
Formalizing Fibonacci Squares
Muhammad Harun Ali Khan1

1Imperial College London

Abstract
The only squares in the Fibonacci sequence are 0, 1, and 144. We implemented a proof of this theorem in
the Lean Theorem Prover. In this paper, we will discuss our methods as well as some implementation
problems we faced and their solutions.

1. Introduction

Formalization is the process of implementing mathematical statements and their proofs in a
theorem prover such as Coq, Lean, Isabelle, etc. These systems verify that every step of a proof
is justified by checking a chain of implications down to the axioms. In this paper, we will discuss
our novel formalization of the statement that 0,1, and 144 are the only Fibonacci squares in the
Lean Theorem Prover.

Let N0 be the set of natural numbers including 0. We defined the Fibonacci and Lucas
sequences as

𝐹 : N0 → N0 𝐿 : N0 → N0

𝐹0 = 0 𝐿0 = 2

𝐹1 = 1 𝐿1 = 1

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, 𝐿𝑛+2 = 𝐿𝑛+1 + 𝐿𝑛.

We formalized the following main theorem.

Theorem 3. Let 𝑘, 𝑛 ∈ N0 such that 𝐹𝑛 = 𝑘2. Then 𝑛 = 0, 1, 2, 12.

This was an old conjecture answering a natural question: the characterization of squares
in one of the most extensively studied sequences. We implemented a proof due to Cohn
found in [1] which uses advanced elementary number theory topics such as quadratic residues
and also characterizes squares in the Lucas sequence. Our project can be accessed at https:
//github.com/mhk119/fibonacci_squares. The proof from [1] can be broken down into three
parts: preliminaries, Lucas squares and Fibonacci squares. We have dedicated a section to each
part after presenting an outline of the proof in [1].

FMM 2021 – Fifth Workshop on Formal Mathematics for Mathematicians at CICM 2021
$ muhammad.khan19@imperial.ac.uk (M. H. A. Khan)
� 0000-0003-3379-5631 (M. H. A. Khan)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://github.com/mhk119/fibonacci_squares
https://github.com/mhk119/fibonacci_squares
mailto:muhammad.khan19@imperial.ac.uk
https://orcid.org/0000-0003-3379-5631
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Outline of proof in [1]

Cohn [1] considers the extension of the Fibonacci and Lucas sequences to negative numbers as
well. Formally, 𝐹0 = 0, 𝐹1 = 1, 𝐿0 = 2, 𝐿1 = 1, and define for all integers 𝑚,

𝐿𝑚 = 𝐿𝑚−1 + 𝐿𝑚−2, 𝐹𝑚 = 𝐹𝑚−1 + 𝐹𝑚−2.

Before proving the only Fibonacci squares are 0, 1, and 144, [1] proves two theorems.

Theorem 1. The only Lucas squares are 1 and 4.

Theorem 2. The only numbers in the Lucas sequence that are 2 times a square are 2 and 18.

To prove Theorem 1, we note the following three key lemmas that hold for all integers 𝑚.

(a) 𝐿2𝑚 = 𝐿2
𝑚 + (−1)𝑚−1 · 2.

(b) 𝐿𝑚+2𝑘 ≡ −𝐿𝑚 (mod 𝐿𝑘) for any even integer 𝑘 not divisible by 3.
(c) 𝐿𝑘 ≡ 3 (mod 4) for any even integer 𝑘 not divisible by 3.

For odd Lucas terms notice that 𝐿1 = 1 is a square. Then consider 𝑚 ≡ 1 (mod 4), 𝑚 ̸= 1.
Write 𝑚 = 1 + 2 · 3𝑟 · 𝑘 where 𝑘 is an even integer not divisible by 3. By (b), 𝐿𝑚 ≡ −𝐿1

(mod 𝐿𝑘). And by (c), 𝐿𝑘 ≡ 3 (mod 4). So if 𝐿𝑚 is a square, −1 is a quadratic residue modulo
a number congruent to 3 (mod 4) which is a contradiction. Let us call this argument above the
reduction argument. The case for when 𝑚 ≡ 3 (mod 4) is analogous. Lastly, by (a), even Lucas
terms cannot be squares.

The proof for Theorem 2 uses essentially the same idea. We look at the the residue class
modulo 8 of the index of a Lucas square. If there are no such indices in some residue class,
then we can prove that half of the Lucas terms under consideration are indeed non-residues by
observing patterns of Lucas numbers modulo 8 (Preliminary 13 of [1]). If there is such an index
in some residue class, then we repeat the reduction argument to obtain a contradiction from
the fact that −1 is a non-residue modulo a number 3 (mod 4).

