitive state 30/31
Politeness/Emotion/Attitude 14/24
Discourse marker 1/22
Answer 19/20
OK 1/7
Address 6/6
Session 4/4
Agree 3/3
Self talk 212

processing methods proposed in Chapters 5 and 6 concemtrtiis type of utterances. Second,
the data in the remaining classes is sparse. Recall thatapt€h4 we classified the learner
utterances into two broad typeSolution-contributingand Other (non-solution-contributing).
The utterance types frequency distribution is summarise@iable 7.13 If we exclude sub-
categories ofOther which can be identified by a lexical lookujyds/No OK, and Discourse
marker) we are left with 8 sub-types of which only four have a frequeabove 5% within their
superclassAnswer Politeness/Emotion/Attitud€ognitive stateandRequest help The set of
help requests could be considered for experiments, althcagmittedly, 170 instances might
not be a representative sample. While help requests coudtbgparsed using deep grammars,
it is evident that this category is linguistically diverseth mainly idiosyncratic verbalisations
(type-token ratio of 0.88). Thus, grammar-based parsinghtmot scale. Moreover, since
help requests are not passed to a reasoning engine for gvajuaut can be processed by the
dialogue model directly, an alternative strategy worthlesipg would be machine-learning-

3For the full classification see Table 4.6 on page 133.
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7 Prospects for automated proof tutoring in natural languag

based classificatioh.The Solution-contributingclass is likewise skewed. Only tHroof step
category constitutes more than 5% of the class. Verbalisatdf the remaining categories can
be hardly considered representative (theta-levelclasses have between 4 and 7 instances and
the remainingProof contributionsbetween 16 and 34 instances). Therefore, the evaluation we
conduct encompasses only proof-contributing utterarmese specificallyProof contributions

of type Logic & proof step componensdDomain & contexias defined in Section 4.3%4.

7.2 Design

We attempt to answer the following questions: First, beyiiedbvious advantage of principled
compositional semantic construction, is there an advantagleep processing students’ input
over parsing using resources which are easier to atl8e@ond, do the resources scale, that is,
what can we tell about the prospects for natural languaggpas io proof tutoring systems based
on processing the available data? To this end, we set up amimgnt to analyse two aspects
of parser performanceparsing coveragéproportion of parsed utterances from a test set) and
parse ambiguitynumber of parses found for a parsed utterance). The expsatioonsists of
two parts: First, we analyse the growth of coverage in a pseuoks-validation experiment on
“seen” data (data used for grammar development). Secondyalaate the performance of the
same grammar resources on “unseen” data (not used for gnadewvelopment, a blind set).

It is clear that verbalisations of proof steps are lingu#ty diverse (type-token ratio of 0.49;
see Table 7.1) and a lot of verbalisations occur only onceo(#8the Logic & proof step com-
ponentsclass 84% in thddomain & contexiclass; see Figure 4.4 on page 138). Of course,
considering that we build grammars by hand, we could modé&halproof step utterances one
by one or focus on specific linguistic phenomena of the Gerfaaguag€. Instead, for this
evaluation, we select utterances to model based on shallawtitative corpus analysis: we do
not model proof step verbalisations which are entirelysgiwratic, but use only those verbali-
sations which, upon preprocessing, ocatileast twicdan the data so far. We will refer to these
subsets of the data as “modelled utterances” or a “developsst”.

At each cross-validation step, grammars are built based adelied utterances stemming
from an increasing number of dialogues (1 dialogue, 2, 3,sandn). The motivation behind
this setup is to simulate a partial Wizard-of-Oz experimanthich the parsing component is
replaced by a human if it fails. In the envisaged scenarioyweeld systematically augment
the grammar resources after each experiment session bagsbd data from the subject who
just completed the experiment, a plausible approach. Sirmemar development is a time-
consuming task, for efficiency reasons a plausible pragndatision in such a setting would be

4If the taxonomy proposed by Wolska and Buckley (2008) weeglpthis would be a 7-way classification task.

SMeta-level descriptionare not included for the same reason: at 18 instances thdesitpo small. When we
refer to “proof steps” further in this chapter we meanltibgic & proof step componengdDomain & contextypes.

SArguably, writing regular or context-free grammars is lésglved than writing resources in richer, more
expressive grammar formalisms, such as HPSG, LFG, or CCG.

"We have shown how we model selected relevant phenomena ofaBén CCG in Section 6.1.
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to prioritise modelling those verbalisations which areesbied to reappear — suggesting thereby
to berelatively more representative of the languagevith the view to gradually reducing the
degree of the wizard’s intervention. For instance, onecaagcide to model utterances which
appeared at least, say, five times in the data collected sGiaen the heavily skewed distribu-
tion of the proof step types (see Figure 4.4 on page 138)gisithulated experiment we set the
frequency threshold at two occurrences for otherwise theldpment sets would be too small.
In the pseudo cross-validation setup, we paiséhe utterances from the modelled set (seen
data) using grammars constructed based on the modelledndgés’ Notice that unlike in
proper cross-validation, in which data is partitioned idisjoint development and validation
sets, here the evaluation sets constructed from the mddelerances contain both utterances
unseen at the given iteration (modelled, but not used ta thélgrammar at the given step) as
well as seen items (items based on which the evaluated gresvirage been built). The purpose
of the evaluation on the modelled sets is to observeateeof convergenct ceiling results (total
number of modelled utterances) based on data that has bleanstively encoded in a principled
way (all the utterances from the seen evaluation sets patsdhie expected representations).
Next, we use the remaining proof step utterances, the sowgaerrence verbalisations (unseen
data), to observe thgeneralisation potentiabf the grammar. Analogous incremental evaluation
is performed. The second part of the experiment is thus aepiolnd evaluation. In the next
section, the development data, the grammars, and the testregoresented in more detail.

7.3 Data

Out of the 57 dialogues 42 contain proof steps which ove@uaed more than once. The dia-
logues comprise 622 proof step instances, among which, pifeprocessing, there are 391
unique verbalisation patterns. 319 of these occurred deaeing 72 utterance patterns for de-
veloping the evaluation grammar. 10 clearly ungrammatitiarances were exclud@drhe pat-
tern consisting of a single noun phrase denoting a domamuess also excludetf. The remain-
ing 61 utterances from 42 dialogues were used as the granewealogment set.

