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Abstract
The aim of our work is to show, using the Mizar system that our techniques invented to formalize the
unsolvability of Hilbert’s tenth problem in a Matiyasevich way, can be reused to prove that an assumption
used by Julia Robinson demonstrates the same result independently.

We present our formalization that the set of prime numbers is representable by a polynomial formula.
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1. Introduction

Martin Davis, YuriMatiyasevich, Hilary Putnam and Julia Robinson [DPR61, Mat70] have
proven that every recursively enumerable set is diophantine, and hence prove the Hilbert’s
Tenth Problem in the negative: there is no algorithmic way of determining whether some arbitrary
diophantine equation has a solution. This is known as the MRDP-theorem (due to Matiyasevich,
Robinson, Davis, and Putnam). This problem took seventy years to resolve, during which many
attempts have been made to solve the problem. It is therefore not surprising that Julia Robinson
and Martin Davis, with a contribution from Hilary Putnam, created several theorems that give
a negative solution to the problem but under some assumptions. One of these assumptions
that the exponential function can be defined in a diophantine way has been eliminated by Yuri
Matiyasevich using a trick with clever use of Fibonacci numbers, who definitively completed
the proof of the MRDP-theorem.

In our work, we focus on another theorem under some, currently eliminated assumption,
proposed by Julia Robinson [Rob69]. She proved that if the set of prime numbers was diophantine,
then every recursively enumerable set would be diophantine. We do this for two main reasons.
First, the set of prime numbers can be representable by a complicated polynomial formula
(proposed in [JSWW76]) and consequently, the set is diophantine. We can investigate the
possibilities of the Mizar system [? GKN15] to prove that explicitly given polynomial with 26
variables determine the set of prime numbers. We also use a trick with Mizar schemes (see
[GKN10]) that go beyond first-order logic to show a sophisticated proof of the existence of such
a polynomial without formulating it explicitly. Second, the proof of the assumption requires
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nearly all the techniques invented to prove the MRDP-theorem that we formalized in the Mizar
system [Pąk19b] and seems a natural continuation of the formal approach to diophantine sets.

2. Diophantine sets

Obviously, we need to begin by quickly explaining what we mean by diophantine. A diophantine
polynomial in the 𝑘 variables 𝑥1, 𝑥2, . . . , 𝑥𝑘 is defined in informal mathematical practice as finite
sum of expressions of the type 𝑐𝑖𝑣1𝑣2𝑣3 . . . 𝑣𝑗 where the coefficients 𝑐𝑖 are integers (positive or
negative) and 𝑣𝑖 are variables. A diophantine equation, in traditional form is an equation of the
form 𝑃 (𝑥1, . . . , 𝑥𝑗 , 𝑦1, . . . , 𝑦𝑘) = 0, where 𝑃 is a diophantine polynomial, 𝑥1, . . . , 𝑥𝑗 , 𝑦1, ..., 𝑦𝑘
indicate parameters and unknowns, respectively. A set 𝐷 ⊆ N𝑛 of 𝑛-tuples is called diophantine
if there exists a 𝑛+ 𝑘–variable diophantine polynomial 𝑃 such that ⟨𝑥1, . . . , 𝑥𝑛⟩ ∈ 𝐷 if and
only if there exist variables 𝑦1, . . . , 𝑦𝑘 ∈ N such that 𝑃 (𝑥1, . . . , 𝑥𝑗 , 𝑦1, . . . , 𝑦𝑘) = 0.

