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Abstract
Optimization is used extensively in engineering, industry, and finance, and various methods are used
to transform problems to the point where they are amenable to solution by numerical methods. We
describe progress towards developing a framework, based on the Lean interactive proof assistant, for
designing and applying such reductions in reliable and flexible ways.
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1. Introduction

Interactive proof assistants are used to verify complex mathematical claims with respect to the
primitives and rules of a formal axiomatic foundation. Formalization yields a high degree of
certainty in the correctness of such claims, but it places a very high burden on practitioners,
and for many purposes it is a higher standard than users may want or need. The project we
describe here is motivated by the observation that interactive theorem provers can offer a wider
range of benefits to applied mathematicians. Sometimes even just a formal specification of a
complex problem or model is helpful, since it provides clarity and precision that can serve as
a touchstone for informal reasoning and algorithmic implementation. Formal representation
in a theorem prover can also serve as a gateway to the use of external tools like computer
algebra systems, numeric computation packages, and automated reasoning systems, providing
a basis for coordinating and interpreting the results. And verification itself is not an all-or-
nothing affair; every working mathematician and scientist has to balance pragmatic constraints
against the goal of ensuring that their results are as reliable as possible, and they should have
the flexibility of deciding where verification effort matters the most. Proof assistants need to
become a help rather than a hindrance before they are ready to enter the mainstream.

Optimization problems and constraint satisfaction problems are now ubiquitous in engineer-
ing, industry, and finance. These address the problem of finding an element of R𝑛 satisfying a
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finite set of constraints or determining that the constraints are unsatisfiable; the problem of
bounding the value of an objective function over the domain defined by such a set of constraints;
and the problem of finding a value of the domain that maximizes (or minimizes) the value of
the objective function. Linear programming, revolutionized by Dantzig’s introduction of the
simplex algorithm in 1947, deals with the case in which the constraints and objective function
are linear. The development of interior point methods in the 1980s allows for the efficient
solution of problems defined by convex constraints and objective functions, which gives rise to
the field of convex programming [1].

There are a number of ways in which formal verification can be used to improve the reliability
of such methods. Checking the correctness of a solution to a satisfaction problem is easy in
principle: one simply plugs the result into the constraints and checks that they hold. Verifying
the correctness of a bounding problem or optimization problem is often almost as easy, in
principle, since the results are often underwritten by the existence of suitable certificates that
are output by the optimization tools. In practice, these tasks are made more difficult by the fact
that floating point calculation can introduce numerical errors that bear on the correctness of
the solution.

Here we focus on a different part of the process, namely, that of manipulating a problem and
reducing it to a form where optimization software can be applied. Mathematical models are
often complex, and practitioners rely on heuristics and expertise to put problems into forms
that admit computational solutions. Such transformations are hard to automate, and manual
transformation is error-prone. Our goal is to show proof assistants can be put to good use
towards finding and verifying these transformations, and to develop tools to support the process.

In Section 2, we describe a general formal framework for reasoning about problems and
reductions between them. In Section 3, to illustrate the method, we describe a class of transfor-
mations that form the basis for disciplined convex programming, a component of the popular
CVX package [2]. Even though these transformations are relatively straightforward, we argue
that a proof assistant provides a natural setting to carry them out in a verified way. In Section 4,
we discuss more substantial problem transformations and reductions.

Our current work is spread between two versions of the Lean system [3]. The development of
Lean 3 has mostly stabilized; its library, mathlib [4], comprises around 600 000 lines of code and
covers substantial portions of algebra, linear algebra, topology, measure theory, and analysis.
Lean 4 is currently under development as a performant dependently typed programming
language; it is not backward compatible with Lean 3, and does not have a substantial library
yet. We intend to make use of Lean 4’s support for user extensible syntax, as described below,
and we plan to move the full development to Lean 4 as soon as its library will support it.

