
Assignment 0 (Warm-Up, Variant A): Find Back to the
Wumpus Cave

AI-2 Systems Project (Winter Semester 2023/2024)
Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Basic probabilities
Due on: January 18, 2024
Version from: October 6, 2023
Author: Jan Frederik Schaefer
Important notes: To be solved individually

Earlier deadline for first results (see your repository for submitting solution)

1 Task summary

The Wumpus, a mythical creature that repeatedly shows up in the AI systems project, has
left its cave and got lost. Your task is to make a travel plan that will quickly get it back
to the cave. Your implementation will get different problem instances from the AISysProj
server and has to send back its travel plan. That lets the server evaluate your agent and can
help you with debugging. The assignment repository has a script that already implements
the server interaction for you.

Didactic objectives
1. Develop an algorithm to solve a non-trivial problem,
2. implement a small software project from scratch,
3. get hands-on experience working with basic concepts from probability theory,
4. get to know the AISysProj setup and workflows.

Prerequisites and useful methods
1. The basics of probability theory: condition probabilities, independence, expected val-

ues, Bayes’ rule, . . .

Copyright © 2021–2023 Jan Frederik Schaefer, Michael Kohlhase.

2 Navigating the Wumpus world

The Wumpus got lost. Your task is to implement an AI agent that makes a plan for it to get
back to the Wumpus cave. We have a server to help evaluate your agent. It will send you
a map along with some other information and your agent will have to respond with a plan
to find back to the cave.1 The server has different environments, corresponding to different
difficulty levels. For the easier environments, not everything mentioned in this section is
relevant.

2.1 Maps

Maps of the Wumpus world are encoded as a string, where each line corresponds to a row
of cells and each character describes the properties of an individual cell. Here is an example
map:

BBBBM

CMWWS

CWMMS

CCWBM

BBBBB

We have the following cell types:
• M: Meadows.
• B: Trees (broad-leaf).
• C: Trees (coniferous).
• S: Swamps.
• W: Wumpus cave entrance. Your goal is to reach one of those.

We assume that everything outside the map are meadows (M).

2.2 Observations

We do not know where the Wumpus is (after all, the Wumpus got lost). Therefore, we
assume that, a priori, the Wumpus is equally likely in any of the cells on the map. However,
the Wumpus can make some basic observations to narrow down the possibilities:

1The server part may seem daunting, but we provide an example implementation in Python. All you
have to then do is implement a function.

2

• It observes what type of cell it currently is in (M or B or . . .). Unfortunately, the
Wumpus has bad vision and misidentifies trees 20% of the time (i.e. if the Wumpus is
in a B cell, there is a 20% chance that it instead thinks it is a C cell and vice versa).

• In the more advanced environments, the Wumpus also perceives the humidity. The base
humidity score is 0. Each swamp in the four cells adjacent to the Wumpus increases
the humidity score by 1. The score is additionally increased by 2 if the Wumpus is
currently in a swamp. As the Wumpus cannot perceive the humidity accurately, there
is a 10% chance that the humidity score is 1 too low and a 10% chance that it is 1

too high. The probability that the reported score is accurate is therefore 80%.

2.3 Plans

Your task is to make a plan for the Wumpus. A plan is a sequence of actions of the form
GO [north|east|south|west]. For each action, the Wumpus goes one cell in the indicated
direction. Note that the world is not limited to the map and the Wumpus can go to cells
outside the map (recall that every cell outside the map is a meadow).

Ideally, the Wumpus reaches one of the Wumpus cave entrances while following the plan.
How long it takes for the Wumpus to reach the entrance depends on the cell types. We
assume that the Wumpus starts in the center of a cell and only has to reach the edge of
a cell with a cave entrance. Usually, crossing a complete cell takes 1 hour, but crossing a
swamp cell takes 2 hours. Additionally, the Wumpus has to put on Wellington boots when
entering a swamp and take them off again when leaving a swamp, each of which takes an
additional hour (the Wumpus has many feet). Note that the Wumpus does not take the boots
off and put them on again when travelling from one swamp cell to the next. Furthermore,
the Wumpus is already wearing boots if it starts in the swamp and does not take them off
when reaching the cave. Let us consider the following map as an example:

CS

MW

If the Wumpus is initially the C cell and follows the plan GO east, GO south, then it will
have to cross 1

2
of the C cell (as it starts in the center), which takes 0.5 hours, and 2

2
of

the S cell (1
2

to reach its center and 1
2

to reach the edge of the W cell), which takes 2 hours.
Additionally, the Wumpus will have to put on boots when entering the S cell, which takes
an additional hour. In total, it will therefore take 0.5 + 1 + 2 = 3.5 hours to reach the cave.

