
System Description
sTEX – A LATEX-based Ecosystem for

Semantic/Active Mathematical Documents

Michael Kohlhase, Dennis Müller, Jan Frederik Schaefer

Computer Science, FAU Erlangen-Nürnberg

1 Introduction and History

In the sLATEX project [sLX], we explore how established communication and pub-
lication workflows – this mainly means LATEX in Mathematics and theoretical sci-
ences – can be extended semantically for computer support. The central element
of this endeavour is the sTEX package [Koh08; sTeX] which allows to semanti-
cally preload LATEX documents via special (semantic) macros. sTEX documents
can be processed by pdflatex in the usual way, or via LATEXML [LTX], a LATEX-
to-XML transformer, which has a sTEX plugin. The semantic annotations are
exported into the generated PDF or OMDoc [Koh06] respectively where they
can be used for added-value services. The sTEX packages (and classes) have been
used to produce extensive course materials (3000+ pages of slides and integrated
narrative), ca. 2500 exercise/exam problems, and the SMGloM, a multilingual
mathematical glossary [Koh14], currently containing ≥ 2250 concepts in English
(93%), German (71%) and Chinese (11%). This sTEX corpus together with the
OMDoc/Mmt format have informed the development of the sTEX packages and
document model.

While the original sTEX architecture and realization showed that seman-
tic preloading of the mathematical documents and the deployment of active
documents based on this is possible given enough motivation, scalability and
the management of shared content – one of the potential side-benefits of se-
mantic preloading – quickly became a problem. As a consequence we now host
and manage all sTEX content as mathematical archives [Hor+11] on https:

//MathHub.info and extended sTEX with special path functionality for cross-
references. As a side effect, MathHub can host the interactive HTML generated
from the OMDoc in a central location.1

In spite of this, the use of sTEX never quite gained much traction outside the
authors’ research group and collaborative projects. In this system description we
detail the effort over the last two years of making sTEX much more usable.

1 e.g. SMGloM under https://beta.mathhub.info/library/group/c21nbG9t

https://MathHub.info
https://MathHub.info
https://beta.mathhub.info/library/group/c21nbG9t


2 The sTEX EcoSystem

2.1 Simplification of sTEX Workflows

Working with sTEX so far required using several external tools and modifying
LATEX parameters, mostly related to sTEX’s module system.

Local paths To find the actual source files containing modularly imported sTEX
content, the previous workflow necessitated the creation of a localpaths.tex

for every top-level .tex file, that stores the local file path to sTEX reposito-
ries. This workflow has been significantly simplified recently, by replacing the
localpaths.tex files by a single MATHHUB system variable, which points ot the
local MathHub clone. LATEX can now access without needing the --shellescape

flag.

SMS mode sTEX allows the introduction of new semantic macros within module

environments, using the \symdef command. Semantic macros defined in some
external module are made locally available with the \importmodule command.
Since modules can (and in practice often do) contain arbitrary additional con-
tent, for \importmodule to work, the semantic content of a module needs to be
extracted from a module environment. Previously, this was achieved by a perl
script that heuristically parsed a file foo.tex for \symdef and similar commands,
and extracted those into a separate foo.sms file. \importmodule and related com-
mands then used the .sms file to selectively load only the semantic content. This
required both an external tool and posed a change management problem - every
change to an sTEX module required rerunning the perl script to ensure the .sms

file is consistent with the source .tex file.
The usage of .sms files has now been deprecated. Instead, \importmodule and

related commands enter an “SMS mode” before inputting the required .tex

file directly, in which everything other than selected sTEX commands (such as
\symdef) is ignored, obviating the need for external tools or change manage-
ment considerations. The overhead of multiply reading the narrative content of
included files – redundant in SMS mode – turned out to be negligible.

File stack size The availability of a module system can quickly lead to deeply
nested dependency trees on modules (and hence .tex-files), especially when using
SMGloM modules. By default, LATEX has a (relatively low) upper limit for its
file stack, determining the number of individual files that the TEX engine is
allowed to have open at once. Consequently, sTEX users were advised to manually
increase the file stack size of their local LATEX distribution, something most
LATEX users are unfamiliar with or need admin rights.

This has been recently resolved by fully utilizing the difference between read-
ing a module (in SMS mode) and activating a module. During SMS mode (when
the containing .tex file is open), all semantic macros are merely stored in a sepa-
rate helper macro. Only after the file has been fully read (and closed by LATEX),
its content is activated by executing all semantic macros therein, avoiding recur-
sive \importmodule-calls and ensuring that LATEX’s file stack only ever increases



by 1 for semantic imports, obviating the need to manually increasing the file
stack size.

