
Assignment 0 (Warm-Up, Variant B): Find Back to the
Wumpus Cave

AI-2 Systems Project (Winter Semester 2024/2025)
Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Basic probabilities
Due on: March 18, 2025
Version from: January 10, 2025
Author: Jan Frederik Schaefer
Important notes: Earlier deadline for first results (see your solution repository)

Ask for help if you are stuck (office hours, assignment room, . . .)
Every assignment has a guide with tips – you can find it at [AG]

This assignment has to be solved individually (not as a team).
Using someone else’s solution code, even as inspiration, is not allowed!

1 Task summary

The Wumpus, a mythical creature that repeatedly shows up in the AI systems project, has
left its cave and got lost. Your task is to make a travel plan for the Wumpus. Ideally, this
travel plan will get the Wumpus back to the cave soon, but it is not a requirement – any
travel plan will be accepted.

Your implementation will get different problem instances from the AISysProj server and
has to send back its travel plan. That lets the server evaluate your agent and can help you
with debugging. The travel plan will be evaluated based on the how likely the travel plan
is to succeed and how long it would take to reach the cave (details in Section 2.3). The
assignment repository [AR] has a script that already implements the server interaction for
you.

Didactic objectives
1. Develop an algorithm to solve a non-trivial problem,

Copyright © 2021–2025 Jan Frederik Schaefer, Michael Kohlhase.

2. implement a small software project from scratch,
3. get hands-on experience working with basic concepts from probability theory,
4. get to know the AISysProj setup and workflows.

Prerequisites and useful methods
1. The basics of probability theory: condition probabilities, independence, expected val-

ues, Bayes’ rule, . . .

2 Navigating the Wumpus world

The Wumpus got lost. Your task is to implement an AI agent that makes a plan for it to get
back to the Wumpus cave. We have a server to help evaluate your agent. It will send you
a map along with some other information and your agent will have to respond with a plan
to find back to the cave.1 The server has different environments, corresponding to different
difficulty levels. For the easier environments, not everything mentioned in this section is
relevant.

2.1 Maps

Maps of the Wumpus world are encoded as a string, where each line corresponds to a row
of cells and each character describes the properties of an individual cell. Here is an example
map:

BBBBM

CMWWS

CWMMS

CCWBM

BBBBB

We have the following cell types:
• M: Meadows.
• B: Trees (broad-leaf).
• C: Trees (coniferous).
• S: Swamps.

1The server part may seem daunting, but we provide an example implementation in Python. All you
have to then do is implement a function.

2

• W: Wumpus cave entrance. Your goal is to reach one of those.
We assume that everything outside the map are meadows (M).

2.2 Observations

We do not know where the Wumpus is (after all, the Wumpus got lost). Therefore, we
assume that, a priori, the Wumpus is equally likely in any of the cells on the map. However,
the Wumpus can make some basic observations to narrow down the possibilities:

• It observes what type of cell it currently is in (M or B or . . .). Unfortunately, the
Wumpus has bad vision and misidentifies trees 20% of the time (i.e. if the Wumpus is
in a B cell, there is a 20% chance that it instead thinks it is a C cell and vice versa).

• In the more advanced environments, the Wumpus also perceives the humidity. The base
humidity score is 0. Each swamp in the four cells adjacent to the Wumpus increases
the humidity score by 1. The score is additionally increased by 2 if the Wumpus is
currently in a swamp. As the Wumpus cannot perceive the humidity accurately, there
is a 10% chance that the humidity score is 1 too low and a 10% chance that it is 1

too high. The probability that the reported score is accurate is therefore 80%.

2.3 Plans and their execution time

Your task is to make a plan for the Wumpus. A plan is a sequence of actions of the form
GO [north|east|south|west]. For each action, the Wumpus goes one cell in the indicated
direction. Note that the world is not limited to the map and the Wumpus can go to cells
outside the map (recall that every cell outside the map is a meadow).