To make the assignment easier, we have a maximum time M for each environment. If

3

reaching a cave entrance takes longer than M (or the plan finishes before an entrance has
been reached), then we instead assume that the time is M .

3 Evaluation on the server

You should evaluate your implementation with the AISysProj server: https://aisysproj.
kwarc.info/. You will get JSON requests from the server and have to respond with your
plan. For example, a request could have the following content in this assignment you can
ignore the initial-equipment):

{

"map": "BBBBM\nCMWWS\nCWMMS\nCCWBM\nBBBBB",

"observations": {"humidity": 3, "current-cell": "S"},

"initial-equipment": [],

"max-time": 4

}

Your agent should then respond with a plan and the expected time until a Wumpus cave is
reached:

{"actions": ["GO␣west", "GO␣north", "GO␣south"], "expected-time": 2.0}

The server remembers your last 1000 responses and computes the average expected time to
rate your agent (the lower, the better). If you submit the wrong expected-time, the server
will instead use max-time. However, afterwards you can see the problem on the server with
the correct expected time and some other information that could help you with debugging.

The server has different environments that you can use (some are easier than others).
Your repository for this assignment will contain one configuration file for each environment,
which contains, among other things, your agent name and a password. The assignment
repository [AR] contains an example implementation in Python along with instructions on
how to use it, so that you do not have to worry about the technical aspects of communicating
with the server. If you want to use a different programming language, you can find the
protocol specification in Appendix B. We are happy to help you with implementing it if you
are prepared to donate your code for others.

4

https://aisysproj.kwarc.info/
https://aisysproj.kwarc.info/

4 What to submit

Your solution should be pushed to your git repository for this assignment. For this warm-up
assignment, we have an early deadline. At this deadline, the repository should contain all the
code you have so far. It should be enough to get at least 1 point in one of the environments
on the server. Otherwise, we might assume that you are not actually interested in the project
and give your spot to someone else.

Your grade will be based on your final submission (deadline: January 18, 2024). Con-
cretely, your repository should contain:

1. all your code for solving this assignment,
2. a README.md file explaining how to run your code (including e.g. dependencies that

have to be installed),
3. a brief evaluation either as a PDF file (≈ 1

2
page, but it may be longer) or as part of

your README.md, describing your approach for solving the problem and what worked
well/did not work well, (≈ 1

2
page) or as part of your README.md.

5 A few tips

1. If you do not really understand what you are supposed to do, please consider asking
about it in the office hours. This is fairly common and it would be a pity if you drop
out just because you are a bit lost in the beginning. The project is probably quite
different from the courses you are used to.

2. If you do not know how to get started, checkout the “Guide for Getting Started”
(Appendix A).

3. Start with the easier environments (environment 1 is easier than environment 2 etc.,
see also Section 6).

4. To compute the correct probabilities: Make sure you understand conditional probabili-
ties. Pick suitable random variables to express everything you know. Then you should
be able to compute the probabilities using the rules discussed in the lecture. It might
be instructive to compute a small example by hand.

5. You can already get points if you hard-code one action sequence and correctly compute
the expected time for it.

6. You do not have to find optimal solutions to get full points.

5

6 Points and environments

The total number of points for this assignment is 100. You can get up to 20 points for the
quality of the submission (README, evaluation, ...). Furthermore, you can get up to 80
points for the performance of your agent according to the server. Each environment allows
you to get a certain numbers of points if your agent performs well enough. When grading,
we will only consider the environment in which you would get most points (we do not add
up results from different environments). That means that you do not have to run your code
on every environment and you can get full points if you only run it on the most difficult one
where you can get up to 80 points.

Note: It is okay if your agent is a bit “lucky” and gets a slightly higher rating than it
usually does. We will use the best rating on the server for your grade, assuming that we can
reproduce a similar performance (i.e. if you get a 5.39 rating on the server and we get a 5.48
rating that is okay – but if you get a 5.39 rating on the server and we get a 6.79 rating when
testing it, we might ask some questions).