7.3.1 Preprocessing

Utterances in the development set were preprocessed atbddsin Chapter 5. Domain terms
and mathematical expressions have been identified anditstdxtwith symbolic tokens. In
the case of mathematical expressions, the tokens reprimseakpression’s typerErRM, FOR-
MULA, _FORMULA, etc.), in the case of domain terms, they include grammatitarma-

8Descriptive information on the development and evaluasiets follows in Section 7.3.

9Examples of ungrammatical forms include: “dann gilt fuez tinke seite wenn formula” (main clause of the
embedded sentence missing) or “term gilt demnach wenn faromd formula” (semantic type conflict between the
subject “term” and the predicate“hold”). The grammar carspdhe latter utterance once “demnach” is added as a
lexeme to the prepositional adverbs category and if “teswéplaced with “formula”.

1%These utterances are preprocessed to a single tbkamaINTERM, encoded as th& P category, a trivial case.
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Table 7.2: Descriptive information on the grammar develeptiset
C-1 C-ll C-1&C-lI

Number of dialogues in the developmentset 15 27 42
Number of unique utterances 21 56 61
Number of words 80 266 284
Number of unique types 24 54 57
Corpus
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Figure 7.1: Histogram of the modelled utterance lengthsofiens).

tion about case, number, gender, and the type of articlen{tigfindefinite/none), for instance,
DOMAINTERM:DEF-SG-F-DAT for a definite, singular, feminine, Dative noun phrase. Twitim
word units, “genau dann wennif @nd only if) and “so dass”guch tha} have been represented
as single tokens. Table 7.2 summarises the descriptiveniafiion about the development Sét.

Figure 7.1 shows the distribution of utterance lengthstépatlengths) in the modelled set.
The majority of utterances from both development sets awedan three and five tokens. The bi-
nary relations corpus contains a larger number of longeraittes than the naive set theory cor-
pus. Considering that this suggests a wider variety of istguphenomena in C-1l, we expect
that resources stemming from C-1I data will provide betengyalisation, thus better coverage,
on unseen data than the resources stemming from C-I.

Note that here and furtheype countgather than instance counts will be reported. Note alsowinever
we use the word “utterance” further in this chapter, we yeaieanutterance patternan utterance preprocessed as
described here. Both terms will be used interchangeably.
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7.3.2 Evaluated grammars

Dialogue utterances from the modelled set have been extelystncoded in OpenCCG as
follows: The set of atomic categories in the evaluated gramncomprises the standard four
types: S for sentence/clause typed, P for noun phrases)N for common nouns, ané P for
prepositional phrases. A set of basic categories for madkieah expressions, noun phrases,
common nouns, and articles has been encored as altared lexiconDialogue-specific lexica
of syntactic categories covering the phenomena found imtbdelled utterances have been
created for each dialogue in the development set. The staxiedn, dialogue-specific lexica,
and performance optimisation, are outlined below.

7.3.2.1 Shared lexicon

The following four lexical groups constitute the core setafegories available aachstep of
the iterative evaluation:

Mathematical expressions The grammar encodes three categories for truth-valuedemath
matical expressions: a sentence/clause tgpand twoN P\ N P types for expressions of type
_FORMULA: one with the “such that” reading, adding the formula’s fication to the logical
form via GeneralRelationand the other adding a predicate, rather than a dependelatipn,
serving as the head of a dependency structure.

Mathematical object-denoting expressions, terms, olitaincategories: noun phrases and
common nouns. The former models constructions such as &il .Sveine leere Menge ist”
(-..because is an empty séf while the latter, constructions such as “Es gibtein.” (There
isanz ...) or “Es gibt einz € B” (There is anz € B) in which a symbolic expression of type
FORMULA is a part of a phrasal constituent with the preceding natargjuage material (here,
part of a noun phrase).

Mathematical function and relation symbols embedded wittdtural language text obtain
both clausal and nominal reading, the latter to account dmistructions such as “wegen Dis-
tributivitaet vono” (because of distributivity of). Partial expressions (such as “4”) obtain
appropriate functional categories=("A”, preprocessed toFORMULA, is of type N P\ N P).

Noun phrases The noun phrase group comprises three categories: two@tdhi, denoting
object types (contribute LHDS predicates) and expletivesusf singular third person neuter
pronoun “es” (not represented in the logical form). Thedhipun phrase category{ P/N P,
encodes appositive constructions and add&@ps(appositive) relation to the logical form.

Common nouns A single atomic common noun category, models bare nouns and mathe-
matical terms.

Articles Articles are modelled with the standard categdfy?/N.
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Figure 7.2: Distribution of modelled and non-modelled ratece patterns; sorted by corpus
and number of modelled patterns. The horizontal lines detia range
of the number of parses found for the modelled utterancdseigiven dialogue.
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Table 7.3: Verbalisations with multiple CCG parses in thengmar development set

Utterance pattern No. of parses

also giltFORMULA und FORMULA

dies aber heistORMULA und FORMULA

FORMULA genaudannwenfORMULA undFORMULA
also giltFORMULA und FORMULA

laut DOMAINTERM gilt dann auclFORMULA
daFORMULA gilt nachboMAINTERM formula

also ist term in term oder term in term

WN NN NN




7.3 Data

7.3.2.2 Dialogue-specific lexica

Aside from the shared categories included in all grammaasoglie-specific grammars encode
only the categories required to cover the modelled utteranagsdfin the given dialogue. An
overview of our approach to modelling basic linguistic pii@ena in the corpora has been
presented in Section 6.1. The same syntactic categorias e@anconsistently reusedcross
dialogue-specific lexica when the syntactic contexts aldthat, in order to ensure ththe same
phenomena are modelled the same way across dialpdlies minimising spurious ambiguity
due to alternative encoding in the grammar.

7.3.2.3 Baseline

The performance of the CCGs is compared with the performahmentext-free grammars (CFG)
developed in an analogous setup. The CFGs were created theindgLTK toolkit (Loper &
Bird, 2002) and parsed with the NLTK’s Earley chart parsdre €xpectation is that the CCGs’
lexicalised model provides better generalisations thenQRGs’ and, as a consequence, better
coverage. However, this generalisation power is likelydme at a cost of parsing ambiguity:
we expect more ambiguous analyses with the CCG parser tHRrOWG.

7.3.2.4 Performance optimisation

Figure 7.2 shows the distribution of the modelled and nomtelied utterance patterns and the
range of the number of parses per dialogue in the developseéniote that the x-axis shows the
number ofdistinctutterances (pattern types) anat of utterance instances (of which there were
more than one instance in the case of all the patterns in tredafament set; see Section 7.2).