Ideally, the Wumpus reaches one of the Wumpus cave entrances while following the plan.
How long it takes for the Wumpus to reach the entrance depends on the cell types. We
assume that the Wumpus starts in the center of a cell and only has to reach the edge of
a cell with a cave entrance. Usually, crossing a complete cell takes 1 hour, but crossing a
swamp cell takes 2 hours. Additionally, the Wumpus has to put on Wellington boots when
entering a swamp and take them off again when leaving a swamp, each of which takes an
additional hour (the Wumpus has many feet). Note that the Wumpus does not take the boots
off and put them on again when travelling from one swamp cell to the next. Furthermore,
the Wumpus is already wearing boots if it starts in the swamp and does not take them off
when reaching the cave. Let us consider the following map as an example:

CS

3

MW

If the Wumpus is initially the C cell and follows the plan GO east, GO south, then it will
have to cross 1

2
of the C cell (as it starts in the center), which takes 0.5 hours, and 2

2
of

the S cell (1
2

to reach its center and 1
2

to reach the edge of the W cell), which takes 2 hours.
Additionally, the Wumpus will have to put on boots when entering the S cell, which takes
an additional hour. In total, it will therefore take 0.5 + 1 + 2 = 3.5 hours to reach the cave.

2.4 Success chance and expected time

Along with the plan, your agent should also provide the probability of the plan succeeding
and the expected time it will take to reach the cave. Let us consider the following map as
an example:

BWM

MBB

BMW

Let us assume that we know that the Wumpus is in a B cell. Every environment has a
maximum time for the Wumpus to reach the cave. Let us assume that it is 3 hours for this
example.

Now, the agent has to create some plan. Any plan is acceptable, but plans with a higher
success chance and a lower expected time are better. We will use: GO north, GO east,
GO south, GO east.

If the Wumpus is in the top left B cell, it will take 2.5 hours to reach a W cell (recall that
the Wumpus can go outside the map). If the Wumpus is in the center B cell, it will take 0.5
hour to reach a W cell. If the Wumpus is in the right B cell, it will never reach a W cell. If the
Wumpus is in the bottom left B cell, it would theoretically take 3.5 hours to reach a W cell,
but as the maximum time is 3 hours, the plan would be considered unsuccessful in this case.

Now, the success chance is the probability that the Wumpus is in a cell, for which the
plan is successful. In this case, the Wumpus is equally likely in each B cell, and the plan
succeeds for two of them, so the success chance is 2

4
.

The expected time is the expected value of the time it takes to reach the cave, only
considering the cases where the plan is successful. In this case, it would be 1

2
·2.5+ 1

2
·0.5 = 1.5

hours.

4

3 Evaluation on the server

You should evaluate your implementation with the AISysProj server: https://aisysproj.
kwarc.info/. You will get JSON requests from the server and have to respond with your
plan. For example, a request could have the following content (in this assignment you can
ignore the initial-equipment):

{

"map": "BBBBM\nCMWWS\nCWMMS\nCCWBM\nBBBBB",

"observations": {"humidity": 3, "current-cell": "S"},

"initial-equipment": [],

"max-time": 4

}

Your agent should then respond with a plan, the probability of the plan succeeding, and the
expected time it will take to reach the cave:

{

"actions": [

"GO␣west",

"GO␣north",

"GO␣south"

],

"expected-time": 2.0,

"success-chance": 1.0

}

The server will then evaluate your response and give you a rating. If the success chance and
the expected time are correct, your rating will be computed by the formula

rating = success-chance · expected-time+ (1− success-chance) · max-time

where max-time is the maximum time for the environment.
The server remembers your last 1000 responses and computes the average rating (the

lower, the better). If you computed the wrong value for success-chance or expected-time,
the server will instead use max-time for the rating. However, afterwards you can see the
problem on the server website with the correct expected time and some other information
that could help you with debugging.

5

https://aisysproj.kwarc.info/
https://aisysproj.kwarc.info/

The server has different environments that you can use (some are easier than others).
Your repository for this assignment will contain one configuration file for each environment,
which contains, among other things, your agent name and a password. The assignment
repository [AR] contains an example implementation in Python along with instructions on
how to use it, so that you do not have to worry about the technical aspects of communicating
with the server. If you want to use a different programming language, you can find the
protocol specification at [CSP]. We are happy to help you with implementing it if you are
prepared to donate your code for others.

