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Abstract

Most of the engineering and physical systems are generally character-
ized by differential and difference equations based on their continuous-
time and discrete-time dynamics, respectively. Moreover, these dy-
namical models are analyzed using transform methods to prove vari-
ous properties of these systems, such as, transfer function, frequency
response and stability, and to find out solutions of the differen-
tial/difference equations. The conventional techniques for performing
the transform methods based analysis have been unable to provide an
accurate analysis of these systems. Therefore, higher-order-logic theo-
rem proving, a formal method, has been used for accurately analyzing
systems based on transform methods. In this paper, we survey devel-
opments for transform methods based analysis in various higher-order-
logic theorem provers and overview the corresponding real world case
studies from the avionics, medicine and transportation domains that
have been analyzed based on these developments.

1 Introduction

The engineering and physical systems exhibiting dynamical behaviours are generally modeled using differen-
tial [Y+13] and difference [KP01] equations based on their corresponding dynamics that can be continuous-time
and discrete-time, respectively. To analyze these models capturing the dynamics of such systems, transform
methods, such as, the Laplace transform [BMVdBVdV03], the Fourier transform [BB86], the Discrete Fourier
Transform (DFT) [Sun01] and the z-Transform [OBS01], have been widely used. These transform methods facil-
itate finding out solutions of these differential and difference equations based models and analyzing their various
important properties, such as, transfer function, frequency response and stability, as shown in Figure 1.

The continuous-time dynamical behaviour of a system is generally modeled using differential equations. These
differential equations-based models are not easier to analyze in time-domain, especially, for the case of larger
systems (n-order differential equations for larger n). Transform methods, which include the Laplace and the
Fourier transforms have been widely used to analyze these differential equations. These methods involve a
transformation of the time-domain model to its corresponding frequency domain representation (s-domain for
the Laplace and ω-domain for the Fourier transform), which converts the differential equations involving integrals
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Figure 1: Transform Methods

and differentials to their corresponding algebraic equations having multiplication and division operators, as shown
in Figure 1. These equations are further solved to analyze various properties of the system, such as, transfer
function and frequency response, and to obtain solutions in frequency domain [BMVdBVdV03, BB86]. Finally,
the inverse transforms (the inverse Laplace and the inverse Fourier) are applied to obtain the time-domain
solutions of the differential equations-based models.

Similarly, the dynamics of a discrete-time system are captured using difference equations. These difference
equations based models are analyzed using the discrete-time transform methods, which include the Discrete
Fourier Transform (DFT) and the z-transform. These transform methods perform a conversion of the dis-
crete time model to its corresponding frequency domain representation (z-domain for the z-transform and ω
for the DFT), as shown in Figure 1. These representations are further solved to analyze various properties
of the given system, such as, transfer function and frequency response, and to obtain solutions in frequency
domain [Sun01, OBS01]. Finally, the inverse transforms are applied to obtain the time-domain solutions of the
difference equations based models.

Conventionally, the transform methods based analysis has been performed using paper-and-pencil based proofs
and computer based symbolic and numerical techniques. However, these methods suffer from their inherent
limitations and thus compromise the accuracy of the analysis [DPV13]. Formal methods [HT15], in particular,
higher-order-logic theorem proving [Har09] can overcome the limitations of the conventional methods and thus
provides an accurate transform methods based analysis of the systems. It has been widely used for the transform
methods based analysis of the engineering and physical systems. These transform methods have been formalized
using various higher-order-logic theorem provers, such as, HOL Light [Har96], HOL4 [SN08], Coq [BC13] and
Isabelle [Pau94]. Moreover, these formalizations have been used for analyzing various safety-critical systems,
such as, linear analog circuits, automobile suspension systems, a drug therapy model, unmanned aerial vehicles,
synthetic biological circuits, power converters and digital filters. In this paper, we survey these contributions
regarding formalization of transform methods that have been done using higher-order-logic theorem proving.

