
Assignment 1: Find the best train connection
AI-1 Systems Project (Winter Semester 2025/2026)

Jan Frederik Schaefer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Search
Due on: December 20, 2025
Version from: October 27, 2025
Author: Jan Frederik Schaefer

Make sure you sign up before working on this assignment.a

Using someone else’s solution code, even as inspiration, is not allowed!
Sharing your solution code with other AISysProj students is not allowed.

aYou can still decide to postpone the assignment. Signing up includes an elligibility check, which
avoids situations where you invest work into an assignment that you are not supposed to take.

1 Task summary

Using a data set of Indian railway times, find the best connection between any two places
according to different cost functions.

Didactic objectives
1. Gain some experience working with graphs,
2. solve a search problem for a large, real dataset,
3. learn how to implement an algorithm with efficiency in mind,
4. get some experience with how different cost functions affect a search algorithm,
5. get to know the CSV file format.

Prerequisites and useful methods
1. Search algorithms in general (as discussed in the AI lecture),
2. Dijkstra’s algorithm [DA].

Copyright © 2021–2025 Jan Frederik Schaefer, Michael Kohlhase.



2 The data set

The train schedule is specified in the file schedule.csv in the assignment repository [AR].
There is also a mini-schedule.csv, which contains a smaller, more managable subset of sched-
ule.csv. The schedule data is a modified variant of a data set from Kaggle [IRT]. It is stored
as a CSV file with 12 columns, but only the following columns are relevant for us:

• Train No.: an identifier for the train.
• islno: what stop of the train is described (e.g. the fifth stop).
• station Code: an identifier for the train station.
• Arrival time: the arrival time at that stop.
• Departure time: the departure time at that stop.
• Distance: the total distance travelled until that stop (i.e. since the stop where islno is

1).
For example, let us take a look at the following two entries:

Train No. islno station Code Arrival time Departure time Distance

04407 10 GD 23:30:00 23:35:00 536
04407 11 LKO 02:25:00 02:35:00 653

From this we learn that the 10th stop of train 04407 is Gonda Jn (GD) and that the next
(11th) stop is Lucknow Nr (LKO). We can also see that the train travels 653 − 536 = 117

kilometers from GD to LKO, which takes 2 hours and 50 minutes. Note that the arrival time
02:25:00 must refer to the next day. In general we will always need to “add a day” if the
arrival time at stop n is smaller than the departure time at stop n− 1. We will do the same
for the departure time at any stop if it is smaller than the arrival time, which is relevant for
some of the cost functions.

Changing trains When changing trains, you have to make sure that there is enough
time. For example, let us assume you want to change from train 14369 to train 84369 at
RBL. 14369 arrives at RBL at 05:35:00 and 84369 departs at 05:40:00, which leaves 5 minutes
for changing the train. Each problem has an minimal changing time (see Section 3). If the
changing time is less than that, we will assume that the train would be missed (but could
of course be caught 24 hours later).

2



3 Problems and solutions

Aside from the schedule data, you have a file problems.csv that contains the connection
problems you have to solve. We also provide example problems (example-problems.csv) and
solutions (example-solutions.csv), which you can use for comparison. The assignment reposi-
tory [AR] has a script for checking your solutions for the example problems. A problem file
has the following columns:

1. ProblemNo: the number of the problem.
2. FromStation: where the connection should start.
3. ToStation: where the connection should end.
4. Schedule: the schedule file (schedule.csv or mini-schedule.csv).
5. ChangeTime: number of minutes needed to change a train. If the new train leaves

earlier than the specified number of minutes, the connection will be missed.
6. CostFunction: the cost function (Section 3.2).

You may assume that FromStation is different from ToStation and that ToStation is indeed
reachable from FromStation. A solution file has three columns:

1. ProblemNo: the number of the problem solved.
2. Connection: an optimal connection (usually not unique). The format is described in

Section 3.1.
3. Cost: the cost of the solution according to the cost function.

3.1 Connection Format

The train connections have to be specified in a particular format. As an example, we will
take a look at the following connection:

56502 : 57 -> 58 ; 57305 : 69 -> 72
x : y -> z means that we take train x from stop y (islno) until stop z. Semicolons separate
trains taken consecutively. So, in the example, we would first take train 56502 from stop
57 to stop 58 and then continue with train 57305 on stop 69 until stop 72. This obviously
requires that stop 58 of train 56502 is the same station as stop 69 of train 57305. Comparing
with Table 1, we can see that it is a valid connection from SYM to NRT, with a change at
VLE.