2. Optimization Problems and Reductions

The general structure of an optimization problem is as follows:

structure Minimization :=
(Domain : Type)
(objFun : Domain → R)
(constraints : Domain → Prop)



We express maximization problems by negating the objective function. We assume that the
objective function objFun is defined over the data type Domain and takes values in the real
numbers. (It is often useful to allow values in the extended real numbers, and we have not ruled
out adopting this option instead.) The domain is often R𝑛 or a space of matrices, but it can
also be something more exotic, like a space of functions. A feasible point is an element of the
domain satisfying the constraints. A solution to the minimization problem is a feasible point x
such that for every feasible point y the value of the objective function at x is smaller than or
equal to the value at y.

Feasibility and bounding problems can also be expressed in these terms. If the objective
function is constant (for example, the constant zero function), a solution to the optimization
problem is simply a feasible point. And given a domain, an objective function, and constraints,
a value b is a (strict) bound on the value of the objective function over the domain if and only if
the feasibility problem obtained by adding the inequality objFun x ≤ b to the constraints
has no solution.

If p and q are problems, a reduction from p to q is simply a function mapping any solution to
q to a solution to p. The existence of such a reduction means that to solve p it suffices to solve
q. If p is a feasibility problem, it means that the feasibility of q implies the feasibility of p, and,
conversely, that the infeasibility of p implies the infeasibility of q. With this framework in place,
we can now easily describe what we are after: we are looking for a system that helps a user
reduce a problem p to a problem q that can be solved by an external solver. (For a bounding
problem q, the goal is instead to find a reduction to q from an infeasible problem p.) At the
same time, we wish to verify the correctness of the reduction, either automatically or with user
interaction. This will ensure that the results from the external solver really address the problem
that the user is interested in solving.

There are at least three advantages to performing such transformations in a proof assistant.
First, it offers strong guarantees that the results are correct and have the intended meaning.
Second, it means that users can perform the transformations interactively or partially, and thus
introspect and explore the results of individual transformation steps. Finally, users can benefit
from the ambient mathematical library, including a database of functions and their properties.

The formulation described above is good for reasoning about problems in general, but it
is not as good for reasoning about particular problems. The optimization function in our
representation of a minimization problem is a unary function and the constraints are given by a
unary predicate, but we commonly think of these in terms of multiple variables, along these
lines:

minimization
!vars x y z
!objective x + y + z
!constraints

x + 3 * y > 5,
z < 10

We have implemented exactly this syntax using Lean 4’s flexible mechanisms for macro expan-
sion [5], so that it represents an expression of the Minimization type presented above. We use
exclamation marks because the keywords we choose become parser tokens in any Lean file that
imports our library; for example, with the syntax above, the tokens minimization, !vars,



!objectives, and !constraints can no longer be used as variable names or identifiers.
Conversely, Lean’s delaborator makes it possible to pretty-print suitably-described problems in
the form above. We intend to use tactics written in Lean’s powerful metaprogramming language
and a supporting library to facilitate the interactive construction of reductions, using the means
above to mediate between internal representations and user-facing syntax.

3. Disciplined Convex Programming

Disciplined convex programming (DCP) [6, 7] is a framework to specify convex optimization
problems. Any optimization problem following the rules of the framework can be solved fully
automatically. An example of a DCP problem is the following [6, equation (3.60)]:

minimize 𝑐𝑥 subject to exp(𝑦) ≤ log(𝑎
√
𝑥+ 𝑏), 𝑎𝑥+ 𝑏𝑦 = 𝑑 (⋆)

where 𝑎, 𝑏, 𝑐, 𝑑 are parameters with 𝑎 ≥ 0, and 𝑥, 𝑦 are variables. For this problem to be DCP
conformant, it is crucial that for instance the argument 𝑎

√
𝑥+ 𝑏 of the concave, nondecreasing

function log is itself concave; that the convex expression exp(𝑦) is on the left of ≤; and that the
concave expression log(𝑎

√
𝑥+ 𝑏) is on the right of ≤. The DCP rules allow for a systematic

verification of all necessary conditions.
The DCP framework is implemented in the modeling systems CVX [2, 8], CVXPy [9, 10],

Convex.jl [11], and CVXR [12]; a related reduction system is implemented in YALMIP [13].
These systems transform a DCP problem into conic form, a more constrained canonical form
that subsumes linear, quadratic, and semidefinite programs. The conic problem is then solved
by external solvers such as SeDuMi [14] and SDPT3 [15], and the result is translated back into a
solution to the original DCP problem.