In the context of the MRDP-theorem, we repeatedly refer to concepts of diophantine polyno-
mials, equations, and sets, but in a slightly inverted way. Instead of being given an equation
and seeking its solutions, we will give a set of solutions and seek a corresponding diophantine
equation. In particular, the set of numbers which are either even or multiples of three is dio-
phantine, since (𝑥 − 2𝑦)(𝑥 − 3𝑦) takes a zero for each 𝑥, which is either even or a multiple
of three. Similarly, the set of numbers which are even and multiples of three is diophantine,
since (𝑥− 2𝑦)2 + (𝑥− 3𝑧)2 or simply 𝑥− 6𝑦 takes a zero for such 𝑥. It is easy to see that in
the general case a diophantine polynomial is not determined uniquely by a given diophantine
set. So we might ask what is the smallest possible degree and/or what is the smallest possible
number of parameters in a diophantine polynomial to determine a given diophantine set. In our
simple example the question is straightforward, but it is not so for the set of prime numbers. In
1971, Yuri Matiyasevich give the construction of a diophantine polynomial with 24 variables
and degree 37 that determines the set of prime numbers. Using the Skolem substitution method
[Dav73] we can reduce the degree to 5. However, this procedure increases the number of
variables. Currently, the smallest known number of variables to represent primes is 12 and is
proposed by Yuri Matiyasevich and Julia Robinson in [MR75], but the degree of the polynomial
is more than a few thousand (more than 6,000 from our estimate).

In our Mizar formalization, we chose a diophantine polynomial with 26 variables to represent
primes that is given in [JSWW76]. We show that for any positive integer 𝑘 so that 𝑘 + 1 is
prime it is necessary and sufficient that there exist other natural variables 𝑎-𝑧 for which the
polynomial

[𝑤𝑧 + ℎ+ 𝑗 − 𝑞]2 + [(𝑔𝑘+ 𝑔 + 𝑘)(ℎ+ 𝑗) + ℎ− 𝑧]2 + [(2𝑘)3(2𝑘+ 2)(𝑛+ 1)2 + 1− 𝑓2]2+

[𝑝+ 𝑞 + 𝑧 + 2𝑛− 𝑒]2 + [𝑒3(𝑒+ 2)(𝑎+ 1)2 + 1− 𝑜2]2 + [𝑥2 − (𝑎2 − 1)𝑦2 − 1]2+

[16(𝑎2 − 1)𝑟2𝑦2𝑦2 + 1− 𝑢2)2 + [((𝑎+ 𝑢2(𝑢2 − 𝑎))2 − 1)(𝑛+ 4𝑑𝑦)2 + 1− (𝑥+ 𝑐𝑢)2]2+

[𝑚2 − (𝑎2 − 1)𝑙2 − 1]2 + [𝑘 + 𝑖(𝑎− 1)− 𝑙]2 + [𝑛+ 𝑙 + 𝑣 − 𝑦]2+

[𝑝+ 𝑙(𝑎− 𝑛− 1) + 𝑏(2𝑎(𝑛+ 1)− (𝑛+ 1)2 − 1)−𝑚]2+

[𝑞+𝑦(𝑎−𝑝−1)+𝑠(2𝑎(𝑝+1)−(𝑝+1)2−1)−𝑥]2+[𝑧+𝑝𝑙(𝑎−𝑝)+ 𝑡(2𝑎𝑝−𝑝2−1)−𝑝𝑚]2

(1)



equals zero.

3. Prime representing polynomial

The proof that (1) determine the set of prime numbers is based on two concepts: the special case
of Pell’s Equation that has the form 𝑥2 − (𝑎2 − 1)𝑦2 = 1, where 𝑎 > 1 and Wilson’s theorem
which characterizes the primes in terms of the factorial function, i.e., for any positive integers 𝑘
holds 𝑘 + 1 is prime if and only if 𝑘 + 1|𝑘! + 1. Note that we had to prove that the equality
𝑦 = 𝑥! is diophantine since it is one of the key steps to proving the MRDP-theorem and the
theorem is already formulated in [Pąk19a] as follows:

theorem :: HILB10_4:31
for i1,i2 be Element of n st n<>0 holds

{p where p is n-element XFinSequence of NAT: p.i1 = p.i2!}
is diophantine Subset of n-xtuples_of NAT;