3



Train No. islno station Code Arrival time Departure time Distance

56502 57 SYM 14:34:00 14:35:00 588
56502 58 VLE 14:44:00 14:45:00 596
· · ·
57305 69 VLE 05:16:00 05:17:00 559
57305 70 SAB 05:22:00 05:23:00 562
57305 71 MUK 05:32:00 05:33:00 570
57305 72 NRT 06:00:00 06:02:00 578

Table 1: Relevant schedule data for connection 56502 : 57 -> 58 ; 57305 : 69 -> 72.

3.2 Cost functions

This section discusses the different cost functions, re-using the example connection
56502 : 57 -> 58 ; 57305 : 69 -> 72

and the schedule data from Table 1.

stops The number of times we enter a station by train. In the example, we would enter
the stations VLE, SAB, MUK, NRT (i.e. we don’t count the station we started from). The
cost is thus 4.

timeintrain The total amount of time spent in a moving train in seconds (for simplicity,
we ignore the time a train is in a train station and the time when trains are changed). In
the example connection, we spend 9 minutes travelling in the first train and 5+ 9+ 27 = 41

minutes travelling in the second train. The cost of the connection is therefore (9+41) · 60 =

3000.

price The ticket price. We assume that there are two types of tickets: train tickets and
stop tickets. A train ticket costs 10 and lets you use a train for as long as you want. A
stop ticket costs only 1 and lets you use a train for a single stop. The price cost function
assumes you buy the cheapest combination of tickets for your connection. For the example
connection, we would buy 1 stop ticket for train 56502 and 3 stop tickets for train 57305,
which would put the total cost at 3 + 1 = 4. For the connection 56502 : 25 -> 58 ; 57305 :
69 -> 72 it would be cheaper to buy a train ticket for train 56502 and the total cost would
be 10 + 3 = 13.

4



arrivaltime HH:MM:SS The time of arrival (including days) if you start at HH:MM:SS.
So HH:MM:SS is basically the depature time and and the cost is the time of arrival (which
we want to minize). Though a bit confusing, it is actually one of the most relevant cost
functions (e.g. “it’s 12:15 and I want to get to . . . as soon as possible”). For example, with
arrivaltime 11:30:00, we would arrive at 06:00:00 on the next day when using the example
connection. The arrival time should thus be specified as 01:06:00:00. But with arrival-
time 15:24:00, we would miss the train and the arrival would be one day later (02:06:00:00).
Be aware that it takes time to change a train.

4 What to submit

Your solution should be pushed to your gitlab repository for this assignment. Concretely,
the repository should contain:

1. all your code for solving this assignment,
2. a README.md file explaining

i. dependencies (programming language, version, external libraries and how to get
them),

ii. how to run your code to solve other problems,
iii. the repository structure,
iv. anything else we should know,

3. a solution summary (see [SoS] for more details – it should describe the main ideas, not
document the code),

4. a file solutions.csv that contains your solutions for the problem file (problems.csv) as
specified in Section 3.

5 Points

The total number of points for this assignment is 100. You can get up to 20 points for the
quality of the submission (README, evaluation, ...). Furthermore, you will get 1 point
for every correct entry in solutions.csv, which means that you can get up to 80 points for
the solutions. For non-optimal entries in the solutions.csv that are otherwise correct (valid
connection and correct cost) you will get 1

2
point.

If the grading scheme doesn’t seem to work well, we might adjust it later on (likely in
your favor).

5



References

[AR] Repository for Assignment 1: Find the best train connection. url: https : / /
gitlab.rrze.fau.de/wrv/AISysProj/ws2526/a1.1-find-train-

connections/assignment.

[DA] Dijkstra’s algorithm. url: https://en.wikipedia.org/wiki/Dijkstra%
27s_algorithm (visited on 10/27/2022).

[IRT] Indian Railways Time Table for trains available. url: https://www.kaggle.
com/harsh16/indian-railways-time-table-for-trains-available

(visited on 11/01/2021).

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/
admin/general/-/blob/main/solution-summary.md.

6

https://gitlab.rrze.fau.de/wrv/AISysProj/ws2526/a1.1-find-train-connections/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2526/a1.1-find-train-connections/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2526/a1.1-find-train-connections/assignment
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://www.kaggle.com/harsh16/indian-railways-time-table-for-trains-available
https://www.kaggle.com/harsh16/indian-railways-time-table-for-trains-available
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

	Task summary
	The data set
	Problems and solutions
	Connection Format
	Cost functions

	What to submit
	Points