Finally, we can prove that the only Fibonacci squares are 0, 1, and 144. Suppose 𝐹𝑛 = 𝑥2

for some integers 𝑛 and 𝑥. If 𝑛 ≡ 1 (mod 4) notice that 𝐹1 is a square so use the reduction
argument to prove impossibility of other squares. If 𝑛 ≡ 3 (mod 4), we are already done since
𝐹𝑛 = 𝐹−𝑛 thus reducing it to −𝑛 ≡ 1 (mod 4). If 𝑛 is even, one can prove 𝐹𝑛 = 𝐿𝑛/2𝐹𝑛/2

and also that gcd(𝐹𝑛/2, 𝐿𝑛/2) ≤ 2. If the product of two numbers is a square then each of them
is the gcd of the two numbers times a square. So we resolve two cases based on the possible
values of the gcd, and use Theorems 1 and 2 to obtain the result.

3. Preliminaries

These are the 13 preliminary lemmas in [1] that we first formalized. Most of our lemmas required
us to prove pre-requisite results. For example, to formalize our identities (Preliminaries 1, 2, 3

(see [1])), we first formalized ∀𝑚,𝑛 ∈ N0,

𝐿𝑛+1 = 𝐹𝑛+2 + 𝐹𝑛,

𝐿𝑚+𝑛+1 = 𝐹𝑚+1𝐿𝑛+1 + 𝐹𝑚𝐿𝑛.

To prove preliminaries 4, 5, 6, and 7 (see [1]), we formalized ∀𝑚 ∈ N0,

𝐹𝑚+1 > 0 and 𝐿𝑚 > 0,
gcd(𝐹𝑚+1, 𝐹𝑚+2) = 1,

Fibonacci residue patterns modulo 2,
Lucas residue patterns moduli 2, 3, and 4.

Additionally we proved some lemmas that shortened our proofs. For example, formalizing

∀𝑚,𝑛 ∈ N0, 𝑚 ≤ 𝑛 or ∃(𝑘 ∈ N0), 𝑚 = 𝑘 + 𝑛+ 1

helped verify base cases for induction efficiently. Now we shall discuss two problems we faced.

3.1. Fibonacci and Lucas Closed Forms

Perhaps, we could have proved some of our identities using the closed form for the Fibonacci or
Lucas sequences. However, this was problematic as performing algebraic manipulations in
Lean with

√
5 would not have been easy or efficient. Tactics such as simp and ring are far

more effective in manipulating integers.

Hence, we decided to prove all of our identities with induction. This was indeed much easier
to implement. For example, proving 2𝐿𝑚+𝑛 = 5𝐹𝑚𝐹𝑛 + 𝐿𝑚𝐿𝑛, for natural numbers, took
merely 7 lines with two-step induction.

3.2. Integers

Lean has a very large library of lemmas and theorems proven for natural numbers. To begin
with, we defined our sequences (both Fibonacci and Lucas) from N0 → N0, although [1] uses
the extensions of Fibonacci and Lucas to integers. Otherwise, it would have been difficult to
alternate back and forth from our integer sequences to theorems in our natural number libraries.
The problem we faced in using only natural numbers is that the proof of the case 𝑛 ≡ 3 (mod 4)
in Theorem 3 relies on the fact that 𝐹𝑛 = 𝐹−𝑛 which implies −𝑛 ≡ 1 (mod 4). So we easily
reduced to the 1 (mod 4) case which implies 𝑛 = 1 by the reduction argument presented earlier.

However, rather than defining our sequences over integers, we insisted on their natural
number definitions and modified the proof of Theorem 3 slightly. Preliminaries 1, 2, 11 and 12
(from [1]) state that ∀𝑚,𝑛, 𝑘 ∈ Z, 2 | 𝑘, 3 ∤ 𝑘,

Preliminary 1. 2𝐹𝑚+𝑛 = 𝐹𝑚𝐿𝑛 + 𝐿𝑚𝐹𝑛.
Preliminary 2. 2𝐿𝑚+𝑛 = 5𝐹𝑚𝐹𝑛 + 𝐿𝑚𝐿𝑛.
Preliminary 11. 𝐿𝑚+2𝑘 ≡ −𝐿𝑚 (mod 𝐿𝑘).

Preliminary 12. 𝐹𝑚+2𝑘 ≡ −𝐹𝑚 (mod 𝐿𝑘).

