
Formal Mathematics for the Masses
William M. Farmer

McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 3L8, Canada

Abstract
The campaign to transform traditional mathematical practice into a formal discipline appears to have
been a great success. Several sophisticated proof assistants have been developed, a great deal of math-
ematical knowledge has been formalized, a growing number of researchers in computing and mathe-
matics are now using proof assistants to check the theorems they prove, and a new area of computing
called formal methods has been established in which formal mathematics is used in the development of
hardware and software. However, the campaign has largely been a failure when viewed from a broader
perspective. It has had almost no impact on mathematical practice. Far less than 1% of all mathematics
practitioners have ever used a formal logic or a proof assistant in their work. We propose an alternative
approach to formal mathematics that is characterized by (1) proofs are written in a traditional (infor-
mal) style, (2) the underlying logic is as close to mathematical practice as possible, (3) mathematics is
organized in accordance with the little theories method as a theory graph, and (4) supporting software
systems are easy to build and use. We are pursuing a research program called Formal Mathematics for
the Masses to make formal mathematics more useful, accessible, and natural to a wider range of mathe-
matics practitioners by implementing this alternative approach.
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1. The Campaign for Formal Mathematics

Formal mathematics is mathematics done within a formal logic consisting of (1) a formal lan-
guage 𝐿 with a precise syntax, (2) a precise semantics for 𝐿 with a notion of logical consequence,
and (3) a formal proof system for proving statements written in 𝐿. It offers mathematics practi-
tioners — mathematicians, computer scientists, engineers, and scientists — two major benefits
over traditional mathematics [1, 2]. First, mathematics can be done with much greater rigor
in a formal logic. Mathematical ideas are expressed as unambiguous statements in the formal
language. Results about these ideas are obtained using the notion of logical consequence. And
proofs certifying these results are constructed in the formal proof system. Second, the study,
discovery, communication, and certification of mathematics can be done with the aid of soft-
ware. In particular, software can be used to write proofs in the formal proof system and then
mechanically check their correctness.

Over the last 40 years, a group of computer scientists and logicians (and a few mathematicians)
have participated in a loosely coordinated campaign to transform traditional mathematical
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practice into a formal discipline in which mathematics practitioners do mathematics with
the help of proof assistants [3], logic-based software systems for developing and certifying
formal proofs. Perhaps the best expression of their vision is the 1994 QED Manifesto [4].
They ultimately would like to see a mathematics world in which essentially all mathematical
knowledge is expressed in formal languages and all mathematical proofs are written in formal
proof systems and mechanically checked by software. They are motivated by the belief that
formalizing mathematics will enable more people to do more mathematics and do it with greater
ease and greater assurance of being correct.

This campaign appears to have been a great success. Several highly sophisticated proof
assistants have been developed, a great deal of mathematical knowledge has been formalized,
and a growing number of researchers in computing and mathematics are now using proof
assistants to check the theorems they prove. Moreover, the campaign has had a significant
impact on hardware and software development, spawning an area of computing called formal
methods [5, 6, 7] in which formal mathematics is used to specify and verify software and
hardware systems.

However, the campaign has largely been a failure when viewed from a broader perspective.
It has had almost no impact on mathematical practice [8]. Far less than 1% of all mathematics
practitioners have ever used a formal logic or a proof assistant in their work. This is in
sharp contrast with the fact that nearly every mathematics practitioner uses programming
languages, computer algebra systems, or statistical software on a daily basis. Formal mathematics
certainly has the potential to greatly improve mathematical practice, especially in computing
and engineering. So why, after decades of effort, has the campaign to formalize mathematics
failed?

2. Why the Campaign has Failed

To understand why the campaign has failed, we need to consider two subjects: logic education
and mathematical software development.

Formal mathematics requires an understanding of how logic can be used in practice to reason
about mathematics and, in particular, mathematical structures. In a typical university logic
course, students are introduced to theory-oriented logics, like first-order logic and set theory,
that are designed to be studied, but not actually used. These logics are exceedingly cumbersome
to employ in practice, e.g., to specify and reason about functions. Students are very rarely
exposed to practice-oriented logics, like simple type theory [9] and other higher-order logics,
that are actually suitable for doing mathematics. Moreover, most of these higher-order logics
are far removed from mathematical practice and are clumsy when dealing with notational
conventions, undefined expressions, partial functions, definite descriptions, and subtypes. As a
result, almost all mathematics practitioners lack the background and experience in the practical
application of logic needed to read and write formal mathematics and to utilize logic-based
software systems like proof assistants. They also find the logics available to them to be unnatural
and burdensome to use.

