
Problem 2: Implement an Agent for FAUhalma
AI1SysProj 2021

Topic: Adversarial Search
Due on: January 18, 2021
Version from: December 2, 2021

1 Task Summary

Implement an agent for a variant of the game Sternhalma/Chinese checkers [CC], which we
will call FAUhalma. For evaluation, your agent will compete on our server against other
agents.

C

C

C

C

C

C

A

B

A

A

B

B

A

A

A

B

B

B

Figure 1: Starting position for a game of FAUhalma with players A, B and C. Player A has
the first turn, followed by player B and then player C.

1



2 Rules of FAUhalma

FAUhalma is a 3-player game, simplified from the original game Sternhalma/Chinese check-
ers [CC] for AISysProj. Like the original, FAUhalmais played on a star-shaped board. Each
player has 6 pegs, which originally reside in the player’s starting corner. The goal of each
player is to move the pegs into the opposite corner (the home) as quickly as possible. Note
that only the 6 outermost spaces form the home. Figure 1 illustrates the starting position.
Players take turns counterclockwise. When it is their turn, a player moves one of their pegs
by either moving it to an adjacent space or by hopping over other pegs (see Figure 2). Here
are the move rules in more detail:

• Simple move: Move the peg to an adjacent empty space (in any direction).

• Simple hop: If there is a peg on an adjacent space S, the peg can “jump over it” as
long as the space behind S is empty.

• Hop chain: A chain of simple hops; i.e. if a peg can hop from S1 to S2 and it could
then hop from S2 to S3, then it can also hop from S1 to S3 in a single move. However,
at the end of a chain, the peg must land on a different space than it started from. Note
that a simple move cannot be combined with hops.

• Swap rule: Spaces in the home of the moving player that are occupied by an oppo-
nent’s peg can also be considered empty for the rules above (except for the intermediate
spaces in a hop chain). If a peg is moved from S1 to S2 and S2 is occupied by an oppo-
nent’s peg, then the peg from S2 is moved to S1, i.e. the pegs are swapped. The swap
rule prevents players from blocking each other by moving pegs into their opponents’
homes.

It is theoretically possible that a player has no legal move. In that case the game is aban-
doned.

The first player who has moved all their pegs into their home wins. The remaining players
continue to determine who gets the second place.

3 Coordinates, Positions and Moves

To let different agents compete with each other, we need to have a standardized way of
sharing moves and positions, which will be discussed in this section.

2



C

C

C

B

B

C

C

A

C

B

B

A

A

B

B

A

A

A

Figure 2: All possible moves for one peg of player B.

3.1 Coordinate System

We will refer to the spaces using a coordinate system. Figure 3 illustrates what coordinates
correspond to which space. As you can see, every space is associated with a coordinate pair
(x, y). However, the x-axis and y-axis are not orthogonal in the normal visualization and we
don’t have a rectilinear grid. Working with a grid like that can be somewhat tricky. Maybe
you can find an elegant way?

3.2 Representation of Positions

The server sends a string representation of the positions (game states) you should provide a
move for. Positions are represented in the following form:

<YOUR PEGS >:<PEGS OF NEXT AGENT >:<PEGS OF LAST AGENT >

Recall that agents take turns counterclockwise. The pegs of an agent are represented as a
semicolon-separated list of the peg coordinates. Coordinates are represented as

<X COORD >,<Y COORD >}

3



(-6,3)

C
(-5,2)

(-5,3)

C
(-4,1)

(-4,2)

C
(-4,3)

(-3,-3)

B
(-3,-2)

B
(-3,-1)

(-3,0)

(-3,1)

(-3,2)

(-3,3)

(-3,4)

(-3,5)

(-3,6)

C
(-2,-3)

(-2,-2)

(-2,-1)

C
(-2,0)

(-2,1)

(-2,2)

(-2,3)

(-2,4)

A
(-2,5)

C
(-1,-3)

B
(-1,-2)

B
(-1,-1)

(-1,0)

(-1,1)

(-1,2)

A
(-1,3)