The performance of both CCG and CFG grammars was optimis@eodialoguebasis: All
the utterances were encoded in such way that, per dialtigeiexpected (semantic) representa-
tions are correctly produced by the parsand thathe number of parses for the reading intended
in the given dialogue is maintained at minimum

While most of the utterance patterns have been encodedlingicthat they produce a single
parse (see Figure 7.2) the grammars do produce valid ditesrerivations of a few utterances
in the development set. In the case of CCG (and MMCCG) maltigrivations of an input string
are produced if a lexeme can be instantiated with multipteéasytic categories or if alternative
applications of combinatory rules are possitielhere is a larger number of ambiguous parses
in the binary relations corpus than in the naive set theorpu(the second corpus contains
longer and more complex utterances; see Figure 7.1).

Utterances which yield more than one parse are listed ireTAl8l. Multiple parses are gener-
ated by ambiguous coordination which can be interpretedlkisg wide or narrow scope, by a
combination of coordination scope and preposition attaaftrar adverbial modification (“auch”
(alsg), “nun” (now), etc.), or by structurally ambiguous clausal scope. Theetheadings of the

12plternative compositionally ambiguous parses may, howeweduce equivalent logical forms.
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utterance “daFORMULA gilt nachDOMAINTERM FORMULA” are: ((darFORMULA) (gilt nach
DOMAINTERM FORMULA)), ((da FORMULA gilt) ((nach DOMAINTERM) (FORMULA))), and
(((darForMULA gilt) (nachDOMAINTERM)) (FORMULA)). The latter two are artefacts of con-
structions of type FORMULA gilt nachDOMAINTERM” (FORMULA holds byDOMAINTERM)
and “nachbOMAINTERM FORMULA” (by DOMAINTERM FORMULA) for which different prepo-
sition categories are needed.

Plausible alternative parses in the development setiritezl above, were preserved. Other-
wise, derivations were controlled in a standard way throfggitures and modes on slashes of
the multi-modal CCG. The full grammar covering the modellgtrances from both corpora
consists of 65 distinct complex syntactic categories geduimto 19 lexical families (sets of
categories of syntactically related lexemes).

7.3.2.5 Grammar development sets used in evaluation

Dialogue-specific CCGs built for the modelled utterancesnfleach of the 42 dialogues have
been grouped into four evaluation resources:

1. C-I resources: model C-1 dialogues,
2. C-Il resources: model C-II dialogues,

3. C-I &C-Il in the data collection orded€o): C-I dialogues added first, followed by C-II
dialogues,

4. C-1&C-Ilinarandom orderrp): C-1 and C-Il dialogues combined in randomised order.

Case (1) simulates the situation in which only C-| data wesglable, case (2) the situation
in which only C-Il data were available, and cases (3) and épyasent the setting with both
corpora available, with case (3) corresponding to the ablomical order of our Wizard-of-
Oz data collections, on the one hand, and, more importathidydistinction between the two
mathematical domains of the data collection experimemtshe other.

At each cross-validating iteration, grammars are augndelmyeadding resources needed for
parsing all the modelled utterances from the dialogue dediat the given iteration step (see Fig-
ure 7.2). The added resources comprise efgitieal families that is, all the seen syntactic cat-
egories for the lexemes occurring in a given modelled utteraA more conservative approach
would be to include only the one category which models theifipesyntactic context appearing
in the given utterance. This, however, would result in exatuin grammars over-tuned for the
specific utterances added to the evaluation at a given stewanld not give an insight into the
generalisation potential of the CCG grammars.

Considering the conclusions from the quantitative analysesented in Chapter 4, which
showed, at a shallow level, that the language in C-1 and Ciflérd strongly, we expect the
grammar based on C-I and C-Il data combined in random ordat,is mixing the resources
from the two corpora (C-1 &C-lIro) to yield the best performance.
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7.3.3 Test sets

Performance of the four evaluation resources is tested ateteo utterances and non-modelled
within-vocabularyutterances grouped into “seen” and “unseen” test sets:

1. C-l-seen, C-ll-seen, and C-I &C-Ill-seen: comprise migdklitterances from C-I, C-II,
and C-I and C-1l combined, respectively,

2. C-l-unseen, C-ll-unseen, and C-l &C-ll-unseen: congri®n-modelled utterances
from C-I, C-Il, and C-1 and C-Il combined.

While the seen test sets do contain utterances based on thkigilammar has been built, in
the incremental setup, at each iteration only the lexicgmaies needed fahe given number
of dialoguesare used. Thus, at each iteration of the “seen” evaluattm gtammar is tested
on data from which the lexical categories stemna@d on the remaining data from the seen
set which at the given iteration step is effectively unse@nly at the final iteration step is the
evaluation performed on seen data alone.

The unseen test sets consist of proof steps which occuridgdnooe in all the 50 dialogues
which do contain proof steps. 7 clearly ungrammatical attees have been excluded. Only
within-vocabulary utteranceselative to the complete development sats/e been included in
the unseen test sets since parsing utterances with outeabulary (oov) words fails trivially?
The resulting unseen data set contains 114 utterancesln tot

Figure 7.3 shows the distribution of utterance lengths & lhind sets. Not surprisingly,
by comparison with the modelled utterances (cf. Figure, &ibgle-occurrence utterances are
longer, that is, more complex. We thus expect a significaop dn coverage by comparison
with the seen data. Table 7.4 summarises descriptive irftiom on both test sets. 10 cross-
validation rounds on different random permutations of teeatbpment dialogues are performed
at each iteration step.

7.4 Results

The results are summarised in four parts: First, we lookeattiverage. Growth of coverage with
an increasing number of dialogues is plotted per grammaures. Variance of measurements
obtained in the 10 cross-validation rounds is presentedaplots!* Subsets of numerical re-
sults — at 25%, 50%, 75%, and 100% of the data set — are staligttompared. The asymptotic
Mann-Whitney-Wilcoxon U test, adjusted for ties,«0.05) was used due to a relatively small

8In a basic deep-grammar parsing setup with no robustnessumesa as performed here, oov words are not
supported, that is, the parser fails. Note that in the inergal setup, evaluation on the incomplete seen sets wall als
cause parser failures due to oov words; parser failure dateso oov words will be reported.