The rest of the paper is organized as follows: Section 2 provides the developments of the Laplace and the
Fourier transforms in various theorem provers and their associated analysis of the continuous-time systems. We
provide the formalization of the DFT and the z-transform and the associated analysis of the discrete-time systems
in Section 3. Section 4 presents a discussion about the features and availability of the transform methods based
analysis and its comparison in different theorem provers. Finally, Section 5 concludes the paper.
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2 Transform Methods for Analyzing Continuous-time Systems

The Laplace and the Fourier transforms have been formalized using various higher-order-logic theorem provers.
Moreover, these formalizations have been used for formally analyzing many engineering and physical systems.
Taqdees et al. [TH13] formalized the Laplace transform using multivariate calculus theories of HOL Light. This
formalization mainly includes the formal definition of the Laplace transform and the formal verification of its
various properties, such as, linearity, frequency shifting, first-order differentiation, higher-order differentiation
and integration in time-domain. Moreover, the authors used their formalization of the Laplace transform for
formally verifying the transfer function of a Linear Transfer Converter (LTC) circuit. Next, the authors extended
their framework by providing a support to formally reason about the linear analog circuits, such as first-order and
second-order Sallen-Key low-pass filters by formalizing the system governing laws such as Kirchhoff’s Current
Law (KCL) and Kirchhoff’s Voltage Law (KVL) using HOL Light [TH17]. Later, Rashid et al. [RH17] proposed
a new formalization of the Laplace transform based on the notion of sets and verified some more properties of
the Laplace transform, such as, time shifting, time scaling, the Laplace transform a n-order differential equa-
tion and uniqueness [RH18]. The authors also formally verified the Laplace transform of some commonly used
functions, such as, exponential function, sine and cosine functions. Finally, they used their proposed formal-
ization of the Laplace transform for analyzing the control system of an Unmanned Free-swimming Submersible
(UFSS) vehicle [RH17] and 4-π soft error cross talk model [RH18]. Similarly, the formalization of the Laplace
transform has been used for formally analyzing the unmanned aerial vehicles [ARH20b] and synthetic biological
circuits [ARH20a, RH+20].

Wang et al. [WC17] provided a formalization of the Laplace transform using the Coq theorem prover. The
authors formally defined the Laplace transform and formally verified a few of its classical properties, such
as, linearity, frequency shifting and differentiation in time domain. Moreover, they applied their proposed
formalization for formally verifying a flight control system using Coq. Similarly, Immler [Imm21] formalized the
Laplace transform using the Isabelle theorem prover. The authors mainly verified some of the classical properties
of the Laplace transform, such as, linearity, frequency shifting, uniqueness, differentiation and integration in
time-domain. Gang et al. [GCnY+14] used HOL4 for the formalization of the Laplace transform. The authors
formally modeled the Laplace transform and verified some of its classical properties, such as, linearity, frequency
shifting, differentiation and integration in time domain. Next, they used their proposed formalization for formally
verifying the transfer function of a motor.

Table 1: Continuous-time Transform Methods in Various Theorem Provers
Transform Methods Theorem Prover Formalization Details/ Verified Properties

Coq Linearity, frequency shifting, differential [WC17]

HOL Light
Linearity, frequency shifting, integration, time shifting,

time scaling, first-order and higher-order
differentiations in time domain [TH13, RH18]

Isabelle
Linearity, frequency shifting, integration,
first-order and higher-order differentiations

in time domain, integration [Imm21]

Laplace Transform

HOL4
Linearity, frequency shifting, differentiation and

integration in time domain [GCnY+14]

HOL Light
Linearity, frequency shifting, modulation, time reversal,

first-order and higher-order differentiations
in time domain [RH19]Fourier Transform

HOL4
Linearity, time reversal, frequency shifting, differentiation,

and integration in time domain [GZS+20]

Rashid et al. [RH16] formalized the Fourier transform using the HOL Light theorem prover. The authors
provided a formal definition of the Fourier transform and formally verified its various classical properties, such
as, linearity, frequency shifting, modulation, time reversal, first-order and higher-order differentiations in time-
domain. Furthermore, they formally verified the Fourier transform of some commonly used functions, such as,
exponential, sine and cosine functions. Moreover, they used their proposed formalization for formally analyzing
an Automobile Suspension System (ASS), an audio equalizer, a drug therapy model and a MEMs accelerome-
ter [RH19]. Similarly, Guan et al. [GZS+20] formalized the Fourier transform using HOL4. The authors provided
a formal definition of the Fourier transform and formally verified its various properties, such as, linearity, time
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reversal, frequency shifting, differentiation and integration in time domain. Moreover, they used their proposed
formalization for formally verifying the frequency response of a RLC circuit. A summary of the formalizations
of the Laplace and the Fourier transforms in various theorem provers and the systems that have been formally
analyzed using these transform methods can be found in Tables 1 and 2

Table 2: Analysis of Continuous-time Systems using Transform Methods
Transform Methods Theorem Provers Applications