Standalone SMGloM files Previously, sTEX distinguished documents (with
LATEX preamble and document environment) with module (without) and used
external build tools to provide modules with preambles on the fly. With the need
for external tools – see above – otherwise alleviated, we realized that the LATEX
standalone package to make modules independently compilable by pdflatex:
standalone.sty allows for using \input on .tex files that themselves have a
header, without LATEX throwing an error. This had been possible earlier, but
now it is documented best practice.

2.2 sTEXLS: An sTEX Language Server and IDE

The highly fragmented structure2 of sTEX corpora can be a challenge when cre-
ating and editing sTEX content. Some of the difficulties can be alleviated with
an IDE for sTEX. To avoid being tied to a specific editor, the sTEX IDE is based
on sTEXLS, a language server that could be used for any editor supporting
the language server protocol. sTEXLS has its roots in a bachelor’s thesis [Pli18],
which explored machine-learning-based approaches to find missing annotations
of term references in sTEX documents. The student behind [Pli18] has continued
working on sTEXLS, which now supports various features that help authoring
sTEX content. Aside from enabling simple interactions like cross-file definition
look-up, a key feature of sTEXLS is its ability to point out semantic problems in
the source files (semantic linting). This ranges from minor issues like redun-
dant imports to actual errors like references to non-existent concepts. sTEXLS
addresses such errors by e.g. listing modules from which the concepts could be
imported or by suggesting similar sounding concepts in case of a spelling mis-
take. These features are so useful that sTEXLS is now commonly used for the
creation of sTEX content.

2.3 Generating Supplemental Material from sTEX Sources

The semantic annotations allow deriving a number of supplemental resources for
an sTEX document. Concretely, we have tools to automatically generate dictio-
naries, glossaries and dependency graphs e.g. to supplement the lecture notes.
These tools act directly on the sTEX sources, utilizing the the uniform structure
of semantic annotations.

Dictionary generation exploits that definienda in a (natural language) defini-
tion are explicitly annotated by a semantic concept. E.g. the synonyms “linear
ordering” and “simple ordering”, as well as the German translation, “lineare
Ordnung”, are identified as same concept. An English-to-German dictionary

2 As TEX cannot load document fragments natively, it is natural to prefer very small
source files that only contain small semantically self-contained fragments



would then have two entries, one for “linear ordering” and one for “simple or-
dering”. To generate the dictionary for a lecture, we only include concepts that
have been referenced in the lecture notes/slides.

If we map words to their definition rather than their translations, we have
a generated glossary. To make it “definitionally closed”, we also include entries
for all concepts referenced elsewhere in the glossary.

We already routinely generate dictionaries and glossaries for some of our
lectures, which was appreciated by the students. We have also experimented
with the generation of concept dependency graphs but our visualization efforts
had limited success so far due to the sheer size of resulting graphs.

2.4 sTEXML2: Partial Preloading and XHTML Harvesting

So far, to obtain formal content from sTEX documents, these documents needed
to be converted to OMDoc. To subsequently enable KM services, the resulting
OMDoc needs to be additionally converted to the specific OMDoc dialect used
by the Mmt system by splitting it into (formal) content OMDoc and (informal)
narrative omdoc. This workflow requires:

1. Dedicated sTEX document classes for OMDoc,
2. an sTEX-Plugin for LATEXML that allows generatingOMDoc, partially over-

riding core methods of LATEXML,
3. a suite of LATEXML bindings for most (if not all) sTEX primitive macros, and
4. an Mmt component for importing the OMDoc generated by LATEXML.

All of these components needed to be consistently kept in-sync with respect to
any updates regarding the sTEX-package, LATEXML, and Mmt, and as a result
regularly suffered from bitrot and increasingly bloated and difficult to maintain
implementations. Additionally, OMDoc generation was incompatible with the
document classes commonly used by LATEX users.

As a result, we have deprecated the direct OMDoc generation via LATEXML
and the sTEX-Plugin and are re-basing the sTEX packages on a very selective set
of semantic primitives. Note that we only need to implement LATEXML bindings
for these and can reuse majority of sTEX functionality implemented in TEX –
LATEXML covers enough TEX/LATEX primitives by now. This makes it much eas-
ier to maintain coherence between the LATEX implementation and the LATEXML
bindings. We now use LATEXML to generate XHTML (which LATEXML sup-
ports natively) with OMDoc-annotations (provided by the package bindings
alone). Crucially, this is compatible with all existing LATEXML bindings, and
yields documents that can be immediately inspected with a web browser with-
out loss of document content or significantly impacting layout, maintaining the
narrative structure of the original document while introducing partial OMDoc
information where induced by semantic macros. Afterwards, the Mmt system
can harvest the generated XHTML to extract the OMDoc fragments relevant
for KM services. This simple change of approach realizes an old desideratum in
the sLATEX project: flexibly mixing (partial) sTEX functionality into arbitrary
LATEX document classes – this is called “sTEX light” in [KKL10].