Below is a table that summarizes the properties of the different environments and how
many points you can get for each. For each environment, you have a config file.

6

Config file Map size Cells Max. time Equipment Observations Points

env-1.json 5× 5 C M 2 – current-cell

0 if rating > 1.8

20 if rating ≤ 1.8

30 if rating ≤ 1.5

env-2.json 5× 5 C M S 2 – current-cell

0 if rating > 1.8

30 if rating ≤ 1.8

40 if rating ≤ 1.7

env-3.json 5× 5 C M S 5 – current-cell

0 if rating > 4.5

40 if rating ≤ 4.5

50 if rating ≤ 3.5

env-4.json 5× 5 B C M S 5 – current-cell

0 if rating > 4.5

45 if rating ≤ 4.5

55 if rating ≤ 3.5

env-5.json 5× 5 B C M S 5 – current-cell, humidity

0 if rating > 4.5

50 if rating ≤ 4.5

60 if rating ≤ 3.5

70 if rating ≤ 3.0

env-6.json 15× 15 B C M S 24 – current-cell, humidity

0 if rating > 20.0

50 if rating ≤ 20.0

65 if rating ≤ 18.0

75 if rating ≤ 16.0

80 if rating ≤ 14.5

References

[AR] Repository for Assignment 0 (Warm-Up, Variant A): Find Back to the Wumpus Cave.
url: https://gitlab.rrze.fau.de/wrv/AISysProj/ws2324/a2.0.a-find-
wumpus-cave/assignment.

7

https://gitlab.rrze.fau.de/wrv/AISysProj/ws2324/a2.0.a-find-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2324/a2.0.a-find-wumpus-cave/assignment

A Guide for getting started (optional)

The “guide for getting started” is a new attempt to support students with less programming
experience. Concretely, we want to guide you with a series of comments and questions
towards a (partial) solution and give you an idea how larger programming problems can be
tackled. If you think that you do not need it, you can simply ignore it.

Please let us know if you find this guide useful (then we might provide it in future
assignments as well)! We also appreciate if you can suggest improvements.

A.1 How to use this guide?

This guide poses a lot of questions. You should try to think about them for yourself and
implement some code for it – our hope is that that process will help you get started.

For example, if there is a question “what cells are adjacent to cell (3, 5)?” you could
create the following (Python) code:

def get_neighbours(x, y):

return [(x+1, y), (x-1, y), (x, y-1), (x, y+1)]

print(get_neighbours(3, 5))

Of course there are many other ways (e.g. creating a Cell class with a get_neighbours

method). However, doing

print([(4, 5), (2, 5), (3, 4), (3, 6)]

or

print([(3+1, 5), (3-1, 5), (3, 5-1), (3, 5+1)])

would not be enough because it does not solve the problem of finding adjacent cells in general.
Usually, it is a good idea to test your implementations with more examples to make sure

that you cover all the cases. This guide tends to intentionally skip over special cases so
that you will discover them at some point yourself, which we consider a valuable teaching
moment.

A.2 Getting started

Let us assume you get the following query:

8

{

"initial-equipment": [],

"map": "CMM\nCCM\nMWM",

"max-time": 5,

"observations": {"current-cell": "M"}

}

1. What is a good representation of the map in your code?
2. Let K be the coordinates of the W cell according to your representation. What cell is

north of it? What cell is east of it?
3. What is the probability that the Wumpus is in the top-left M cell?
4. For each cell, what is the probability that the Wumpus is in it?
5. If we pretend that the observation is C, what is the probability that the Wumpus is in

each cell?
6. Assume the plan GO south, GO east. How long does it take to reach the Wumpus

cave if you start in the center cell?
7. Using the same plan, how long does it take to reach the Wumpus cave from each of

the other M cells?
8. What is the expected time it takes to reach the cave?

A.3 Testing your approach on environment 1

Instead of the JSON above, you can now switch to using the JSON provided by the server. If
you use Python, you can simply use the example implementation provided in the assignment
repository [AR]. In the beginning, you can simply hard-code one plan (e.g. GO south,
GO east) and send that plan along with the expected time you computed for it. If the
results are wrong, you should take a look at the AISysProj server to get some information
that could help you with debugging.