(-1,4)

(0,-3)

(0,-2)

A
(0,-1)

B
(0,0)

B
(0,1)

A
(0,2)

(0,3)

(1,-4)

(1,-3)

(1,-2)

(1,-1)

(1,0)

(1,1)

(1,2)

(1,3)

(2,-5)

(2,-4)

A
(2,-3)

(2,-2)

(2,-1)

(2,0)

(2,1)

(2,2)

(2,3)

(3,-6)

(3,-5)

A
(3,-4)

(3,-3)

(3,-2)

(3,-1)

(3,0)

(3,1)

(3,2)

(3,3)

(4,-3)

(4,-2)

(4,-1)

(5,-3)

(5,-2)

(6,-3)

Figure 3: Coordinate system for FAUhalma.

4



For example, the position shown in Figure 3 would be represented by the following string
(without the line breaks):

-2 ,5; -1 ,3;0 , -1;0 ,2;2 , -3;3 , -4:

-3 , -2; -3 , -1; -1 , -2;0 ,0;0 ,1; -1 , -1:

-5 ,2; -4 ,1; -4 ,3; -2 , -3; -2 ,0; -1 , -3

Note: For simplicity the board is always rotated such that your home would be the top
corner of the board.

3.3 Representation of Moves

A move is also represented as a string. Concretely, it is a semicolon-separated list of coordi-
nate pairs, where the first coordinate pair indicates the peg you want to move and the last
one indicates what space you want to move the peg to. If you have a hop chain, the list has
to include all intermediate spaces, i.e. two consecutive list entries should be a simple hop
apart from each other. For example, these would be valid moves for player A in Figure 3:

• 0,-1;-2,-1;-2,1

• 3,-4;3,-3

4 Evaluation: Playing on the Server

We can evaluate the strength of an agent relative to other agents by having it play many
games against those agents.

4.1 Scoring

It will be helpful to assign scores that represent how well an agent performed in a game.
Let us say agents A1, A2 and A3 compete in a game. To assign a score, we will look at
(unordered) pairs of agents. Let us consider a pair of agents Ai and Aj (with i 6= j). If Ai

finishes before Aj, then Ai gets 1 point and A0 gets 0 points. Correspondingly, if Ai finishes
after Aj, then Ai gets 0 points and Aj gets 1 point. In the (unlikely) case that they finish in
the same move, both get 0.5 points.

Assigning points to pairs of agents allows us to create ELO ratings [ELO]. However, we
can also simply add up the points to get the total points of an agent in a particular game.
For example, if the agents finish in the order A3, A1, A2, then A3 would get 2 points, A1

would get 1 point and A2 would get 0 points.

5



4.2 Two Tournaments

Your agent can participate in two different tournaments. In tournament 1, your agent will
compete against our agents. Your agent should get an average score of at least 1.8 points
from 50 consecutive games. Tournament 2 is just for fun and participation is optional.
There your agent can compete against some of our stronger agents as well as the agents
of other teams. Agents competing in tournament 2 will get a rating based on the ELO
system [ELO]. Note that tournament 2 is very experimental and we are not sure how stable
and meaningful the ratings will be. A key challenge is that a game might last many days if
not all the agents are online at the same time, which means that their ratings (and potentially
playing strength) can change significantly within a game.

4.3 Credentials and Client Implementations

We will commit one json file to your team repository for each tournament, which will contain
the fields:

• name (a name for the agent),
• pwd (a password for the agent),
• tournament (the name of the tournament), and
• url (the server URL).

The assignment repository [GlAdv] contains an example implementation of the server proto-
col in Python. Essentially, all you have to do is implement a function that given a position
returns a move. If you would like to use a different programming language, you are of
course welcome to implement the protocol (see Section 4.4) yourself and we will try our best
to support you. In that case, it would be nice if you share your implementation so that
other/future students can use it as well.