3 Conclusion & Future Work

We have significantly improved the user-friendliness of the sLATEX ecosystem by
minimizing the number of required external tools and simplifying the general
workflow, while supplying additional optional tools for added-value services.

As future work, we intend to
1. extend the sTEX language to subsume all primitives of the Mmt/OMDoc

ontology, allowing sTEX to serve as a full surface language for Mmt,
2. allow for semantic markup of arbitrary (in particular informal natural lan-

guage) document fragments, and
3. improve and extend IDE support, e.g. by providing direct access and search

functionality for the SMGloM.

References

[Hor+11] Fulya Horozal et al. “Combining Source, Content, Presentation, Narration,
and Relational Representation”. In: Intelligent Computer Mathematics. Ed.
by James Davenport et al. LNAI 6824. Springer Verlag, 2011, pp. 212–227.
isbn: 978-3-642-22672-4. url: https://kwarc.info/frabe/Research/
HIJKR_dimensions_11.pdf.

[KKL10] Andrea Kohlhase, Michael Kohlhase, and Christoph Lange. “sTeX – A
System for Flexible Formalization of Linked Data”. In: Proceedings of the
6th International Conference on Semantic Systems (I-Semantics) and the
5th International Conference on Pragmatic Web. Ed. by Adrian Paschke et
al. ACM, 2010. isbn: 978-1-4503-0014-8. doi: 10.1145/1839707.1839712.
arXiv: 1006.4474v1 [cs.SE].

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical doc-
uments [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url: http:
//omdoc.org/pubs/omdoc1.2.pdf.

[Koh08] Michael Kohlhase. “Using LATEX as a Semantic Markup Format”. In:Mathe-
matics in Computer Science 2.2 (2008), pp. 279–304. url: https://kwarc.
info/kohlhase/papers/mcs08-stex.pdf.

[Koh14] Michael Kohlhase. “A Data Model and Encoding for a Semantic, Multilin-
gual Terminology of Mathematics”. In: Intelligent Computer Mathematics
2014. Ed. by Stephan Watt et al. LNCS 8543. Springer, 2014, pp. 169–183.
isbn: 978-3-319-08433-6. url: https://kwarc.info/kohlhase/papers/
cicm14-smglom.pdf.

[LTX] Bruce Miller. LaTeXML: A LATEX to XML Converter. url: http://dlmf.
nist.gov/LaTeXML/ (visited on 03/12/2021).

[Pli18] Marian Plivelic. “Using machine learning to support annotating of keywords
in mathematical texts”. B.Sc. Thesis. FAU Erlangen-Nürnberg, Feb. 2018.
url: https://gl.kwarc.info/supervision/BSc-archive/blob/master/
2018/Plivelic_Marian.pdf.

[sLX] sLaTeX: An Ecosystem for Semantically Enhanced LATEX. url: https://
github.com/sLaTeX (visited on 03/11/2021).

[sTeX] sTeX: A semantic Extension of TeX/LaTeX. url: https://github.com/
sLaTeX/sTeX (visited on 05/11/2020).

https://kwarc.info/frabe/Research/HIJKR_dimensions_11.pdf
https://kwarc.info/frabe/Research/HIJKR_dimensions_11.pdf
https://doi.org/10.1145/1839707.1839712
https://arxiv.org/abs/1006.4474v1
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
https://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
https://gl.kwarc.info/supervision/BSc-archive/blob/master/2018/Plivelic_Marian.pdf
https://gl.kwarc.info/supervision/BSc-archive/blob/master/2018/Plivelic_Marian.pdf
https://github.com/sLaTeX
https://github.com/sLaTeX
https://github.com/sLaTeX/sTeX
https://github.com/sLaTeX/sTeX

	System Description: sTeX – A LaTeX-based Ecosystem for Semantic/Active Mathematical Documents
	1 Introduction and History
	2 The sTeX EcoSystem
	2.1 Simplification of sTeX Workflows
	2.2 sTeXLS: An sTeX Language Server and IDE
	2.3 Generating Supplemental Material from sTeX Sources
	2.4 sTeXML2: Partial Preloading and XHTML Harvesting

	3 Conclusion & Future Work