Once everything works, you can try to improve the results by experimenting different
plans. Here are some options:

1. Generate all possible plans of a certain length and use the best one.
2. Generate n random plans and use the best one.
3. Use a search algorithm (e.g. greedy search, which requires you to come up with a

heuristic).
4. Use a combination of the options mentioned above.

9

There is not a single way to solve the problem and you can get creative.

A.4 Continuing

For the next environments, your code will need increasingly many features. Whenever a new
feature is required, you can make yourself a small example to test your ideas (similar to the
steps described in Appendix A.2). If you get stuck, you can ask in the assignment room on
Matrix or during office hours.

A.5 A more formal perspective on the assignment

We want you to learn how to take a rather informal problem description and link it to
concepts and solution strategies that you learned in your studies. That is not easy and we
want to show you one way to think about the assignment in this guide:

1. The Wumpus makes different observations O about the environment, which we can
think of as random variables.

2. We can use that to compute a probability distribution P (C|O) where C is a random
variable for the position of the Wumpus.

3. We compute the time tπ(c) it takes to reach a cave from a starting position c with a
plan π (re-call that there is a maximum time).

4. The expected time it takes to reach a cave with a plan π is now the expected value
E[tπ(C)] =

∑
c tπ(c) · P (C = c|O).

5. Your agent should find a plan π where E[tπ(C)] is small, which means that this is an
optimization problem where E[tπ(C)] is the cost of a solution π. We ideally want to
find argminπ E[tπ(C)], but for this assignment we do not need an optimal solution.

B The AISysProj Server Protocol

For some assignments, agents are tested by interacting with the AISysProj server. This
appendix describes the protocol and is only relevant if you want to implement the
server protocol yourself.

The protocol is rather minimal: You send an HTTP request to the server with your
credentials and actions, and the server responds either with an error message or with a list
of action requests that you should respond to in the next request. For the first request, you

10

// First request:

{"agent": "MyAgent", "pwd": "r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG_2_xBcE", "actions": []}

// First response

{"errors": [], "messages": [], "action-requests": [

{"run": "40#1", "percept": ...},

{"run": "7#3", "percept": ...}]}

// Second request

{"agent": "MyAgent", "pwd": "r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG_2_xBcE",

"actions": [{"run": "40#1", "action": ...},

{"run": "7#3", "action": ...}]}

Figure 1: Example interaction with the server.

will have to send an empty list of actions to get action requests from the server (see Figure 1
for an example).

Configuration files The server details and your credentials are stored in configuration
files. Usually, we will generate configuration files for you and commit them to your repository.
They are JSON files that contain the following fields:

• url: the server URL,
• env: the environment,
• agent: the agent’s name, and
• pwd: the agent’s password.

The request You should send a PUT request to [url]/act/[env], where [url] and [env]

are provided by the configuration file. The request body should contain a JSON object with
the fields:

• agent: the agent’s name (from the configuration file).
• pwd: the agent’s password (from the configuration file).
• single_request: true or false, indicating if a only a single action request should be

sent (can be helpful for debugging).
• actions: the actions the agent wants to do as a list. Each action is represented as an

object with two fields: run is an identifier of the action request (provided in the server
responses) and action is the action the agent wants to do – the value format depends

11

on the assignment.

The response If the request was accepted, you will receive a JSON response with the
fields:

• action-requests: a list of action requests that you should send actions for in the
next request. Each action request is an object with two fields: run is an identifier so
that your action can be linked to the request and percepts describes what you know
about the current state (e.g. the position in a game).

• errors: a list of error messages (e.g. if your move was invalid).
• messages: a list of other messages.

Error response In case of an error (e.g. invalid credentials), you get a JSON response
with the fields:

• errorcode: The HTTP error code.
• errorname: The name of the error.
• description: A more detailed description of the error.

12

	Task summary
	Navigating the Wumpus world
	Maps
	Observations
	Plans

	Evaluation on the server
	What to submit
	A few tips
	Points and environments
	Guide for getting started (optional)
	How to use this guide?
	Getting started
	Testing your approach on environment 1
	Continuing
	A more formal perspective on the assignment

	The AISysProj Server Protocol