Note that i be Element of n means in particular that i is in the domain of a zero-based indices, n-
tuples p, since n={0,1,2,. . .,n-1} in the standard construction of the natural numbers developed
in the Mizar library. Rather than showing full proof that the set of prime numbers is diophantine,
we just show a trick with Mizar schemes (second-order theorems) that provide the ability to
combine diophantine relation using conjunctions and alternatives as well as a special case to
substitution (see [AP18]):

scheme :: HILB10_3:sch 4
Substitution{P[Nat,Nat,natural object,Nat,Nat,Nat],
F(Nat,Nat,Nat)→natural object}:

for i1,i2,i3,i4,i5 holds {p: P[p.i1,p.i2,F(p.i3,p.i4,p.i5),p.i3,p.i4,p.i5]}
is diophantine Subset of n-xtuples_of NAT

provided
for i1,i2,i3,i4,i5,i6 holds {p: P[p.i1,p.i2,p.i3,p.i4,p.i5,p.i6]}

is diophantine Subset of n-xtuples_of NAT
and

for i1,i2,i3,i4 holds {p: F(p.i1,p.i2,p.i3) = p.i4}
is diophantine Subset of n-xtuples_of NAT;

Since the truncated subtraction (difference or zero) represented in Mizar as -′ is diophantine

theorem :: HILB10_3:20
for a,b,c be Integer, i1,i2,i3 be Element of n holds

{p where p is n-element XFinSequence of NAT: a∗p.i1 = b∗p.i2-′c}
is diophantine Subset of n -xtuples_of NAT;

we conclude in particular that {p: p.i1 = p.i2-′1} is also diophantine. Combining these with
HILB10_4:31 and using Substitution we obtain that {p: p.i1 = (p.i2-′1)!} is diophantine. This
is proved by writing 𝐹 = 𝜆𝑖1 𝑖2 𝑖3. 𝑖2 -

′ 1, 𝑃 = 𝜆𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6. 𝑖4 = 𝑖3!. Note that most of the
arguments of𝑃 , 𝐹 are unused. We have decided on such a solution in order to avoid repeating the
substitution schemes for individual cases of arity, since such arity of 𝑃 , 𝐹 was sufficient to apply



all substitutions done in the MRDP-theorem. In the same manner we can see that {p: p.i1 = (p.
i2-′1)! + 1} is diophantine writing 𝐹 = 𝜆𝑖1 𝑖2 𝑖3. (𝑖2 -′ 1)!, 𝑃 = 𝜆𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6. 𝑖4 = 1∗𝑖3+1
and using the following theorem:

theorem :: HILB10_3:15
for a,b be Integer, i1,i2 be Element of n holds

{p where p is n-element XFinSequence of NAT: p.i1 = a∗p.i2+b}
is diophantine Subset of n-xtuples_of NAT;

Next, using again the Substitution with the fact that the congruence is diophantine and writ-
ing 𝐹 = 𝜆𝑖1 𝑖2 𝑖3. (𝑖2 -′ 1)!+1, 𝑃 = 𝜆𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6. 1∗𝑖3, 0∗𝑖4 are_congruent_mod 1∗𝑖4, we
obtain that {p: (p.i-′1)! + 1 mod p.i = 0} is diophantine.

theorem :: HILB10_3:3
for a,b,c be Integer, i1,i2,i3 be Element of n holds

{p where p is n-element XFinSequence of NAT:
a∗p.i1,b∗p.i2 are_congruent_mod c∗p.i3}

is diophantine Subset of n-xtuples_of NAT;
We continue in this fashion with HILB10_3:7 and obtain that {p: p.i > 0} is diophantine.

theorem :: HILB10_3:7
for a,b,c be Integer, i1,i2 be Element of n holds

{p where p is n-element XFinSequence of NAT: a∗p.i1 > b∗p.i2+c}
is diophantine Subset of n-xtuples_of NAT;

scheme :: HILB10_3:sch 3
IntersectionDiophantine{n()→Nat,P,Q[XFinSequence]}:
{p where p is n()-element XFinSequence of NAT: P[p] & Q[p]}

is diophantine Subset of n()-xtuples_of NAT
provided

{p where p is n()-element XFinSequence of NAT: P[p]}
is diophantine Subset of n()-xtuples_of NAT

and
{p where p is n()-element XFinSequence of NAT: Q[p]}

is diophantine Subset of n()-xtuples_of NAT;
Finally, using the IntersectionDiophantine scheme we can conclude that the intersection of
these sets, that is equal to {p: (p.i-′1)! + 1 mod p.i = 0 & p.i > 1} is diophantine. Then the
proof that the set of prime numbers is diophantine is easy to complete by applying the Wilson’s
theorem [Pąk21].