¥The same type of box plots are used throughout: hinges at @1Q&) Tuckey whiskers (outliers outside
1.5*IQR), sample means marked with circles.
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Table 7.4: Descriptive information on the test sets

Seen data Unseen data
C-1 C-ll C-1&C-Il C-I C-ll C-l1&C-lI
Number of utterance patterns 21 56 61 22 92 114
Number of words 80 266 284 98 605 703
Number of types 24 54 57 26 48 49
Corpus
C-l
C-ll

15 A

10 A1

Number of utterances

12345678 9101112131415161718
Utterance length

Figure 7.3: Histogram of the unseen utterance lengths kiens).

number of observations and because parametric assumptérasviolated for most of the com-
pared distributions. Parse failures due to vocabularyideithe lexicon (out-of-vocabulary error
rates) are summarised. The analysis is performed for thedsda (Section 7.4.1) and the unseen
data (Section 7.4.2). Next, parse ambiguity basedurgrammars is plotted (Section 7.4.3).
Finally, the overall performance of the CCG parser is sunsadras percentage of test sets
parsed and percentage of proof-contributing utterancesedaer dialogue (Section 7.4.4).

7.4.1 Coverage on seen data

Growth of coverage on seen data is shown in Figure 7.4. The st the evaluated resources
and the columns the results for the three test sets. Ceilihges are marked with dashed hori-
zontal lines: 21 for C-I-seen, 56 for C-ll-seen, and 61 for &€c-1l-seen data.
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Figure 7.4: Growth of coverage on seen data.
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Table 7.5: Mean coverage on the seen data in percentagd eétgmrsed.

Grammar C-l-seen C-ll-seen C-1 &C-ll-seen
development (N=21) (N=56) (N=61)
set CCG CFG CCG CFG CCG CFG

25% 46.1913.31) 35.71 (9.82)16.43 (6.07) 10.18(4.30)19.34 (6.42) 13.11(4.15)
C-l  50% 70.4810.61) 55.24 (8.83)29.64 (5.88) 16.96(4.32)33.28 (6.09) 20.66(3.89)
(n;=15) 75% 90.48 (7.68) 80.00 (7.00)41.61 (5.36) 26.25(2.77)45.57 (5.72) 30.98(2.88)
100%100.00 (0.00)100.00 (0.0038.21 (0.00) 33.93(0.00)52.46 (0.00) 39.34(0.00)

25% 71.90(10.74) 37.62(11.75)61.4312.17) 39.46(9.66)59.51(12.25) 36.23(8.87)
C-Il 50% 87.14 (3.05) 57.62 (8.64)83.39 (3.39) 63.57(7.91)80.98 (3.30) 58.36(7.27)
(ng=27) 75% 90.00 (1.43) 72.38 (3.56)94.46 (3.87) 86.25(5.93)91.48 (3.58) 79.18(5.44)
100% 90.48 (0.00) 76.19 (0.00) 100.00 (0.00)100.00(0.09%.72 (0.00) 91.80(0.00)

C-1&C-1| 25% 80.95 (9.78) 73.81 (9.10B5.32 (5.04) 25.54(3.10)38.62 (5.94) 29.02(3.81)
oo 50%100.00 (0.00)100.00 (0.0069.25 (5.76) 52.32(3.49)71.77 (5.29) 56.23(3.20)
75%100.00 (0.00)100.00 (0.0087.30 (5.29) 78.21(7.04)88.34 (4.85) 80.00(6.47)

(na=42) 100%100.00 (0.00)100.00 (0.00) 100.00 (0.00)100.00§AL00.00 (0.00) 100.00(0.00)

C-1&C.1| 25% 82.86 (9.33) 64.76 (9.33)63.93 (7.35) 43.39(6.87)63.61 (7.32) 43.44(5.92)
50% 93.33 (3.81) 83.81 (6.80)81.96 (5.78) 65.00(8.83)81.31 (5.35) 64.75(8.43)

0 750 96.19 (2.86) 94.76 (2.5688.57 (3.68) 81.79(7.18)88.20 (3.72) 81.80(6.58)
(na=42) 1009%100.00 (0.00)100.00 (0.00) 100.00 (0.00)100.00§AL00.00 (0.00)100.00(0.00)

Two general trends can be observed from these visualisatiBinst, on average, in all the
cases the CCG grammars converge to ceiling values fastéistlas expected, generalise better.
Second, at around 50% of all the data sets, the performanm®iofjrammars is characterised by
substantial variance, that is, performance is strongleddpnt on which dialogues are included
in the data set. (Recall that tliBalogues not utterances, in the development sets have been
sequenced randomly into 10 permutations.) This confirmgtée¢ious observation, formulated
based on shallow analysis in Chapter 4, that the proof laggyimindeed diverse and differs
from subject to subject; consequently, the individual eaty§' data require different lexica or
phrase-structure rules. As a result, the rate of conveggenalso strongly dependent on the
content of the development set. Moreover, the varianceeoO8G results appears greater than
that of the CFGs’, which means that the convergence rateeo€BG parser is more unstable
and more sensitive to changes in the data based on whichaherr is built.

Not surprisingly, grammars based on C-| alone yield the gstoperformance. C-I CCGs
tested on seen C-Il data do not reach the coverage of eventh@dir(al C-1 grammar parses
27 utterances on average out of 56). This is not surprisimgeshe C-I1 resources are built based
on only 21 utterance patterns (see Table 7.2) which are mereshorter than the utterances
found in C-1I (as shown in Figure 7.1). Grammars based on @elt better performance. The
complete C-II CCG misses only two utterances from C-I. Ab®0% into the development
set, C-1l CCGs cover at least around 80% of all of the test S&ie combined resources reach
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Table 7.6: Mean proportion of parse failures due to oov wortdseen data