Coq Flight control system [WC17]

HOL Light

LTC [TH13], UFSS vehicle [RH17],
4-π soft error cross talk model [RH18],

Sallen-Key low-pass filter [TH17],
unmanned aerial vehicles [ARH20b],

synthetic biological circuits [ARH20a, RH+20]
Isabelle No application

Laplace Transform

HOL4 Motor [GCnY+14]

HOL Light

Automobile suspension system [RH16],
a drug therapy model [RH19],
an audio equalizer [RH19],
MEMs accelerometer [RH19]

Fourier Transform

HOL4 RLC circuit [GZS+20]

3 Transform Methods for Analyzing Discrete-time Systems

The DFT and z-Transform have been formalized using various higher-order-logic theorem provers. Moreover,
these formalizations have been used for formally analyzing many discrete-time systems. Siddique et al. [SMT14]
formalized z-transform using the HOL Light theorem prover. The authors provided a formal definition of the
z-transform and formally verified its various properties, such as, linearity, time shifting and scaling in z-domain.
Moreover, they used their proposed formalization for the formal analysis of Infinite Impulse Response (IIR)
Digital Signal Processing (DSP) filter. Later, the authors extended their proposed framework by providing the
formal verification of some more properties, such as, time scaling, complex conjugate and a formal support
for the inverse z-transform and used it for formally analyzing a switched-capacitor interleaved DC-DC voltage
doubler [SMT18].

Table 3: Discrete-time Transform Methods in Various Theorem Provers
Transform Methods Theorem Prover Formalization Details/ Verified Properties

DFT HOL4
Implicit periodicity, linearity, symmetry, frequency shifting,

time shifting, convolution [SZG+15]

HOL4 FFT, inverse FFT [AT04]
FFT

Coq FFT [Cap01]

z-Transform HOL Light
linearity, time shifting and scaling in z-domain,

time scaling, complex conjugation, inverse z-transform [SMT18]

Shi et al. [SZG+15] proposed a formalization of DFT using the HOL4 theorem prover. The authors pre-
sented a formal definition of the DFT and formally verified its various properties, such as, implicit periodicity,
linearity, symmetry, frequency shifting, time sifting and convolution. Moreover, the authors used their proposed
formalization for formally verifying Fast Fourier Transform (FFT) and cosine frequency shifting. Capretta et
al. [Cap01] formally verified the FFT using the Coq theorem prover. Similarly, Akbarpour et al. [AT04] provided
a formal specification and verification of the FFT at different abstraction levels using the HOL4 theorem prover.
A summary of the formalization of the transform methods for discrete-time systems in various theorem provers
and their associated applications can be found in Tables 3 and 4.

4 Theorem Proving Support for Transform Methods based Analysis

Figure 2 depicts the formal libraries of transform methods that are available in various higher-order-logic theorem
provers for performing the analysis of the engineering and physical systems. For example, the Laplace transform
is available in most of the theorem provers. Moreover, its formal library in the HOL Light theorem prover
is quite dense and has been frequently used for analyzing various safety-critical systems as given in Table 2.
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Table 4: Analysis of Discrete-time Systems using Transform Methods
Transform methods Theorem Provers Formalization Details / Verified Properties

DFT HOL4 FFT, cosine frequency shifting [SZG+15]
HOL4 FFT at different levels of abstraction and inverse FFT [AT04]

FFT
Coq FFT [Cap01]

Z-Transform HOL Light
IIR DSP filter [SMT14], switched-capacitor
interleaved DC-DC voltage doubler [SMT18]

Similarly, the z-transform is only available in HOL Light. Similarly, HOL4 contains both the continuous-time
and discrete-time Fourier transforms. Moreover, no transform methods is available in the PVS theorem prover.

Figure 2: Support for Transform Methods in Higher-order-logic Theorem Provers

5 Conclusion

Transform methods are widely used for analyzing the engineering and physical systems exhibiting dynamical
behaviours. Due to the safety-critical nature of these system, their accurate analysis is of utmost importance.
This paper surveys the transform methods that have been formalized using different theorem provers by high-
lighting various safety-critical systems that have been formally analyzed based on transform methods. In this
regard, only HOL Light theorem prover contains most number of transform methods, such as, the Laplace and
the Fourier transforms, and the z-transform. Similarly, PVS contains no transform methods library and we need
to develop these libraries that can be used for performing transform methods based analysis using PVS.
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