We proved the following facts instead ∀𝑚,𝑛, 𝑘 ∈ N0, 2 | 𝑘, 3 ∤ 𝑘,

(1) 2𝐹𝑚+𝑛 = 𝐹𝑚𝐿𝑛 + 𝐿𝑚𝐹𝑛.
(2) 2𝐹𝑚 = (−1)𝑛𝐹𝑚+𝑛𝐿𝑛 + (−1)𝑛+1𝐿𝑚+𝑛𝐹𝑛.
(3) 2𝐿𝑚+𝑛 = 5𝐹𝑚𝐹𝑛 + 𝐿𝑚𝐿𝑛.
(4) 2𝐿𝑚 = (−1)𝑛+1 · 5𝐹𝑚+𝑛𝐹𝑛 + (−1)𝑛𝐿𝑚+𝑛𝐿𝑛.
(5) 𝐿𝑘 | 𝐿𝑚+2𝑘 + 𝐿𝑚.
(6) 2𝑘 ≥ 𝑚 =⇒ 𝐿𝑘 | 𝐿2𝑘−𝑚 + (−1)𝑚𝐿𝑚.
(7) 𝐿𝑘 | 𝐹𝑚+2𝑘 + 𝐹𝑚.
(8) 2𝑘 ≥ 𝑚 =⇒ 𝐿𝑘 | 𝐹2𝑘−𝑚 + (−1)𝑚+1𝐹𝑚.

That is, for preliminaries 1, 2, 11 and 12, we formalized an addition version and a subtraction
version separately. Also, we did not need to formalize preliminaries 8 and 9 of [1] which state
𝐹𝑛 = (−1)𝑛−1𝐹−𝑛 and 𝐿𝑛 = (−1)𝑛𝐿−𝑛 . Now we present our slightly different proof for the
case when 𝑛 ≡ 3 (mod 4) in Theorem 3 with these modifications.

Let 𝑛 = 4 · 3𝑟 · 𝑢− 1 for 𝑟, 𝑢 ∈ N0 and gcd(𝑢, 3) = 1. Then,

𝐿2𝑢 | 𝐹𝑛+4𝑢 + 𝐹𝑛, (9)

𝐿2𝑢 | 𝐹𝑛+4𝑢 + 𝐹4𝑢−1, (10)

𝐿2𝑢 | 𝐹4𝑢−1 + 𝐹1. (11)

Fact (9) is a direct consequence of (7). Moreover, we generalized (9) by induction to obtain (10).
Fact (11) is a direct consequence of (8). Perform (9) − (10) + (11) to obtain

𝐿2𝑢 | 𝐹𝑛 + 𝐹1. (12)

From here, 𝐹1 = 1 so 𝐹𝑛 ≡ −1 (mod 𝐿2𝑢). But 𝐿2𝑢 ≡ 3 (mod 4) so −1 is a nonresidue
implying 𝐹𝑛 is not a square.

Alternatively, we could have generalized (8) by induction to obtain (12) directly. However,
we found that formalizing (12) as we did above was easier since

• fact (7) was already generalized to prove Theorem 1;
• formalizing a generalization of (8) would have been harder as it was a statement in Lean

over integers. So we would have to carefully manipulate the coercion maps from natural
numbers to integers.

We formalized the 𝑛 ≡ 2 (mod 8) case of Theorem 2 in a similar manner.

4. Lucas Squares

In this section, we will discuss our formalization of Theorems 1 and 2. Before proving Theorem
1, we proved ∀𝑚,𝑛 ∈ N0,

(A) 𝑚2 + 2 ̸= 𝑛2,
(B) 𝑛 > 0 =⇒ ∃𝑟, 𝑢 ∈ N0, 𝑛 = 3𝑟 · 𝑢, 3 ∤ 𝑢,
(C) −1 is a quadratic residue modulo 𝑛 =⇒ 𝑛 ̸≡ 3 (mod 4).

To prove (A), we used quadratic residues modulo 4. Alternatively, we could have proved
this using the fact that the difference between consecutive squares is greater than 2 if 𝑚 ̸= 0.
However, this would yield a longer formalization due to the inequalities involved. With the
latter, the lemma reduces to computing some analogous cases which Lean can easily do with
the simp tactic.

We formalized (B) in order to decompose an index for the reduction argument. We proceeded
by contradiction. If no such 𝑟 exists then either, 3𝑟 | 𝑛 and 3𝑟+1 | 𝑛, or 3𝑟 ∤ 𝑛. However, the
latter cannot hold, since 30 | 𝑛 and induction yields 3𝑟 | 𝑛, ∀𝑟 ∈ N0. We showed this leads to a
contradiction since 𝑛 < 3𝑛 but 3𝑛 | 𝑛.