Conic problems have the following form, where 𝑐 ∈ R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝐺 ∈ R𝑘×𝑛,
ℎ ∈ R𝑘 are parameters and 𝑥 ∈ R𝑛 are variables.

minimize 𝑐𝑡𝑥 subject to 𝐴𝑥 = 𝑏, 𝐺𝑥− ℎ ∈ 𝐾

The parameter 𝐾 is a convex cone. The conic solvers require 𝐾 to be a cartesian product of
cones supported by the solver—e.g., the nonnegative orthant {𝑥 ∈ R𝑙 | 𝑥𝑖 ≥ 0 for all 𝑖}, the

second-order cone {𝑥 ∈ R𝑙 | 𝑥1 ≥
√︁
𝑥22 + · · ·𝑥2𝑙 }, or the exponential cone {𝑥 ∈ R3 | 𝑥1 ≥

𝑥2𝑒
𝑥3/𝑥2 , 𝑥2 > 0} ∪ {𝑥 ∈ R3 | 𝑥1 ≥ 0, 𝑥2 = 0, 𝑥3 ≤ 0}.

Support for DCP in Lean will form the basis of our project. DCP is widely applicable, and the
transformations are relatively simple. It is therefore a suitable testbed for the basic definitions
described in Section 2 and for the potential of optimization tooling in proof assistants.

Our tool will accept a DCP problem specified in Lean and translate it into conic form while
verifying that any solution of the conic problem yields a solution of the original problem. In
this paper, we will focus on this first task. We envision that the tool will then send the conic
problem to an external conic optimization solver. The solver will return a solution, along with a
dual solution that will allow us to verify the correctness of the result independently in Lean.

We have considered sending the DCP problem directly to CVX or a similar high-level modeling
system. However, to the best of our knowledge, the dual solutions that CVX provides do not



def prob1 := minimization
!vars x y
!objective c * x
!constraints
exp y

≤ log (a * sqrt x + b),
a * x + b * y = d,
0 ≤ x,
0 < a * sqrt x + b

def prob2 := minimization
!vars t1 x y
!objective c * x
!constraints

exp y ≤ t1,
t1 ≤ log (a * sqrt x + b),
a * x + b * y = d,
0 ≤ x,
0 < a * sqrt x + b

def prob3 := minimization
!vars t2 t1 x y
!objective c * x
!constraints
t2 ^ 2 ≤ x,
exp y ≤ t1,
t1 ≤ log (a * t2 + b),
a * x + b * y = d,
0 ≤ x,
0 < a * t2 + b

def prob4 := minimization
!vars t3 t2 t1 x y
!objective c * x
!constraints

exp t3 ≤ a * t2 + b,
t2 ^ 2 ≤ x,
exp y ≤ t1,
t1 ≤ t3,
a * x + b * y = d,
0 ≤ x,
0 < a * t2 + b

def prob5 := minimization
!vars t3 t2 t1 x y
!objective c * x
!constraints
exp t3 ≤ a * t2 + b,
t2 ^ 2 ≤ x,
exp y ≤ t1,
t1 ≤ t3,
a * x + b * y = d

Figure 1: A DCP transformation in Lean

allow us to verify the result independently, without canonizing the problem to conic form in Lean.
Moreover, experimenting with these transformations will help us to prepare the groundwork
for more complex problem transformations that cannot be handled fully automatically.

We demonstrate a problem transformation in Lean using the DCP program (⋆) above. The
transformation is shown in Figure 1. Ultimately, we would like to fully automate such DCP
transformations and to require user interaction only for more complex reductions. The program
(⋆) is formulated above as found in Grant’s thesis [6]. Grant assumes that log(𝑥) for 𝑥 ≤ 0
and

√
𝑥 for 𝑥 < 0 take value −∞. We could do the same in Lean, but algebraically the

extended real numbers are not a convenient number system to work with and Lean’s library is
substantially more comprehensive for the reals. Instead, we add the constraints 0 ≤ x and
0 < a * sqrt x + b explicitly, resulting in the definition of prob1.