Proof assistants are the dominant kind of software system for doing formal mathematics.
They are heavily focused on formally certifying mathematical results. Tremendous progress has



been made in this direction, and proof assistants have been successfully used to check complex
proofs of deep mathematical theorems [10, 11]. However, the great majority of mathematics
practitioners — including mathematicians — are much more interested in communicating math-
ematical ideas than certifying mathematical results formally. For example, an engineer who
wants to carefully specify a system is likely to be much more interested in communicating what
the system is intended to do than in proving that all the details are correct.

Formal certification of results is a considerably more difficult task than communication of
ideas. As a consequence, proofs assistants are very complex and notoriously difficult to learn
how to use. For someone who just wants to express ideas in a formal language with a precise
syntax and semantics, a proof assistant impedes more that it facilitates. This is especially true for
proof assistants, like Agda [12, 13], Coq [14], and Lean [15], based on dependent type theories.
With complex type systems and deductive systems based on constructive reasoning, dependent
type theories are very far afield from what mathematics practitioners are familiar with and what
they need. Thus proof assistants, in which certification is first and communication is second, do
not adequately serve the needs of most mathematics practitioners.

In summary, there are four reasons for the failure of the campaign to formalize mathematics.
First, very few mathematics practitioners have the background in the practical application of
logic needed to read and write formal mathematics and to utilize proof assistants. Second, the
formal logics and proof assistants used for formal mathematics are, as a rule, very far removed
from mathematical practice. Third, proof assistants are very complex and notoriously difficult
to learn how to use. And fourth, and most importantly, proof assistants have been designed
primarily for formally certifying mathematical results and only secondarily for communicating
mathematical ideas, but mathematics practitioners are usually much more interested in the
latter than the former.

3. An Alternative Approach

We propose an alternative approach to formal mathematics that is characterized by:

1. Proofs are written in a traditional (informal) style and optimized for communication.
2. The underlying formal logic is as close to mathematical practice as possible.
3. Mathematical knowledge is organized in accordance with the little theories method [16]

as a theory graph [17, 18] consisting of axiomatic theories as nodes and theory morphisms
(meaning-preserving mappings from the formulas of one theory to the formulas of another)
as directed edges.

4. Supporting software systems are easy to build and use.

The first characteristic, that proofs are traditional instead of formal, is the key. Traditional
proofs are easier to read and write than formal proofs and better suited for communicating
the ideas behind proofs. Supporting software systems do not need a facility for developing
and checking formal proofs. As a result, they can be much simpler and thus easier to both
implement and learn how to use. Also, there is no harm in having the underlying logic include
features that make formal proof more difficult since there are no formal proofs. This approach
should not be construed as “lightweight” formal mathematics [19, 20]: Everything is done in



a formal logic except for the proofs which are written in a traditional style that facilitates
communication. Certification is still important, but it is done, as in standard mathematical
practice, via traditional proof.

This approach is certainly not meant to be a replacement for the standard approach to formal
mathematics in which everything is proved formally using a proof assistant. It is intended to be
a complementary approach for those mathematics practitioners who lack either the background
or the need to do formal proofs. It is also quite possible that someone doing mathematics with
this approach might want to certify some results — for example, results that require a high
assurance of correctness or are tricky to verify in a traditional manner — by producing formal
proofs of them using a proof assistant.

4. Formal Mathematics for the Masses

We are pursuing a long-term research program called Formal Mathematics for the Masses to
make formal mathematics more useful, accessible, and natural to a wider range of mathematics
practitioners by implementing this alternative approach to formal mathematics. The research
program has two phases. The first is the development of a practical logic that is very close to
mathematical practice and educational material for learning the logic, and the second is the
development of software to support the use of the logic.

The first phase of the research is largely complete. We have developed a practice-oriented
logic called Alonzo that is based on Alonzo Church’s formulation of simple type theory [21, 22]
and that admits undefined expressions in accordance with what we call the traditional approach
to undefinedness [23]. The development includes the syntax and semantics of Alonzo, notational
conventions and definitions used for constructing Alonzo types and expressions, a proof system
for Alonzo that is sound and complete, and mathematical knowledge modules (such as theories
and theory morphisms) needed to build theory graphs in Alonzo. The logic is exceptionally
well suited for specifying and reasoning about mathematical structures. With its support
for undefined expressions (resulting from partial functions and definite descriptions) and an
extensive set of notational conventions and definitions, Alonzo is very close to mathematical
practice. We have also developed a set of LaTeX macros and environments for constructing
Alonzo objects such as types, expressions, theories, and theories morphisms.

We have completed about 90% of a textbook entitled Simple Type Theory: A Practical Logic for
Expressing and Reasoning about Mathematical Ideas [24] that presents simple type theory using
Alonzo. Simple Type Theory is intended to give students the background in logic they need for
doing formal mathematics plus a practical logic in which to work. The target audience for the
textbook is graduate and advanced undergraduate students as well as mathematics practitioners
who need a logic they can employ in practice to specify and reason about complex systems.
Unlike the theory-oriented logics presented in traditional logic textbooks, Alonzo is offered as a
logic for actually doing mathematics in practice.