Grammar C-1&C-l11
development C-l-seen  C-ll-seen _seen
set (N=21)  (N=56)  (N=6)
25% 0.53 (0.12) 0.82 (0.07) 0.79 (0.07)
C-l  50%0.35 (0.10) 0.68 (0.06) 0.65 (0.06)
(ng=15) 75% 0.14 (0.05) 0.58 (0.04) 0.54 (0.04)
100% 0.00 (0.00) 0.50 (0.00) 0.46 (0.00)
250% 0.34 (0.11) 0.39 (0.11) 0.40 (0.11)
C-l 50%0.18 (0.04) 0.16 (0.04) 0.19 (0.04)
(ng=27) 75%0.12 (0.03) 0.05 (0.03) 0.09 (0.03)
100% 0.10 (0.00) 0.00 (0.00) 0.03 (0.00)
C-1&C-1l 25%0.19 (0.07) 0.61 (0.04) 0.58 (0.04)
deo 50%0.00 (0.00) 0.28 (0.05) 0.25 (0.05)
75% 0.00 (0.00) 0.10 (0.05) 0.09 (0.04)
(na=42) 100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C-1&C-1| 25%0.17 (0.09) 0.33 (0.09) 0.33 (0.08)
o 50%0.07 (0.03) 0.15 (0.06) 0.16 (0.05)
75% 0.04 (0.03) 0.09 (0.03) 0.10 (0.03)
(na=42) 100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

at least around 70% coverage at 50% of the development seexpicted, the results based on
resources combined in random order, converge faster than those based on resources built
incrementally in the data collection ordetco. While the dco results exhibit a slow linear
convergence trend for both CCG and CFG, the convergenceeo€@G results based an
resources is clearly superlinear.

Numerical comparisons of parsing performance of the CCGGH@ grammars on seen data
is shown in Table 7.5. Mean numbers of parsed utterance®giesdt are shown for subsets of
the resources and for the complete development sets (sthddeaations in parentheses). The
values ofn, in the first column indicate the actual numbedadloguesin the complete set.N”
are the ceiling values: the number atterancesin the given test set. Statistically significant
differences are marked in bold.

In almost all cases the CCG parser statistically outperfotine CFG baseline. In fact, all
the marked differences were significant at a more conseevaignificance levely=0.01, than
the one used for comparisons. No statistical differenchéncise of C-1 &C-lldcoresources
tested on C-I-seen test set is clear: 25% of the C-1 &@dd-data set contains already 10 out
of the 15 dialogues in C-1 and the ceiling value is reacheebaly 50% into the data set.

Table 7.6 shows the proportion of parse failures due to buboabulary words. Again, we
see that the full C-I lexicon covers only around half of thél@nd the combined test sets, that
is, around 50% of C-I1l utterances contain vocabulary whéatat in C-1. By contrast, with C-11
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and the resources combined in random ord®rpov rates drop to at most 19% already when
50% of the data is available and to around 10% at 75% of thd@fmvent data. The higher oov
error rates, 25-28%, obtained on C-1 &C-dtoresources are consistent with the corresponding
C-I results: at 50% of the data only 7 C-1l dialogues are ideliiin the C-I &C-lldcodata set.
The oov rates drop to around 10% at 75% ofdlceset, the same level as with the C-1 &C+1d-
set. The majority of parse failures on seen data are thususotaddifferences in vocabulary, but
due to different syntactic constructions in the developnsets and test sets.

7.4.2 Coverage on unseen data

Growth of coverage on unseen data is shown in Figure 7.5ingeialues for the test sets marked
with dashed horizontal lines are at 22 for C-I-unseen, 9Zfdt-unseen, and 114 for C-1 &C-
II-unseen. Performance of both the CCG and the CFG gramnfiar feom the ceiling values,
however, the trends observed for the seen data are even nooi@pced on unseen data.

In all the cases the CCG grammar’s coverage grows faster.CT@ parser markedly out-
performs the CFG parser on the C-ll-unseen and C-I &C-lleenstest sets. There is more
variance in the performance of the CCG parser than that oE#@ parser on the unseen C-II
data and on the combined set, that is, again, the performandethus the rate of convergence
of the CCG results, is strongly influenced by the content efdhta set, again pointing at the
diversity of linguistic phenomena. As with the seen dataymgnars based on C-| data alone
yield the poorest performance. There is little differencgérformance between C-1I and C-I
&C-1l grammars, which means that the C-I resources do notritte much to the perfor-
mance on unseen data. This again shows that the languagé imsDbstantially different from
the language in C-II.

Numerical comparisons of parsing performance on unseenislahown in Table 7.7. The
CCG parser consistently statistically outperforms the Qaer, this time also on the test set
based on C-I data. Both the CCG and the CFG parser perfornismsere stable on unseen
data, however, the tendency toward more variance (les#ityfain the performance of the CCG
parser than in the performance of the CFG parser can be @iservunseen data as well.

Table 7.8 shows out-of-vocabulary parse failure rates @eem data. With the complete C-I
lexicon almost half of the parse failures on the unseen datathe same corpus and the majority
of failures on the C-ll unseen data and the combined set adalout-of-vocabulary words.
However, much like in the case of the seen data, C-Il gramiaadgsthe grammars combined
in a random order yield only from 10 to 30% oov failures givareast 50% of the resources.
The majority of failures are thus due to syntactic constomst found in the test sets which are
not accounted for by the development data. With the com@eteresources, all parse failures
are due to this. The high oov rates based on C-| data are eflacthe performance of the
C-1 &C-lI-dcoresources; at 75% of all the test sets around 20% of parsedaibased on C-I
&C-lI-dco are due to unknown out-of-vocabulary words. The resultedas C-1 &C-ll+0
data are comparable.
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Number of utterances parsed

C-l-unseen C-ll-unseen C-1&C-ll-unseen
110 -
100 A Grammar
B3 CCG
B CFG
(@]
L
i g
(@]
L
e o
%
Q
R
Q
?la
sk %W ?g@g&gwﬂﬁ* 8
I s
...... g s
110 -
100 -
90 -
80 - (?
70 —
60 - 8
50 - i
5]

20 A
10 A
0 5 e *

% | R

15101520253035401 5 101520253035401 5 1015 20 25 30 35 4
Number of dialogues

Figure 7.5: Growth of coverage on unseen data.
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Table 7.7: Mean coverage on the unseen data in percentagst skt parsed.