The first transformation step, from prob1 to prob2, consists of moving exp y into a separate
constraint. Grant calls this kind of transformation linearization. The occurrence of exp y is
replaced by an auxiliary variable t1 and we add the constraint exp y ≤ t1. The transformation
can be justified by the schema linearization_antimono in Figure 2, which is parameterized



def linearization_antimono
(D : Type) (f g : D → R)
(c : R → D → Prop)
(h_mono: ∀ x r s, r ≤ s → c s x

→ c r x) :
Minimization.Reduction
{ Domain := D,

objFun := f,
constraints :=
fun x => c (g x) x }

{ Domain := R × D,
objFun := fun y => f y.2,
constraints :=

fun y =>
g y.2 ≤ y.1 ∧ c y.1 y.2 }

def graph_expansion_concave
(D : Type) (f g : D → R)
(c d : R → D → Prop)
(h_mono: ∀ x r s, r ≤ s → c r x

→ c s x)
(hg : ∀ x v, c v x

→ isGreatest {y | d y x} (g x)) :
Minimization.Reduction
{ Domain := D,
objFun := f,
constraints :=

fun x => c (g x) x }
{ Domain := R × D,
objFun := fun y => f y.2,
constraints :=

fun y => d y.1 y.2 ∧ c y.1 y.2 }

Figure 2: Examples of reduction schemas

by a function c that is monotone in its first argument. Instantiating it appropriately yields a
reduction from prob1 to prob2. The condition for the transformation is that exp y occurs in
an antimonotone context—i.e., if the constraints hold for some value s of exp y, then they also
hold for values smaller than s. There is an analogous reduction schema linearization_mono
for monotone contexts that would introduce the constraint t1 ≤ exp y instead.

Second, to reduce prob2 to prob3, we eliminate the occurrence of sqrt by replacing it by its
graph implementation. A graph implementation is a description of a concave [convex] function as
a convex maximization [minimization] problem. For example, for 𝑥 ≥ 0,

√
𝑥 can be described as

the greatest number 𝑦 such that 𝑦2 ≤ 𝑥. The reduction schema graph_expansion_concave
in Figure 2 justifies the process of replacing a concave function by its graph implementation,
called graph expansion. In our case, we replace both occurrences of sqrt x by an auxiliary
variable t2 and add the constraint t2 ^ 2 ≤ x, which yields a reduction from prob2 to prob3.
As for linearization, the condition for graph expansion is that sqrt x occurs in a monotone
context. In fact, linearization is a special case of graph expansion using the trivial graph
implementation defining 𝑓(𝑥) as the greatest number 𝑦 such that 𝑦 ≤ 𝑓(𝑥). Next, we perform
a graph expansion on log (a * t2 + b), yielding prob4 and a reduction from prob3 to
prob4.

Once log and sqrt have been eliminated, the constraints 0 ≤ x and 0 < a * t2 + b
have served their purpose and can be removed, yielding prob5. Using the constraints exp t3
≤ a * t2 + b and t2 ^ 2 ≤ x, it is easy to show that these constraints are redundant. For
this step, we can even show that prob4 = prob5.

Finally, problem prob5 can be written in conic form. The constraint a * x + b * y = d
constitutes the linear component of the conic form. We can write t1 ≤ t3 as a nonnegative
orthant constraint; t2 ^ 2 ≤ x as a second-order cone constraint; exp t3 ≤ a * t2 + b
and exp y ≤ t1 as an exponential cone constraint. The product of these cones constitutes
the cone 𝐾 of the conic form.

We have proven the above transformation correct in Lean by applying the reductions manually



and proving the side conditions. Our goal is to fully automate DCP canonization. To this end,
we will need a library of graph implementations, a tactic for proving monotonicity, a tactic to
derive the actual conic form from the fully graph expanded problem, and an overarching tactic
to guide the transformation process.