For (C), it was already proved in the number_theory.quadratic_reciprocity library
that

− 1 is a residue modulo 𝑝 ⇐⇒ 𝑝 ̸≡ 3 (mod 4). (13)

Our strategy was to use strong induction. We took two cases depending on whether 𝑛 was
prime or not. If 𝑛 was not prime, then from data.nat.prime library, 𝑛 has some prime
divisor 𝑝. Then we know from (13), 𝑝 ̸≡ 3 (mod 4). And for 𝑛/𝑝, we use our induction
hypothesis. The problem reduces to checking that the product of two numbers not congruent
to 3 (mod 4) is also not congruent to 3 (mod 4).

Perhaps, navigating between different representations of remainders was slightly inconve-
nient. Fact (13) uses data.zmod.basic for integers modulo 𝑛 and field structures over modulo
a prime number. On the other hand, some lemmas we used reside in data.nat.modeq. Fi-
nally, our lemma (C) needed to be proved as n%4̸=3, a third representation of remainders in Lean.

Proceeding from the step in Theorem 1 after

𝐿𝑛 ≡ −4 (mod 𝐿𝑘),

initially seemed challenging due to division mod 𝐿𝑘, inverses and coercions. We decided to
divide both sides by 4 and then showed that 𝐿𝑘/4 ≡ (

√
𝐿𝑘/2)

2. Using lemmas in zmod.basic
allowed us to work with inverses modulo 𝐿𝑘. Then Lean tactics ring and nat.cast lemmas
rewrote any expressions with maps between numbers with type zmod 𝐿𝑘 and natural numbers.

5. Fibonacci Squares

In this section, we will discuss our formalization of Theorem 3, the main theorem. Before we
could begin formalizing Theorem 3, we needed to prove for 𝑎, 𝑏, 𝑛 ∈ N,

𝑎𝑏 = 𝑛2 =⇒ ∃𝑟, 𝑠 ∈ N, 𝑎 = gcd(𝑎, 𝑏)𝑟2, 𝑏 = gcd(𝑎, 𝑏)𝑠2. (14)

We did this in two steps; by first proving

𝑎𝑏 = 𝑛2, gcd(𝑎, 𝑏) = 1 =⇒ ∃𝑟 ∈ N, 𝑎 = 𝑟2. (15)

Once again, we proved this by strong induction. Take a prime divisor 𝑝 of 𝑎. Hence 𝑝 | 𝑎𝑏 = 𝑛2.
Then, by a lemma in nat.prime library, 𝑝 | 𝑛. So 𝑝2 | 𝑛2 = 𝑎𝑏. We showed by contradiction
𝑝 ∤ 𝑏 (otherwise 𝑎, 𝑏 are not coprime). Then, we have that gcd(𝑝2, 𝑏) = 1 directly from a lemma
in nat.prime. Lastly, from nat.coprime library we get that 𝑝2 | 𝑎. So, by the induction
hypothesis 𝑛/𝑝2 is a square so 𝑛 is a square.

To prove (14), we simply considered
𝑎

gcd(𝑎, 𝑏)
and

𝑏

gcd(𝑎, 𝑏)
which are coprime from an

existing lemma in the library. We showed their product is (𝑛/ gcd(𝑎, 𝑏))2 and used (15) twice
to complete the proof. Finally, Theorem 3 could be proved easily by inserting the correct lemma
at every step of the proof.

6. Conclusion

Our formalisation of this theorem shows that interactive theorem provers are capable of verifying
non-trivial mathematics. On one hand, powerful tactics make proving routine identities seamless.
On the other hand, higher-order arguments (such as quadratic residues) are handled efficiently
by simply inserting powerful lemmas into relevant parts of a proof. For humans, a complex
theorem is harder to understand and hence verify. For a computer, the verification is no different
to that of an easier fact. Perhaps, someday Lean can verify the proof that the only Fibonacci
perfect powers are 0, 1, 8, 144 [2] - a proof that uses ingenious tools from the proof of Fermat’s
Last Theorem.

Acknowledgements

I thank Professor Kevin Buzzard for his guidance and supervision throughout this project.

References

[1] J. H. Cohn, Square fibonacci numbers, etc, Fibonacci Quarterly 2 (1964) 109–113. URL:
https://math.la.asu.edu/~checkman/SquareFibonacci.html.

[2] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential
diophantine equations i. fibonacci and lucas perfect powers, Annals of Mathematics 163
(2006) 969–1018. doi:10.4007/annals.2006.163.969.

https://math.la.asu.edu/~checkman/SquareFibonacci.html
http://dx.doi.org/10.4007/annals.2006.163.969

	1 Introduction
	2 Outline of proof in cohn
	3 Preliminaries
	3.1 Fibonacci and Lucas Closed Forms
	3.2 Integers

	4 Lucas Squares
	5 Fibonacci Squares
	6 Conclusion