Grammar C-1 &C-ll-unseen
development (N=22 (N=92 (N=114)
set CCG CFG CCG CFG CCG CFG

25% 7.736.12) 0.91(1.82)5.653.85) 0.33(0.70)6.054.10) 0.44(0.71)
C-l  50%12.733.96) 2.73(2.2310.11(3.44) 0.54(0.8810.61(3.15) 0.96(1.00)
(ng=15) 75%17.271.82) 5.00(2.4514.891.46) 1.52(1.0015.351.48) 2.19(0.98)

100%18.180.00) 9.09(0.0016.30(0.00) 3.26(0.001.6.670.00) 4.39(0.00)

25%17.734.29) 3.64(3.9622.938.34) 2.39(2.05p1.937.24) 2.63(2.00)
C-Il 50%21.362.08) 7.27(3.02p6.095.95) 6.41(2.8133.255.17) 6.58(2.67)
(ng=27) 75%22.271.36)12.27(2.0839.784.46) 10.22(2.2436.4((3.83) 10.61(2.13)

100%22.730.00) 13.64(0.00%3.4§0.00) 11.96(0.0039.470.00) 12.28(0.00)

C-1&C.1| 25%15.452.23) 6.36(3.02)3.371.62) 2.17(0.8413.771.67) 2.98(1.19)
oo 50%18.641.36) 9.09(0.0026.633.71) 4.57(1.525.093.24) 5.44(1.23)
75%21.362.08) 11.36(2.2735.545.01) 8.59(2.6832.81(4.39) 9.12(2.49)

(Na=42) 100%22.730.00) 13.64(0.00%3.4§0.00) 11.96(0.0039.470.00) 12.28(0.00)

C-1&C-1| 25%18.182.03) 5.91(3.55p5.874.53) 2.93(1.3824.393.82) 3.51(1.71)
o 50%20.002.23) 9.09(2.8734.676.21) 5.76(2.62B1.845.44) 6.40(2.48)
75%20.91(2.23) 10.91(2.2337.936.20) 9.02(2.0134.655.43) 9.39(2.00)

(na=42) 1009%22.730.00) 13.64(0.00%3.480.00) 11.96(0.0039.470.00) 12.28(0.00)

C-l-unseen C-ll-unseen

Table 7.8: Mean proportion of parse failures due to oov wordsinseen data

Grammar C-l-unseen  C-ll-unseen ©7' &C-I!
development -unseen
set (N=2)  (N=92  (N=119
25% 0.71 (0.10) 0.92 (0.04) 0.88 (0.05)
C-l 50% 0.59 (0.08) 0.84 (0.05) 0.79 (0.05)
(n,=15 75% 0.49 (0.04) 0.78 (0.02) 0.72 (0.02)
100% 0.41 (0.00) 0.73 (0.00) 0.67 (0.00)
25% 0.43 (0.13) 0.61 (0.16) 0.58 (0.15)
C-Il 50% 0.23 (0.11) 0.29 (0.13) 0.28 (0.12)
(n;=27) 75% 0.11 (0.09) 0.14 (0.12) 0.13 (0.11)
100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C-1&C-1| 25% 0.49 (0.05) 0.80 (0.03) 0.74 (0.03)
deo | 50% 0.32(0.07) 0.52 (0.08) 0.49 (0.08)
75% 0.12 (0.11) 0.22 (0.11) 0.20 (0.11)
(na=42) 100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
C-1&C.1] 25% 0.37 (0.12) 0.53 (0.09) 0.50 (0.10)
50% 0.22 (0.10) 0.28 (0.15) 0.27 (0.13)
o 75% 0.16 (0.07) 0.17 (0.09) 0.17 (0.09)
(na=42) 100% 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Figure 7.6: Parse ambiguity on seen (top) and unseen (bpttata

7.4.3 Parse ambiguity

As mentioned in Section 7.3.2.4, the performance of theldped grammars was optimised
for the modelled utterances on per-dialogue basis. The suwibparses in the development
set ranged from 1 to 3, with most utterances yielding a sipglse (see Figure 7.2). Now, the
higher generalisation power of the CCGs may come at a priparsie ambiguity. While in this
work we do not address the problem of parse ranking or patsetiem — identifying the most
likely parse — we analyse the distributions of the numberasées on seen and unseen data in
order to assess the complexity of the parse selection proble

Parse ambiguity box plots are shown in Figure 7.6. On the datm the mean number of
CCG parses is around one with a few outliers. The mean nunili&FG@ parses is higher than
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Table 7.9: Summary of percentage coverage and oov ratesarasd unseen data
with complete lexica (coverage/oov-failure-rate).

Grammar C-I1-seen C-ll-seer ' &C11 | _unseen C-11-unseefi ™! &C-!!
development -seen -unseen
set (N=21) (N=56) (N=61) (N=22) (N=92) (N=114
(ndC:-I].S) . 48%/0.50 52%)/0.46 18%/0.41 16%/0.73 17%/0.67
(o lby  90%I0.10 . 97%/0.03 23%/0.00 43%/0.00 39%/0.00
CA&CA ol 23%6/0.00 43%/0.00 39%/0.00

the corresponding CCG results for C-11 and C-1 &C-1I grammahen tested on C-| data. The
performance of all grammars on C-1l and C-I &C-Il test setthissame, one parse on average
with a few outliers. The highest number of CCG parses is 6 aridund for a C-I1 utterance
when parsed with C-Il resources. The results show that dvaungh ambiguity was tuned on
per-dialogue basis, there is no dramatic increase in artpighien the complete lexicon is used.

The increase in parse ambiguity on unseen data is low; thébeuwf CCG parses ranges
from 1 to 7 (a single outlier), by comparison with the 1 to 2garof the CFG parser. The
mean number of CCG parses remains between 1 and 2, negliadigr than the CFG result.
The 1to 6 (seen data) or 7 (unseen data) range of the numbarsasis manageable.

7.4.4 Overall performance of the deep parser

Finally, we look at the overall performance of the CCG paisesed orcomplete lexica Two
summary measures are reported: First, the percentaget setqsarsed and the oov rates (sum-
mary of the results presented in Tables 7.5, 7.6, 7.7, anaAdsecond, the percentage of proof
utterances (in the two analysed categorieggic and proof step componerdad Domain and
contexj parsed per dialogue based on the combined C-I &C-Il lexicon

Table 7.9 summarises overall coverage of the final CCGs bgeéesCombinations of develop-
ment-test sets with obvious complete coverage results arken with a dot® On seen data,
the C-1I grammar parses almost the entire C-1 developmerfl6@o failures due to oov-words)
and thus also almost the entire combined set (3% oov fajluEg contrast, the C-I grammar
accounts for merely 50% of C-1l and the combined test set.uAdohalf of the parse failures
are due to oov-words. This shows that a lot of phenomena foutite binary relations corpus
are not present in the set theory proofs, specifically alst, l&as a greater vocabulary size and
the vocabulary is more diverse.