4. Future Plans

Our approach will reveal its full potential when dealing with problem transformations that are
hard to automate because they are specific to a particular problem. The DCP methodology relies
on experts to program the necessary graph implementations into the system. We believe that
a verified toolbox makes it easier for users—both experts and novices—to extend the system
to handle new reductions and to get the details right. For extensions of the DCP methodology
such as disciplined convex-concave programming [16], disciplined geometric programming
[17], and disciplined quasiconvex programming [18], this is even more crucial. For instance,
disciplined convex-concave programming requires information about sub- and supergradients,
and quasiconvex programming requires representations of the sublevel sets of the employed
quasi-convex functions. Another example is the barrier method that requires the user to come
up with appropriate barrier functions. It is impossible to devise a library that includes all
functions that users will ever need, but the verified approach provides a safe environment to
derive the required information interactively.

We aim to test and evaluate our toolset with concrete applications. Optimization and feasibility
tools are often used in control theory to establish stability and asymptotic stability of systems,
as well as safety properties. There is now a substantial literature on the use of formal methods
to support this, and, in particular, to develop ways of reliably reducing verification problems to
problems that can be checked by symbolic and numeric methods. We believe that a system like
the one we are developing can contribute in two ways: first, by providing a general mathematical
library and tools to verify the soundness of the theoretical reductions, and second, by providing
an interactive tool for applying the reductions to specific problems, ensuring that the data is in
the right form and that the side conditions are met.

For example, a recent paper by Wang et al. [19] that we might explore in a case study uses
optimization to synthesize invariants of hybrid systems and thereby prove safety over the infinite
time horizon. The synthesized invariant is a barrier certificate, encoded as an optimization
problem constrained by bilinear matrix inequalities. To make the problem amenable to conic
solvers, Wang et al. transform the inequalities into difference-of-convex constraints. Through a
transformation resembling disciplined convex-concave programming, they bring the problem
into conic form. Finally, they use the branch-and-bound framework to ensure finding the global
optimum, not a local one. We consider these transformations to be an excellent case study for
our approach because they are practical and hard to automate.

Related work

Formal methods have been used to solve bounding problems [20, 21], constraint satisfaction
problems [22], and optimization problems [23]. The literature is too large to cover here; [24]



surveys some of the methods that are used in connection with the verification of cyber-physical
systems.

Proof assistants have been used to verify bounds in various ways. Some approaches use certifi-
cates from numerical packages; Harrison [25] uses certificates from semidefinite programming
in HOL Light, and Magron et al. [26] and Martin-Dorel and Roux [27] use similar certificates in
Coq. Solovyev and Hales use a combination of symbolic and numeric methods in HOL Light [28].
Other approaches have focused on verifying symbolic and numeric algorithms instead. For
example, Muñoz, Narkawicz, and Dutle [29] verify a decision procedure for univariate real
arithmetic in PVS and Cordwell, Tan, and Platzer [30] verify another one in Isabelle. Narkawicz
and Muñoz [31] have devised a verified numeric algorithm to find bounds and global optima.
Cohen et al. [32, 33] have developed a framework for verifying optimization algorithms using
the ANSI/ISO C Specification Language (ACSL) [34].

Although the notion of a convex set has been formalized in a number of theorem provers,
we do not know of any full development of convex analysis. The Isabelle [35] HOL-Analysis
library1 includes properties of convex sets and functions, including Carathéodory’s theorem on
convex hulls, Radon’s theorem, and Helly’s theorem, as well as properties of convex sets and
functions on normed spaces and Euclidean spaces. A theory of lower semicontinuous functions
by Grechuk [36] in the Archive of Formal Proofs [37] includes properties of convex functions.
Lean’s mathlib includes a number of fundamental results,2 including a formalization of the
Riesz extension theorem by Kudryashov and Dupuis and a formalization of Jensen’s inequality
by Kudryashov. Allamigeon and Katz have formalized a theory of convex polyhedra in Coq
with an eye towards applications to linear optimization [38]. We do not know of any project
that has formalized reductions between optimization problems.
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