4.4 The Server Protocol

This section is only relevant if you want to implement the server protocol yourself. The
protocol is rather minimal: You send an HTTP request to the server with your credentials
and the moves you want to play, and the server responds either with an error message or
with a list of positions that you should provide moves for in the next request. For the first
request, you will have to send an empty list of moves to get the first positions from the server
that require a move (see Figure 4 for an example).

6



// First request :
{’name ’: ’MyAgent ’, ’pwd ’: ’r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG_2_xBcE ’,

’moves ’: []}

// First response
{’errors ’: [], ’messages ’: [], ’positions ’: [

{’id ’: ’40#1’, ’position ’: ’1 , -4;2 , -4;3 , -4;2 , -5;3 , -5;3 , -6:3 ,1;... ’} ,

{’id ’: ’7#3’, ’position ’: ’1 , -4;2 , -4;3 , -4;2 , -5;3 , -6;1 , -3:3 ,1;2... ’}]}

// Second request
{’name ’: ’MyAgent ’, ’pwd ’: ’r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG_2_xBcE ’,

’moves ’: [{’id ’: ’40#1’, ’move ’: ’2,-5;2,-3’},

{’id ’: ’7#3’, ’move ’: ’1,-4;1,-2’}]}

Figure 4: Example interaction with the server.

Please try to avoid flooding the server with requests. In particular, the server may return
an empty list of positions if it is not your turn in any game. In that case, please wait for
one second before sending another request.

The request You should send a PUT request to [SERVER NAME]/play/[TOURNAMENT NAME],
where [SERVER NAME] and [TOURNAMENT NAME] are provided by the configuration file (Sec-
tion 4.3). The request body should contain a json object with the fields:

• name: the agent’s name (from the configuration file).
• pwd: the agent’s password (from the configuration file).
• moves: the moves the agent wants to do as a list. Each move is represented as an object

with two fields: id is an identifier of the position (provided in the server responses)
and move is the move the agent wants to do as described in Section 3.3.

The response If the request was accepted, you will receive a json response with the fields:
• positions: a list of positions that you should send moves for in the next request. Each

position is an object with two fields: id is an identifier so that your move can be linked
to the position and position is the position/game state as described in Section 3.2.

• errors: a list of error messages (e.g. if your move was invalid).
• messages: a list of other messages.

7



Error response In case of an error (e.g. invalid credentials), you get a json response with
the fields:

• errorcode: The HTTP error code.
• errorname: The name of the error.
• description: A more detailed description of the error.

5 Submission

At the deadline, we will download a snapshot of your repository. It should contain
1. all your code,
2. a readme file explaining how to run your code (in particular how to run it with an

arbitrary configuration file),
Furthermore, we will check if your agent has achieved the required performance in tourna-
ment 1.

6 Random Tips

• Make sure you have a good representation for FAUhalma positions.

• Make sure you get all legal moves (and only legal moves) for a FAUhalma position
(maybe implement unit tests).

• Consider implementing and testing very simple agents before moving to more sophis-
ticated algorithms.

• You can use the server to see how well your agent plays and visualize what moves it
chose. Nevertheless, it might be useful to have some tools to analyze and compare
different agent implementations locally. As long as you don’t share agent implementa-
tions, we don’t mind if you collaborate with other teams on that.

References

[CC] Chinese checkers. url: https://en.wikipedia.org/wiki/Chinese_checkers
(visited on 11/10/2021).

8

https://en.wikipedia.org/wiki/Chinese_checkers


[ELO] Elo rating system. url: https://en.wikipedia.org/wiki/Elo_rating_system
(visited on 11/10/2021).

[GlAdv] Assignment repository for adversarial search. url: https://gitlab.rrze.fau.
de/wrv/AISysProj/ws2122/adv-search/assignment.

9

https://en.wikipedia.org/wiki/Elo_rating_system
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2122/adv-search/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2122/adv-search/assignment

	Task Summary
	Rules of FAUhalma
	Coordinates, Positions and Moves
	Coordinate System
	Representation of Positions
	Representation of Moves

	Evaluation: Playing on the Server
	Scoring
	Two Tournaments
	Credentials and Client Implementations
	The Server Protocol

	Submission
	Random Tips