5Thedcoandro grammars are equivalent when the full lexicon is used.
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7.4 Results

Performance drops dramatically on unseen data. The cavefahe C-1 grammars remains
below 20% for all test sets. 73% of the parse failures on un€z¢l data and 67% failures on
unseen C-1 &C-II data are due to oov errors; even on data stegifrom the same corpus, the
oov rate is high (41%). C-Il grammars and the combined ressrC-1 &C-Il, account for
barely above 20% of the unseen C-| utterances and 40% of geenrC-I1l utterances. Inter-
estingly, C-1 resources do not contribute to the coveragthercombined test set at all; results
for C-1l and C-I &C-II are the same. None of the unparsed atiees based on the combined
grammars fail due to oov-words since the unseen data setwilabdsed on vocabulary found
in the combined C-I &C-I1I development set. Interestinghe ¥41% oov rate for C-I resources
on C-Il unseen set and the fact that C-1l resources yield tarési due oov words suggest that
the C-I corpus is lexically more heterogeneous than the pus; some of the utterances in
C-l-unseen must contain vocabulary not found in the modellel utterances. This is not the
case with the C-I1l data.

Figure 7.7 shows the histogram of percentage of proof utéemparsed per dialogue based
on the full combined C-I &C-IlI grammatAll proof step utterances, both seen and unseen, are
included. The data has been binned in 20% intervals. Oyprlldialogue coverage is lower for
C-I than for C-I1I. The majority of the C-1 dialogues are pats¢ 40-60% coverage. By contrast,
most of the C-II dialogues are parsed at at least 60% covdthgenajority at 60-80%). More
of the C-I dialogues than the C-II dialogues are completaks@d.
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= =
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Percentage of utterances parsed

Figure 7.7: Histogram of percentages of proof utterancesepger dialogue.
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7.5 Conclusions

The results let us draw conclusions along two dimensioresptitential of semantic grammars
and the properties of the data. First, we have shown that-bi@ftbd semantic resources based
on combinatory categorial grammars outperform baselimeest-free grammars on the cover-
age measure while remaining at a manageable ambiguity I8eebnd, we have shown that the
language used by students to talk about proofs is charseteby a large degree of diversity not
only at a shallow level of specific phrasing, but also at a dekgvel of syntactic structures used.

The key conclusion we can draw is that the time overhead ondéelelopment of semantic
grammars for students’ proofs is beneficial and providetrti@e time is invested in data col-
lection and grammar development, CCG as a grammar formalsna potential of scaling well
in this domain in spite of the unexpected diversity of thaylaage. As previously mentioned, the
coverage results point at the high linguistic diversitywsstn the two corpora — thus between
proofs in the two mathematical domains — manifested bothetexical and syntactic level.
Recall that for the purpose of the experiments, vocabulasydeen normalised with respect to
domain-specific concept names. Thus, the lexical diversitiin and between the corpora is
not due to domain terminology. Part of the reason for thathinige that the binary relations
problems were often solved using proof by cases whereas thesgry simple forward reason-
ing was most common. However, the most frequent statemeettiypical of proof by cases,
assumption introduction, occurred in only 12 wording vai$a of which only three appeared
more than once “Sei ...”,“Seinun...”, and “Sei also ..L&{..., Now, let..., Letthen .)..

Finally, we believe that the data we have is insufficienthmgense that it is not representative
enough, for aserious— robust— proof-tutoring system to be implementatithe present stage
The set of recurring verbalisations is small. This is agalihe intuition that the language of
proofs should be small and repetitive. The set theory ressulo noyetscale sufficiently even
within-domain (C-I grammars tested on unseen data fromahmescorpus). The binary relations
data scale better within-domain, however, across-don{&nd resources tested on unseen C-I
data) the difference in performance over within-domairadatnegligible (23% vs. 18%, two
utterances). More data would need to be collected. Iniaghgt as a side-effect, our results
give a little insight into the data collection methodologythe domain of proofs: Wizard-of-Oz
experiments, logistically complex by themselves and is ttase also cognitively demanding
on the wizards, should cover multiple domains of mathermatther than a single domain per
experiment, as ours did, in order to provide more variety robp verbalisations at one trial.
Nevertheless, considering that the promising covegageth results are based o2 partially
modelled dialogues, we also conclude that as far as languagessing is concerned, natural
language as the input mode for interactive proofs could beatiemof near future, provided
that more data and human resources for grammar developneratavailable. The question
is, though, whethetypewrittendialogue modality, in the times when spoken interactiorhwit
machines is becoming more and more widespread, mobile haldddevices ubiquitous, and
convenient graphical proof editors exist, the question liethertypewrittendialogue with a
proof tutoring system is what students would like to have.
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Summary and outlook

This thesis contributes symbolic semantic processing odstlior informal mathematical lan-
guage, such as the language produced by students in iiasaatith a computer-based tutoring
system for proofs. Unlike previous work on computationalgassing of textbook discourse, our
work is grounded in systematic qualitative and quantieatiorpus studies.

Students’ language in computer-assisted proof tutoring The semantic processing approach
we propose is motivated by a linguistic analysis of two coapoollected in experiments with
a simulated system. Students’ language is rich in complegulstic phenomena at the lexi-
cal, syntactic, semantic, and discourse-pragmatic lewel, diverse in its verbalisation forms.
Language production is influenced by the presentation foohthe study material. Material
presented in natural language prompts verbosity in largymgduction, whereas formalised
presentation prompts dialogue contributions consistimgniyn of formulas. This has practical
implications for the implementation of tutorial dialogugssems for proofs and possibly also
tutorial systems for mathematics in general. More nat@agliage imposes more challenges
on the input understanding component. In the context of emadtics, this necessitates reliable
and robust parsing and discourse analysis strategiesdingl interpreting informal natural lan-
guage interspersed with mathematical expressions. Manbaljc language imposes stronger
requirements on the mathematical expression parser singell mathematical expressions tend
to be prone to errors. Interestingly, our data suggest todests tend to have an informal at-
titude toward dialogue style while interacting with a timgr system. This is manifested in the
use of discourse markers typical of spoken language in aMyfben interaction and suggests
that students treat tutorial dialogue like a chat and adapien language, which they would
otherwise use when interacting with a human tutor, to thewyjiten modality. Naturally, this
makes the interaction even more informal and poses furtietenges for input interpretation.