theorem :: HILB10_6:4
for i being Element of n holds

{p where p is n-element XFinSequence of NAT: p.i is prime}
is diophantine Subset of n-xtuples_of NAT

Using such techniques invented to prove the MRDP-theorem in [Pąk19b] we needed less than
100 lines of code to complete the, but the prime representing polynomial is deeply hidden in the



proof, e.g., in the constructions used in the schemes. Moreover, we need a more sophisticated
list of arithmetical properties than the one used in [Pąk19a] to to reduce the number of variables
to 26 which occur in (1).

For this purpose, we formalize additional properties of the special case of Pell’s Equation by
following the idea presented in [JSWW76] as follows:

theorem :: HILB10_6:24
for a be non trivial Nat for y,n be Nat st 1 <= n holds y = Py(a,n) iff

ex c,d,r,u,x be Nat st
[x,y] is Pell s_solution of a^2-′1 & u^2 = 16∗(a^2-1)∗r^2∗y^2∗y^2+1 &
(x+c∗u)^2 = ((a+u^2∗(u^2-a))^2-1)∗(n+4∗d∗y)^2+1 & n <= y;

theorem :: HILB10_6:31
for f,k be positive Nat holds f = k! iff

ex j,h,n,p,q,w,z be positive Nat st
q = w∗z+h+j & z = f∗(h+j)+h & (2∗k)|^3∗(2∗k+2)∗(n+1)|^2+1 is square &
p = (n+1)|^k & q = (p+1)|^n & z = p|^(k+1);

where the truncated subtraction, the second power, the nth power are represented as -′, ^2,
|^n, respectively. Now we are ready to express and prove in the Mizar system that the set of
prime numbers is representable by the polynomial formula (1).

theorem :: HILB10_6:33
for k be positive Nat holds

k+1 is prime iff ex a,b,c,d,e,f,g,h,i,j,l,m,n,o,p,q,r,s,t,u,w,v,x,y,z be Nat st
0 = (w∗z+h+j-q)^2 + ((g∗k+g+k)∗(h+j)+h-z)^2 +

((2∗k)|^3∗(2∗k+2)∗(n+1)|^2+1-f^2)^2 + (p+q+z+2∗n-e)^2 +
(e|^3∗(e+2)∗(a+1)|^2+1-o^2)^2 + (x^2-(a^2-′1)∗y^2-1)^2 +
(16∗(a^2-1)∗r^2∗y^2∗y^2+1-u^2)^2 +
(((a+u^2∗(u^2-a))^2-1)∗(n+4∗d∗y)^2+1-(x+c∗u)^2)^2 +
(m^2-(a^2-′1)∗l^2-1)^2 + (k+i∗(a-1)-l)^2 + (n+l+v-y)^2 +
(p+l∗(a-n-1)+b∗(2∗a∗(n+1)-(n+1)^2-1)-m)^2 +
(q+y∗(a-p-1)+s∗(2∗a∗(p+1)-(p+1)^2-1)-x)^2 +
(z+p∗l∗(a-p)+t∗(2∗a∗p-p^2-1)-p∗m)^2;

4. Conclusions

Our formalization has so far focused on the polynomial proposed in [JSWW76]. We showed
formally in the Mizar system that the polynomial determines the set of prime numbers, hence the
set is diophantine. Now we are working on reducing the number of variables in the considered
polynomial to 12 as has been done by Yuri Matiyasevich and Julia Robinson in [MR75].
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