4 What to submit

Your solution should be pushed to your git repository for this assignment. For this warm-up
assignment, we have an early deadline. At this deadline, the repository should contain all the
code you have so far. It should be enough to get at least 1 point in one of the environments
on the server. Otherwise, we might assume that you are not actually interested in the project
and give your spot to someone else.

Your grade will be based on your final submission (deadline: March 18, 2025). Concretely,
your repository should contain:

1. all your code for solving this assignment,
2. a README.md file explaining

i. dependencies (programming language, version, external libraries and how to get
them),

ii. how to run your code,
iii. the repository structure,
iv. anything else we should know,

3. a solution summary (see [SoS] for more details – it should describe the main ideas, not
document the code).

Furthermore, you should run your code so that the server has an evaluation for your agent.

5 Points and environments

The total number of points for this assignment is 100. You can get up to 80 points for the
performance of your agent according to the server. Each environment allows you to get a
certain numbers of points if your agent performs well enough. When grading, we will only

6

consider the environment in which you would get most points (we do not add up results
from different environments). That means that you do not have to run your code on every
environment and you can get full points if you only run it on the most difficult one where
you can get up to 80 points.

Additionally, you can get up to 20 points for the quality of the submission (README,
evaluation, ...). You can only get points for the submission quality if you get at least 1 point
for the performance of your agent.

Note: It is okay if your agent is a bit “lucky” and gets a slightly higher rating than it
usually does. We will use the best rating on the server for your grade, assuming that we can
reproduce a similar performance (i.e. if you get a 5.39 rating on the server and we get a 5.48
rating that is okay – but if you get a 5.39 rating on the server and we get a 6.79 rating when
testing it, we might ask some questions).

Below is a table that summarizes the properties of the different environments and how
many points you can get for each. For each environment, you have a config file.

Config file Map size Cells Max. time Equipment Observations Points

env-1.json 5× 5 C M 2 – current-cell

0 if rating > 1.8

20.0 if rating ≤ 1.8

30.0 if rating ≤ 1.5

env-2.json 5× 5 C M S 2 – current-cell

0 if rating > 1.8

30.0 if rating ≤ 1.8

40.0 if rating ≤ 1.7

env-3.json 5× 5 C M S 5 – current-cell

0 if rating > 4.5

40.0 if rating ≤ 4.5

50.0 if rating ≤ 3.5

env-4.json 5× 5 B C M S 5 – current-cell

0 if rating > 4.5

45.0 if rating ≤ 4.5

55.0 if rating ≤ 3.5

env-5.json 5× 5 B C M S 5 – current-cell, humidity

0 if rating > 4.5

50.0 if rating ≤ 4.5

60.0 if rating ≤ 3.5

70.0 if rating ≤ 3.0

env-6.json 15× 15 B C M S 24 – current-cell, humidity

0 if rating > 20.0

50.0 if rating ≤ 20.0

65.0 if rating ≤ 18.0

75.0 if rating ≤ 16.0

80.0 if rating ≤ 14.5

7

References

[AG] Guide for “Assignment 0 (Warm-Up, Variant B): Find Back to the Wumpus Cave”.
url: https://kwarc.info/teaching/AISysProj/WS2425/assignment-2.0.B-
guide.pdf.

[AR] Repository for Assignment 0 (Warm-Up, Variant B): Find Back to the Wumpus
Cave. url: https://gitlab.rrze.fau.de/wrv/AISysProj/ws2425/a2.0.b-
find-wumpus-cave/assignment.

[CSP] Jan Frederik Schaefer. AISysProj server – Clients and server protocol. url: https:
//aisysprojserver.readthedocs.io/en/latest/clients.html.

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/
general/-/blob/main/solution-summary.md.

8

https://kwarc.info/teaching/AISysProj/WS2425/assignment-2.0.B-guide.pdf
https://kwarc.info/teaching/AISysProj/WS2425/assignment-2.0.B-guide.pdf
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2425/a2.0.b-find-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2425/a2.0.b-find-wumpus-cave/assignment
https://aisysprojserver.readthedocs.io/en/latest/clients.html
https://aisysprojserver.readthedocs.io/en/latest/clients.html
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

	Task summary
	Navigating the Wumpus world
	Maps
	Observations
	Plans and their execution time
	Success chance and expected time

	Evaluation on the server
	What to submit
	Points and environments