The second phase of program is to develop of the following three software systems:

1. An expression assistant for producing internal representations of Alonzo expressions,
providing type checking, presenting the expressions in various formats including LaTeX,



and enabling notational definitions to be deployed and unfolded. In short, the expression
assistant will be an interactive development environment (IDE) for the Alonzo language.

2. A theory assistant for constructing theory graphs by defining theories in Alonzo, develop-
ing them by making definitions and stating and proving theorems, and then interconnect-
ing them with theory morphisms. In addition, the system will provide various kinds of
mechanical support such as expression simplification, symbolic computation, meta-level
reasoning, and transportation of definitions and theorems from one theory to another
via theory morphisms. Unlike a proof assistant, the theory assistant will not include a
facility for producing formal proofs. As a result, it will be much easier to use — as well as
design and implement — than a proof assistant.

3. A theory exporter for exporting theories written in Alonzo to proof assistants based on
simple type theory like HOL [25], HOL Light [26], Isabelle [27], and PVS [28] or to other
proof assistants that support classical reasoning such as Lean [15], Metamath [29] and
Mizar [30]. This will enable the traditional proofs in Alonzo theories, if desired, to be
reformulated as formal, machine-checked proofs when correctness is required at the
highest level of assurance.

The software produced by the research program will support three styles of doing mathematics.
The first style is to write all the expressions in a mathematical document in Alonzo using the
expression assistant. The second style is to use the theory assistant to produce theory graphs
in Alonzo that are fully formal except that the proofs are traditional. And the third style is to
produce a theory graph using the theory assistant and then formally certify selected proofs by
exporting their theories to a proof assistant. The long-term goal of the research program is to
develop an integrated, well-documented software system for doing mathematics that is fully
formal except for proofs.

5. Related Work

In recognition that the formalization campaign has failed to reach the great majority of the
mathematics community, alternative approaches to formalize mathematics have been proposed.
Two of the most notable lie in the space between traditional mathematics and fully certified
formal mathematics. The first is Tom Hales’ formal abstracts in mathematics project [31, 32] in
which proof assistants are used to the create formal abstracts, which are formal presentations
of mathematical theorems without formal proofs. The second is Michael Kohlhase’s flexifor-
mal mathematics [33] initiative in which mathematics is a mixture of traditional and formal
mathematics and proofs can be either traditional or formal. These approaches, unfortunately,
have not made much of an inroad into the 99% of mathematics practitioners who have never
employed formal mathematics.

Our approach is similar to both of these approaches, but there are important differences.
The formal abstracts approach seeks to formalize collections of theorems without proofs, either
traditional or formal, using proof assistants, while we seek to formalize theory graphs with
traditional proofs using a theory assistant, a much simpler kind of system. The objective of the
flexiformal mathematics approach is to give the user the flexibility to produce mathematics
with varying degrees of formality. In contrast, our approach is to produce mathematics that is



fully formal except for proofs. And, if desired, some proofs can be made formal in a flexiformal
fashion by exporting the relevant part of the work to a proof assistant.

Several proofs assistants in use today, including HOL4, HOL Light, Isabelle, and PVS, are
based on simple type theory like Alonzo. However, the logics for these proof assistants, as
well as most other proof assistants, do not admit undefined expressions even though undefined
expressions are commonplace in mathematical practice. The most notable exception is the
IMPS proof assistant [34] whose logic LUTINS [35, 36, 37] is a version of Church’s type theory
with undefined expressions, partial functions, definite description, and subtypes. Alonzo is
closely related to LUTINS, but its syntax and semantics are simpler and it employs many more
notational definitions than LUTINS does. IMPS has demonstrated that a logic like LUTINS
or Alonzo can be effectively implemented and that formal mathematics can stay closer to
mathematical practice by handling undefinedness directly.

IMPS introduced the idea of organizing mathematical knowledge in a proof assistant as a
theory graph [16, 37]. Now most proof assistants utilize theory morphisms or theory graphs
in some fashion. The Specware software development system [38] and the MMT knowledge
representation framework [39] are two notable systems in which theory graphs play a central
role.

6. Conclusion

There are millions of mathematics practitioners — and billions if mathematics students are
included — yet only a minuscule portion of these do mathematics with the help of formal logics
and proof assistants. By developing and disseminating a practice-oriented logic with software
to support its use, the Formal Mathematics for the Masses research program will make formal
mathematics useful and accessible to a much larger portion of mathematics practitioners than
previous approaches. The program will also provide a stepping stone for helping mathematics
practitioners cross the void between traditional mathematics and fully formal mathematics.
The development of an integrated system for doing formal mathematics will accelerate the
campaign to formalize mathematics and will strengthen the research being pursued in both
mechanized mathematics and formal methods.
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