Semantic processing of informal mathematical language Mixed mathematical language
consisting of natural language and symbolic notation isvshto lend itself well to syntactic
analysis based on categorial grammars. Notation elemantde perspicuously modelled in
terms of their syntactic categories and their semantic nngemn be thereby incorporated into
the semantics of their natural language context. Previoagpatational approaches to textbook
language either did not address the interactions betweemwh language “modes” at all or
addressed it in a way which did not ensure generalisation.
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7 Prospects for automated proof tutoring in natural languag

A general language processing architecture for mathealatiscourse which we propose is
parameterised for variables relevant to processing matieahdiscourse in three scenarios (tu-
torial dialogue, mathematics assistance systems, andraddiprocessing) and modularised to
facilitate portability. We propose methods of modelling@minent syntactic and semantic lan-
guage phenomena characteristic of informal mathematicafp and of the German language of
interaction specific to our data. The symbolic meaning gmtations generated by the parser
are shown to provide an appropriate level of semantic gésatian: semantic imprecision can
be modelled by proving a link between context-independeganming and its context-specific
interpretation through intermediate linguistically-fivated lexica and ontologies. This way we
can interpret ambiguous wording and complex contextuatatpes. The intermediate knowl-
edge representations are shown to be relevant in mode#ifiegance phenomena.

Prospects for natural language-based proof tutoring systes The performance of gram-
mar resources developed based on corpus data is evaluaesintulation study. Manual de-
velopment of linguistic resources for deep semantic pingsis knowledge-intensive, time-
consuming, and, consequently, costly; it requires famiijiavith a linguistic formalism, both
grammatical and semantic, and its computational impleatiemt. Hand-crafted resources de-
veloped with a dedicated application in mind (often withitirae-constrained project) tend to
exhibit a serious lack of coverage beyond their specific domBy contrast, wide-coverage
hand-crafted resources, such as TRIPS (Allen, 1995) or ex@e so the ERG (Baldwin et al.,
2004), are developed over many years and in collaboratiom Maiguists. And, as shown by
the LEACTIVEMATH experiment, they do scale in a satisfactory way just by voleai adapta-
tion (Callaway et al., 2006). We cannot expect a comparablerage since our resources have
been developed from scratch and based on minimally repegsenverbalisations in terms of
frequency of occurrence. Nevertheless, the results shatctiegorial grammar as a basis of
a parsing component, the critical step in a deep processgigtecture, is a language model
which provides better scalability in our domain than a sengrammar formalism. This is an
encouraging result and it implies that the language praugsgproach we propose is a viable
contribution toward computational processing of informmathematical language.

Outlook A fundamental question concerning the tutoring scenaritiwiwhich this thesis
has been set is the following: tgpewrittentutorial dialoguethe proof tutoring method of the
future? Although typewritten modality has been the stdtthe art for most systems to date, it
is somewhat hard to imagine a student typing to a proof tagosiystem on his smart-phone or
tablet; unless we consider a twitter-like dialogue, an ipessibly worth entertaining. This the-
sis offers processing methods suitable for contemporastesys and likely transferable to more
advanced interfaces in which both typing and other moealitvould be available. However, the
way | see it plausible that interactive proof tutoring coelalve is towardnulti-modal input In
multi-modal systems, formal proofs could be constructedstiuctured editors. Consider inter-
faces such as those of EPGY (McMath et al., 2001), ProofWendcks et al., 2010), or the
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7.5 Conclusions

OpenProof project (Barker-Plummer et al., 2008). Rigout ase of formal notation are the as-
pects of modern mathematics that sooner or later studeetisrie learn. The formality of proof
presentation in systems of this kind has another benefitaka®s the structure of the proofs and
the relations between statements explicit. Experiencef@fvasemesters teaching mathematical
logic let me think that this is what students actually pregety, Fitch-style deduction over proofs
in prose. Natural language could be reserved for meta-tailel students’ questions, clarifica-
tions, requests for help and tutor's answers, explanatems hints.Spokenrather than written,
input modalityappears plausible, now that Nuance announced it's timen@s€tI1.1® A WOz
experiment would reveal the range of spoken verbalisatmashelp determine which language
understanding methods would work. Now, the formal setumécaommodating with respect to
students for whom formulas are an obstacle. Formalisatorbe taught independently though
and systems that teach translation to formal logic existWige et al., 1999). These reflections
lead me to concluding research on typewritten proof tutalielogue here.

This does not mean this thesis has no “further work”. Howaesearch building on this the-
sis shifts focus to mathematical prose. The trend towara gosblishing has produced online
repositories — so-called “digital mathematical libratiesmany of which offer unlimited access
to mathematical articles, and which open up possibilitiegdésearch on scholarly mathematical
discourse. First, claims to the effect that mathematiaaglage in narrative discourse should
be repetitive, formulaic, and “small” should be verified bgystematic corpus analysis. My
hypothesis is that these claims will not hold. Second, lagguprocessing methods proposed
in this thesis will be evaluated on mathematical registegleage not only of proofs, but also
other discourse types: definitions and theorems. Here,|tingae goal is extraction of knowl-
edge from mathematical documents. If proofs, definitiom&] tneorems are to be processed
by deep grammars, as proposed here, a question arises oblgiveamline the grammar de-
velopment process. Our initial experiment based on a sufs#alogue data suggests that, in
restricted domains, grammar engineering can be suppoyteoh linteractive process in which
shallow similarity measures are used to cluster data, dosthtzsets of similar sentences are
encoded in one step, thus making grammar engineering less po over-specialisation of lex-
ical categories. We are presently setting up an experimesgdon our entire dialogue corpus
yo evaluate the approach. Further, a known task in mathespakin to word-sense disam-
biguation, is the problem of determining the semantics ofheraatical symbols in text. We
have already made preliminary contributions in this dom@&ngore et al., 2009; Wolska &
Grigore, 2010; Wolska et al., 2011) and we are planning teymithis task further. In general
though, what is obviously lacking in the state-of-the-arprocessing mathematical discourse
are basic language processing resources — annotated &erjpoid components: sentence- and
word-tokenisers, POS taggers, shallow parsers, namdgt anti domain term recognisers, the
usual tools which in natural language processing are tategranted. While this thesis ends
my work on dialogue, there is a new niche to be filled that migimhe to be known aglathNLP.

8Beyond the GUI: It's Time for a Conversational User Inteddon Kaplan inWired, 21. March 2013
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